Electronic Supplementary Information

Enhanced Emission by Stacking of Crown Ether Side Chains in

A 2D Covalent Organic Framework

Liu Yuan,^{a,b,§} Jun Zhu,^{a,§} Shaofei Wu,^a Chunyan Chi*^a

^aDepartment of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, E-mail: <u>chmcc@nus.edu.sg</u>
^bState Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
[§]Liu Yuan and Jun Zhu contribute equally to this work.

Table of Contents

1.	General Procedure	S1
2.	Synthesis	S2
3.	Photoluminescence Property of Model Compound	S6
4.	IR Spectra and solid state ¹³ C-NMR Spectra	S6
5.	N ₂ Sorption Isotherm and Pore Size Distribution	
6.	SEM Images of COF Materials	S10
7.	Thermal Properties	S10
8.	PLQY of Model Compounds	S12
9.	Metal Ions Sensing	S13
10.	Fractional Atomic Coordinates for the Unit Cells	S14
11.	NMR spectra and HR mass spectra	S24
12.	References	S34

1. General Procedure

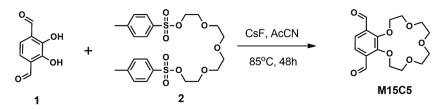
All reagents were purchased from commercial sources without further purification. Compound **1**,^{S1} **2**,^{S2} **3**, ^{S2} **4** ^{S2} and **M2OMe** ^{S1} are synthesized according to reported methods.

¹H and ¹³C NMR spectra were recorded using 400 MHz Bruker spectrometer in $(CD_3)_2CO$ and CD_3CI with tetramethylsilane (TMS) as the internal standard. The chemical shift was recorded in ppm and the following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet, br = broad. HR ESI mass spectra were recorded on a MicrOTOFQII instrument.

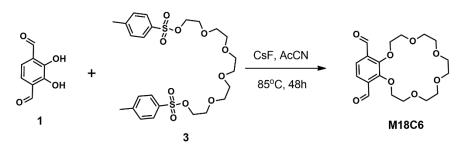
Thermogravimetric analysis (TGA) was performed on a TGA 500 thermogravimetric analyzer by heating the samples at 5 $^{\circ}$ C min⁻¹ to 800 $^{\circ}$ C in a nitrogen atmosphere.

Fourier transform infrared (FT-IR) spectra were recorded as KBr-pellet on a Bruker OPUS/IR PS15 spectrometer.

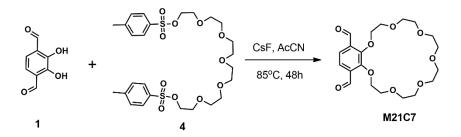
Scanning Electron Microscopy (SEM) imaging of the COF pristine materials were performed using a JEOL JSM-6701F Field-Emission.

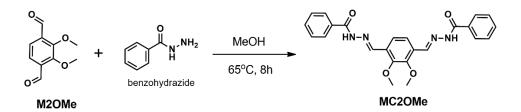

Powder X-ray Diffraction (PXRD) measurements were performed on Bruker D8 Focus Powder X-ray diffractometer using Cu K α radiation (40 kV, 40 mA) at room temperature.

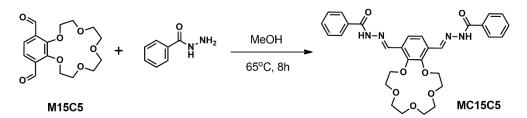
Gas Sorption measurements: Gas sorption analyses were performed by using Quantachrome Instruments Autosorb-iQ (Boynton Beach, Florida USA) with extra-high pure gases. The samples were activated and outgassed at 120 °C for 8 h before the measurements. The Brunauer-Emmett-Teller (BET) surface area and total pore volume were calculated from the N₂ sorption isotherms at 77 K, and the pore size distribution was calculated based on the N₂ sorption isotherm by using Non-Local Density Functional Theory (NL-DFT, a carbon model containing slit/cylindrical pore) model in the Quantachrome ASiQwin 5.0 software package.

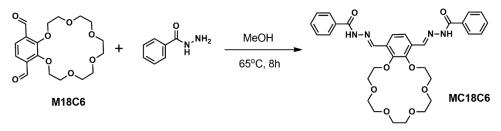

Fluorescence Quantum Yield & Lifetime : The fluorescence data and lifetimes were measured using a Horiba Fluorolog-3 spectrofluorometer equipped with a 365 nm nanoLED for excitation and a FluoroHub R-928 detector. Absolute quantum yields were measured on the HORIBA Fluorolog-3 Photon Counting Spectrofluorometer System with Quanta-φ 6-inch integrating sphere.

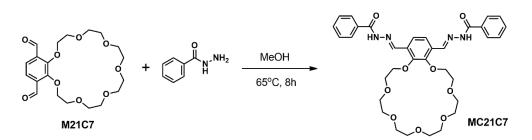
Structural Modelling Method: Molecular modelling and Pawley refinement were carried out using Reflex, a software package for crystal determination from Powder XRD pattern, implemented in BIOVIA Materials Studio modelling version 2016. All of the four COF models were constructed initially with a P1 space group using Materials Studio Visualizer and their geometries were optimized using the Forcite module (ultra-fine, Universal force fields, Ewald summations). Pawley refinement was then performed to optimize the lattice parameters until the RWP value converges.


2. Synthesis


Synthesis of compound **M15C5**: Compound **1** (498.4 mg, 3 mmol), compound **2** (1.66 g, 3.3 mmol) and CsF (1.82 g, 12 mmol) were added to a three-neck flask containing 20 mL dry acetonitrile. The mixture was heated to reflux and stirred for 48 h under N₂ protection. After cooling to room temperature, solvents were removed under vacuum. The residue was extracted by DCM and washed by water. The organic phase was collected and dried over sodium sulfate. The solvent was removed under vacuum and the residue was purified by column chromatography (silica gel, MeOH: DMC=1:100) to give a white solid (409 mg, yield 42%). ¹H NMR (400 MHz, CDCl₃) δ 10.44 (s, 2H), 7.65 (s, 2H), 4.37 (t, *J* = 5.2 Hz, 4H), 4.02 (t, *J* = 5.2 Hz, 4H), 3.81 – 3.69 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 189.2, 156.1, 134.3, 123.2, 75.3, 71.1, 70.7, 70.1. HR MS (ESI): calcd for C₁₆H₂₀O₇ (M+Na)⁺: 347.1101, found: 347.1103 (error: 0.57 ppm) mp: 83°C.


Synthesis of compound **M18C6**: Compound **1** (498.4 mg, 3 mmol), compound **3** (1.80 g, 3.3 mmol) and CsF (1.82 g, 12 mmol) were added to a three-neck flask containing 20 mL dry acetonitrile. The mixture was heated to reflux and stirred for 48 h under N₂ protection. After cooling to room temperature, solvents were removed under vacuum. The residue was extracted by DCM and washed by water. The organic phase was collected and dried over sodium sulfate. The solvent was removed under vacuum and the residue was purified by column chromatography (silica gel, MeOH: DMC=1:80) to give a white solid (497 mg, yield 45%). ¹H NMR (400 MHz, CDCl₃) δ 10.47 (s, 2H), 7.64 (s, 2H), 4.40 (t, *J* = 5.2 Hz, 4H), 3.96 (t, *J* = 5.2 Hz, 4H), 3.75 (td, ³*J* = 5.6 Hz, ⁴*J* = 2.3 Hz, 8H), 3.68 (s, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 189.5, 155.9, 134.5, 122.9, 75.1, 71.2, 70.8, 70.6, 70.1. HR MS (ESI): calcd for C₁₈H₂₄O₈ (M+Na)⁺: 391.1363, found: 391.1365 (error: 0.51 ppm). Mp: 48°C.


