Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

Rhodium-catalysed direct formylmethylation using vinylene carbonate and sequential dehydrogenative esterification

Moena Kato,^{a,b} Koushik Ghosh,^{a,b} Yuji Nishii,*^a and Masahiro Miura*^c

^a Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.

^b M.K. and K.G. contributed equally to this work.

^c Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan.

y-nishii@chem.eng.osaka-u.ac.jp

miura@chem.eng.osaka-u.ac.jp

Contents

1. General Information	S2
2. Experimental Procedure and Identification Data	S3
3. Detection of H ₂ and CO ₂	S20
4. Copy of NMR Spectra	S21
5. References	S61

1. General Information

All manipulations were performed under N₂ using standard Schlenk techniques unless otherwise noted. Toluene and 1,4-dioxane were dried and deoxygenated by a Glass Counter Solvent Dispending System (Nikko Hansen & Co., Ltd.). DCE (1,2-dichloroethane) and DMSO (dimethylsulfoxide) were distilled from CaH₂ and stored with molecular sieves 4A. MeOH was purchased as dehydrated solvent and used as received. Silica gel column chromatography was performed using Wakosil[®] C-200 (64~210 μ m). [Cp*RhCl₂]₂ and [Cp*Rh(MeCN)₃][SbF₆]₂ were prepared according to the literature procedure.¹ Pyrazoles (1a-1k),² indolines (4a-4j, 6),³ and indoles (8a-8h)⁴ were prepared according to the literature procedures. 2-Naphtylacetaldehyde (10) was prepared according to the literature procedure.⁵ All other reagents were purchased from suppliers and used without further purification.

Nuclear magnetic resonance spectra were measured at 400 MHz (¹H NMR), at 100 MHz (¹³C NMR), and at 376 MHz (¹⁹F NMR) in 5 mm NMR tubes. ¹H NMR chemical shifts were reported in ppm relative to the resonance of TMS (δ 0.00) or the residual solvent signals at δ 7.26 for CDCl₃. ¹³C NMR chemical shifts were reported in ppm relative to the residual solvent signals at δ 77.2 for CDCl₃. Melting points were measured with Mettler Toledo MP90. High resolution mass spectra (HRMS) were recorded by APCI-TOF. Gas chromatography (GC) was conducted with Shimadzu GC-2010 plus equipped Dielectric-Barrier Discharge Ionization (BID) Detector and Shinwa Chemical Industries MICROPACKED-ST column (2.0 m × 1.0 mm I.D.). Preparative gel permeation chromatography (GPC) was conducted with two in-line YMC-GPC T2000 preparative columns (eluent: CHCl₃).

2. Experimental Procedures and Identification Data

2-1. General Procedure for the Formylmethylation of 1 with 2 (Scheme 2)

To an oven-dried 10 mL screw-top tube were added **1** (0.2 mmol), vinylene carbonate (**2**) (34.4 mg, 0.4 mmol), $[Cp*Rh(MeCN)_3][SbF_6]_2$ (10.0 mg, 6.0 mol%), and DCE (1.0 mL). The tube was filled with N₂ and sealed with a Teflon cap. The mixture was heated at 130 °C with an oil bath for 16 h. After cooling to room temperature, volatiles were removed in vacuo. The residue was purified by silica gel column chromatography to give the corresponding product **3**.

2-(2-(3,5-dimethyl-1*H*-pyrazol-1-yl)phenyl)acetaldehyde (**3a**)

Isolated by silica gel column chromatography (eluent: chloroform/MeOH = 100/1), orange oil (35.1 mg, 82% yield); ¹H NMR (400 MHz, CDCl₃) δ 9.58 (t, *J* = 1.5 Hz, 1H), 7.45-7.38 (m, 2H), 7.33 (dd, *J* = 2.1, 7.0 Hz, 1H), 7.28 (dd, *J* = 1.4, 7.6 Hz, 1H), 5.96 (s, 1H), 3.54 (d, *J* = 1.6 Hz, 2H), 2.26 (s, 3H), 2.10 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 198.7, 149.1, 140.6, 139.1, 131.6, 131.1, 129.2, 128.2, 128.0, 105.8, 46.3, 13.5, 11.4; HRMS *m/z*: [M+H]⁺ Calcd for C₁₃H₁₄N₂O 215.1179; Found 215.1177.

2-(3,5-Dimethyl-1*H*-pyrazol-1yl)-5-methylphenylacetaldehyde (**3b**)

Isolated by silica gel column chromatography (eluent: hexane/EtOAc = 3/1), orange oil (33.8 mg, 74% yield); ¹H NMR (400 MHz, CDCl₃) δ 9.56 (t, *J* = 1.8 Hz, 1H), 7.20-7.15 (m, 2H), 7.12 (s, 1H) , 5.95 (s, 1H), 3.48 (d, *J* = 1.8 Hz, 2H), 2.40 (s, 3H), 2.26 (s, 3H), 2.08 (d, *J* = 0.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.0, 149.0, 140.6, 139.2, 136.5, 132.2, 130.7, 128.8, 127.8, 105.6, 46.2, 21.2, 13.5, 11.4; HRMS *m*/*z*: [M+H]⁺ Calcd for C₁₄H₁₆N₂O 229.1335; Found 229.1320.

2-(3,5-Dimethyl-1*H*-pyrazol-1yl)-5-methoxyphenylacetaldehyde (3c)

Isolated by silica gel column chromatography (eluent: hexane/EtOAc = 1/1), yellow oil (23.6 mg, 48% yield); ¹H NMR (400 MHz, CDCl₃) δ 9.56 (t, *J* = 1.8 Hz, 1H), 7.21 (d, *J* = 8.6 Hz, 1H), 6.91-6.88 (dd, *J* = 2.9, 8.6 Hz, 1H), 6.83 (d, *J* = 2.8 Hz, 1H), 5.94 (s, 1H), 3.84 (s, 3H), 3.46 (d, *J* = 1.8 Hz, 2H), 2.25 (s, 3H), 2.06 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 198.6, 159.8, 148.9, 140.8, 132.4, 132.0, 129.1, 116.6, 113.2, 105.5, 55.6, 46.4, 13.5, 11.4; HRMS *m/z*: [M+H]⁺ Calcd for C₁₄H₁₆N₂O₂ 245.1285; Found 245.1298.

