Electronic Supplementary Information

Ag₆Cl₄: the first silver chloride with rare Ag₆ clusters from an *ab initio* study

Mariana Derzsi,^{*a,b} Matej Uhliar^a and Kamil Tokár^{a,c}

^a Advanced Technologies Research Institute, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, Jána Bottu 8857/25, 917 24 Trnava, Slovakia.

^b Centre of New Technologies, University of Warsaw, Banacha 2c, 02097 Warsaw, Poland.

^c Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia.

*Corresponding author: mariana.derzsi@stuba.sk

TABLE OF CONTENT

E1. Computational details	S 2
E2. Phonon dispersion curves	S 3
E3. Phonon density of states	S 4
E4. Γ-point modes	S5-S6

E1. Computational details

The optimizations and electronic structure calculations were carries out without any symmetry constrains using DFT-GGA PBEsol functional¹ with added on-site electron correction on Ag *d* orbitals using DFT+U approach according to Liechtenstein² with $U_{Ag}=5$ eV and $J_{Ag}=1$ eV, ³ and with added Grimme correction with Becke-Jonson damping (D3)⁴ for weaker dispersive interactions (chlorine) as implemented in VASP package.⁵ Electronic structure was additionally calculated with hybrid DFT functional HSE06 with 25% of exact exchange⁶ improved for the dispersive correction D3.

Lattice dynamics including phonon dispersion curves (Figures E1 and E2), phonon density of states (Figures E3 and E4) and Γ -point frequencies (Tables E1 and E2) was calculated using phonon direct method with supercell approach (80 atoms) in program PHONONY⁷ on DFT-D3 and DFT-D3+U level and comparable results were obtained with both methods.

References

- 1 G.I. Csonka, J.P. Perdew, A. Ruzsinszky, P.H.T. Philipsen, J. Lebégue, O.A. Paier, J. G. Vydrov and Ángyán, *Phys. Rev. B*, 2009, **79**, 155107.
- 2 A.I. Liechtenstein, V.I. Anisimov, J. Zaanen, Phys. Rev. B, 1995, 52, R5467(R).
- 3 This set of U,J parameters has reliably reproduced experimental data for variety of systems with partially opened Ag d shell. See for example: (a) D. Kasinathan, K. Koepernik, U. Nitzsche and H Rosner, *Phys Rev Lett*, 2007, **99**, 247210; (b) A. Grzelak, J. Gawraczyński, T. Jaroń, D. Kurzydłowski, Z. Mazej, P. J. Leszczyński, Vitali B. Prakapenka, M. Derzsi, V. V. Struzhkin and W. Grochala, *Dalton Trans.*, 2017, **46**, 14742–14745; (c) P.J. Malinowski, M. Derzsi, Z. Mazej, Z. Jagličić, B. Gaweł, W. Łasocha and W. Grochala, *Angew. Chem. Int. Ed. Engl.*, 2010, **49**(9), 1683–1686.
- 4 S. Grimme, S. Ehrlich and L. Goerigk, J. Comp. Chem., 2011, 32, 1456.
- 5 G. Kresse and Furthmüller, *Phys Rev B*, 1996, **54**, 11169–11186.
- 6 A.V. Krukau, O.A. Vydrov, A.F. Izmaylov and G.E. Scuseria, J. Chem. Phys., 2006, 125, 224106.
- 7 A. Togo, I. Tanaka, Scr. Mater., 2015, 108, 1.

E2. Phonon dispersion curves

Ag₆Cl₄ was computed to be dynamically stable on both DFT-D3 and DFT-D3+U level: all frequencies are real (gain positive values).

Figure E1. Phonon dispersion curves calculated for Ag_6Cl_4 at DFT-D3+U level. The path in Brillouin zone: X (0.5, 0.0, 0.0), $\Gamma(0.0, 0.0, 0.0)$, Y (0.0, 0.5, 0.0), V₂ (0.5, -0.5, 0), R₂ (-0.5, -0.5, 0.5), T₂ (0, -0.5, 0.5), Z (0, 0, 0.5), U₂ (-0.5, 0, 0.5).

Figure E2. Phonon dispersion curves calculated for Ag_6Cl_4 at DFT-D3 level. The path in Brillouin zone: as in Figure E1.

E3. Phonon density of states

The phonon density of states of Ag_6Cl_4 is spread within the range 0–280 cm⁻¹ with considerable contribution from Cl atoms in the entire region. The Ag vibrations dominate below 100 cm⁻¹ and strongly couple with Cl in the intermediate range of 100–180cm⁻¹. Comparable result is obtained on DFT-D3 and DFT-D3+U level.

Figure E3. Atom-projected phonon density of states of Ag₆Cl₄ calculated at DFT-D3+U level.

Figure E4. Phonon density of states of Ag₆Cl₄ calculated at DFT-D3 level.

E3. Γ-point modes

Mode	Irrep	Optical activity	E (cm ⁻¹)	
no.	P	option weighting		
1	Ag	R	19	
2	Ag	R	37	
3	Ag	R	51	
4	Ag	R	76	
5	Au	IR	79	
6	Au	IR	87	
7	Ag	R	87	
8	Ag	R	99	
9	Au	IR	99	
10	Ag	R	115	
11	Ag	R	116	
12	Ag	R	118	
13	Au	IR	120	
14	Au	IR	133	
15	Au	IR	135	
16	Au	IR	142	
17	Ag	R	152	
18	Au	IR	159	
19	Ag	R	162	
20	Au	IR	162	
21	Au	IR	165	
22	Ag	R	186	
23	Ag	R	197	
24	Au	IR	216	
25	Au	IR	222	
26	Ag	R	225	
27	Ag	R	278	

Table E1. List of Γ -point frequencies calculated for Ag₆Cl₄ at DFT-D3+U level. Irrep – irreducible representation, IR – infrared active, R – Raman active.

Table E2	. Γ-point freque	ncies calculated for	Ag ₆ Cl ₄ at DFT-D3	 Irrep – irred 	ucible represent	tation,
IR – infra	ared active, R –	Raman active.				

Mode no.	Irrep	Optical activity	E (cm ⁻¹)
1	Ag	R	20
2	Ag	R	39
3	Ag	R	57
4	Ag	R	80
5	Au	IR	83
6	Au	IR	92
7	Ag	R	95
8	Ag	R	103
9	Au	IR	105
10	Ag	R	116
11	Ag	R	120
12	Ag	R	122
13	Au	IR	124
14	Au	IR	138
15	Au	IR	142
16	Au	IR	152
17	Ag	R	163
18	Au	IR	165
19	Au	IR	171
20	Au	IR	173
21	Ag	R	174
22	Ag	R	193
23	Ag	R	201
24	Au	IR	224
25	Au	IR	226
26	Ag	R	237
27	Ag	R	286