Synthesis of compound **M21C7**: Compound **1** (498.4 mg, 3 mmol), compound **4** (1.95 g, 3.3 mmol) and CsF (1.82 g, 12 mmol) were added to a three-neck flask containing 20 mL dry acetonitrile. The mixture was heated to reflux and stirred for 48 h under N₂ protection. After cooling to room temperature, solvents were removed under vacuum. The residue was extracted by DCM and washed by water. The organic phase was collected and dried over sodium sulfate. The solvent was removed under vacuum and the residue was purified by column chromatography (silica gel, MeOH: DMC=1:50) to give a white solid (631 mg, yield 51%). ¹H NMR (400 MHz, CDCl₃) δ 10.49 (s, 2H), 7.63 (s, 2H), 4.51 – 4.30 (m, 4H), 3.99 – 3.82 (m, 4H), 3.70 (dd, ³J = 15.6 Hz, ⁴J = 4.2 Hz, 8H), 3.65 (s, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 190.0, 155.0, 134.5, 122.7, 74.4, 71.4, 70.8, 70.7, 70.38, 70.35. HR MS (ESI): calcd for C₂₀H₂₈O₉ (M+Na)⁺: 435.1626, found: 435.1638 (error: 2.76). mp: 76°C.


Synthesis of compound **MC2OMe**: Compound **M2OMe** (582.5 mg, 3 mmol) and benzohydrazide (1.22 g, 9 mmol) were added to a two-neck flask containing 10 mL methanol. The mixture was heated to reflux and stirred for 8 h under N₂ protection. After cooling to room temperature, a white precipitate was obtained by filtration. The solid was washed with methanol (3 x 10 mL) and dried in vacuum overnight to get the pure compound (813 mg, yield 63%). ¹H NMR (400 MHz, (CD₃)₂CO) δ 11.15 (s, 2H), 8.80 (s, 2H), 8.00 (d, *J* = 7.3 Hz, 4H), 7.86 (s, 2H), 7.59 (t, *J* = 7.3 Hz, 2H), 7.55 – 7.47 (m, 4H), 3.92 (s, 6H). ¹³C NMR (100 MHz, (CD₃)₂SO) δ 163.2, 152.2, 142.6, 133.3, 131.9, 129.9, 128.5, 127.7, 120.9, 61.8. HR MS (ESI): calcd for C₂₄H₂₃N₄O₄ (M+H)⁺: 431.1719, found: 431.1710 (error: -2.09 ppm). mp. 141°C.

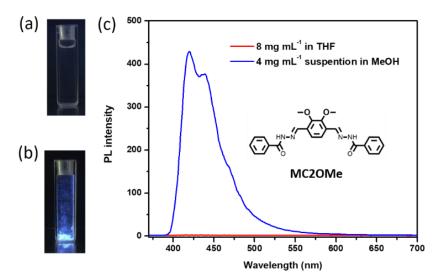
Synthesis of compound **MC15C5**: This compound was synthesized by using similar procedure for that of **MC2OMe.** ¹H NMR (400 MHz, $(CD_3)_2SO$) δ 11.96 (s, 2H), 8.73 (s, 2H), 7.94 (d, J = 7.3 Hz, 4H), 7.77 (s, 2H), 7.61 (t, J = 7.2 Hz, 2H), 7.55 (t, J = 7.3 Hz, 4H), 4.15 (t, J = 4.6 Hz, 4H), 3.95 (t, J = 4.8 Hz, 4H), 3.65 (dd, ³J = 10.4 Hz, ⁴J = 5.4 Hz, 8H). ¹³C NMR (100 MHz, $(CD_3)_2SO$) δ 163.2, 151.7, 142.6, 133.4, 131.8, 130.0, 128.5, 127.7, 121.0, 74.2, 70.4, 69.7, 69.6. HR MS (ESI): calcd for C₃₀H₃₂N₄O₇ (M+Na)⁺: 583.2163, found: 583.2181 (error: 3.09 ppm). mp. 127°C.

Synthesis of compound **MC18C6**: This compound was synthesized by using similar procedure for that of **MC2OMe.** ¹H NMR (400 MHz, $(CD_3)_2SO$) δ 11.99 (s, 2H), 8.73 (s, 2H), 7.94 (d, *J* = 7.3 Hz, 4H), 7.77 (s, 2H), 7.62 (t, *J* = 7.2 Hz, 2H), 7.55 (t, *J* = 7.3 Hz, 4H), 4.16 (t, *J* = 4.6 Hz, 4H), 3.88 (t, *J* = 4.7 Hz, 4H), 3.69 – 3.61 (m, 8H), 3.58 (s, 4H). ¹³C NMR (100 MHz, $(CD_3)_2SO$) δ 163.2, 151.4, 142.6, 133.4, 131.8, 130.1, 128.5, 127.7, 121.0, 73.8, 70.1, 70.0, 69.8, 69.5. HR MS (ESI): calcd for $C_{32}H_{36}N_4O_8$ (M+Na)⁺: 627.2425, found: 627.2441 (error: 2.55 ppm). mp. 98°C.

Synthesis of compound **MC21C7**: This compound was synthesized by using similar procedure for that of **MC2OMe**. ¹H NMR (400 MHz, $(CD_3)_2SO$) δ 11.97 (s, 2H), 8.75 (s, 2H), 7.93 (d, J = 7.2 Hz, 4H), 7.76 (s, 2H), 7.65 (t, J = 7.2 Hz, 2H), 7.55 (t, J = 7.3 Hz, 4H), 4.21 (t, J = 4.6 Hz, 4H), 3.88 (t, J = 4.7 Hz, 4H), 3.62 (td, ³J = 5.2 Hz, ⁴J = 3.4 Hz, 8H), 3.55 (s, 8H). ¹³C NMR (100 MHz, $(CD_3)_2SO$) δ 163.3, 151.2, 142.9, 133.4, 131.8, 130.1, 128.5, 127.7, 120.8, 73.2, 70.3, 70.0, 69.7, 69.6. HR MS (ESI): calcd for C₃₄H₄₀N₄O₉ (M+Na)⁺: 671.2687, found: 671.2695 (error: 1.30

ppm). mp. 101°C.

Synthesis of **COF2OMe**: To a 10 mL schlenk storage tube was added benzene-1,3,5-tricarbohydrazide (15.1 mg. 0.06 mmol) and **M2OMe** (17.5 mg, 0.09 mmol). Then 2 mL mixed solvent of mesitylene:1, 4-dioxane (5:1, V:V) and acetic acid (aq. 9M, 0.24 mL) were added. The mixture was degassed by three freeze-pump-thaw cycles. The tube was sealed and heated at 105°C in an oven for 4 days. The precipitate was filtered through centrifugation, which was washed with anhydrous THF for 6 times. Then the precipitate was immersed in DMF (HPLC Grade) for 3 days. The obtained powder was extracted by Soxhlet extraction for 24h, using chloroform, acetone and THF solvent successively. Then the powder was dried at 120°C under vacuum for 12 h. Yellow solid (yield, 92%) FT-IR (KBr, cm⁻¹): 3219, 3061, 2993, 2940, 2832, 1665, 1548, 1459, 1405, 1363, 1283, 1253, 1050, 1019, 954, 822, 731. Anal. Calcd. For chemical formula $C_{48}H_{42}N_{12}O_{12}$: C 58.89; H 4.32; N 17.17; O 19.61; found: C 54.11; H 4.68; N 16.05.


Synthesis of **COF15C5**, **COF18C6**, **COF21C7**: The three COFs were synthesized using the same procedure as used for **COF2OMe** by reacting 0.06 mmol benzene-1,3,5-tricarbohydrazide and 0.09 mmol **M15C5**, **M18C6** and **M21C7** respectively. The only difference is a change of mesitylene:1, 4-dioxane ratio to 9:1 (V : V).

COF15C5: Yellow solid (yield, 95%) FT-IR (KBr, cm⁻¹): 3217, 3041, 2924, 2869, 1677, 1547, 1431, 1354, 1278, 1251, 1127, 1057, 934, 873, 830, 734. Anal. Calcd. For chemical formula C₆₆H₇₂N₁₂O₂₁: C 57.89; H 5.30; N 12.27; O 24.54; found: C 54.37; H 4.19; N 11.95.

COF18C6: Yellow solid (yield, 90%) FT-IR (KBr, cm⁻¹): 3204, 3042, 2919, 2870, 1677, 1548, 1431, 1350, 1251, 1111, 1059, 945, 874, 829, 732. Anal. Calcd. For chemical formula C₇₂H₈₄N₁₂O₂₄: C 57.59; H 5.64; N 11.19; O 25.57; found: C 55.32; H 5.38; N 10.99.