2-(3,5-Dimethyl-1*H*-pyrazol-1yl)-5-(trifluoromethyl)phenylacetaldehyde (3d)

Isolated by silica gel column chromatography (eluent: hexane/EtOAc = 1/1), yellow oil (44.4 mg, 79% yield); ¹H NMR (400 MHz, CDCl₃) δ 9.58 (t, *J* = 1.3 Hz, 1H), 7.68-7.66 (dd, *J* = 1.3, 8.2 Hz, 1H), 7.60 (d, *J* = 1.4 Hz, 1H), 7.39 (d, *J* = 8.2 Hz, 1H), 5.99 (s, 1H), 3.72 (s, 2H), 2.26 (s, 3H), 2.15 (d, *J* = 0.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 149.9, 142.0, 140.7, 132.1, 130.0 (q, -*C*CF₃, *J* = 32.9 Hz), 129.0 (q, -*C*CCF₃, *J* = 3.5 Hz), 128.1, 125.2 (q, -*C*CCF₃, *J* = 3.6 Hz), 123.6 (q, -*C*F₃, *J* = 270.5 Hz), 106.6, 46.4, 13.5, 11.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.6; HRMS *m*/*z*: [M+H]⁺ Calcd for C₁₄H₁₃N₂OF₃ 283.1052; Found 283.1043.

2-(3,5-Dimethyl-1*H*-pyrazol-1yl)-5-chlorophenylacetaldehyde (3e)

Isolated by silica gel column chromatography (eluent: hexane/EtOAc = 3/1), orange oil (32.8 mg, 66% yield); ¹H NMR (400 MHz, CDCl₃) δ 9.55 (t, *J* = 1.5 Hz, 1H), 7.37 (dd, *J* = 2.4, 8.3 Hz, 1H), 7.33 (d, *J* = 2.2 Hz, 1H), 7.21 (d, *J* = 8.4 Hz, 1H), 5.96 (s, 1H), 3.55 (d, *J* = 1.4 Hz, 2H), 2.25 (s, 3H), 2.10 (d, *J* = 0.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.6, 149.5, 140.7, 137.6, 134.7, 133.0, 131.7, 129.0, 128.3,

106.1, 46.1, 13.5, 11.4; HRMS *m*/*z*: [M+H]⁺ Calcd for C₁₃H₁₃N₂OCl 249.0789; Found 249.0785.

2-(3,5-Dimethyl-1*H*-pyrazol-1yl)-5-bromophenylacetaldehyde (3f)

Isolated by silica gel column chromatography (eluent: hexane/EtOAc = 3/1), yellow oil (22.5 mg, 38%, eluent); ¹H NMR (400 MHz, CDCl₃) δ 9.55 (t, *J* = 1.5 Hz, 1H), 7.53 (dd, *J* = 2.2, 8.3 Hz, 1H), 7.49 (d, *J* = 2.2 Hz, 1H), 7.14 (d, *J* = 8.3 Hz, 1H), 5.96 (s, 1H), 3.55 (d, *J* = 1.4 Hz, 2H), 2.25 (s, 3H), 2.10 (d, *J* = 0.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.6, 149.6, 140.7, 138.1, 134.6, 133.3, 131.3, 129.2, 122.7, 106.2, 46.0, 13.5, 11.4; HRMS *m*/*z*: [M+H⁺] Calcd for C₁₃H₁₃N₂OBr 293.0284; Found 293.0269.

2-(3,5-Dimethyl-1*H*-pyrazol-1yl)-4-ethoxycarbonylphenylacetaldehyde (**3g**)

Isolated by silica gel column chromatography (eluent: hexane/EtOAc = 2/1), orange oil (10.1 mg, 50% yield); ¹H NMR (400 MHz, CDCl₃) δ 9.58 (t, *J* = 1.5 Hz, 1H), 8.10 (dd, *J* = 1.7, 8.0 Hz, 1H), 7.95 (d, *J* = 1.7 Hz, 1H), 7.41 (d, *J* = 8.0 Hz, 1H), 5.99 (s, 1H), 4.39 (q, *J* = 7.1 Hz, 2H), 3.66 (d, *J* = 1.4 Hz, 2H), 2.27 (s, 3H), 2.13 (s, 3H), 1.39 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.6, 165.4, 149.6, 140.8, 139.2, 136.1, 131.8, 130.7, 130.0, 128.9, 106.2, 61.4, 46.4, 14.3, 13.5, 11.5; HRMS *m/z*: [M+H]⁺ Calcd for C₁₆H₁₈N₂O₃ 287.1390; Found 287.1401.

2-(3,5-Dimethyl-1*H*-pyrazol-1yl)thiophene-3-ylacetaldehyde (3h)

Isolated by silica gel column chromatography (eluent: hexane/EtOAc = 1/1), brown oil (29.1 mg, 66% yield); ¹H NMR (400 MHz, CDCl₃) δ 9.64 (t, *J* = 1.8 Hz, 1H), 7.30 (d, *J* = 5.6 Hz, 1H), 6.93 (d, *J* = 5.6 Hz, 1H), 5.97 (s, 1H), 3.53 (d, *J* = 1.9 Hz, 2H), 2.26 (s, 3H), 2.16 (d, *J* = 0.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 198.0, 150.3, 142.6, 137.4, 129.5, 127.4, 124.3, 106.5, 42.3, 13.6, 11.5; HRMS *m*/*z*: [M+H]⁺ Calcd for C₁₁H₁₂N₂OS 221.0743; Found 221.0749.

2-(2-(1*H*-pyrazol-1-yl)phenyl)acetaldehyde (3i)

Isolated by silica gel column chromatography (eluent: hexane/EtOAc = 3/1), yellow oil (18.7 mg, 50% yield); ¹H NMR (400 MHz, CDCl₃) δ 9.66 (t, *J* = 1.6 Hz, 1H), 7.71 (d, *J* = 1.5 Hz, 1H), 7.64 (dd, *J* = 0.6, 2.4 Hz, 1H), 7.43-7.37 (m, 3H), 7.36-7.32 (m, 1H), 6.44 (t, *J* = 2.1 Hz, 1H), 3.74 (d, *J* = 1.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 198.8, 140.9, 140.1, 132.2, 130.4, 128.6, 128.6, 128.4, 125.7, 106.9, 46.8; HRMS *m/z*: [M+H]⁺ Calcd for C₁₁H₁₀N₂O 187.0866; Found 187.0858.

