In Situ Silane Activation Enables Catalytic Reduction of Carboxylic Acids

Emma Stoll,^a Thomas Barber^a David Hirst,^b and Ross Denton*^a

^a School of Chemistry, University of Nottingham, University Park, NG7 2RD ^b GlaxoSmithKline, Gunnels Wood Road, Stevenage, UK

Supporting Information

Table of Contents

1	Gen	eneral Experimental						
2	Rea	action Optimisation	3					
3	Exp	perimental Procedures and Characterisation of Compounds	3					
	3.1	General Procedure 1 – Reduction of Carboxylic Acids	5					
	3.2	Synthesis of Alcohols	5					
	3.3	Large Scale Synthesis	16					
	3.4	¹⁹ F NMR Kinetic Studies	18					
3.5 Independent Synthesis of Silyl Esters and Ethers								
4	NM	IR Spectra	22					
5	References							

1 <u>General Experimental</u>

Reagents were purchased from commercial suppliers and used directly without further purification. Solvents were dried according to published methods and distilled before use;¹ except for toluene which was pre-dried over sodium wire and obtained from a solvent tower where degassed solvent was passed through two columns of activated alumina and 7-micron filter under a 4-bar pressure. Petroleum ether, boiling between 40-60 °C is referred to as petrol. All water was deionised before use, and unless specified, all experiments were carried out in oven dried glassware with an argon balloon atmosphere.

Analytical Thin Layer Chromatography (TLC) was performed on aluminium plates and visualized by ultraviolet (UV) irradiation (254 nm). Column chromatography was carried out using Fluorochem silica gel 60A (40-63 mesh). Melting points were calculated using a Stuart SMP3 and Fourier Transform Infrared Spectrometry (IR) was carried out using a Bruker Tensor 27 using an Attenuated Total Reflection (ATR) attachment. High Resolution Mass Spectrometry (HRMS) were measured on a Bruker microTOF II with Electron Spray Ionisation (ESI). Gas Chromatography Mass Spectrometry (GCMS) were measured on an Agilent 7890B Gas Chromatograph (GC) with a JEOL AccuTOF GCX Mass Spectrometer (MS) with Electron Ionisation (EI).

¹H NMR spectra were recorded on either a Bruker AV 400 in CDCl₃ or MeOD. ¹H NMR chemical shifts (δ) were reported in parts per million (ppm) and coupling constants (*J*) are given in Hertz (Hz), with residual protic solvent as the internal reference (CDCl₃ δ = 7.26 ppm, MeOD δ = 3.31 ppm). Abbreviations used include s – singlet, d – doublet, t – triplet, q – quartet, m – multiplet, br – broad, app. – apparent. ¹³C NMR were recorded on a 400 MHz spectrometer and chemical shifts (δ) were reported in ppm relative to the ¹³C signals in the solvent (central peak of CDCl₃ δ = 77.16 ppm). All ¹³C NMR are reported as decoupled spectra.

2 <u>Reaction Optimisation</u>

Entry	Silane	Silane equiv.	Zn(OAc) ₂ mol%	Yield ^a / %
1	diethylsilane	5	10	1
2	diphenylsilane	5	10	6
3	phenylsilane	5	10	95
4	triethylsilane	5	10	0
5	triethoxysilane	5	10	22
6	triphenylsilane	5	10	0
7	PMHS	5	10	0
8	PMHS	10	10	0

^aYield determined by ¹⁹F NMR analysis using α, α, α -trifluorotoluene as an internal standard.

To a solution of 4-fluorobenzoic acid (140 mg, 1.00 mmol) and zinc acetate (18.4 mg, 0.1 mmol) in toluene (1.2 mL) at reflux was added silane (see table) dropwise. The reaction mixture was stirred at reflux for 24 hours before NaOH (2 mL of a 2 M aqueous solution) was added to the reaction mixture dropwise and it was stirred for a further 30 mins. The pH was adjusted to pH 5 using HCl (1 M aqueous solution), and the product was extracted using EtOAc (3×10 mL). The combined organic layers were dried over MgSO₄ and the solvent was removed *in vacuo*. α,α,α -Trifluorotoluene (146 mg, 1.00 mmol) was added to the crude product and the yield was calculated using ¹⁹F NMR.

ОН	Zn(OAc) ₂ (cat.), NMM (cat.)	
F	PhSiH ₃ , solvent, reflux, time	F

F 4	PhSiH ₃ /	Colsorr4	Temperature	Time	Zn(OAc) ₂ /	NMM /	Yield ^a /
Entry	equiv.	Solvent	/ °C	/ h	mol%	mol%	%
1	5	Toluene	110	24	0	0	0
2	5	Toluene	110	24	10	0	95
3	3	Toluene	110	24	10	0	82 ^{<i>b</i>}
4	2	Toluene	110	24	10	0	90
5	1	Toluene	110	24	10	0	10
6	2	2-Me THF	80	24	10	0	91
7	2	2-Me THF	80	16	10	0	53
8	2	2-Me THF	80	6	10	0	2
9	2	2-Me THF	80	24	5	0	8
10	2	2-Me THF	80	24	0	20	0
11	2	2-Me THF	80	16	10	20	99
12	2	2-Me THF	80	16	10	10	87
13	2	2-Me THF	80	16	10	5	83
14	2	2-Me THF	80	16	5	10	49
15	2	2-Me THF	80	6	10	20	72

^{*a*}Yield determined by ¹⁹F NMR analysis using α, α, α -trifluorotoluene as an internal standard.

^bIsolated yield

To a solution of 4-fluorobenzoic acid (140 mg, 1.00 mmol) and zinc acetate (mol% as table) in solvent (see table, 1.2 mL) at reflux was added phenylsilane (equiv. as table) and *N*-methyl morpholine (mol% as table) dropwise. The reaction mixture was stirred at reflux for time (see table) before NaOH (2 mL of a 2 M aqueous solution) was added to the reaction mixture dropwise and it was stirred for a further

30 mins. The pH was adjusted to pH 5 using HCl (1 M aqueous solution), and the product was extracted using EtOAc (3×10 mL). The combined organic layers were dried over MgSO₄ and the solvent was removed *in vacuo*. α, α, α -Trifluorotoluene (146 mg, 1.00 mmol) was added to the crude product and the yield was calculated using ¹⁹F NMR.