COF21C7: Yellow solid (yield, 91%) FT-IR (KBr, cm⁻¹): 3212, 3040, 2920, 2873, 1681, 1546, 1430, 1351, 1252, 1108, 1057, 950, 873, 828, 733. Anal. Calcd. For chemical formula C₈₄H₁₀₈N₁₂O₃₀: C 57.13; H 6.16; N 9.52; O 27.18; found: C 56.42; H 5.96; N 9.33.

3. Photoluminescence Property of Model Compound

Figure S1 Images of compound **MC2OMe** (a) 8 mg mL⁻¹ THF solution, and (b) crystalline powder in a cuvette under 365 nm irradiation; (c) Fluorescence spectra of **MC2OMe** solution in THF and suspension in methanol.

$\begin{array}{c} & & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$

4. IR Spectra and Solid State ¹³C-NMR Spectra

Figure S2. IR spectra of monomer compounds, COF2OMe and MC2OMe.

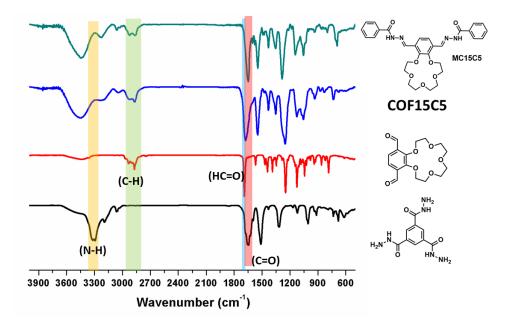


Figure S3. IR spectra of monomer compounds, COF15C5 and MC15C5.

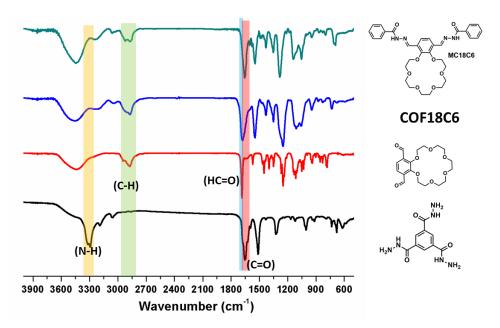


Figure S4. IR spectra of monomer compounds, COF18C6 and MC18C6.

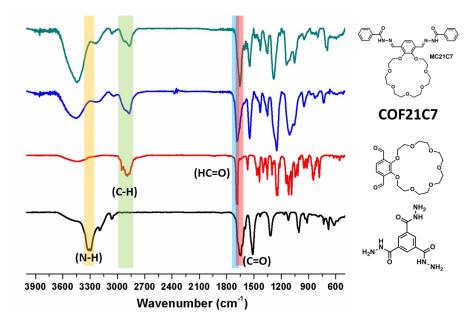


Figure S5. IR spectra of monomer compounds, COF21C7 and MC21C7.

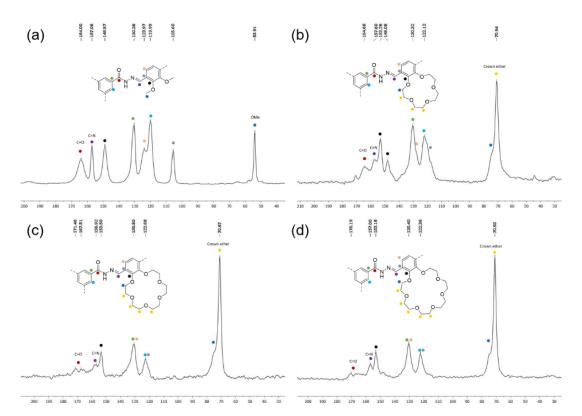
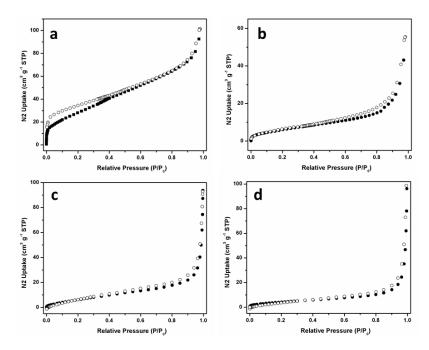
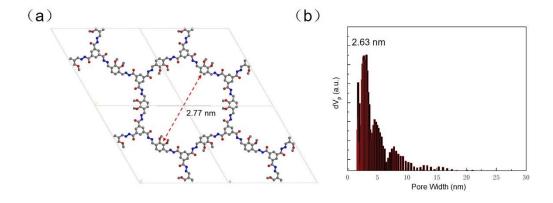




Figure S6. Solid state ¹³C-NMR spectra of (a) COF2OMe, (b) COF15C5, (c) COF18C6 and (d) COF21C7.

5. N₂ Sorption Isotherm and Pore Size Distribution

Figure S7. N_2 sorption isotherm of (a) COF2OMe, (b) COF15C5, (c) COF18C6 and (d) COF21C7.

Figure S8. (a) Pore size measured form Pawley refined structure of **COF2OMe**, and (b) pore size distribution plot of **COF2OMe** calculated by nonlocal density functional theory.

6. SEM Images of COF Materials

Figure S9. SEM images of (a) COF2OMe, (b) COF15C5, (c) COF18C6 and (d) COF21C7 (1 μ m for all scale bars).

7. Thermal Properties

Thermal gravimetric analysis (TGA) of the COFs and model compounds (Figures S10 and S11,) showed similar degradation temperatures (Table S1, with 5% weight loss) over 320°C for **COF2OMe** and **MC2OMe**. Slightly higher degradation temperatures (332°C-338°C) were measured for the crown ether COFs than their corresponding model compounds (309°C-328°C).

Degradation Temperature			
MC2OMe	MC15C5	MC18C6	MC21C7
325°C	309°C	328°C	327°C
COF2OMe	COF15C5	COF18C6	COF21C7
321°C	332°C	336°C	338°C

|--|

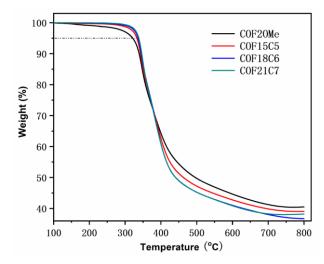


Figure S10. TGA profiles of COF2OMe, COF15C5, COF18C6 and COF21C7.

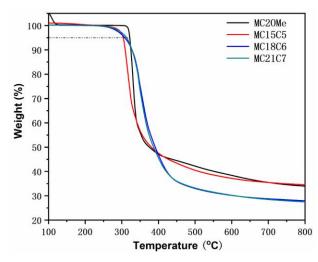


Figure S11. TGA profiles of MC2OMe, MC15C5, MC18C6 and MC21C7.

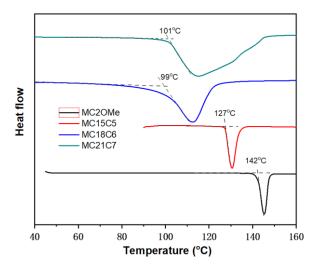
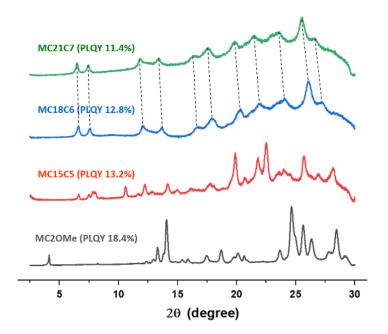



Figure S12. DSC heating thermograms of MC2OMe, MC15C5, MC18C6 and MC21C7 at 10°C/min.