2-3. General Procedure for the Formylmethylation of 4 with 2 (Scheme 3)

To an oven-dried 10 mL screw-top tube were added 4 (0.2 mmol), vinylene carbonate (2) (34.4 mg, 0.4 mmol), $[Cp*Rh(MeCN)_3][SbF_6]_2$ (10.0 mg, 6.0 mol%), and DCE (1.0 mL). The tube was filled with N₂ and sealed with a Teflon cap. The mixture was heated at 130 °C with an oil bath for 16 h. After cooling to room temperature, volatiles were removed in vacuo. The residue was purified by silica gel column chromatography to give the corresponding product 5.

2-(1-(Pyrimidin-2-yl)indolin-7-yl)acetaldehyde (5a)

Isolated by silica gel column chromatography (eluent: hexane/EtOAc = 3/1), brown solid (36.5 mg, 76% yield); m.p. 87.9-89.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.78 (t, *J* = 1.7 Hz, 1H), 8.32 (d, *J* = 4.8 Hz, 2H), 7.22 (dt, *J* = 1.2, 6.2 Hz, 1H), 7.13-1.07 (m, 2H), 6.69 (t, *J* = 4.8 Hz. 1H), 4.45 (t, *J* = 7.9 Hz, 2H), 3.44 (d, *J* = 1.7 Hz, 2H), 3.10 (t, *J* = 7.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 201.1, 160.5, 157.5, 143.2, 135.3, 130.1, 124.3, 123.8, 123.4, 112.6, 52.2, 48.0, 29.5; HRMS *m*/*z*: [M+H]⁺ Calcd for C₁₄H₁₃N₃O 240.1131; Found 240.1139.

2-(5-Methyl-1-(pyrimidin-2-yl)indolin-7-yl)acetaldehyde (5b)

Isolated by silica gel column chromatography (eluent: hexane/EtOAc = 3/1), yellow solid (38.8 mg, 77% yield); m.p. 119.0-121.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.78 (t, *J* = 1.7 Hz, 1H), 8.31 (d, *J* = 4.8 Hz, 2H), 7.04 (s, 1H), 6.92 (s, 1H), 6.67 (t, *J* = 4.8 Hz, 1H), 4.43 (t, *J* = 7.8 Hz, 2H), 3.42 (d, *J* = 1.7 Hz, 2H), 3.05 (t, *J* = 7.8 Hz, 2H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 201.2, 160.7, 157.5, 140.9, 135.4, 134.1, 130.5, 124.6, 123.1, 112.4, 52.2, 47.9, 29.5, 20.9; HRMS *m*/*z*: [M+H]⁺ Calcd for C₁₅H₁₅N₃O 254.1288; Found 254.1276.

2-(5-Methoxy-1-(pyrimidin-2-yl)indolin-7-yl)acetaldehyde (5c)

Isolated by silica gel column chromatography (eluent: hexane/EtOAc = 2/1), white solid (12.9 mg, 24% yield); m.p. 85.5-87.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.79 (t, *J* = 1.7 Hz, 1H), 8.30 (d, *J* = 4.8 Hz, 2H), 6.81 (t, *J* = 1.3 Hz, 1H), 6.67 (d, *J* = 4.8 Hz, 1H), 6.65 (d, *J* = 1.8 Hz, 1H), 4.45 (t, *J* = 7.7 Hz, 2H), 3.82 (s, 3H), 3.44 (d, *J* = 1.7 Hz, 2H), 3.06 (t, *J* = 7.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 200.9, 160.8, 157.5, 157.0, 136.9, 136.8, 124.3, 114.6, 112.2, 110.1, 55.7, 52.3, 48.0, 30.0; HRMS *m/z*: [M+H]⁺ Calcd for C₁₅H₁₅N₃O₂ 270.1237; Found 270.1225.

2-(5-Chloro-1-(pyrimidin-2-yl)indolin-7-yl)acetaldehyde (5d)

Isolated by silica gel column chromatography (eluent: hexane/EtOAc = 3/1), yellow solid (32.3 mg, 59% yield); m.p. 154.4-156.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.76 (t, *J* = 1.5 Hz, 1H), 8.33 (d, *J* = 4.8 Hz, 2H), 7.19 (d, *J* = 1.8 Hz, 1H), 7.11 (d, *J* = 1.9 Hz, 1H), 6.72 (t, *J* = 4.8 Hz, 1H), 4.45 (t, *J* = 7.9 Hz, 2H), 3.42 (d, *J* = 1.4 Hz, 2H), 3.08 (t, *J* = 7.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 200.0, 160.4, 157.6, 142.1, 137.2, 129.8, 129.1, 124.6, 124.0, 112.9, 52.3, 47.7, 29.4; HRMS *m*/*z*: [M+H]⁺ Calcd for C₁₄H₁₂N₃OCl 274.0742; Found 274.0739.

2-(6-Chloro-1-(pyrimidin-2-yl)indolin-7-yl)acetaldehyde (5e)

Isolated by silica gel column chromatography (eluent: hexane/EtOAc = 3/1), brown solid (6.6 mg, 12% yield); m.p. 127.8-129.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.75 (t, *J* = 1.4 Hz, 1H), 8.33 (d, *J* = 4.8 Hz, 2H), 7.20-7.13 (m, 2H), 6.73 (t, *J* = 4.8 Hz, 1H), 4.49 (t, *J* = 7.8 Hz, 2H), 3.46 (d, *J* = 1.4 Hz, 2H), 3.08 (t, *J* = 8.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 200.8, 160.5, 157.6, 145.3, 134.3, 133.9, 124.9, 124.3, 122.5, 113.1, 52.8, 44.9, 29.3; HRMS *m/z*: [M+H]⁺ Calcd for C₁₄H₁₂N₃OCl 274.0742; Found 274.0746.

2-(2-Methyl-1-(pyrimidin-2-yl)indolin-7-yl)acetaldehyde (5f)

Isolated by silica gel column chromatography (eluent: hexane/EtOAc = 3/1), orange oil (26.9 mg, 53% yield); ¹H NMR (400 MHz, CDCl₃) δ 9.76 (dd, *J* = 0.8, 2.5 Hz, 1H), 8.32 (d, *J* = 4.8 Hz, 2H), 7.23-7.21 (m,

1H), 7.13-7.10 (m, 2H), 6.69 (t, J = 4.8 Hz, 1H), 5.11-5.03 (m, 1H), 3.50-3.40 (m, 3H), 2.56 (d, J = 15.6 Hz, 1H), 1.38 (d, J = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 201.2, 160.1, 157.5, 141.7, 134.0, 131.5, 124.3, 123.8, 112.7, 59.4, 48.1, 36.6, 21.1; HRMS m/z: [M+H]⁺ Calcd for C₁₅H₁₅N₃O 274.0742; Found 274.0739.