3 Experimental Procedures and Characterisation of Compounds

3.1 General Procedure 1 – Reduction of Carboxylic Acids

To a solution of carboxylic acid (1.00 mmol) and zinc acetate (18.3 mg, 0.1 mmol) in 2-Me THF (1.2 mL) at reflux was added phenylsilane (247 μ L, 2.00 mmol) dropwise, followed by *N*-Me morpholine (11.0 μ L, 0.1 mmol). The reaction mixture was stirred at reflux for 16 h, after which it was allowed to cool. NaOH (2 mL of a 2 M aqueous solution) was added to the reaction mixture dropwise and it was stirred for a further 30 mins. The pH was adjusted to pH 5 using HCl (1 M aqueous solution), and the product was extracted using EtOAc (3 × 10 mL). The combined organic layers were dried over MgSO₄ and the solvent was removed *in vacuo*. The crude product was purified by column chromatography to give the desired product.

3.2 Synthesis of Alcohols

(4-Fluorophenyl)methanol 1

Prepared according to general procedure 1, using 4-fluorobenzoic acid (140 mg, 1.00 mmol), and the crude product was purified by column chromatography (EtOAc / petrol 2:3, $R_f = 0.24$) to afford the desired product as a colourless oil (114 mg, 0.900 mmol, 90%).

IR (ATR) v_{max}/cm^{-1} 3311, 1604, 1509, 1429, 1221, 1131; ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.28 (m, 2H), 7.07 – 7.00 (m, 2H), 4.63 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 162.4 (d, J = 245.6 Hz), 136.7 (d, J = 3.5 Hz), 128.9 (d, J = 8.0 Hz), 115.5 (d, J = 21.6 Hz), 64.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.91; GCMS [EI (M + H⁺)] m/z calculated for C₇H₇OF 126.0475, found 126.0474. The data matches those found in the literature.²

(4-Bromophenyl)methanol 2

Prepared according to general procedure 1, using 4-bromobenzoic acid (201 mg, 1.00 mmol), and the crude product was purified by column chromatography (pure petrol to EtOAc / petrol 1:1 (EtOAc / petrol 2:3 $R_f = 0.23$)) to afford the desired product as a colourless solid (173 mg, 0.930 mmol, 93%), mp 76-77 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.4 Hz, 2H), 7.17 (d, *J* = 8.4 Hz, 2H), 4.57 (s, 2H) 2.40 (s, 1H); ¹³**C** NMR (101 MHz, CDCl₃) δ 139.7, 131.5, 128.5, 121.3, 64.3. The data matches those found in the literature.³

(2-Iodophenyl)methanol 3

Prepared according to general procedure 1, using 2-iodobenzoic acid (248 mg, 1.00 mmol), and the crude product was purified by column chromatography (EtOAc / petrol 1:4, $R_f = 0.14$) to afford the desired product as a colourless solid (172 mg, 0.730 mmol, 73%), mp 90 - 91 °C.

IR (ATR) v_{max}/cm^{-1} 3229, 2395, 1445, 1433, 1362, 1196, 1051, 1034, 1010; ¹H NMR (400 MHz, MeOD) δ 7.81 (d, *J* = 7.5 Hz, 1H), 7.51 (d, *J* = 7.5 Hz, 1H), 7.38 (dd, *J* = 7.5, 7.5 Hz, 1H), 6.99 (dd, *J* = 7.5, 7.5 Hz, 1H), 4.59 (s, 2H); ¹³C NMR (101 MHz, MeOD) δ 144.3, 140.1, 129.8, 129.3, 128.8, 97.5, 69.3; HRMS [ESI (M + Na⁺)] m/z calculated for C₇H₇INaO 256.9434, found 256.9429. The data matches those found in the literature.⁴

(Perfluorophenyl)methanol 4

Prepared according to general procedure 1, using pentafluorobenzoic acid (212 mg, 1.00 mmol) in toluene, and the crude product was purified by column chromatography (EtOAc / petrol 1:4) to afford the desired product as a colourless oil (88.0 mg, 0.440 mmol, 44%).

IR (ATR) v_{max} /cm⁻¹ 3317, 1522, 1505, 1430, 1306, 1121, 1062, 1022; ¹H NMR (400 MHz, CDCl₃) δ 4.74 (s, 2H), 3.12 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 146.7, 144.2, 134.2, 128.0, 52.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -144.73 (ddd, J = 22.5, 9.0, 1.9 Hz), -154.42 (app. t, J = 20.5 Hz), -161.75 – -162.49 (m); GCMS [EI] m/z calculated for C₇H₃OF₅ 198.0099, found 198.0102. The data matches those found in the literature.⁵

Naphthalen-1-ylmethanol 5

Prepared according to general procedure 1, using 2-naphthoic acid (172 mg, 1.00 mmol), and the crude product was purified by column chromatography (EtOAc / petrol 1:9, $R_f = 0.25$) to afford the desired product as a colourless solid (137 mg, 0.870 mmol, 87%), mp 61-63 °C.

