Thiophene-fused boracycles as photoactive analogues of diboraanthracenes

Shreenibasa Sa, ${ }^{\text {a }}$ Anna Chandrasekar Murali, ${ }^{a}$ Prakash Nayak, ${ }^{\text {a and }}$ Krishnan Venkatasubbaiah ${ }^{\text {a }}$
${ }^{a}$ School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar-752050, Odisha (India). "E-mail: krishv@niser.ac.in

Experimental Section

General Information

All reagents and starting materials were purchased from Sigma-Aldrich, Alfa-Aesar and Spectrochem chemical companies and used as received unless otherwise noted. Chlorinated solvents, acetonitrile, and DMF were distilled from CaH_{2}. THF and toluene were distilled from Na /benzophenone prior to use. All $400 \mathrm{MHz}{ }^{1} \mathrm{H}, 100 \mathrm{MHz}{ }^{13} \mathrm{C}$, NMR spectra were recorded on a Bruker ARX 400 spectrometer operating at 400 MHz . All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were referenced internally to solvent signals. All NMR spectra were recorded at ambient temperature. ESI mass spectra were recorded on Bruker, micrOTOF-QII mass spectrometer. The absorbance spectra were recorded on a JASCO V-730 UV-Visible spectrometer. The fluorescence spectra were recorded using Edinburgh FS5 spectrofluorometer. Absolute fluorescence quantum yields of compounds 3-5 were measured by integrating sphere method using Edinburgh FS5 spectrofluorometer. The fluorescence spectra are corrected for the instrumental response. Cyclic voltammetry measurements were performed with a conventional three electrode cell using an electrochemical workstation (CH Instrument, Model: 1100A) The three-electrode system consisted of a Glassy carbon working electrode, a Pt wire as the secondary electrode, and a Ag wire as the reference electrode. The voltammograms were recorded with ca. $1.0 \times 10^{-3} \mathrm{M}$ solution in THF containing $\mathrm{Bu}_{4} \mathrm{NPF}_{6}(0.1 \mathrm{M})$ as the supporting electrolyte. The scans were referenced after the addition of a small amount of ferrocene as the internal standard. Single-crystal X-ray diffraction data for compound $\mathbf{3}$ were collected on a Rigaku SuperNova fine-focused dual diffractometer, with $\mathrm{Cu} \mathrm{K} \alpha$ radiation ($\lambda=1.54178 \AA$) equipped with a PILATUS200K detector and for compound 4 were collected on a Bruker APEX-II diffractometer using Mo-K α radiation ($0.71073 \AA$ Å). Using Olex 2 , the structures were solved with the ShelXS structure solution program using Direct Methods and refined with the ShelXL refinement package using Least Squares minimization. All non-hydrogen atoms were refined with anisotropic displacement coefficients. The H atoms were placed at calculated positions and were refined as riding atoms. Crystallographic data for compounds $\mathbf{3} \& 4$ have been deposited with the Cambridge Crystallographic Data Center as supplementary publication no. CCDC- 2091448-2091449. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: (+44) 1223-336-033; email: deposit@ccdc.cam.ac.uk). DFT calculations were performed with the Gaussian09 program. ${ }^{1}$ The structures were optimized using $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ (B3LYP) as the basis set. Frequency calculations confirmed the optimized structures to be local minimum structures. Excitation data were determined using TD-DFT (B3LYP/631g(d,p))-calculations.

References:

Gaussian 09 (Rev. C.02), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, _. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

Synthesis of compound 2: To a suspension of 3,4-bis(chloromercurio)2,5-dimethylthiophene (1) $(2.00 \mathrm{~g}, 3.42 \mathrm{mmol})$ in toluene $(50 \mathrm{~mL})$ in a seal tube was added $\mathrm{BCl}_{3}\left(4 \mathrm{~mL}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ inside a glovebox. The tube was closed and heated at $100^{\circ} \mathrm{C}$ in an oil bath for 12 h . After cooling to room temp, the resulting mixture was filtered inside the glovebox and kept for crystallization. Fluffy white needles formed were filtered to give compound 2. Yield: 0.322 g $(30 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.82$ (s, 12 H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=155.27$, 128.38, 17.35. ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=49.96$.