2-(3-Methyl-1-(pyrimidin-2-yl)indolin-7-yl)acetaldehyde (5g)

Isolated by silica gel column chromatography (eluent: chloroform/MeOH = 100/1), white solid (41.6 mg, 82% yield); m.p. 107.5-109.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.79 (t, *J* = 1.7 Hz, 1H), 8.32 (d, 2H, *J* = 4.8 Hz), 7.20-7.16 (m, 1H), 7.14-7.12 (m, 2H), 6.69 (t, *J* = 4.8 Hz, 1H), 4.67 (dd, *J* = 8.2, 11.2 Hz, 1H), 3.91 (dd, *J* = 7.5, 11.2 Hz, 1H), 3.50-3.38 (m, 3H), 1.31 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 201.1, 160.7, 157.5, 143.0, 140.4, 130.2, 124.5, 123.4, 122.5, 112.6, 59.9, 47.9, 36.0, 18.6; HRMS *m/z*: [M+H]⁺ Calcd for C₁₅H₁₅N₃O 254.1288; Found 254.1296.

2-(4-(Pyrimidin-2-yl)-1,2,3,3a,4,8b-hexahydrocyclopenta[b]indol-5-yl)acetaldehyde (5h)

Isolated by silica gel column chromatography (eluent: hexane/EtOAc = 3/1), brown solid (47.8 mg, 86% yield); m.p. 83.4-85.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.77 (dd, *J* = 0.5, 2.7 Hz, 1H), 8.33 (d, *J* = 4.8 Hz, 2H), 7.17-7.10 (m, 3H), 6.71 (t, *J* = 4.8 Hz, 1H), 5.05 (dd, *J* = 4.3, 8.2 Hz, 1H), 3.94 (td, *J* = 2.4, 8.2 Hz, 1H), 3.45 (dd, *J* = 2.7, 17.3 Hz, 1H), 3.37 (d, *J* = 17.3 Hz, 1H), 2.27-2,17 (m, 1H), 2.14-2.04 (m, 1H), 1.92-1.83 (m, 2H), 1.68-1.59 (m, 1H), 1.47-1.36 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 201.2, 160.5, 157.4, 142.7, 138.7, 131.5, 130.3, 124.4, 123.4, 122.6, 112.9, 68.7, 48.2, 45.3, 34.9, 33.6, 24.1; HRMS *m/z*: [M+H]⁺ Calcd for C₁₇H₁₇N₃O 280.1444; Found 280.1432.

2-(9-(Pyrimidin-2-yl)-9H-carbazol-1-yl)acetaldehyde (5i)

Isolated by silica gel column chromatography (eluent: hexane/EtOAc = 1/1), yellow oil (19.1 mg, 33% yield); ¹H NMR (400 MHz, CDCl₃) δ 9.78 (t, *J* = 1.9 Hz, 1H), 8.77 (d, *J* = 4.8 Hz, 2H), 8.34 (d, *J* = 8.3 Hz,

1H), 8.09-8.06 (m, 2H), 7.48-7.43 (m, 1H), 7.40 (d, J = 7.6 Hz, 1H), 7.39-7.33 (m, 2H), 7.21 (t, J = 4.8 Hz, 1H), 3.55 (d, J = 1.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 201.1, 158.6, 158.4, 140.9, 138.6, 131.5, 130.4, 127.5, 127.0, 125.5, 122.8, 122.6, 119.8, 119.5, 117.8, 113.6, 48.6; HRMS *m*/*z*: [M+H]⁺ Calcd for C₁₈H₁₃N₃O 288.1131; Found 288.1137.

2-(1-(Pyrimidin-2-yl)-1,2,3,4-tetrahydroquinolin-8-yl)acetaldehyde (5j)

Isolated by silica gel column chromatography (eluent: hexane/EtOAc = 3/1), brown oil (21.6 mg, 43% yield); ¹H NMR (400 MHz, CDCl₃) (broad peaks are observed due to the isomerism of piperidine moiety) δ 9.67 (t, *J* = 2.0 Hz, 1H), 8.33 (d, *J* = 3.8 Hz, 2H), 7.22-7.14 (m, 3H), 6.63 (t, *J* = 4.8 Hz, 1H), 4.87 (br, 1H), 3.42 (d, *J* = 2.0 Hz, 2H), 3.24 (br, 1H), 2.77 (br, 2H), 2.04 (br, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 201.5, 161.0, 158.1, 140.5, 134.6, 130.3, 128.3, 128.1, 125.7, 112.1, 46.6, 44.9, 26.5, 23.7; HRMS *m/z*: [M+H]⁺ Calcd for C₁₅H₁₅N₃O 274.0742; Found 274.0746.

2,2'-(1-(Pyrimidin-2-yl)-1*H*-pyrrole-2,5-diyl)diacetaldehyde (7)

Isolated by silica gel column chromatography (eluent: hexane/EtOAc = 1/1), brown oil (29.3 mg, 64% yield); ¹H NMR (400 MHz, CDCl₃) δ 9.77 (t, *J* = 1.6 Hz, 2H), 8.60 (d, *J* = 4.8 Hz, 2H), 7.15 (t, *J* = 4.8 Hz, 1H), 6.24 (s, 2H), 3.84 (d, *J* = 1.6 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 199.1, 157.9, 127.1, 118.0, 113.5, 43.6, 29.7; HRMS *m/z*: [M+H]⁺ Calcd for C₁₂H₁₁N₃O₂ 230.0924; Found 230.0917.

2-4. General Procedure for the Reaction of 8 with 2 (Scheme 4)

To an oven-dried 10 mL screw-top tube were added **8** (0.2 mmol), vinylene carbonate (**2**) (25.8 mg, 0.3 mmol), $[Cp*Rh(MeCN)_3][SbF_6]_2$ (4.2 mg, 2.5 mol%), and MeOH (2.0 mL). The tube was filled with N₂ and sealed with a Teflon cap. The mixture was heated at 130 °C with an oil bath for 16 h. After cooling to room temperature, volatiles were removed in vacuo. The residue was purified by silica gel column chromatography and, if indicated, GPC to give the corresponding product **9**.