IR (ATR) v_{max}/cm^{-1} 3315, 3047, 2876, 1510, 1392, 1329, 1141, 1067; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (m, 1H), 7.94 – 7.86 (m, 1H), 7.82 (dd, J = 7.4, 1.6 Hz, 1H), 7.59 – 7.50 (m, 2H), 7.47 – 7.40 (m, 2H), 5.01 (s, 2H), 2.91 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 136.3, 133.7, 131.2, 128.6, 128.4, 126.2, 125.8, 125.4, 125.2, 123.6, 63.2; HRMS [ESI (M + H⁺)] m/z calculated for C₁₁H₁₀O 158.0726, found 158.0732. The data matches those found in the literature.²

Furan-2-ylmethanol 6

Prepared according to general procedure 1, using furan-2-carboxylic acid (112 mg, 1.00 mmol) in toluene, and the crude product was purified by column chromatography (pure petrol to EtOAc / petrol 2:3, $R_f = 0.29$) to afford the desired product as a colourless oil (83.0 mg, 0.850 mmol, 85%).

¹**H** NMR (400 MHz, CDCl₃) δ 7.41 – 7.35 (m, 1H), 6.35 – 6.29 (m, 1H), 6.29 – 6.24 (m, 1H), 4.56 (s, 2H), 2.52 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 154.0, 142.4, 110.3, 107.6, 57.2. The data matches those found in the literature.⁶

Thiophen-2-ylmethanol 7

Prepared according to general procedure 1, using 2-thiophene carboxylic acid (128 mg, 1.00 mmol), and the crude product was purified by column chromatography (EtOAc / petrol 1:4, $R_f = 0.19$) to afford the desired product as a colourless oil (82.0 mg, 0.720 mmol, 72%).

IR (ATR) v_{max}/cm^{-1} 3288, 2870, 1432, 1374, 1210, 1153, 1133, 1077, 1002; ¹H NMR (400 MHz, CDCl₃) δ 7.28 (dd, J = 4.8, 1.5 Hz, 1H), 7.04 – 6.96 (m, 2H), 4.78 (s, 2H), 2.60 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 144.0, 126.9, 125.6, 125.5, 59.9; GCMS [EI] m/z calculated for C₇H₁₄O 114.1039, found 114.1041. The data matches those found in the literature.⁷

(4-Nitrophenyl)methanol 8

Prepared according to general procedure 1, using 4-nitrobenzoic acid (167 mg, 1.00 mmol) in toluene, and the crude product was purified by column chromatography (EtOAc / petrol 2:3, $R_f = 0.17$) to afford the desired product as a pale yellow solid (105 mg, 0.690 mmol, 69%), mp 91-93 °C.

IR (ATR) $v_{\text{max}}/\text{cm}^{-1}$ 3507, 1600, 1504, 1457, 1333, 1196, 1055; ¹H NMR (400 MHz, CDCl₃) δ 8.29 – 8.15 (m, 1H), 7.53 (d, J = 8.8 Hz, 1H), 4.83 (s, 1H), 1.98 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 148.2, 147.4, 127.1, 123.9, 64.2; HRMS [ESI (M + H⁺)] m/z calculated for C₇H₈NO₃ 154.0499, found 154.0501 ($\sigma = 0.0174$). The data matches those found in the literature.⁸

(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)methanol 9

Prepared according to general procedure 1, using 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)benzoic acid (248 mg, 1.00 mmol) in toluene, and the crude product was purified by column chromatography (EtOAc / petrol 1:4) to afford the desired product as a colourless oil (208 mg, 0.640 mmol, 64%).

IR (ATR) $v_{max}/cm^{-1}3389$, 2977, 2927, 1613, 1517, 1398, 1356, 1141, 1085, 1017; ¹H NMR (400 MHz, CDCl₃) 7.80 (d, J = 8.1 Hz, 2H), 7.35 (d, J = 8.1 Hz, 2H), 4.69 (s, 2H), 1.35 (s, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 144.1, 135.2, 126.2, 83.9, 65.3, 25.0; ¹¹B NMR (128 MHz, CDCl₃) δ 30.88. Quaternary carbon next to B is not observed; HRMS [ESI (M + Na⁺)] m/z calculated for C₁₃H₁₉BNaO₃ 252.1766, found 252.1762. The data matches those found in the literature.⁹

(R)-2-Phenylpropan-1-ol 10

Prepared according to general procedure 1, using (*R*)-(-)-2-phenylpropionic acid (150 mg, 1.00 mmol), and the crude product was purified by column chromatography (EtOAc / petrol 1:4, $R_f = 0.17$) to afford the desired product as a colourless oil (108 mg, 0.790 mmol, 79%).

IR (ATR) v_{max}/cm^{-1} 3342, 2961, 2927, 2874, 1493, 1383, 1130; ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.32 (m, 2H), 7.28 – 7.23 (m, 3H), 3.69 (d, J = 6.9 Hz, 2H), 2.95 (h, J = 6.9 Hz, 1H), 1.82 – 1.76 (m, 1H), 1.30 (d, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.9, 128.7, 127.6, 126.7, 68.7, 42.5,

17.7. Enantiomeric excess was determined by chiral HPLC with a AMY-C column (CO₂ / MeOH 85:15), 4.0 mL/min, 210-400 nm, 125 BarG, 40 °C, t_r (minor) = 1.72 min, t_r (major) = 1.96 min, 97% *e.e.*. The data matches those found in the literature.¹⁰

(4-(Trifluoromethyl)phenyl)methanol 11

Prepared according to general procedure 1, using 4-(trifluoromethyl)benzoic acid (190 mg, 1.00 mmol), and the crude product was purified by column chromatography (EtOAc / petrol 3:7, $R_f = 0.12$) to afford the desired product as a colourless oil (115 mg, 0.650 mmol, 65%).

IR (ATR) v_{max}/cm^{-1} 3298, 1324, 1108, 1064, 1015; ¹H NMR (400 MHz, CDCl₃) $\delta \delta$ 7.57 (d, J = 8.0 Hz, 2H), 7.38 (d, J = 8.0 Hz, 2H), 4.65 (s, 2H), 2.86 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 144.7, 129.8 (q, J = 32.3 Hz), 126.9, 125.5 (q, J = 3.8 Hz), 124.3 (q, J = 271.9 Hz), 64.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.46; GCMS [EI (M + H⁺)] m/z calculated for C₈H₇OF₃ 176.0444, found 176.0449. The data matches those found in the literature.¹¹

(E)-3-Phenylprop-2-en-1-ol 12

Prepared according to general procedure 1, using *E*-cinnamic acid (148 mg, 1.00 mmol) in toluene, and the crude product was purified by column chromatography (EtOAc / petrol 1:4, $R_f = 0.15$) to afford the desired product as a colourless oil (117 mg, 0.870 mmol, 87%).