General procedure for the synthesis of compounds 3-5: A solution of arylmagnesium bromide ($6 \mathrm{~mL}, 1 \mathrm{M}$ in THF) was added to a solution of compound $2(0.50 \mathrm{~g}$) in toluene (20 mL) in a sealed tube. The resulting mixture was then refluxed for 12 h . After 12h, the compound was extracted with water and dichloromethane ($3 \times 50 \mathrm{~mL}$). The organic phase was collected and dried over anhydrous sodium sulphate. The solvent was concentrated and the product was purified using silica gel column chromatography (EtOAc/ n-hexane (5:95)).

Synthesis of compound 3: The quantities involved are as follows, xylylmagnesium bromide ($6 \mathrm{~mL}, 1 \mathrm{M}$ in THF), compound $2(0.50 \mathrm{~g}$), and toluene (20 mL). Yield: $0.298 \mathrm{~g}(41 \%) . \mathrm{Mp}$: $248{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.18-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.17(\mathrm{~s}$, $12 \mathrm{H}), 1.96(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=156.29,145.14,136.17,126.83,126.58$, 21.97, 14.97. ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=56.71$. HR-MS (ESI): calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~B}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 453.2058$, Found: 453.2042 . IR $(\mathrm{KBr}): ~ v\left(\mathrm{~cm}^{-1}\right)=2959(\mathrm{~m}), 2912(\mathrm{~m})$, 1607(m), 1463(m), 1259(m), 1104(m), 761(m), 699(m).

Synthesis of compound 4: The quantities involved are as follows, mesitylmagnesium bromide ($6 \mathrm{~mL}, 1 \mathrm{M}$ in THF), compound $2(0.50 \mathrm{~g}$), and toluene (20 mL). Yield: $0.312 \mathrm{~g}(40 \%) . \mathrm{Mp}$: $253{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=6.84(\mathrm{~s}, 4 \mathrm{H}), 2.33(\mathrm{~s}, 6 \mathrm{H}), 2.12(\mathrm{~s}, 12 \mathrm{H}), 1.97(\mathrm{~s}, 12 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=156.26,145.49,144.24,136.26,136.16,127.57,21.98,21.37$, 15.10. ${ }^{11}$ B NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=56.36$. HR-MS (ESI): calcd for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~B}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 481.2371, Found: 481.2348. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~B}_{2} \mathrm{~S}_{2}$: C 75.02; H 7.13; S 13.35. Found: C
74.89; H 7.037; S 13.525. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right)=2959(\mathrm{~m}), 2910(\mathrm{~m}), 1605(\mathrm{~m}), 1465(\mathrm{~m}), 1302(\mathrm{~m})$, 1255(m), 1104(m), 851(m), 794(m), 681(m).

Synthesis of compound 5: The quantities involved are as follows, 2,4,6triisopropylphenylmagnesium bromide ($6 \mathrm{~mL}, 1 \mathrm{M}$ in THF), compound $2(0.50 \mathrm{~g}$), and toluene (20 mL). Yield: $0.328 \mathrm{~g}(32 \%) . \mathrm{Mp}: 255{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.00(\mathrm{~s}, 4 \mathrm{H})$, $2.92(\mathrm{~h}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{~h}, J=8 \mathrm{~Hz}, 4 \mathrm{H}), 1.98(\mathrm{~s}, 12 \mathrm{H}), 1.29(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 1.11(\mathrm{~d}, J$ $=8 \mathrm{~Hz}, 24 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=156.12,148.40,146.96,120.44,34.94,34.34$, 24.41, 24.33, 15.87. ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=57.79$. HR-MS (ESI): calcd for $\mathrm{C}_{42} \mathrm{H}_{58} \mathrm{~B}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 671.4072$, Found: 671.4033 . IR $(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right)=2959(\mathrm{~m}), 2925(\mathrm{~m})$, $1602(\mathrm{~m}), 1455(\mathrm{~m}), 1247(\mathrm{~m}), 1090(\mathrm{~m}), 876(\mathrm{~m}), 790(\mathrm{~m}), 689(\mathrm{~m})$.