Methyl 2-(1-(pyrimidin-2-yl)-1*H*-indol-2-yl)acetate (9a)⁶

Isolated by silica gel column chromatography (eluent: hexane/EtOAc = 3/1), white solid (42.2 mg, 79% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.69 (d, *J* = 4.8 Hz, 2H), 8.57 (dd, *J* = 0.8, 8.4 Hz, 1H), 7.56 (dd, *J* = 0.5, 7.7 Hz, 1H), 7.31-7.19 (m, 2H), 7.07 (t, *J* = 4.8 Hz, 1H), 6.59 (d, *J* = 0.6 Hz, 1H), 4.18 (s, 2H), 3.61 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 158.2, 157.8, 136.9, 133.4, 129.1, 123.4, 122.2, 120.2, 116.6, 115.5, 109.8, 51.9, 37.1.

Methyl 2-(5-methyl-1-(pyrimidin-2-yl)-1*H*-indol-2-yl)acetate (9b)⁶

Isolated by silica gel column chromatography (eluent: hexane/EtOAc = 3/1), white solid (54.5 mg, 97% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.66 (d, J = 4.8 Hz, 2H), 8.46 (d, J = 8.6 Hz, 1H), 7.34 (t, J = 0.8 Hz, 1H), 7.10 (dd, J = 1.4, 8.6 Hz, 1H), 7.03 (t, J = 4.8 Hz, 1H), 6.51 (d, J = 0.6 Hz, 1H), 4.16 (s, 2H), 3.61 (s, 3H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 158.2, 157.7, 135.1, 133.4, 131.5, 129.3, 124.8, 120.0, 116.3, 115.3, 109.6, 51.9, 37.2, 21.3.

Methyl 2-(5-methoxy-1-(pyrimidin-2-yl)-1*H*-indol-2-yl)acetate (9c)⁶

Isolated by silica gel column chromatography (eluent: hexane/EtOAc = 3/1), white solid (53.7 mg, 90% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.65 (d, J = 4.8 Hz, 2H), 8.51 (d, J = 9.1 Hz, 1H), 7.04-7.02 (m, 2H),

6.91 (dd, J = 2.6, 9.1 Hz, 1H), 6.52 (d, J = 0.6 Hz, 1H), 4.16 (s, 2H), 3.86 (s, 3H), 3.62 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 158.1, 157.7, 155.5, 134.0, 131.7, 129.8, 116.6, 116.3, 112.4, 109.8, 102.5, 55.7, 51.9, 37.3.

Methyl 2-(5-chloro-1-(pyrimidin-2-yl)-1H-indol-2-yl)acetate (9d)⁶

Isolated by silica gel column chromatography (eluent: hexane/EtOAc = 1/1), white solid (23.6 mg, 34% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, *J* = 4.7 Hz, 2H), 8.47 (d, *J* = 8.9 Hz, 1H), 7.68 (d, *J* = 2.0 Hz, 1H), 7.36 (dd, *J* = 2.1, 8.9 Hz, 1H), 7.11 (t, *J* = 4.8 Hz, 1H), 6.53 (d, *J* = 0.6 Hz, 1H), 4.17 (s, 2H), 3.62 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 157.9, 157.8, 135.5, 134.7, 130.8, 126.2, 122.7, 117.1, 116.9, 115.4, 109.0, 52.0, 37.0.

A mixture of **9e** and **9e'** (**9e/9e'** = 5/1) was obtained by silica gel column chromatography (eluent: hexane/EtOAc = 3/1) (45.3 mg, 80% yield). These two compounds were separated by GPC (CHCl₃).

Methyl 2-(7-methyl-1-(pyrimidin-2-yl)-1*H*-indol-2-yl)acetate (**9e**)⁶

Brown oil (31.1 mg, 55% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.81 (d, J = 4.8 Hz, 2H), 7.44 (d, J = 7.3 Hz, 1H), 7.25 (t, J = 4.8 Hz, 1H), 7.11 (t, J = 7.5 Hz, 1H), 7.02 (d, J = 7.2 Hz, 1H), 6.59 (s, 1H), 3.94 (s, 2H), 3.52 (s, 3H), 2.06 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 158.3, 136.5, 133.7, 129.5, 126.0, 125.6, 121.8, 118.6, 118.4, 107.3, 52.1, 34.4, 20.8 (1C overlapped).

2-(2,2-Dimethoxyethyl)-7-methyl-1-(pyrimidin-2-yl)-1*H*-indole (9e')

Colorless oil (8.4 mg, 14% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.87 (d, J = 4.8 Hz, 2H), 7.44 (d, J = 7.7 Hz, 1H), 7.33 (t, J = 4.8 Hz, 1H), 7.07 (t, J = 7.4 Hz, 1H), 6.95 (d, J = 7.2 Hz, 1H), 6.56 (s, 1H), 4.63 (t, J = 5.6 Hz, 1H), 3.26 (s, 6H), 3.07 (dd, J = 0.6, 9.3 Hz, 2H), 1.95 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.8, 158.3, 136.7, 136.5, 129.6, 125.2, 121.8, 121.3, 119.1, 118.1, 105.1, 104.0, 53.5, 31.6, 20.1 (1C

overlapped); HRMS *m*/*z*: [M+H]⁺ Calcd for C₁₇H₁₉N₃O₂ 298.1550; Found 298.1545.

A mixture of **9f** and **9f'** (**9f/9f'** = 4/1) was obtained by silica gel column chromatography (eluent: hexane/EtOAc = 3/1) (47.0 mg, 77% yield). These two compounds were separated by GPC (CHCl₃).

Methyl 2-(7-chloro-1-(pyrimidin-2-yl)-1H-indol-2-yl)acetate (9f)

Brown oil (19.8 mg, 33% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.84 (d, J = 4.9 Hz, 2H), 7.51 (dd, J = 1.0, 7.8 Hz, 1H), 7.31 (t, J = 4.9 Hz, 1H), 7.21 (dd, J = 1.1, 7.7 Hz, 1H), 7.10 (t, J = 7.7 Hz, 1H), 6.62 (s, 1H), 3.90 (s, 2H), 3.54 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 158.3, 157.4, 134.9, 133.6, 131.5, 124.6, 122.2, 119.3, 119.3, 117.9, 106.5, 52.2, 33.9; HRMS *m*/*z*: [M+H]⁺ Calcd for C₁₅H₁₂N₃O₂Cl 302.0691; Found 302.0685.