8. PLQY of Model Compounds

The luminescence property of model compounds was also studied for comparison. Single crystals of these four compounds were not successfully grown, crystalline powders were obtained instead. Their PLQY were determined to be 18.4%, 13.2%, 12.8%, 11.4% for MC2OMe, MC15C5, MC18C6, MC21C7, respectively. As degree of crystallinity and packing mode had impact on the PLQY, their XRD pattern were measured (Figure S13). XRD results showed very similar pattern and intensity for MC18C6 and MC21C7, indicating same packing mode and similar degree of crystallinity. PLQY of MC18C6 was 1.4% higher than **MC21C7**, which was reasonable since the former had tighter packing, as seen from the right shifted diffraction peaks to slightly higher degrees. Quite different XRD patterns were found for MC2OMe and MC15C5. Their higher PLQY might be resulted from more closed packing of backbones due to shrinking of side chain bulkiness, especially for MC2OMe. which restricted backbone movement. This was in consistence with their higher melting points than MC18C6 and MC21C7. DSC profiles of the crystalline model compounds (Figure S12) showed similar melting points of 101°C and 99°C for MC21C7 and MC18C6, respectively, and notably increased melting points for MC15C5 (127°C) and MC2OMe (142°C). Thus, we anticipated that the same RIR mechanism working in model compounds for PLQY enhancing as in COFs.

Figure S13. Normalized powder XRD patterns of crystalline model compounds and their corresponding PLQY.

9. Metal Ions Sensing

The PL intensity of **COF2OMe** is too low for metal ion sensing experiments. We have done PL sensing of 15 common metal ions using **COF15C5**, **COF18C6**, and **COF21C7** suspension, but no significant PL quenching was found for any metal ions (Figure S14).

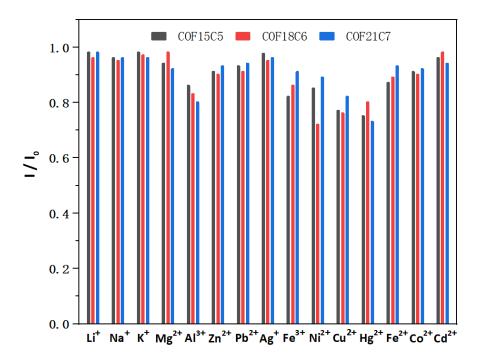


Figure S14. Fluorescence response of COF2OMe, COF15C5, COF18C6 and COF21C7 (H₂O : ethanol in 1:1 ratio) suspension in the presence of different metal ions (100 μ M) in water at $\lambda_{em} = 503$ nm. I: PL intensity of COF suspension with metal ions; I₀: PL intensity of COF suspension. The concentration of COFs suspension is 0.2mg/mL.

10. Fractional Atomic Coordinates for the Unit Cells

Table s2. Atomistic coordinates for optimized unit cell of **COF2OMe** (space group P1, a = b = 30.068 Å, c = 3.739 Å, $\alpha = \beta = 90^{\circ}$, and $\gamma = 120^{\circ}$).

Atom	x	У	Z
C1	1.28858	-0.35317	0.32616
C2	1.32187	-0.3731	0.30475
C3	1.37501	-0.34021	0.27695
C4	1.39479	-0.28682	0.26806
C5	1.36212	-0.26619	0.28816
C6	1.309	-0.29964	0.31688
C7	1.4095	-0.36161	0.24394
C8	1.38347	-0.21003	0.26356
С9	1.23262	-0.38822	0.34271
N10	1.43723	-0.17694	0.20416
011	1.35531	-0.19176	0.28682
012	1.21508	-0.43481	0.3412
N13	1.19861	-0.36791	0.35296
014	1.45594	-0.33288	0.23498
N15	1.38864	-0.41604	0.21439
N16	1.42051	-0.43676	0.1501
N17	1.45788	-0.12429	0.13653
C18	1.53094	-0.04005	-5.7E-4
C19	1.58407	-0.01375	-0.04422
C20	1.61058	0.03856	-0.12383
C21	1.5847	0.06601	-0.15927
C22	1.50656	-0.09557	0.07911
C23	1.4717	0.063	0.13943
C24	1.50331	-0.01362	-0.0442
C25	1.53081	0.04063	-0.11039
O26	1.50606	0.06962	-0.14251
C27	1.42198	-0.03489	-0.28858
O28	1.44971	-0.04156	-0.00657
C29	1.51397	-0.50832	-0.0613
C30	1.48668	-0.48143	0.00123
C31	1.4326	-0.50981	0.03889
C32	1.40099	-0.48592	0.11253
C33	1.43273	-0.58906	-0.08172
C34	1.40636	-0.56313	-0.00546
C35	1.62428	-0.67217	-0.33488
C36	1.64439	-0.70544	-0.34449

			-
C37	1.6976	-0.68481	-0.31776
C38	1.73059	-0.63155	-0.28215
C39	1.70984	-0.59888	-0.27234
C40	1.65674	-0.61884	-0.3002
C41	1.60981	-0.76167	-0.36147
C42	1.78628	-0.61022	-0.23924
C43	1.63509	-0.5844	-0.27778
N44	1.818	-0.558	-0.12642
045	1.80524	-0.63738	-0.29075
O46	1.66353	-0.5378	-0.26093
N47	1.58071	-0.60551	-0.26682
O48	1.56361	-0.77949	-0.39535
N49	1.6301	-0.79554	-0.32569
N50	1.59761	-0.84843	-0.27102
N51	1.87039	-0.53781	-0.05965
N52	1.55958	-0.5739	-0.20547
C53	1.51039	-0.59369	-0.18381
C54	1.48605	-0.5624	-0.11215
C55	1.6167	-0.87831	-0.23041
C56	1.89736	-0.49205	0.07205
C57	2.02997	-0.39024	0.32565
C58	1.97723	-0.41731	0.26642
C59	1.9526	-0.46846	0.1519
C60	1.92987	-0.58183	0.22777
C61	2.03537	-0.46589	0.16391
C62	1.98158	-0.4936	0.10546
O63	1.95902	-0.54363	-0.03223
C64	2.05092	-0.53453	0.27691
O65	2.06571	-0.4881	0.0868
N66	2.14596	-0.39975	0.31107
C67	2.1153	-0.3813	0.32577
C68	2.05945	-0.41366	0.27161
O69	1.51191	1.57229	0.04258
070	1.5677	1.51727	-0.09037
C71	1.54595	1.60073	-0.23952
C72	1.59486	1.55211	0.19143

Table s3. Atomistic coordinates for optimized unit cell of **COF15C5** (space group P1, a = b = 29.714 Å, c = 3.8004 Å, $\alpha = \beta = 90^{\circ}$, and $\gamma = 120^{\circ}$).

Atom	х	У	Z
C1	1.48387	-0.10821	0.13185

		I	
C2	1.59296	0.10867	-0.24205
N3	1.57342	0.13882	-0.26447
C4	1.50738	-0.05312	0.02946
C5	1.55916	-0.02879	-0.07871
C6	1.5858	0.02365	-0.16823
С7	1.56126	0.05311	-0.15227
C8	1.31065	-0.00449	-0.03988
С9	1.26908	-0.05054	-0.24187
C10	1.44172	0.04424	-0.24065
C11	1.39624	0.04007	-0.03388
012	1.35359	0.02444	-0.25582
013	1.23419	-0.08743	-0.00493
C14	1.2211	-0.13571	-0.15016
C15	1.25446	-0.15605	0.01
O16	1.30204	-0.13458	-0.16592
C17	1.33919	-0.10291	0.08104
C18	1.39278	-0.07841	-0.08271
C19	1.5085	0.02927	-0.04948
O20	1.48502	0.05979	-0.01377
021	1.43052	-0.04616	0.1695
C22	1.48125	-0.02418	0.0405
C23	1.37698	-0.49547	0.13156
C24	1.40857	-0.51889	0.02918
C25	1.40686	-0.59724	-0.16853
C26	1.38104	-0.57068	-0.07902
C27	1.48478	-0.60424	-0.24227
C28	1.46091	-0.57262	-0.15251
C29	0.87957	-0.49731	-0.24277
C30	0.93513	-0.47337	-0.15305
C31	1.01711	-0.39341	-0.07956
C32	0.96466	-0.4193	-0.16907
C33	1.09646	-0.38921	0.13107
C34	1.04136	-0.42087	0.02865
N35	0.84936	-0.54707	-0.2651
C36	1.2648	-0.36367	0.45059
C37	1.2976	-0.38487	0.4497
C38	1.35172	-0.35254	0.45079
C39	1.373	-0.29848	0.44993
C40	1.34075	-0.27669	0.45083
C41	1.28667	-0.30956	0.44973
C42	1.3858	-0.37509	0.42717
C43	1.36338	-0.21998	0.42724