IR (ATR) v_{max}/cm^{-1} 3319, 2916, 2849, 1493, 1449, 1265, 1131, 1090, 1069; ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.25 (m, 5H), 6.65 (dt, J = 15.7, 1.6 Hz, 1H), 6.39 (dt, J = 15.9, 5.6 Hz, 1H), 4.34 (dd, J = 5.6, 1.6 Hz, 2H), 3.11 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 136.7, 130.8, 128.6, 128.5, 127.6, 126.5, 63.4; GCMS [EI] m/z calculated for C₉H₁₀O 134.0726, found 134.0729. The data matches those found in the literature.¹²

(3-Methoxyphenyl)methanol 13

Prepared according to general procedure 1, using 3-methoxybenzoic acid (152 mg, 1.00 mmol), and the crude product was purified by column chromatography (EtOAc / petrol 1:9, $R_f = 0.23$) to afford the desired product as a colourless oil (129 mg, 0.930 mmol, 93%).

IR (ATR) v_{max}/cm^{-1} 3317, 2937, 2836, 1596, 1488, 1454, 1434, 1284, 1151, 1036; ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.23 (m, 1H), 6.94 – 6.89 (m, 2H), 6.84 – 6.80 (m, 1H), 4.62 (s, 2H), 3.79 (s, 3H), 2.23 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 159.9, 142.7, 129.7, 119.2, 113.3, 112.3, 65.2, 55.3; HRMS [ESI (M + H⁺)] m/z calculated for C₈H₁₀NaO₂ 161.0573, found 161.0565 (σ = 0.0176). The data matches those found in the literature.¹³

tert-Butyl 2-(hydroxymethyl)piperidine-1-carboxylate 14

Prepared according to general procedure 1, using *N*-boc-2-piperidine carboxylic acid (229 mg, 1.00 mmol), and the crude product was purified by column chromatography (EtOAc / petrol 3:17) to afford the desired product as a colourless solid (142 mg, 0.660 mmol, 66%).

IR (ATR) v_{max}/cm^{-1} 2932, 1661, 1447, 1312, 1247; ¹H NMR (500 MHz, CDCl₃) δ 4.26 – 4.32 (m, 1H), 3.94 (d, *J* = 13.6 Hz, 1H), 3.78 – 3.85 (m, 1H), 3.57 – 3.63 (m, 1H), 2.80 – 2.93 (app. t, *J* = 12.6 Hz, 1H), 2.04 (br. s, 1H, **OH**), 1.63 – 1.69 (m, 1H), 1.56 – 1.63 (m, 3H), 1.46 (s, 9H), 1.39 – 1.45 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 156.5, 80.0, 62.0, 52.7, 40.1, 28.6, 25.5, 25.4, 19.8; HRMS [ESI (M + H⁺)] m/z calculated for C₁₁H₂₂NO₃ 216.1594, found 216.1583. The data matches those found in the literature..¹⁴

1-Adamantanemethanol 15

Prepared according to general procedure 1, using 1-adamantane carboxylic acid (180 mg, 1.00 mmol) in toluene, and the crude product was purified by column chromatography (EtOAc / petrol 1:4, $R_f = 0.17$) to afford the desired product as a colourless solid (133 mg, 0.800 mmol, 80%), mp 113-115 °C.

IR (ATR) ν_{max} /cm⁻¹ 2895, 2844, 2404, 1430, 1132, 1040; ¹**H NMR** (400 MHz, MeOD) δ 3.10 (s, 2H), 1.97 (p, J = 2.9 Hz, 3H), 1.82 – 1.64 (m, 6H), 1.53 (d, J = 3.1 Hz, 6H); ¹³**C NMR** (101 MHz, MeOD) δ 73.9, 40.2, 38.3, 35.5, 29.7; **HRMS** [ESI (M + H⁺)] m/z calculated for C₁₁H₁₈O 166.1352, found 166.1360. The data matches those found in the literature.¹⁵

Cyclohexylmethanol 16

Prepared according to general procedure 1, using cyclohexane carboxylic acid (128 mg, 1.00 mmol), and the crude product was purified by column chromatography (EtOAc / petrol 1:4, $R_f = 0.23$) to afford the desired product as a colourless oil (90.0 mg, 0.790 mmol, 79%).

IR (ATR) v_{max}/cm^{-1} 3313, 2919, 2850, 1448, 1133, 1090, 1023; ¹H NMR (400 MHz, CDCl₃) δ 3.42 (d, J = 6.3 Hz, 2H), 1.82 – 1.61 (m, 4H), 1.53 – 1.40 (m, 1H), 1.27 – 1.18 (m, 2H), 1.18 – 1.12 (m, 1H), 0.98 – 0.86 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 68.9, 40.6, 29.7, 26.7, 26.0. The data matches those found in the literature.⁷

(3-(Benzyloxy)cyclobutyl)methanol 17

Prepared according to general procedure 1, using 3-(benzyloxy)cyclobutane-1-carboxylic acid as a mixture of diastereoisomers (206 mg, 1.00 mmol) and the crude product was purified by column

chromatography (pure petrol to EtOAc / petrol 1:1, $R_f = 0.31$) to afford the desired product as a colourless oil (144 mg, 0.750 mmol, 75%).