2-(2,2-Dimethoxyethyl)-7-chloro-1-(pyrimidin-2-yl)-1H-indole (9f')

Brown oil (7.6 mg, 12% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.88 (d, J = 4.9 Hz, 2H), 7.49 (dd, J = 1.0, 7.7 Hz, 1H), 7.37 (t, J = 4.9 Hz, 1H), 7.14 (dd, J = 1.0, 7.7 Hz, 1H), 7.07 (t, J = 7.7 Hz, 1H), 6.58 (s, 1H), 4.66 (t, J = 5.6 Hz, 1H), 3.27 (s, 6H), 3.03 (d, J = 5.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.4, 138.0, 133.6, 131.6, 123.7, 121.8, 119.7, 119.0, 117.3, 104.6, 103.5, 53.4, 31.3 (1C overlapped); HRMS *m/z*: [M+H]⁺ Calcd for C₁₆H₁₆N₃O₂Cl 318.1004; Found 318.1009.

A mixture of **9g** and **9g'** (**9g/9g'** = 5/3) was obtained by silica gel column chromatography (eluent: hexane/EtOAc = 2/1) (41.9 mg, 65% yield). These two compounds were separated by GPC (CHCl₃).

Methyl 2-(1-(pyrimidin-2-yl)-1*H*-benzo[g]indol-2-yl)acetate (9g)

Brown oil (22.8 mg, 36% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.90 (d, J = 4.9 Hz, 2H), 7.89 (d, J = 8.1 Hz, 1H), 7.67 (d, J = 8.5 Hz, 1H), 7.61 (d, J = 8.5 Hz, 1H), 7.38 (t, J = 4.8 Hz, 1H), 7.36-7.32 (m, 1H), 7.22-7.18 (m, 1H), 7.06, (d, J = 8.6 Hz, 1H), 6.72 (s, 1H), 3.98 (s, 2H), 3.53 (s, 3H); ¹³C NMR (100 MHz,

CDCl₃) δ 170.5, 159.4, 159.1, 133.0, 131.9, 131.3, 129.2, 126.3, 124.7, 123.6, 123.3, 122.3, 121.8, 120.2, 119.6, 107.9, 52.1, 34.3; HRMS *m*/*z*: [M+H]⁺ Calcd for C₁₉H₁₅N₃O₂ 318.1237; Found 318.1245.

2-(2,2-Dimethoxyethyl)-1-(pyrimidin-2-yl)-1*H*-benzo[g]indole (9g')

Brown oil (12.9 mg, 20% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.96 (d, *J* = 4.8 Hz, 2H), 7.88 (d, *J* = 8.0 Hz, 1H), 7.68 (d, *J* = 8.5 Hz, 1H), 7.58 (d, *J* = 8.5 Hz, 1H), 7.45, (t, *J* = 4.9 Hz, 1H), 7.32-7.28 (m, 1H), 7.18-7.14 (m, 1H), 6.82 (d, *J* = 7.9 Hz, 1H), 6.70 (s, 1H), 4.65 (t, *J* = 5.6 Hz, 1H), 3.27 (s, 6H), 3.12 (dd, *J* = 0.6, 5.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 159.2, 135.9, 131.6, 131.1, 129.2, 126.2, 124.7, 123.3, 122.8, 122.1, 121.0, 120.2, 120.0, 105.9, 104.2, 53.6, 31.6; HRMS *m*/*z*: [M+H]⁺ Calcd for C₂₀H₁₉N₃O₂ 334.1550; Found 334.1538.

Methyl 2-(3-methyl-1-(3-methylpyridin-2-yl)-1H-indol-2-yl)acetate (9h)

Isolated by silica gel column chromatography (eluent: hexane/EtOAc = 3/1), white solid (52.2 mg, 89% yield); m.p. 92.7-94.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.45 (dd, *J* = 1.4, 4.8 Hz, 1H), 7.73 (dd, *J* = 1.1, 7.6 Hz, 1H), 7.60-7.58 (m, 1H), 7.30 (dd, *J* = 4.8, 7.6 Hz, 1H), 7.14-7.12 (m, 2H), 6.82-6.80 (m, 1H), 3.87 (d, *J* = 16.5 Hz, 1H), 3.74 (d, *J* = 16.5 Hz, 1H), 3.49 (s, 3H), 2.35 (s, 3H), 2.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 150.1, 147.3, 140.0, 136.3, 132.1, 128.7, 128.7, 123.4, 122.2, 119.8, 118.9, 111.4, 110.0, 51.9, 30.9, 17.5, 8.8; HRMS *m/z*: [M+H]⁺ Calcd for C₁₈H₁₈N₂O₂ 295.1441; Found 295.1456.

2-5. Control Experiment: Oxidative Esterification (Scheme 5)

To an oven-dried 10 mL screw-top tube were added **3a** (32.1 mg, 0.15 mmol), $[Cp*Rh(MeCN)_3][SbF_6]_2$ (3.1 mg, 2.5 mol%), and MeOH (1.5 mL). The tube was filled with N₂ and sealed with a Teflon cap. The mixture was heated at 130 °C with an oil bath for 16 h. After cooling to room temperature, volatiles were removed in vacuo. A mixture of **10** and **10'** (**10/10'** = 1/1.1) was obtained by silica gel column chromatography (eluent: hexane/EtOAc = 3/1) (19.0 mg, 50% yield). These two compounds were separated by GPC (CHCl₃).

Methyl 2-(2-(3,5-dimethyl-1*H*-pyrazol-1-yl)phenyl)acetate (10)

Colorless oil (6.0 mg, 15% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.39 (m, 2H), 7.38-7.34 (m, 1H), 7.23 (d, *J* = 7.2 Hz, 1H), 5.95 (s, 1H), 3.58 (s, 3H), 3.53 (s, 2H), 2.27 (s, 3H), 2.09 (d, *J* = 0.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 148.9, 140.8, 138.8, 132.8, 131.4, 129.0, 127.9, 127.9, 105.3, 51.9, 36.7, 13.9, 11.3; HRMS *m/z*: [M+H]⁺ Calcd for C₁₄H₁₆N₂O₂ 245.1285; Found 245.1268.