Table S1: Photophysical data of compound 3-5

Compound	Solvent	$\lambda_{\text {absmax }}(\mathbf{n m})(\log \varepsilon)$	$\lambda_{\text {em }}(\mathrm{nm})$	$\Phi_{\text {F }}$
3	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	275(4.874), 351(4.098), 365(4.225)	378, 395	5.89
	THF	275(4.838), 351(4.021), 367(4.166)	377, 394	4.73
	Cyclohexane	277(4.952), 351(3.963), 367(4.130)	372, 390	5.22
4	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	275(4.725), 351(3.959), 365(4.077)	378, 395	5.37
	THF	275(4.966), 351(4.149), 367(4.287)	376, 394	5.23
	Cyclohexane	276(4.769), 351(4.148), 367(4.315)	373, 390	4.69
5	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	275(4.760), 348(3.894), 363(4.007)	376, 393	7.06
	THF	275(4.777), 349(3.859), 363(3.954)	375, 392	6.24
	Cyclohexane	277(4.784), 348(3.947), 363(4.080)	371, 388	4.35

Table S2: Crystal data and structure refinement parameters for compounds 3 and 4.

Compound	3	4
Empirical formula	$\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~B}_{2} \mathrm{~S}_{2}$	$\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~B}_{2} \mathrm{~S}_{2}$
Formula weight	452.26	480.31
Temperature/K	297.6(8)	296.15
Crystal system	monoclinic	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$	$\mathrm{P} 21 / \mathrm{n}$
a/Å	10.54815(16)	7.3621(3)
b/Å	14.5492(2)	16.4766(7)
c/Å	8.34333(15)	11.3205(5)
$\alpha{ }^{\circ}$	90	90
$\beta /{ }^{\circ}$	97.4946(16)	93.878(2)
$\gamma /{ }^{\circ}$	90	90
Volume/ ${ }^{\text {a }}$	1269.49(4)	1370.06(10)
Z	2	2
¢calcg/cm3	1.183	1.164
$\mu / \mathrm{mm}-1$	1.979	0.211
$\mathrm{F}(000)$	480.0	512.0
Radiation	$\begin{aligned} & \operatorname{CuK} \alpha(\lambda= \\ & 1.54184) \\ & \hline \end{aligned}$	$\begin{aligned} & \operatorname{MoK} \alpha(\lambda= \\ & 0.71073) \\ & \hline \end{aligned}$
2θ range for data collection/ ${ }^{\circ}$	8.454 to 150.788	4.372 to 56.714
Index ranges	$\begin{aligned} & -13 \leq h \leq 12,-17 \leq \\ & \mathrm{k} \leq 9,-9 \leq 1 \leq 10 \end{aligned}$	$\begin{aligned} & -9 \leq \mathrm{h} \leq 9,-21 \leq \\ & \mathrm{k} \leq 21,-15 \leq 1 \leq \\ & 15 \\ & \hline \end{aligned}$
Reflections collected	9588	22133
Independent reflections	$\begin{aligned} & 2563\left[\mathrm{R}_{\text {int }}=\right. \\ & 0.0963, \mathrm{R}_{\text {sigma }}= \\ & 0.0555] \end{aligned}$	$\begin{aligned} & 3394\left[\mathrm{R}_{\text {int }}=\right. \\ & 0.0345, \mathrm{R}_{\text {sigma }}= \\ & 0.0218] \end{aligned}$
Data/restraints/parame ters	2563/0/150	3394/0/159
Goodness-of-fit on F2	1.112	1.022
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\begin{aligned} & R_{l}=0.0680, w R_{2}= \\ & 0.1955 \end{aligned}$	$\begin{aligned} & R_{1}=0.0467 \\ & w R_{2}=0.1309 \end{aligned}$
Final R indexes [all data]	$\begin{aligned} & R_{1}=0.0749, w R_{2}= \\ & 0.2030 \end{aligned}$	$\begin{aligned} & R_{1}=0.0610, \\ & w R_{2}=0.1429 \end{aligned}$
Largest diff. peak/hole	0.31 and -0.32	0.31 and -0.23