C44	1.20808	-0.39783	0.42676
N45	1.41684	-0.18775	0.33431
O46	1.33607	-0.20064	0.47239
047	1.18867	-0.44455	0.47184
N48	1.17593	-0.37661	0.33369
O49	1.43253	-0.34772	0.47241
N50	1.36451	-0.42854	0.3341
N51	1.39683	-0.44871	0.25192
N52	1.4371	-0.13519	0.25213
N53	1.12336	-0.409	0.25144
N54	1.53453	-0.58463	-0.26468
C55	1.01234	-0.47602	0.03972
C56	0.95889	-0.5023	-0.05024
057	1.03424	-0.50478	0.16875
O58	0.9283	-0.55637	-0.01451
O59	1.49254	-0.44195	0.16929
C60	1.46372	-0.49268	0.04026
C61	1.48992	-0.51985	-0.0497
O62	1.54398	-0.49629	-0.01396
C63	1.63206	-0.63024	-0.38411
C64	1.68601	-0.60987	-0.38353
C65	1.70694	-0.64288	-0.38422
C66	1.67328	-0.69684	-0.38344
C67	1.61926	-0.71786	-0.38401
C68	1.59898	-0.68427	-0.38333
C69	1.76365	-0.62105	-0.36704
C70	1.5843	-0.77458	-0.36662
C71	1.61032	-0.59535	-0.36681
N72	1.6054	-0.80834	-0.34065
073	1.53724	-0.79283	-0.3662
074	1.63919	-0.54828	-0.3665
N75	1.55538	-0.61654	-0.34082
076	1.78183	-0.64987	-0.36669
N77	1.79748	-0.5661	-0.34119
C78	0.65339	0.67624	-0.04
C79	0.64893	0.71775	-0.24199
C80	0.57085	0.54513	-0.24082
C81	0.61223	0.59064	-0.03403
082	0.63931	0.63331	-0.25596
O83	0.64696	0.75261	-0.00504
C84	0.61175	0.76561	-0.15027
C85	0.55797	0.73218	0.00987

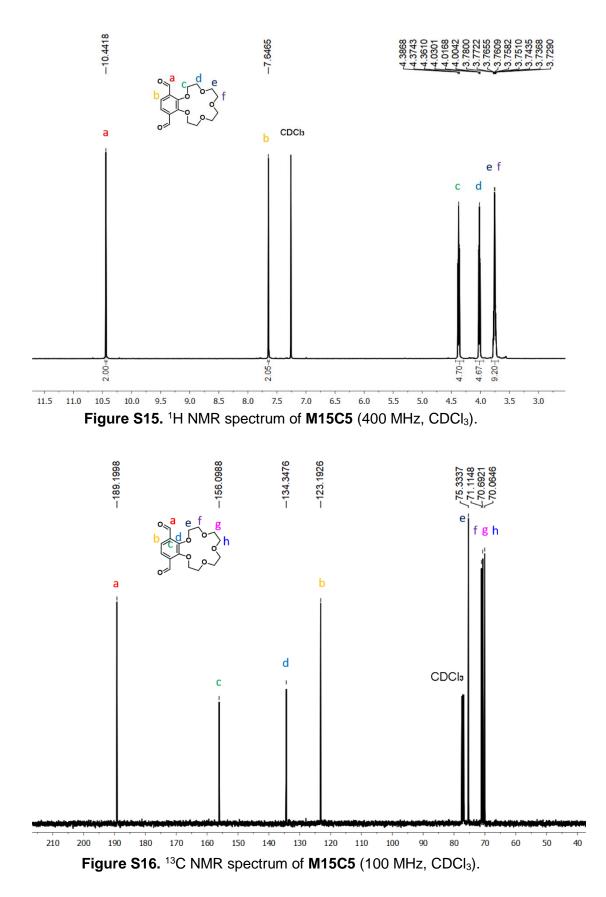
O86	0.53179	0.6846	-0.16607
C87	0.52626	0.64746	0.08088
C88	0.49711	0.59388	-0.08291
C89	0.9923	1.33348	-0.04064
C90	1.03831	1.33802	-0.24262
C91	0.94378	1.41586	-0.24139
C92	0.94786	1.37452	-0.03462
O93	0.96343	1.3475	-0.25657
O94	1.07517	1.34005	-0.00567
C95	1.12347	1.37532	-0.15087
C96	1.14389	1.42908	0.00929
097	1.1225	1.45521	-0.16663
C98	1.09087	1.46068	0.08032
C99	1.06645	1.48976	-0.08345

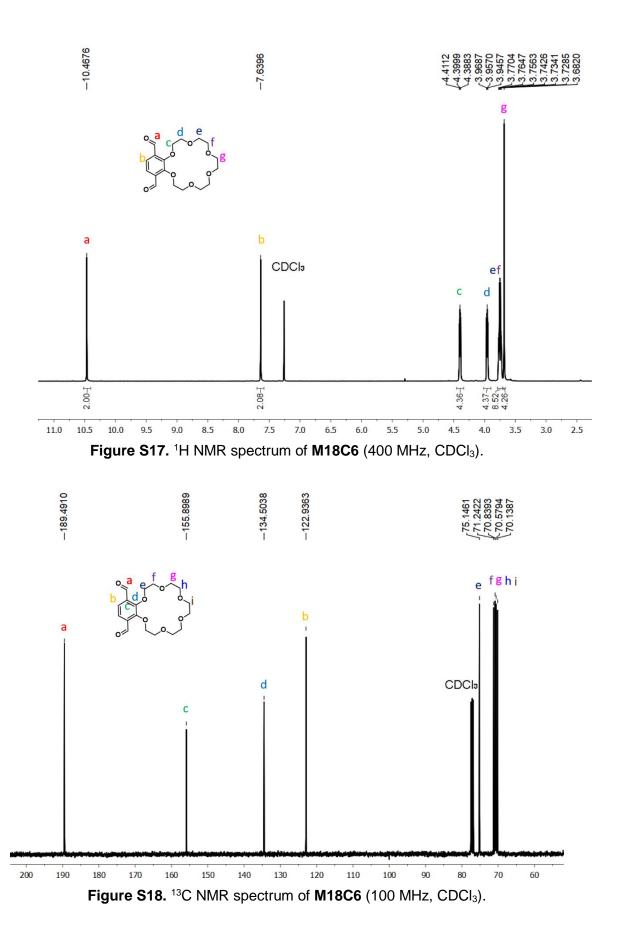
Table s4. Atomistic coordinates for optimized unit cell of **COF18C6** (space group P1, a = b = 29.458 Å, c = 3.7834 Å, $\alpha = \beta = 90^{\circ}$, and $\gamma = 120^{\circ}$).