¹H NMR (400 MHz, CDCl₃) δ 7.23 - 7.32 (m, 5 H), 4.38 (d, J = 5.38 Hz, 2 H), 3.86 - 4.11 (m, 1 H)
3.51 (d, J = 6.85 Hz, 2 H) 2.60 (s, 1 H) 2.26 - 2.37 (m, 1 H) 1.94 - 2.16 (m, 3 H) 1.65 - 1.73 (m, 1 H);
¹³C NMR (101 MHz, CDCl₃) mixture of diastereomers: δ 138.1 (major), 138.0 (minor), 128.2, 127.7 (minor), 127.7 (major), 127.4 (minor), 127.4 (major), 71.7, 69.8 (major), 69.3 (minor), 66.7 (minor), 66.2 (major), 32.8 (minor), 31.5 (major), 29.5 (major), 28.0 (minor). The data matches those found in the literature.¹⁶

(1-Benzylpiperidin-4-yl)methanol 18

Prepared according to general procedure 1, using 1-benzylpiperidine-4-carboxylic acid (219 mg, 1.0 mmol) in toluene, and the crude product was purified by column chromatography (KPNH column) (pure petrol to EtOAc / petrol 3:2 (EtOAc / petrol 1:1, $R_f = 0.16$)) to give the desired product as a colourless oil (161 mg, 0.784 mmol, 78 % yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.29 - 7.34 (m, 4 H), 7.24 - 7.26 (m, 1 H), 3.51 (s, 2 H), 3.46 (d, J = 6.36 Hz, 2H), 2.89 - 2.94 (m, 2 H), 2.49 - 2.58 (m, 1 H), 1.97 (ddd, J = 11.7, 11.7, 2.5 Hz, 2 H), 1.68 - 1.74 (m, 2 H), 1.44 - 1.52 (m, 1 H), 1.28 (qd, J = 11.5, 3.9 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 138.1, 129.2, 128.1, 126.9, 67.6, 63.4, 53.3, 38.4, 28.7; **HRMS** [ESI (M + H⁺)] m/z calculated for C₁₃H₁₉NO 206.1539, found 206.1539. The data matches those found in the literature. ¹⁷

Decan-1-ol 20

Prepared according to general procedure 1, using decanoic acid (172 mg, 1.00 mmol), and the crude product was purified by column chromatography (EtOAc / petrol 1:4, $R_f = 0.21$) to afford the desired product as a colourless oil (126 mg, 0.800 mmol, 80%).

IR (ATR) v_{max}/cm^{-1} 2922, 2853, 1464, 1430, 1130, 1055; ¹H NMR (400 MHz, CDCl₃) δ 3.60 (t, J = 6.7 Hz, 2H), 2.00 (s, 1H), 1.59 – 1.47 (m, 2H), 1.34 – 1.19 (m, 14H), 0.92 – 0.81 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 63.0, 32.9, 32.0, 29.7, 29.7, 29.6, 29.4, 25.9, 22.8, 14.2. The data matches those found in the literature.¹⁵

(Z)-Octadec-9-en-1-ol 21

Prepared according to general procedure 1, using oleic acid (317 μ L, 1.00 mmol), and the crude product was purified by column chromatography (EtOAc / petrol 1:9) to afford the desired product as a colourless oil (206 mg, 0.770 mmol, 77%).

IR (ATR) v_{max}/cm^{-1} 3319, 2922, 2853, 1462, 1133, 1056; ¹H NMR (400 MHz, CDCl₃) δ 5.35 – 5.31 (m, 2H), 3.60 (t, J = 6.7 Hz, 2H), 1.99 (m, 4H), 1.54 (p, J = 6.8 Hz, 2H), 1.37 – 1.19 (m, 22H), 0.90 – 0.83 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 130.0, 129.9, 63.0, 32.9, 32.0, 29.9, 29.8, 29.7, 29.6, 29.6, 29.5, 29.4, 29.4, 27.3, 27.3, 25.9, 22.8, 14.2. The data matches those found in the literature.¹⁸

Benzyl (S)-2-(hydroxymethyl)pyrrolidine-1-carboxylate 22

Prepared according to general procedure 1, using ((benzyloxy)carbonyl)-L-proline (249 mg, 1.00 mmol) and the crude product was purified by column chromatography (pure petrol to EtOAc / petrol 2:3, $R_f = 0.21$) to afford the desired product as a colourless oil (173 mg, 0.740 mmol, 74 %).

¹**H** NMR (500 MHz, CDCl₃) δ 7.29 – 7.38 (m, 5 H), 5.11 – 5.18 (m, 2 H), 4.31 – 4.40 (m, 1 H), 3.90 – 4.05 (m, 1 H), 3.59 – 3.72 (m, 2 H), 3.51 – 3.58 (m, 1 H), 3.36 – 3.43 (m, 1H), 1.98 – 2.07 (m, 1H), 1.76 – 1.91 (m, 2H), 1.55 – 1.70 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 157.4, 136.6, 128.7, 128.2, 128.1, 67.4, 67.3, 60.9, 47.5, 28.8, 24.2, 23.0. Enantiomeric excess was determined by chiral HPLC with a Chiralpak IG5 column (MeOH), 1.0 mL/min, 215 nm, 25 °C, t_r (minor) = 4.75 min, t_r (major) = 5.32 min, >99% *e.e.*. The data matches those found in the literature.¹⁹

(3R,5R,8R,9S,10S,13R,14S,17R)-17-((R)-5-hydroxypentan-2-yl)-10,13-dimethylhexadeca-

hydro-1H-cyclopenta[a]phenanthren-3-ol 23

(4R)-4-((3R,8R,9S,10S,13R,14S,17R)-3-hydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid (337 mg, 1.00 mmol) and zinc acetate (18.3 mg, 0.1 mmol) were dissolved in 2-Me THF (1.2 mL) and heated to reflux. Phenylsilane (370 µL, 3.00 mmol) was added to the reaction mixture dropwise, followed by *N*-Me morpholine (11.0 µL, 0.1 mmol). The reaction mixture was stirred at reflux for 16 h, after which it was allowed to cool. Aqueous 2 M NaOH (2 mL) was added to the reaction mixture dropwise and it was stirred for a further 30 mins. Aqueous 1 M HCl was then added to the reaction mixture until pH 5 was reached, and the product was extracted using EtOAc (3 × 10 mL). The combined organic layers were dried over MgSO₄ and the solvent was removed *in vacuo*. The crude product was purified by column chromatography (pure petrol to EtOAc / petrol 3:2) to afford the desired product as a colourless solid (317 mg, 0.87 mmol, 87%).