Table S3: Frontier orbital energies derived from UV/Vis onset absorption and electrochemical data

Compound	HOMO-LUMO gap $^{[\mathrm{ab}]}$	LUMO $^{[\mathrm{b}]}$	HOMO $^{[\mathrm{c}]}$
$\mathbf{3}$	3.28	-2.01	-5.29
$\mathbf{4}$	3.28	-2.03	-5.31
$\mathbf{5}$	3.30	-1.98	-5.28

[a] Estimated from the absorption onset of the longest-wavelength UV band. [b] Calculated from E_{pc} of the first reduction wave referenced to $\mathrm{Fc} / \mathrm{Fc}+$. [c] Calculated from the HOMOLUMO gap and the LUMO.

Figure S1: UV Spectra of compound $\mathbf{3}$ in $\operatorname{THF}\left(10^{-5} \mathrm{M}\right)$ after passing of UV light (365 nm).

Figure S2: Emission spectra of compound $\mathbf{3}$ in $\operatorname{THF}\left(10^{-5} \mathrm{M}\right)$ after passing of UV light (365nm).

Figure S3: UV spectra of compound $\mathbf{4}$ in $\operatorname{THF}\left(10^{-5} \mathrm{M}\right)$ after passing of UV light (365 nm).

Figure S4: Emission spectra of compound $\mathbf{4}$ in $\operatorname{THF}\left(10^{-5} \mathrm{M}\right)$ after passing of UV light (365nm).

Figure S5: UV Spectra of compound $\mathbf{5}$ in $\operatorname{THF}\left(10^{-5} \mathrm{M}\right)$ after passing of UV light (365 nm).

Figure S6: Emission spectra of compound $\mathbf{5}$ in $\operatorname{THF}\left(10^{-5} \mathrm{M}\right)$ after passing of UV light (365nm).

Figure S7: Photograph of compounds 3-5 (from left to right) in PMMA film (4wt\%).

Figure S8: Cyclic Voltammogram of compounds 3-5 (vs. Ferrocene/Ferrocenium) with 0.1 M $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ as the supporting electrolyte (scan rate $50 \mathrm{mV} / \mathrm{s}$) in DME.

Table S4. Calculated electronic transitions for compound 3-5 from TD-DFT ((B3LYP/631g(d,p))- PCM solvation (THF))) calculations

Compound
LUMO+1
HOMO
HOMO-2

Figure S9: NICS values of thiophene and $\mathrm{B}_{2} \mathrm{C}_{4}$ ring of compounds 3-5.

$\stackrel{\sim}{1}$
$\stackrel{\text { N }}{ }$

Figure S10: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 2 in CDCl_{3}.

N
$\stackrel{n}{n}$
i
$\stackrel{\infty}{\infty}$

$\stackrel{n}{n}$

Figure S11: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 2 in CDCl_{3}.

$\stackrel{\circ}{\circ}$

Figure S12: ${ }^{11} \mathrm{~B}$ NMR spectrum of compound 2 in CDCl_{3}.

Figure S13: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3}$ in CDCl_{3}.

$\begin{array}{llllllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & \mathbf{7 0} & \mathbf{6 0} & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
Figure $\mathbf{S 1 4}:{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3}$ in CDCl_{3}.

莒

工

Figure S15: ${ }^{11} \mathrm{~B}$ NMR spectrum of compound $\mathbf{3}$ in CDCl_{3}.

Figure S16: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4}$ in CDCl_{3}.

Figure S17: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4}$ in CDCl_{3}.

$\stackrel{0}{0}$

Figure $\mathbf{S 1 8}:{ }^{11} \mathrm{~B}$ NMR spectrum of compound $\mathbf{4}$ in CDCl_{3} ．

Figure S19：${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5}$ in CDCl_{3} ．

$\begin{array}{lllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \text { ppm }\end{array}$ Cl_{3}.

î
\qquad

Figure $\mathbf{S 2 1}:{ }^{11} \mathrm{~B}$ NMR spectrum of compound $\mathbf{5}$ in CDCl_{3}.