1-(2-(2,2-dimethoxyethyl)phenyl)-3,5-dimethyl-1*H*-pyrazole (10')

Colorless oil (6.4 mg, 17% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.44 (dd, J = 1.4 Hz, 1H), 7.37 (td, J = 1.5, 7.5 Hz, 1H), 7.31 (td, J = 1.7, 7.5 Hz, 1H), 7.20 (dd, J = 1.3, 7.7 Hz, 1H), 5.97 (s, 1H), 4.30 (t, J = 5.6 Hz, 1H), 3.23 (s, 6H), 2.69 (d, J = 5.6 Hz, 2H), 2.28 (s, 3H), 2.08 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.5, 140.5, 138.8, 135.5, 131.7, 128.9, 127.9, 127.1, 105.2, 105.0, 53.9, 35.1, 13.5, 11.4; HRMS *m/z*: [M+H]⁺ Calcd for C₁₅H₂₀N₂O₂ 261.1598; Found 261.1613.

To an oven-dried 10 mL screw-top tube were added 11 (25.5 mg, 0.15 mmol), [Cp*Rh(MeCN)₃][SbF₆]₂

(3.1 mg, 2.5 mol%), and MeOH (1.5 mL). The tube was filled with N₂ and sealed with a Teflon cap. The mixture was heated at 130 °C with an oil bath for 16 h. After cooling to room temperature, volatiles were removed in vacuo. A mixture of **12** and **12'** (**12/12'** = 1/1.3) was obtained by silica gel column chromatography (eluent: hexane/EtOAc = 3/1) (3.5 mg, 11% yield). These two compounds were reported in the literatures.⁷

2-6. Epoxidation of 3a (Scheme 7)

To a two-neck round-bottom flask were added NaH (24.0 mg, 0.6 mmol) and DMSO (1.0 mL). After stirring at room temperature for 15 min, trimethylsulfoxonium iodide (132.0 mg, 0.6 mmol) was added in portionwise. After stirring at this temperature for additional 30 min, a DMSO (1.0 mL) solution of **3a** (64.3 mg, 0.3 mmol) was added via syringe. The mixture was stirred for another 45 min and poured into ice-water. The suspension was extracted with Et_2O three times, and the combined organic layers was dried over Na₂SO₄ and concentrated in vacuo. The crude material was purified by GPC (EtOAc) to give **3a-1** as brown oil (34.8 mg, 76% yield).

3,5-Dimethyl-1-(2-(oxiran-2-ylmethyl)phenyl)-1*H*-pyrazole (3a-1)

¹H NMR (400 MHz, CDCl₃) δ 7.46 (dd, J = 1.5, 7.6 Hz, 1H), 7.41 (td, J = 1.4, 7.5 Hz, 1H), 7.34 (td, J = 1.7, 7.5 Hz, 1H), 7.23 (dd, J = 1.3, 7.7 Hz, 1H), 5.97 (s, 1H), 3.03-2.98 (m, 1H), 2.72-2.67 (m, 2H), 2.58 (dd, J = 5.7, 14.6 Hz, 1H), 2.36 (dd, J = 2.6, 4.9 Hz, 1H), 2.28 (s, 3H), 2.07 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.7, 140.4, 138.7, 135.7, 130.7, 129.2, 128.2, 127.5, 105.3, 51.7, 47.2, 34.3, 13.6, 11.4; HRMS *m/z*: [M+H]⁺ Calcd for C₁₄H₁₆N₂O 229.1335; Found 229.1319.

2-7. Alkynylation 3e with an Ohira-Bestmann Reagent (Scheme 7)

To a two-neck round-bottom flask were added **3e** (42.2 mg, 0.17 mmol), K₂CO₃ (46.9 mg, 0.34 mmol), and MeOH (2.0 mL). Dimethyl-1-diazo-2-oxopropylphosphonate (30 μ L, 0.20 mmol) was added via the syringe, and the solution was stirred at room temperature for 19 h. The resulting mixture was diluted with Et₂O and washed with water. The organic layer was dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by silica gel chromatography (eluent: hexane/EtOAc = 3/1) to give **3e-1** in as brown solid (32.7 mg, 79% yield).

1-(4-Chloro-2-(prop-2-yn-1-yl)phenyl)-3,5-dimethyl-1*H*-pyrazole (3e-1)

¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 2.2 Hz, 1H), 7.17 (dd, J = 8.4, 2.3 Hz, 1H), 7.11 (d, J = 8.4 Hz, 1H), 5.90 (s, 1H), 5.60 (t, J = 6.8 Hz, 1H), 5.07 (d, J = 6.8 Hz, 2H), 2.21 (s, 3H), 1.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.3, 140.1, 134.1, 133.9, 133.1, 128.5, 126.4, 126.3, 104.6, 87.5, 78.3, 28.7, 12.6, 10.3; HRMS *m*/*z*: [M+H]⁺ Calcd for C₁₄H₁₃N₂Cl 245.0840; Found 245.0829.

2-8. Oxidation and Directing Group Removal of 5a (Scheme 7)

To a round-bottom flask equipped with a reflux condenser were added **5a** (50.6 mg, 0.21 mmol), ethylene glycol (20 μ L, 0.42 mmol), toluene (10 mL), *p*-toluenesulfonic acid monohydrate (2.4 mg, 5.0 mol%). The mixture was refluxed (oil bath temp. 130 °C) for 17 h. After cooling to room temperature, volatiles were removed in vacuo. The crude material was purified by silica gel column chromatography (eluent: hexanes/EtOAc = 1/1) to give the corresponding acetal as orange solid (51.3 mg, 86% yield).

7-((1,3-Dioxolan-2-yl)methyl)-1-(pyrimidin-2-yl)indoline

m.p. 112.2-114.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, J = 4.8 Hz, 2H), 7.27 (d, J = 7.2 Hz, 1H), 7.15 (dd, J = 0.9, 7.3 Hz, 1H), 7.05 (t, J = 7.5 Hz, 1H), 6.69 (t, J = 4.8 Hz, 1H), 5.12 (t, J = 5.0 Hz, 1H), 4.43 (t, J = 7.7 Hz, 2H), 3.95-3.89 (m, 2H), 3.85-3.79 (m, 2H), 3.07-3.02 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 161.2, 157.7, 142.9, 135.0, 129.2, 126.9, 124.4, 123.0, 112.4, 104.0, 64.8, 53.2, 38.8, 29.9; HRMS *m/z*: [M+H]⁺ Calcd for C₁₆H₁₇N₃O₂ 284.1394; Found 284.1394.