¹**H** NMR (400 MHz, CDCl₃) δ 3.66 - 3.58 (m, 3 H), 1.91 - 1.72 (m, 4 H), 1.69 - 1.51 (m, 6 H), 1.46 - 1.36 (m, 8 H), 1.29 - 1.21 (m, 4 H), 1.55 - 0.99 (m, 7 H), 0.94 - 0.91 (m, 6 H), 0.65 (s, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 71.9, 63.6, 56.5, 56.2, 42.7, 42.1, 40.5, 40.2, 36.5, 35.9, 35.6, 35.4, 34.6, 31.8, 30.6, 29.5, 28.3, 27.2, 26.4, 24.2, 23.4, 20.9, 18.6, 12.1. The data matches those found in the literature.²⁰

(S)-2-(6-Methoxynaphthalen-2-yl)propan-1-ol 23

Prepared according to general procedure 1, using (*S*)-2-(6-methoxynaphthalen-2-yl)propanoic acid (230 mg, 1.00 mmol), and the crude product was purified by column chromatography (pure petrol to EtOAc / petrol 2:3, $R_f = 0.22$) to afford the desired product as a colourless solid (188 mg, 0.870 mmol, 87%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.73 (dd, J = 8.56, 2.69 Hz, 2 H), 7.62 - 7.64 (m, 1 H), 7.36 (dd, J = 8.56, 1.71 Hz, 1 H), 7.15 - 7.22 (m, 2 H), 3.93 (s, 3 H), 3.71 - 3.80 (m, 2 H), 3.03 - 3.12 (m, 1 H), 1.38 (d, J = 6.85 Hz, 3 H); ¹³**C NMR** (101 MHz, CDCl₃) δ 157.4, 138.7, 133.5, 129.1, 129.1, 127.2, 126.3, 125.9, 118.9, 105.6, 68.6, 55.3, 42.4, 17.6. Enantiomeric excess was determined by chiral HPLC with an (*R*, *R*) Whelk-O1 column (Heptane / EtOH 60:40), 1.0 mL/min, 230 nm, 25 °C, t_r (minor) = 8.01 min, t_r (major) = 7.15 min, 97% *e.e.*. The data matches those found in the literature.⁶

3.3 Large Scale Synthesis

(4-Fluorophenyl)methanol 1

4-Fluorobenzoic acid (1.00 g, 7.14 mmol) and zinc acetate (131 mg, 0.71 mmol) were dissolved in 2-Me THF (8.5 mL) and heated to reflux. Phenylsilane (1.76 mL, 14.28 mmol) was added to the reaction mixture dropwise, followed by *N*-Me morpholine (78.8 μ L, 0.71 mmol). The reaction mixture was stirred at reflux for 18 h, before it was allowed to cool. 2M NaOH (5 mL) was added dropwise to the reaction mixture and it was stirred at room temperature for a further 1 h. 1M HCl was added to the reaction mixture until pH 7 was reached, and the product was extracted with EtOAc (3 × 10 mL). The combined organic layers were dried over MgSO₄ and the solvent was removed *in vacuo*. The crude product was purified by column chromatography (EtOAc / petrol 1:4) to give the product as a colourless oil (657 mg, 5.21 mmol, 73%). IR (ATR) ν_{max} /cm⁻¹ 3311, 1604, 1509, 1429, 1221, 1131; ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.28 (m, 2H), 7.07 – 7.00 (m, 2H), 4.63 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 162.4 (d, J = 245.6 Hz), 136.7 (d, J = 3.5 Hz), 128.9 (d, J = 8.0 Hz), 115.5 (d, J = 21.6 Hz), 64.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.91; GCMS [EI (M + H⁺)] m/z calculated for C₇H₇OF 126.0475, found 126.0474. The data matches those found in the literature.²

3.4 ¹⁹F NMR Studies

Without the addition of NMM:

4-Fluorobenzoic acid (70.0 mg, 0.50 mmol) and zinc acetate (9.17 mg, 0.05 mmol) were added to an NMR tube, with trifluorotoluene (61.4 μ L, 0.50 mmol) and d₈-toluene (0.5 mL). A ¹⁹F NMR spectrum was acquired at 70 °C (t₀ below). Phenylsilane (123 μ L, 1.00 mmol) was then added to the NMR tube and ¹⁹F NMR spectra were acquired at 70 °C at 15 min intervals for 16 h.

00 -101 -102 -103 -104 -105 -108 -106 -107 -109 -110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120 -12 With the addition of NMM:

4-Fluorobenzoic acid (70.0 mg, 0.50 mmol) and zinc acetate (9.17 mg, 0.05 mmol) were added to an NMR tube, with trifluorotoluene (61.4 μ L, 0.50 mmol) and d₈-toluene (0.5 mL). A ¹⁹F NMR spectrum acquired at 70 °C (t₀ below). Phenylsilane (123 μ L, 1.00 mmol) and *N*-Me morpholine (5.50 μ L, 0.05

mmol) were then added to the NMR tube and 19 F NMR spectra were acquired at 70 °C at 15 min intervals for 16 h.