Photoirradiation studies of compounds 3-5.

Compound 4 was subjected to photolysis. The ${ }^{1} \mathrm{H}^{(1 \mathrm{H}}{ }^{1} \mathrm{H}$ COSY), ${ }^{13} \mathrm{C}\left({ }^{13} \mathrm{C}-\mathrm{DEPT}-135\right) \&{ }^{11} \mathrm{~B}$ NMR of compound 4 was recorded after 5 h and 24 h . After 5 h , the ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$-COSY, ${ }^{13} \mathrm{C}$ and ${ }^{13} \mathrm{C}$ DEPT-135 reveal the presence of species A \& B as major products. Formation of a doublet (Figure S23-S25, CH_{3} (a)) at 1.26 ppm and quartet at $3.38 \mathrm{ppm}(\mathrm{H}(\mathrm{b}))$ was observed which corresponds to species A. In addition to that presence of two carbons ($-\mathrm{CH}_{2}$-) with different environment was also observed using ${ }^{13}$ C DEPT-135 experiment (Figure S27), which suggest that more than one species is formed during the photolysis. The second species is assigned as B. However, after 24 h photolysis, presence of a symmetrical product C was observed. A similar phenomenon was observed for compound $\mathbf{3}$ and 5. Further studies needed to reveal the pathways involved in this process and also other species involved in the processes.

Figure S22: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S23: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ after irradiation of UV light for 5 h . Starting material peaks are marked with asterisk (*).

Figure S24: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of compound 4 in $\mathrm{C}_{6} \mathrm{D}_{6}$ after irradiation of UV light for 5 h .

Figure S25: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of compound 4 in $\mathrm{C}_{6} \mathrm{D}_{6}$ after irradiation of UV light for 5 h .

Figure S26: ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{4}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ after irradiation of UV light for 5 h .

(

$\begin{array}{llllllllllllllllllllllllllllllllllll}45140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 & 10 & 5\end{array}$
Figure S27: ${ }^{13} \mathrm{C}$ DEPT-135 NMR of compound $\mathbf{4}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ after irradiation of UV light for 5 h .

Figure S28：${ }^{11}$ B of compound 4 in $\mathrm{C}_{6} \mathrm{D}_{6}$ after irradiation of UV light for 5 h ．

ヘヘプ

Figure S29：${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ after irradiation of UV light for 24 h ．

Figure S30: ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{4}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ after irradiation of UV light for 24 h .

Figure S31: ${ }^{13} \mathrm{C}$ DEPT-135 NMR of compound 4 in $\mathrm{C}_{6} \mathrm{D}_{6}$ after irradiation of UV light for 24h.

Figure S32: ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ after irradiation of UV light for 5 h .

Figure S33: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound $\mathbf{3}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ after irradiation of UV light for 5 h .

Figure S34: ${ }^{11} \mathrm{~B}$ NMR of compound $\mathbf{3}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ after irradiation of UV light for 5 h .

Figure S35: ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ after irradiation of UV light for 24 h .

Figure S36: ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ after irradiation of UV light for 24 h .

Figure S37: ${ }^{13}$ C DEPT-135 NMR of compound $\mathbf{3}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ after irradiation of UV light for 24h.

Figure S38: ${ }^{1} \mathrm{H}$ NMR of compound 5 in $\mathrm{C}_{6} \mathrm{D}_{6}$ after irradiation of UV light for 5 h .

Figure S39: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound 5 in $\mathrm{C}_{6} \mathrm{D}_{6}$ after irradiation of UV light for 5 h .

Figure S40: ${ }^{13} \mathrm{C}$ NMR of compound 5 in $\mathrm{C}_{6} \mathrm{D}_{6}$ after irradiation of UV light for 5 h .

Figure S41: ${ }^{13}$ C DEPT-135 NMR of compound $\mathbf{5}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ after irradiation of UV light for 5 h .

Figure S42: ${ }^{11}$ B of compound $\mathbf{5}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ after irradiation of UV light for 5 h .