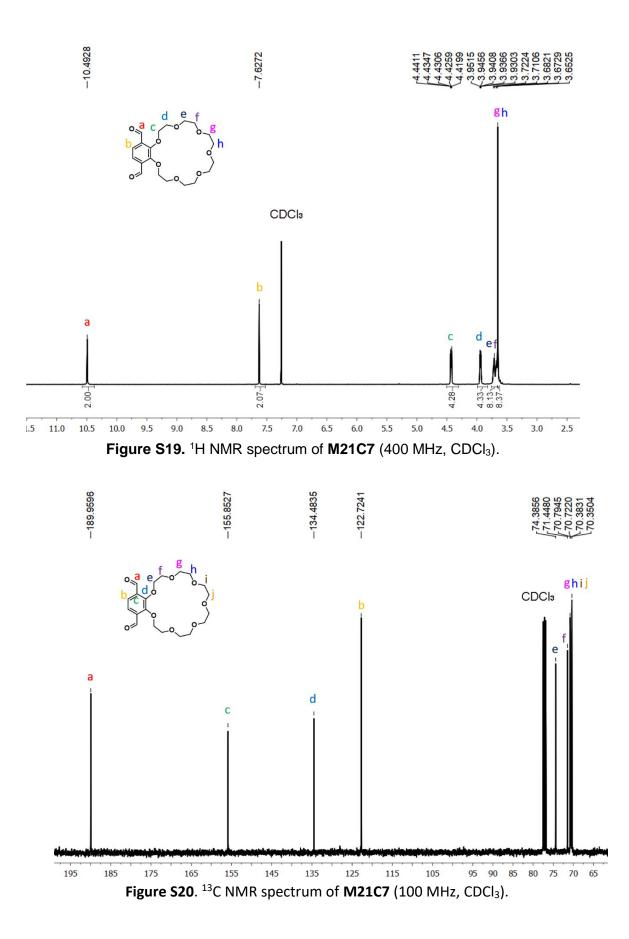
3 - 1 ,	20.10070, 0 = 0.1001	- , -: , -::	120):
Atom	x	У	Z
C1	0.68055	-2.70796	-0.48296
C2	0.71349	-2.65387	-0.49562
C3	0.69179	-2.62158	-0.4569
C4	0.63779	-2.64279	-0.40709
C5	0.60543	-2.69688	-0.39543
C6	0.62644	-2.72977	-0.43501
C7	0.77067	-2.63106	-0.52397
C8	0.61567	-2.60863	-0.34696
С9	0.59242	-2.7865	-0.40447
N10	0.56324	-2.63001	-0.21952
011	0.64253	-2.56188	-0.39512
012	0.54499	-2.80549	-0.38449
N13	0.61492	-2.81932	-0.38383
014	0.78962	-2.65912	-0.55982
N15	0.80424	-2.57606	-0.49567
C16	0.07819	-2.51636	-0.29077
017	0.06634	-2.59994	-0.15235
C18	0.10291	-2.5469	-0.1504
019	0.01755	-2.70344	-0.42977
C20	0.06343	-2.68118	-0.2296
C21	0.09394	-2.62289	-0.28905
022	-0.08854	-2.7849	-0.42623
C23	-0.04999	-2.78599	-0.63397
C24	0.00288	-2.75589	-0.45322

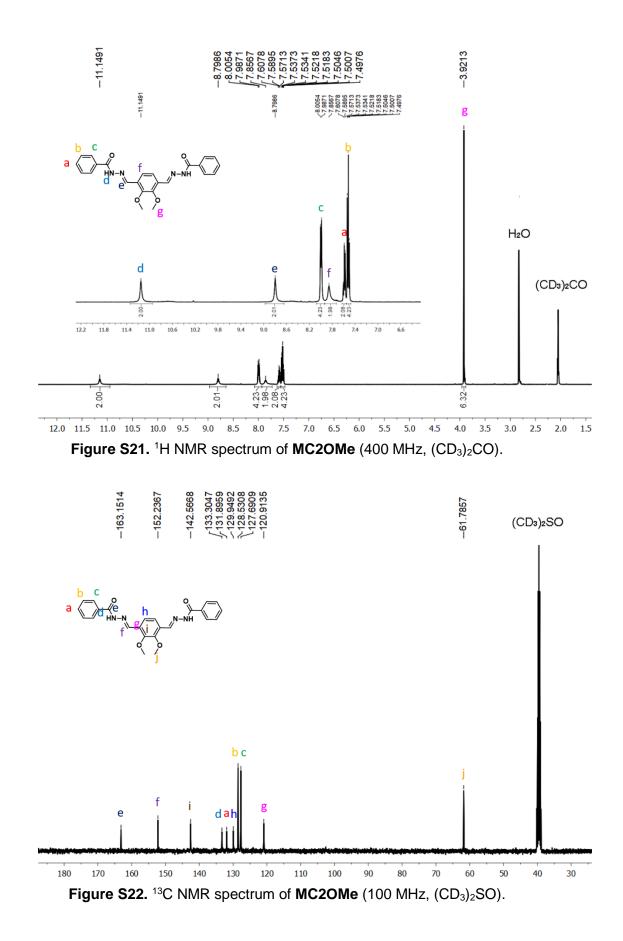
C25	-0.0494	-2.5953	-0.35373
C26	-0.08884	-2.6517	-0.27858
	-0.07773		
027		-2.684	-0.48319
C28	-0.12561	-2.73027	-0.50757
C29	-0.11743	-2.77286	-0.6611
C30	0.10768	-2.39804	-0.06177
C31	0.05218	-2.42937	-0.16581
C32	-0.02516	-2.42718	-0.35758
C33	0.028	-2.40165	-0.27631
C34	-0.11184	-2.50487	-0.40746
C35	-0.05552	-2.48108	-0.32811
O36	-0.06366	-2.56356	-0.15689
C37	-0.03192	-2.51022	-0.22098
C38	0.02238	-2.48446	-0.146
O39	0.0447	-2.5138	-0.03105
C40	0.40713	-2.08295	-0.13965
O41	0.31658	-2.13951	-0.26195
C42	0.35136	-2.10528	-0.01112
O43	0.24548	-2.10644	-0.37846
C44	0.22745	-2.1587	-0.30143
C45	0.2683	-2.16411	-0.08893
O46	0.29367	-2.01688	0.0344
C47	0.24466	-2.03375	-0.11869
C48	0.21609	-2.0924	-0.16316
C49	0.49095	-1.92707	0.16494
C50	0.45245	-1.90821	0.10167
O51	0.40142	-1.94983	0.13457
C52	0.37066	-1.93429	-0.05106
C53	0.31465	-1.96353	0.08386
N54	-0.14203	-2.55462	-0.43406
C55	0.4993	-2.11464	0.19986
C56	0.52314	-2.05979	0.09082
C57	0.60215	-1.98176	-0.09235
C58	0.57678	-2.0334	0.01939
C59	0.60501	-1.90058	-0.24974
C60	0.57448	-1.95534	-0.13704
O61	0.48971	-1.95811	-0.12366
C62	0.52001	-1.9815	-0.06444
C63	0.49441	-2.0337	0.04629
064	0.44182	-2.05707	0.1448
C65	0.49707	-2.61762	0.01358
C66	0.43707	-2.5861	0.11807
00	0.47550	-2.3001	0.11007

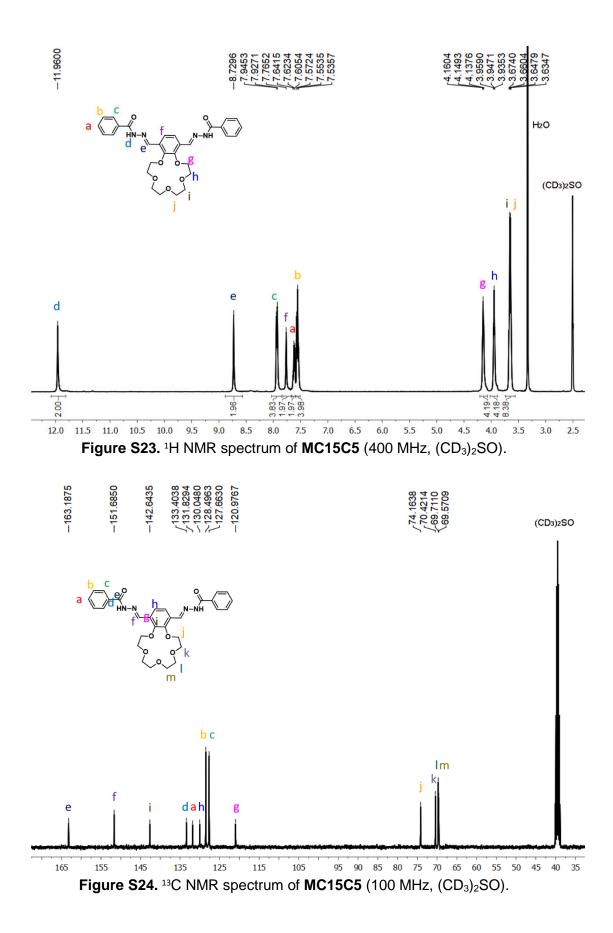
C67	0.39403	-2.58795	0.31059
C68	0.42127	-2.61365	0.22872
C69	0.38584	-2.51021	0.36119
C70	0.41817	-2.53403	0.28212
C71	0.5413	-2.41998	0.29472
072	0.49332	-2.45149	0.11465
073	0.60762	-2.3317	0.3791
C74	0.55976	-2.36349	0.21353
075	0.71333	-2.25872	0.47024
C76	0.6782	-2.24358	0.34911
C77	0.63277	-2.28848	0.15777
078	0.74251	-2.31228	-0.00146
C79	0.77973	-2.26796	0.17746
C80	0.75739	-2.23268	0.25408
C81	0.47118	-2.50497	0.17575
C82	0.49929	-2.53099	0.09895
O83	0.55111	-2.502	-0.01809
C84	0.58729	-2.4993	0.24131
C85	0.64273	-2.46939	0.09848
O86	0.65922	-2.41646	0.07928
C87	0.70179	-2.39302	0.31034
C88	0.75039	-2.35228	0.11867
N89	0.54283	-2.59791	-0.13009
C90	0.3606	-2.3617	0.4476
C91	0.38196	-2.30763	0.43644
C92	0.34965	-2.286	0.38942
C93	0.29556	-2.31903	0.34916
C94	0.27361	-2.37311	0.3591
C95	0.3064	-2.39415	0.40814
C96	0.37248	-2.22931	0.36061
C97	0.21711	-2.40732	0.29786
C98	0.395	-2.3843	0.47548
N99	0.18623	-2.3859	0.17101
0100	0.19692	-2.4541	0.3446
0101	0.44221	-2.35609	0.51052
N102	0.37336	-2.43928	0.44794
0103	0.34391	-2.21062	0.34296
N104	0.42798	-2.19617	0.33797
N105	0.44946	-2.14372	0.2477
N106	0.13346	-2.4179	0.08172
N107	0.40569	-2.46046	0.38668
N108	0.58414	-1.87166	-0.28914