3.5 Independent Synthesis of Silyl Esters

Phenylchlorosilane

Phenylchlorosilane was synthesised using an adapted literature procedure.²¹

A mixture of phenylsilane (10.8 g, 100 mmol), anhydrous copper(II) chloride (26.9 g, 200 mmol), anhydrous copper(I) iodide (0.760 g, 4.00 mmol), and 4 Å molecular sieves (80 g) in a dry 500 mL round-bottomed flask was evacuated and backfilled with anhydrous dinitrogen (3 ×). 50 mL of Et₂O was added, and the mixture was stirred with a large magnetic stir bar at 250 rpm at room temperature for 2 h. The resulting mixture was filtered through a cannula to remove the copper salts and molecular sieves, and the solid was washed with diethyl ether (3 × 10 mL). The solution was then distilled, initially under a flow of N₂ to remove Et₂O, and then under reduced pressure (8 mbar) to give phenylchlorosilane (3.93 g, 27.5 mmol, 28%) contaminated with with *ca* 3% phenylsilane and *ca* 4% Et₂O (see ¹H NMR spectrum) as a colourless liquid.

¹H and ²⁹Si NMR spectra are consistent with the literature.²²

¹H NMR (400 MHz, C₆D₆): δ 7.40-7.35 (m, 2H), 7.14-7.09 (m, 1H), 7.08-7.03 (m, 2H), 5.06 (s, 2H, Si–H). ¹³C NMR (101 MHz, C₆D₆): δ 134.7, 131.5, 130.3, 128.6. ²⁹Si NMR (79 MHz, C₆D₆): δ -17.91.

Phenylsilyl 4-fluorobenzoate SI-1

Sodium 4-fluorobenzoate* (81.1 mg, 0.500 mmol) was added to a microwave tube. The tube was capped and evacuated and backfilled with anhydrous dinitrogen (3 ×). Dry, degassed benzene- d_6 (1.00 mL) was then added, and to the resulting stirred suspension was added phenyl chlorosilane (61.0 µL, 0.500 mmol). The mixture was stirred for 2 hours at room temperature. After allowing the suspension to settle (1 minute), A sample (*ca* 0.2 mL) was removed and diluted with dry, degassed benzene- d_6 in a dry NMR tube under a flow of anhydrous dinitrogen. The main component of the resulting mixture was phenylsilyl 4-fluorobenzoate (SI-1).

Assignments confirmed by ¹H-¹H COSY, ¹H-¹³C HSQC, and ¹H-¹³C HMBC spectra. A key observation is the ¹H-¹³C HMBC cross-peak between H-6 (the Si–H) and C-5 (the C=O). Despite a poor signal to noise ratio in the ²⁹Si{¹H} NMR spectrum, the unchanged phenylsilane is still observed (δ -60.32 ppm).

¹H NMR (400 MHz, C₆D₆): δ 7.84-7.79 (m, 2H, H-3), 7.71-7.67 (m, 2H, H-8), 7.15-7.05 (m**, H-9 and H-10), 6.58-6.52 (m, 2H, H-2), 5.33 (s, 2H, H-6). ¹³C NMR (101 MHz, C₆D₆): δ 166.26 (d, J = 253.9 Hz, C-1), 166.24 (C-5), 135.8 (C-8), 133.3 (d, J = 9.5 Hz, C-3), 131.4 (C-10), 130.6 (C-7), 128.5 (C-9), 126.8 (d, J = 3.0 Hz, C-4), 115.6 (d, J = 22.0 Hz, C-2). ¹⁹F NMR (376 MHz, C₆D₆): δ -105.09. ²⁹Si NMR (79 MHz, C₆D₆): δ -19.72.

*Sodium 4-fluorobenzoate was prepared by deprotonation of 4-fluorobenzoic acid (280 mg, 2.00 mmol) with sodium hydride (60% in mineral oil, 80.0 mg, 2.00 mmol) in anhydrous THF (10 mL), followed by washing the precipitated salt with pentane (3 x 5 mL) to remove mineral oil. The salt (320 mg, 1.97 mmol, 99%) was used without further purification.

**Overlapped with peaks from PhSiH₃ impurity. Integral expected = 3H, measured ~ 4H.

4 <u>Problematic Substrates</u>

While we have not carried out an exhaustive survey in terms of substrate scope some problematic examples are depicted below. We note that we have not made any attempt to optimise the reduction reaction on substrate by substrate basis so, with optimisation, reduction of these (and other) substrates may well be possible.

5 <u>HPLC Traces</u>

(R)-2-Phenylpropan-1-ol 10 (racemate trace followed by reduction product)

Peak Results

	Retention Time (min)	Area (µV*sec)	% Area	Width @ 50%
1	1.71	1394172	50.0	
2	1.95	1395963	50.0	

reduction product)

1.96 2392093

2

Peak	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	7.150	MM	0.1882	1.92548e4	1705.31201	49.5495
2	7.995	MM	0.2142	1.96050e4	1525.42236	50.4505

98.7

	DAD1 D, Sig=230,4 Ref=380,40 (C:USERS\POLL_105236\ESME1 2020-02-20 15-16-33\003-D1F-A2-N75960-7-P1.D)	
mAU -	بې م	
1600	A was	
1400	Sec.	
1200 -		
1000 -		
800		
600		
400 -	1 ¹⁰⁶	
200 -	5 States	
0-		_
		min

Peak	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	7.151	MM	0.1891	1.89162e4	1667.55676	98.2648
2	8.011	MM	0.2279	334.03561	24.43273	1.7352

Totals : 1.92502e4 1691.98949

(S)-2-(6-Methoxynaphthalen-2-yl)propan-1-ol **19** (racemate trace followed by reduction product)

The racemate was prepared from a 1:1 mixture of enantiomers.