$\stackrel{n}{\text { Ni }}$

Figure S43: ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{5}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ after irradiation of UV light for 24 h .

Figure S44: ${ }^{13} \mathrm{C}$ NMR of compound 5 in $\mathrm{C}_{6} \mathrm{D}_{6}$ after irradiation of UV light for 24h.

Figure S45: ${ }^{13}$ C DEPT-135 NMR of compound $\mathbf{5}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ after irradiation of UV light for 24h.

Optimized x, y, z coordinates for compounds 3-5 calculated on Gaussian 03 at the B3LYP//6$31 \mathrm{~g}(\mathrm{~d}, \mathrm{p})$ level

Compound 3

Center Atomic Atomic Coordinates			
Type	X	Yngstroms)	

S	0.000025	-3.805492	-0.000013
C	-5.948332	-0.000006	0.000009
C	-5.247460	-0.000011	1.204276
H	-5.790086	-0.000012	2.146704
C	-3.847330	-0.000017	1.218217
C	-3.129969	-0.000017	0.000007
C	-0.732906	1.326730	0.000002
C	-0.732884	-1.326738	0.000001
C	-3.847332	-0.000011	-1.218202
C	-5.247461	-0.000006	-1.204259
H	-5.790090	-0.000003	-2.146685
C	-3.108449	-0.000019	2.540728
H	-3.802559	-0.000034	3.385869
H	-2.460163	0.878810	2.640393
H	-2.460141	-0.878833	2.640378
C	-1.265108	2.606545	-0.000006
C	-1.265072	-2.606560	-0.000006
C	-2.686976	-3.100899	-0.000010
H	-3.233986	-2.745547	0.877256
H	-2.721707	-4.193796	-0.000022
H	-3.233988	-2.745526	-0.877266
C	-2.687016	3.100872	-0.000009
H	-3.234035	2.745480	0.877234
H	-3.234014	2.745530	-0.877287
H	-2.721757	4.193769	0.000021
C	-3.108453	-0.000007	-2.540715
H	-3.802565	-0.000035	-3.385854
H	-2.460132	-0.878812	-2.640362
H	-2.460180	0.878832	-2.640383
B	-1.546332	-0.000013	0.000004
S	-0.000025	3.805493	-0.000015
C	5.948332	0.000004	0.000008
C	5.247461	-0.000004	-1.204259
H	5.790088	-0.000014	-2.146686
C	3.847331	0.000002	-1.218201
C	3.129969	0.000017	0.000008
C	0.732906	-1.326729	0.000007
C	0.732884	1.326739	-0.000001
C	3.847331	0.000025	1.218218
C	5.247460	0.000019	1.204276

H	5.790088	0.000026	2.146703
C	3.108452	-0.000016	-2.540713
H	3.802564	0.000037	-3.385853
H	2.460205	-0.878874	-2.640388
H	2.460104	0.878769	-2.640356
C	1.265108	-2.606544	0.000006
C	1.265072	2.606561	-0.000014
C	2.686976	3.100900	-0.000030
H	3.233966	2.745567	-0.877317
H	2.721707	4.193797	0.000005
H	3.234008	2.745508	0.877205
C	2.687016	-3.100871	0.000004
H	3.233996	-2.745577	-0.877306
H	3.234053	-2.745430	0.877215
H	2.721757	-4.193768	0.000092
C	3.108450	0.000041	2.540729
H	3.802560	0.000032	3.385870
H	2.460168	0.878874	2.640384
H	2.460138	-0.878770	2.640389
B	1.546332	0.000013	0.000007
H	-7.034740	-0.000004	0.000010
H	7.034740	0.000002	0.000009