In a round-bottom flask, the obtained acetal (43.7 mg, 0.15 mmol) was dissolved in 1,4-dioxane (3.0 mL). To this solution was added 2,3-dichloro-5,6-dicyano-*p*-benzoquinone (68.1 mg, 0.30 mmol) portionwise, and mixture was heated at 90 °C with an oil bath for 18 h. Solvent was removed in vacuo and the residue was purified by silica gel column chromatography (eluent: hexane/EtOAc = 1/1) to give the corresponding indole as white solid (40.9 mg, 97% yield).

7-((1,3-Dioxolan-2-yl)methyl)-1-(pyrimidin-2-yl)-1H-indole

m.p. 114.1-116.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.76 (d, J = 4.8 Hz, 2H), 7.84 (d, J = 3.6 Hz, 1H), 7.54 (dd, J = 1.3, 7.6 Hz, 1H), 7.26 (d, J = 7.1 Hz, 1H), 7.20 (t, J = 7.5 Hz, 1H), 7.14 (t, J = 4.9 Hz, 1H), 6.70 (d, J = 3.6 Hz, 1H), 4.99 (t, J = 4.7 Hz, 1H), 3.73-3.70 (m, 2H), 3.68-3.65 (m, 2H), 3.41 (d, J = 4.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.3, 134.2, 132.4, 130.0, 127.4, 122.8, 122.3, 120.0, 117.3, 106.9, 104.5, 64.7, 39.9 (1C overlapped); HRMS m/z: [M+H]⁺ Calcd for C₁₆H₁₅N₃O₂ 282.1237; Found 282.1241.

To a two-neck round-bottom flask were added NaOMe (4.9 mg, 0.09 mmol), DMSO (3.0 mL), and the obtained indole (9.6 mg, 0.03 mmol). The solution was heated at 100 °C with an oil bath for 21 h. The resulting mixture was poured into water, and extracted with EtOAc three times. The combined organic layer was dried over Na₂SO₄, concentrated in vacuo, and purified by silica gel chromatography (eluent: hexane/EtOAc = 3/1) to give **5a-1** as brown oil (5.9 mg, 97% yield).

7-((1,3-Dioxolan-2-yl)methyl)-1*H*-indole (**5a-1**)

¹H NMR (400 Hz, CDCl₃) δ 9.18 (br, 1H), 7.56 (d, *J* = 7.6 Hz, 1H), 7.23 (t, *J* = 2.8 Hz, 1H), 7.05 (t, *J* = 7.4 Hz, 1H), 7.11 (d, *J* = 6.0 Hz, 1H), 6.55 (dd, *J* = 2.1, 1.6 Hz, 1H), 5.12 (t, *J* = 4.2 Hz, 1H), 4.02-3.96 (m,2H), 3.93-3.87 (m, 2H), 3.26 (d, *J* = 4.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 135.9, 128.1, 124.3, 123.9, 119.7, 119.7, 118.9, 105.0, 102.6, 65.1, 38.2; HRMS *m/z*: [M+H]⁺ Calcd for C₁₂H₁₃NO₂ 204.1019; Found 204.1013.

3. Detection of H₂ and CO₂

To an oven-dried 10 mL screw-top tube were added **8a** (0.2 mmol), **2** (0.3 mmol), $[Cp*Rh(MeCN)_3][SbF_6]_2$ (6.0 mmol), and MeOH (2.0 mL). The tube was filled with N₂ and sealed with a Teflon cap. The mixture was heated at 130 °C with an oil bath for 15 h. After cooling to room temperature, the gas component in the tube was sampled with a gas tight syringe and analyzed by GC.

Figure S1. GC chart for an authentic H₂ sample filled in a vial with several drops of MeOH.

Figure S2. GC chart for the gas component in the reaction tube.

4. Copy of NMR Spectra

S22

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

¹H NMR of 5a (400 MHz, CDCl₃)

¹H NMR of **5d** (400 MHz, CDCl₃)

¹H NMR of **5h** (400 MHz, CDCl₃)

¹H NMR of 5i (400 MHz, CDCl₃)

¹H NMR of **9a** (400 MHz, CDCl₃)

¹H NMR of **9g** (400 MHz, CDCl₃)

¹H NMR of **10** (400 MHz, CDCl₃)

¹H NMR of **10'** (400 MHz, CDCl₃)

¹H NMR of **3a-1** (400 MHz, CDCl₃)

¹H NMR of **5a-acetal** (400 MHz, CDCl₃)

¹H NMR of **5a-indole** (400 MHz, CDCl₃)

5. References

- ¹ M. Barday, C. Janot, N. R. Halcovitch, J. Muir and C. Aïssa, Angew. Chem. Int. Ed., 2017, 56, 13117-13121.
- ² (a) J. C. Antilla, J. M. Baskin, T. E. Barder and S. L. Buchwald, *J. Org. Chem.*, 2004, 69, 5578-5587; (b) L. R. Mills, J. M. Graham, P. Patel and S. A. L. Rousseaux, *J. Am. Chem. Soc.*, 2019, 141, 19257-19262.
- ³ (a) C. Premi, A. Dixit and N. Jain, Org. Lett., 2015, 17, 2598-2601; (b) M. D. Donato, M. M. Lerch, A. Lapini,
 A. D. Laurent, A. Iagatti, L. Bussotti, S. P. Ihrig, M. Medved, D. Jacquemin, W. Szymański, W. J. Buma, P. Foggi and B. L. Feringa, J. Am. Chem. Soc., 2017, 139, 15596-15599.
- ⁴ M. Nishino, K. Hirano, T. Satoh and M. Miura, Angew. Chem. Int. Ed., 2012, 51, 6993-6997.
- ⁵ X. Zhang, S. Sarkar and R. C. Larock, J. Org. Chem., 2006, 71, 236-243.
- ⁶ (b) H. Lv, W. L. Xu, K. Lin, J. Shi and W. Yi, *Eur. J. Org. Chem.*, 2016, **2016**, 5637-5641; (c) L. Zhou, C. Zhu, T.-P. Loh and C. Feng, *Chem. Commun.*, 2018, **54**, 5618-5621.
- ⁷ (a) A. D. Chowdhury and G. K. Lahiri, *Chem. Commun*, 2012, **48**, 3448-3450; (b) Y. Tsukamoto, S. Itoh, M. Kobayashi and Y. Obora, *Org. Lett.*, 2019, **21**, 3299-3303.