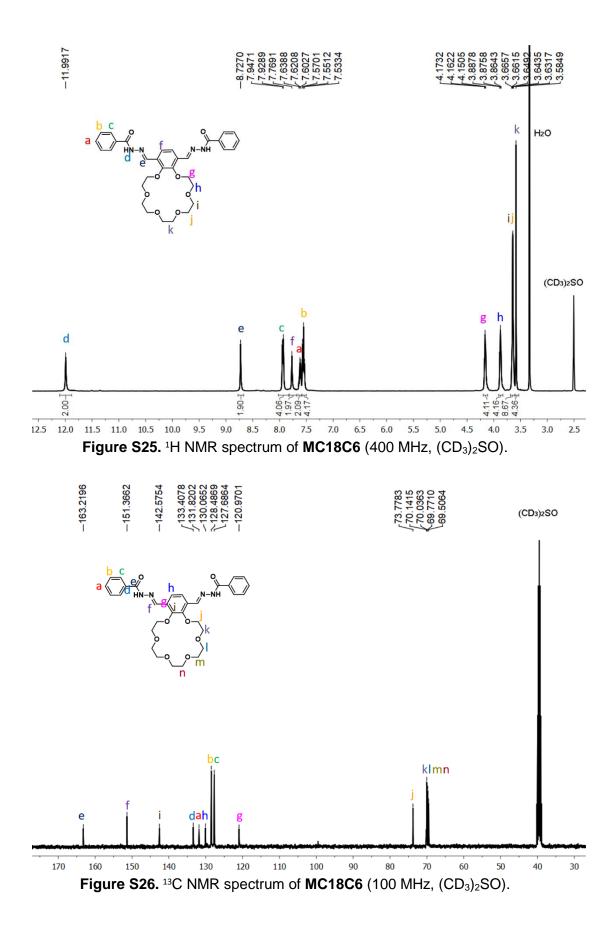

Atom	x	у	Z
C1	-0.12856	0.48979	-0.1325
C2	-0.07397	0.51231	-0.24237
C3	0.00338	0.59005	-0.45275
C4	-0.04899	0.56434	-0.36236
C5	0.08776	0.59529	-0.51099
C6	0.03203	0.5643	-0.42598
N7	-0.15486	0.44319	0.00211
C8	0.62158	0.26865	0.3483
С9	0.5993	0.30101	0.3561
C10	0.63034	0.35593	0.32541
C11	0.68415	0.37839	0.2842
C12	0.70693	0.3465	0.27697
C13	0.67534	0.29169	0.30763
C14	0.60628	0.38931	0.3105
C15	0.76303	0.36979	0.21688
C16	0.58866	0.21084	0.35406
017	0.78352	0.34295	0.2565
018	0.54295	0.19048	0.43433
N19	0.60969	0.17855	0.24737
O20	0.63342	0.43732	0.30835
C21	-0.04587	0.485	-0.22147
C22	0.00739	0.51118	-0.31291
C23	0.48439	0.87847	-0.35169
C24	0.50923	0.9341	-0.23987
C25	0.59018	1.01628	-0.17294
C26	0.56307	0.9635	-0.2713
C27	0.59647	1.09731	0.04992
C28	0.56412	1.04108	-0.04263
C29	0.47923	0.37421	0.14227
C30	0.45462	0.4047	0.02769
C31	0.37564	0.40202	-0.16066
C32	0.40145	0.37645	-0.0394
C33	0.37118	0.4799	-0.33622
C34	0.40237	0.45641	-0.21882
N35	0.57725	1.12488	0.17567
C36	0.36763	0.68363	-0.55366
C37	0.33562	0.70596	-0.56645
C38	0.28175	0.67275	-0.58911

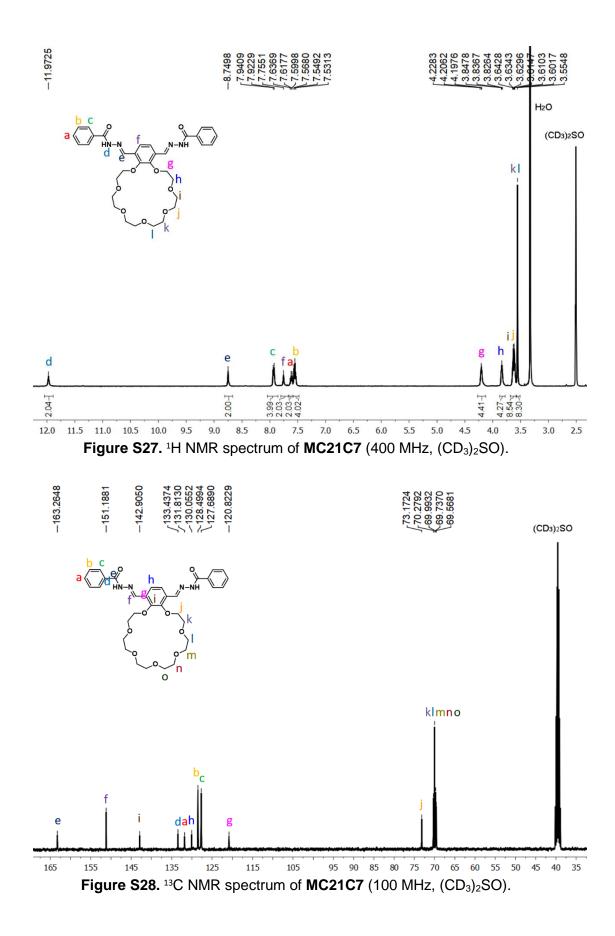

Table s5. Atomistic coordinates for optimized unit cell of **COF21C7** (space group P1, a = b = 29.737 Å, c = 3.8190 Å, $\alpha = \beta = 90^{\circ}$, and $\gamma = 120^{\circ}$).