Compound 4

Center Atomic Atomic Coordinates (Angstroms)Type X Y Z			
S	-0.002955	-3.805415	-0.000041
C	-5.973237	0.009170	0.000010
C	-5.251670	0.009834	1.197365
H	-5.791623	0.015825	2.142593
C	-3.852546	0.004997	1.214162
C	-3.130250	0.002070	-0.000039
C	-0.731886	1.327142	-0.000044
C	-0.733886	-1.325981	-0.000042
C	-3.852567	0.005002	-1.214184
C	-5.251723	0.009845	-1.197337
H	-5.791703	0.015841	-2.142545
C	-3.119395	0.007636	2.539958
H	-3.816595	0.007806	3.382561
H	-2.472260	0.887204	2.640937
H	-2.470492	-0.870389	2.642834
C	-1.263111	2.607278	-0.000009
C	-1.267108	-2.605279	-0.000038
C	-2.689505	-3.098260	-0.000032
H	-3.236039	-2.742067	0.877196
H	-2.725206	-4.191183	-0.000029
H	-3.236045	-2.742068	-0.877257

C	-2.684702	3.102578	-0.000003
H	-3.231897	2.747480	0.877254
H	-3.231984	2.747247	-0.877106
H	-2.718618	4.195550	-0.000141
C	-3.119484	0.007628	-2.540020
H	-3.816728	0.007897	-3.382586
H	-2.470672	-0.870457	-2.642968
H	-2.472270	0.887138	-2.640998
C	-7.483748	-0.019065	0.000108
H	-7.893858	0.473504	-0.886904
H	-7.893876	0.479160	0.883970
H	-7.863799	-1.048658	0.003453
B	-1.547248	0.001186	-0.000048
S	0.002962	3.805424	0.000045
C	5.973234	-0.009188	0.000080
C	5.251711	-0.009771	-1.197313
H	5.791701	-0.015709	-2.142521
C	3.852597	-0.004922	-1.214163
C	3.130247	-0.002069	0.000018
C	0.731884	-1.327132	-0.000063
C	0.733885	1.325988	-0.000015
C	3.852510	-0.005090	1.214183
C	5.251675	-0.009938	1.197389
H	5.791619	-0.015998	2.142616
C	3.119488	-0.007475	-2.539983
H	3.816715	-0.007683	-3.382564
H	2.472286	-0.886988	-2.640999
H	2.470661	0.870606	-2.642860
C	1.263114	-2.607265	-0.000060
C	1.267110	2.605284	0.000024
C	2.689509	3.098261	0.000059
H	3.236076	2.742044	-0.877138
H	2.725214	4.191184	0.000033
H	3.236013	2.742088	0.877314
C	2.684709	-3.102555	-0.000023
H	3.232114	-2.746932	-0.876925
H	3.231774	-2.747741	0.877433
H	2.718634	-4.195527	-0.000508
C	3.119384	-0.007779	2.539995
H	3.816600	-0.008167	3.382584
H	2.470632	0.870345	2.642999
H	2.472102	-0.887250	2.640878
C	7.483745	0.019033	0.000009
H	7.893797	-0.472047	0.887867
H	7.893922	-0.480682	-0.882995
H	7.863806	1.048615	-0.005079
B	1.547246	-0.001179	-0.000033

Compound 5
Center Atomic Atomic Coordinates (Angstroms)

Type	$\mathrm{X} \quad \mathrm{Y}$	Z	
S	0.011611	-3.571675	1.337168
C	-5.979439	0.076326	0.199282
C	-5.215276	0.549636	1.268206
H	-5.731675	0.933694	2.144929
C	-3.814879	0.548747	1.239293
C	-3.137719	0.033900	0.108344
C	-0.739005	1.256134	-0.436214
C	-0.731359	-1.241779	0.486138
C	-3.903118	-0.461979	-0.9769

C	-5.300083	-0.420910	-0.918449
H	-5.876347	-0.789983	-1.762896

C	-3.035820	1.071268	2.450145

H	-1.993068	1.208308	2.135583

C	-1.271819	2.461089	-0.869559

C	-1.256318	-2.437415	0.953525

C $\quad-2.663687 \quad-2.931958 \quad 1.146857$

H	-3.359781	-2.114751	1.321308

H	-2.719764	-3.625083	1.992406

H	-3.010876	-3.476678	0.260998

C	-2.679313	2.982025	-0.973425

H $\quad-2.964701 \quad 3.520213 \quad-0.061924$

H	-3.399624	2.179969	-1.117703

H	-2.771816	3.687393	-1.805482

C	-3.216136	-1.011762	-2.230876

H $\quad-2.163430 \quad-1.189324 \quad-1.975807$

C	-7.501580	0.111235	0.255041

H	-7.777083	0.506591	1.241768

B $\quad-1.550276 \quad 0.015296 \quad 0.053628$
S $\quad-0.011282 \quad 3.572035 \quad-1.337416$