Peak #	RetTime [min]	туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	4.751	MM	0.1134	1.15002e4	1690.81543	52.4646
2	5.333	BB	0.1222	1.04197e4	1348.02344	47.5354

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	4.751	BB	0.0889	7.54379	1.31643	0.0672
2	5.322	BB	0.1201	1.12115e4	1451.31787	99.9328

6 <u>NMR Spectra</u>

(4-Fluorophenyl)methanol 1

(4-Bromophenyl)methanol 2

(Perfluorophenyl)methanol 4

Naphthalen-1-ylmethanol 5

Furan-2-ylmethanol 6

Thiophen-2-ylmethanol 7

(4-Nitrophenyl)methanol 8

D

(4-(Trifluoromethyl)phenyl)methanol 11

(3-Methoxyphenyl)methanol 13

tert-Butyl 2-(hydroxymethyl)piperidine-1-carboxylate 14

Cyclohexylmethanol 16

(3-(Benzyloxy)cyclobutyl)methanol 17

(1-Benzylpiperidin-4-yl)methanol 18

(3R,5R,8R,9S,10S,13R,14S,17R)-17-((R)-5-hydroxypentan-2-yl)-10,13-dimethylhexadeca-

hydro-1H-cyclopenta[a]phenanthren-3-ol 23

2728.0

(S)-2-(6-Methoxynaphthalen-2-yl)propan-1-ol 19

110 100 90

IH Chemical Shift (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 13C Chemical Shift (ppm)

0.0

Phenylchlorosilane – ²⁹Si{¹H} NMR (79 MHz, C₆D₆) (Note: non-quantitative)

Phenylsilyl 4-fluorobenzoate (SI-1) – ¹H NMR (400 MHz, C₆D₆)

Phenylsilyl 4-fluorobenzoate (SI-1) – ¹³C{¹H} NMR (101 MHz, C₆D₆)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 13C Chemical Shift (ppm)

Phenylsilyl 4-fluorobenzoate (SI-1) – ${}^{13}C{}^{1}H$ NMR (101 MHz, C₆D₆) Expansion

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -20(19F Chemical Shift (ppm)

Phenylsilyl 4-fluorobenzoate (SI-1) – ²⁹Si{¹H} NMR (79 MHz, C₆D₆)

Phenylsilyl 4-fluorobenzoate (SI-1) – ¹H-¹H COSY NMR (C₆D₆)

Phenylsilyl 4-fluorobenzoate (SI-1) – ¹H-¹³C HSQC NMR (C₆D₆)

7 <u>References</u>

- 1 W. L. F. Armarego and C. L. L. Chai, *Purification of Organic Chemicals*, 2009.
- 2 V. Skrypai, J. J. M. Hurley and M. J. Adler, *Eur. J. Org. Chem.*, 2016, 2207–2211.
- 3 N. S. Shaikh, K. Junge and M. Beller, *Org. Lett.*, 2007, **9**, 5429–5432.
- 4 T. V. Q. Nguyen, W.-J. Yoo and S. Kobayashi, *Adv. Synth. Catal.*, 2016, **358**, 452–458.
- 5 D. Zhang, Z. Chen, H. Cai and X. Zou, J. Fluor. Chem., 2009, **130**, 938–941.
- 6 M. K. Barman, K. Das and B. Maji, J. Org. Chem., 2019, 84, 1570–1579.
- 7 N. S. Shaikh, K. Junge and M. Beller, *Org. Lett.*, 2007, **9**, 5429–5432.
- D. E. Q. Jimenez, I. M. Ferreira, W. G. Birolli and L. P. Fonseca, *Tetrahedron*, 2016, **72**, 7317–7322.
- S. Goggins, E. A. Apsey, M. F. Mahon and C. G. Frost, Org. Biomol. Chem., 2017, 15, 2459–2466.
- 10 A. Solladié-Cavallo, A. G. Csaky, I. Gantz and J. Suffert, J. Org. Chem., 1994, 59, 5343–5346.
- 11 A. P. Dieskau, J. M. Begouin and B. Plietker, *Eur. J. Org. Chem.*, 2011, 5291–5296.
- 12 M. L. Clarke, M. B. Díaz-Valenzuela and A. M. Z. Slawin, Organometallics, 2007, 26, 16–19.
- 13 T. Mayer and M. E. Maier, Eur. J. Org. Chem., 2007, 4711–4720.
- 14 M. Mccrea-Hendrick and C. J. Nichols, *Synth. Commun.*, 2009, **39**, 3611–3620.
- T. Toyao, S. M. A. H. Siddiki, A. S. Touchy, W. Onodera, K. Kon, Y. Morita, T. Kamachi, K.
 Yoshizawa and K. Shimizu, *Chem. Eur. J.*, 2016, 23, 1001–1006.
- 16 J.-M. Henlin, H. Rink, E. Spieser and G. Baschang, *Helv. Chim. Acta*, 1992, **75**, 589–603.
- K. S. T. Dias, C. T. de Paula, T. dos Santos, I. N. O. Souza, M. S. Boni, M. J. R. Guimarães, F. M. R. da Silva, N. G. Castro, G. A. Neves, C. C. Veloso, M. M. Coelho, I. S. F. de Melo, F. C. V. Giusti, A. Giusti-Paiva, M. L. da Silva, L. E. Dardenne, I. A. Guedes, L. Pruccoli, F. Morroni, A. Tarozzi and C. Viegas, *Eur. J. Med. Chem.*, 2017, **130**, 440–457.

- N. Sakai, K. Kawana, R. Ikeda, Y. Nakaike and T. Konakahara, *Eur. J. Org. Chem.*, 2011, 3178–3183.
- S. Dei, C. Bellucci, M. Buccioni, M. Ferraroni, F. Gualtieri, L. Guandalini, D. Manetti, R. Matucci, M. N. Romanelli, S. Scapecchi and E. Teodori, *Bioorganic Med. Chem.*, 2003, 11, 3153–3164.
- A. D. Averin, E. R. Ranyuk, N. V. Lukashev and I. P. Beletskaya, *Chem. A Eur. J.*, 2005, 11, 7030–7039.
- 21 W. Wang, Y. Tan, Z. Xie and Z. Zhang, J. Organomet. Chem., 2014, 769, 29–33.
- A. G. Sturm, J. I. Schweizer, L. Meyer, T. Santowski, N. Auner and M. C. Holthausen, *Chem. -A Eur. J.*, 2018, 24, 17796–17801.