C39	0.25991	0.61778	-0.60057
C40	0.29256	0.59606	-0.58571
C41	0.34649	0.62878	-0.56376
C42	0.35843	0.76352	-0.53411
C43	0.20312	0.58327	-0.60639
C44	0.38066	0.60608	-0.52947
N45	0.17017	0.60579	-0.59231
O46	0.18405	0.53538	-0.61349
047	0.42761	0.63503	-0.52728
N48	0.35923	0.55052	-0.48505
O49	0.33066	0.78319	-0.53915
N50	0.41315	0.79632	-0.48633
N51	0.43474	0.84929	-0.38871
N52	0.11705	0.57436	-0.5241
N53	0.39093	0.53002	-0.38526
N54	0.55118	0.36559	0.28193
N55	0.52877	0.39596	0.18691
C56	0.48141	0.95748	-0.09892
C57	0.50932	1.01226	-0.00956
C58	0.67229	0.81085	-0.0516
C59	0.61976	0.80721	-0.08829
C60	0.73136	0.74086	0.05062
C61	0.71679	0.77895	0.21424
062	0.66653	0.76572	0.1148
C63	0.45627	0.48623	-0.14846
C64	0.48258	0.45987	-0.02994
C65	0.68569	0.60254	0.13158
C66	0.71907	0.66011	0.02899
067	0.70033	0.69028	0.18743
O68	0.53539	0.48866	0.05073
C69	0.56758	0.50224	-0.24958
C70	0.62411	0.53271	-0.14049
071	0.63601	0.58204	-0.00941
C72	0.5501	0.62903	-0.06992
C73	0.51623	0.57252	0.05488
074	0.48333	0.54061	-0.22038
C75	0.52979	0.6898	0.07244
076	0.51927	0.65026	-0.17226
077	0.58662	0.76285	-0.28687
C78	0.53918	0.73995	-0.11035
079	0.42724	0.92464	-0.05595
N80	0.79328	1.42309	1.09843


C81	1.02982	1.22487	0.59954
C82	1.07884	1.27117	0.74718
C83	0.90073	1.19769	0.44766
C84	0.94528	1.19369	0.60919
O85	0.99239	1.23953	0.54103
C86	0.8282	1.25512	0.79443
C87	0.84079	1.21644	0.61635
O88	0.8943	1.23604	0.62131
O89	0.93175	1.4344	0.92014
C90	0.90019	1.39483	0.67392
C91	0.88151	1.34101	0.83461
O92	0.84865	1.3018	0.60177
C93	1.06253	1.43882	0.35472
C94	1.0184	1.43874	0.55281
O95	1.03712	1.48686	0.74042
C96	1.08179	1.37607	0.4335
O97	1.09005	1.42359	0.57536
O98	1.10438	1.3092	0.48833
C99	1.11265	1.35646	0.63534
C100	1.20679	1.02254	1.02916
C101	1.19758	0.97526	1.24784
C102	1.31949	1.14829	0.8972
C103	1.26741	1.10683	1.04364
O104	1.25996	1.05647	0.98167
C105	1.44514	1.16328	0.92711
C106	1.40396	1.17875	0.87342
0107	1.35943	1.14469	1.0624
O108	1.48371	1.03751	1.12502
C109	1.46847	1.06098	0.85949
C110	1.44062	1.08678	1.02762
0111	1.42904	1.11396	0.77673
C112	1.34322	0.90169	1.16709
C113	1.40034	0.94283	1.15918
C114	1.27734	0.91657	1.14753
0115	1.31673	0.92068	1.36618
0116	1.21665	0.94638	1.07573
C117	1.25473	0.94856	1.29954
L		1	1


11. NMR and Mass Spectra





S30

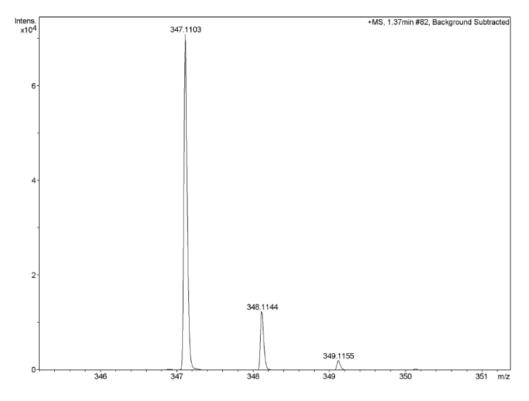


Figure S29. HR mass spectrum (ESI) of compound M15C5.

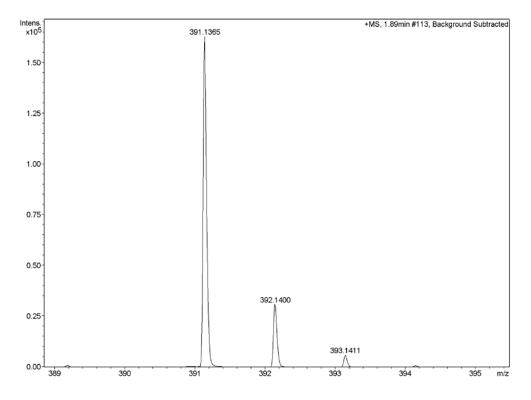


Figure S30. HR mass spectrum (ESI) of compound M18C6.

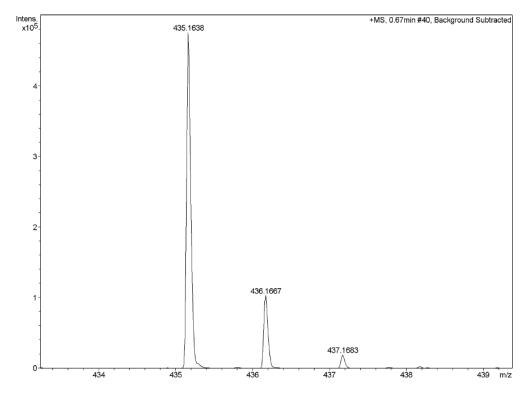


Figure S31. HR mass spectrum (ESI) of compound M21C7.

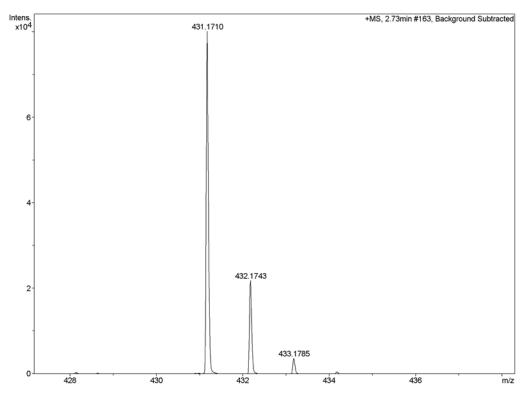


Figure S32. HR mass spectrum (ESI) of compound MC2OMe.

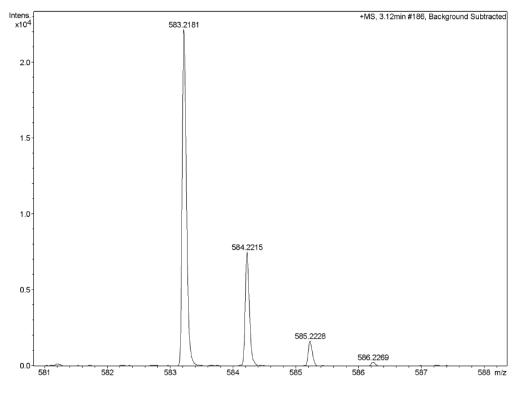


Figure S33. HR mass spectrum (ESI) of compound MC15C5.



Figure S34. HR mass spectrum (ESI) of compound MC18C6.

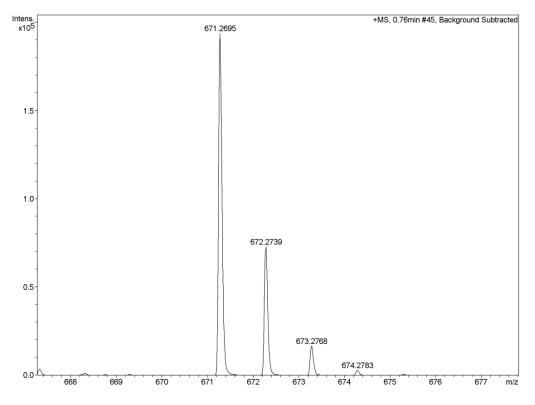


Figure S35. HR mass spectrum (ESI) of compound MC21C7.

12. References

S1. H. Nagae, R. Aoki, S.-n. Akutagawa, J. Kleemann, R. Tagawa, T. Schindler, G. Choi, T. P. Spaniol, H. Tsurugi, J. Okuda and K. Mashima, *Angew. Chem., Int. Ed.*, **2018**, 57, 2492–2496.

S2. S. Ito, K. Koizumi, K. Fukuda, N. Kameta, T. Ikeda, T. Oba, K. Hiratani, *Tetrahedron Lett.*, **2006**, 47, 8563 – 8566.