C	5.979358	-0.077029	-0.199917

C	5.214515	-0.549213	-1.268869
H	5.730397	-0.932906	-2.146054

H	5.730397	-0.932906	-2.146054
C	3.81453	-0.54713	-1.239387

C	3.814153	-0.547713	-1.239387
C	3.137694	-0.033397	-0.107734

C	3.137694	-0.033397	-0.107734

C	0.738969	-1.255587	0.436406

C	0.731397	1.242839	-0.484309

C	3.903796	0.461396	0.977566

C	5.300728	0.419757	0.918435

H	5.877504	0.787971	1.762901

C	3.034432	-1.069254	-2.450193

H $\quad 1.992145 \quad-1.207836 \quad-2.134705$

C	1.271963	-2.460783	0.868757
C	1.256558	2.438305	-0.951717

C	1.256558	2.438305	-0.951717
C	2.664027	2.932925	-1.143950
H	3.30705	2.115545	-1.31528

H	2.721278	3.623973	-1.991
H	3.009323	3.480060	-0.258808
C	2.679441	-2.982254	0.970036
H	2.963723	-3.518470	0.057022
H	3.400073	-2.180640	1.115320
H	2.772708	-3.689452	1.800445
C	3.217501	1.010751	2.232030
H	2.165537	1.191988	1.976409
C	7.501475	-0.112560	-0.256411
H	7.776284	-0.508086	-1.243265
B	1.550268	-0.014412	-0.052358
C	-3.794092	-2.360289	-2.698595
H	-4.816860	-2.255224	-3.075952
H	-3.188396	-2.770070	-3.513882
H	-3.812696	-3.095356	-1.888594
C	-3.239645	0.006863	-3.387792
H	-4.269520	0.257554	-3.666109
H	-2.727360	0.933247	-3.115072
H	-2.742336	-0.402527	-4.274304
C	-8.089763	1.063765	-0.803155
H	-7.857418	0.720487	-1.817240
H	-9.180225	1.120092	-0.712671
H	-7.685721	2.074909	-0.693591
C	-8.119076	-1.294399	0.134204
H	-7.730076	-1.965546	0.906176
H	-9.208703	-1.249002	0.239013
H	-7.898685	-1.744094	-0.840095
C	-3.534799	2.440036	2.948556
H	-3.562501	3.178862	2.142254
H	-4.541546	2.375075	3.374814
H	-2.873868	2.821526	3.734191
C	-3.032111	0.052368	3.607097
H	-4.052840	-0.158765	3.945326
H	-2.573420	-0.892871	3.305116
H	-2.468303	0.440551	4.462804
C	3.534306	-2.436721	-2.951263
H	4.539930	-2.369777	-3.379878
H	3.565065	-3.176403	-2.145852
H	2.872105	-2.818311	-3.735775
C	3.028528	-0.048563	-3.605541
H	2.569460	0.895824	-3.301463
H	4.048708	0.163841	-3.944605
H	2.464021	-0.435848	-4.461199
C	3.799176	2.356551	2.702941
H	4.821098	2.247526	3.081479
H	3.821197	3.092940	1.894241
H	3.193747	2.766781	3.518194
C	3.237071	-0.010274	3.386888
H	2.722788	-0.934796	3.111623
H	4.265994	-0.264099	3.665882

H	2.739745	0.398536	4.273663
C	8.119525	1.292877	-0.136018
H	9.209116	1.247072	-0.241025
H	7.730613	1.963985	-0.908067
H	7.899452	1.742855	0.838219
C	8.089880	-1.065226	0.801525
H	9.180271	-1.121949	0.710434
H	7.858249	-0.721830	1.815733
H	7.685429	-2.076238	0.692236

