Supporting Information

In Silico Strategy to Boost Stability, Axiality, and Barrier Heights in Dysprocenium SIMs via SWCNT Encapsulation

Rizwan Nabi, Rupesh Kumar Tiwari and Gopalan Rajaraman*†

*† Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-*400076, India. Tel: (+91)-22-2576-7183. Email: <u>rajaraman@chem.iitb.ac.in</u>

Table of Contents

Contents	Page No.
Computational details	\$3
TableS1	
Figure S1	S4
Table S2	S4
Table S3	S5-6
Figure S2	S6
Binding energy	S7
Table S4	S7
Table S5	S7
Figure S3	\$9
Table S6	\$9
Figure S4	S10
Table S7	S10-11
Figure S5	S11
Table S8	S12
Figure S6	S12
Table S9	S13
LoProp charges	S13
Table S10	S13-14
Table S11	S14-17
Figure S7	S17
Table S12	S18-20
Figure S8	S21
Figure S9	S21
Figure S10	\$22
Figure S11	\$22
Figure S12	S23
Figure S13-S14	S23-24
Figure S15-S21	\$27-30
TableS14-S15	S26-27
References	S31

Computational details:

All the DFT calculations have been performed in the CP2k program package.^{1, 2} The CP2k package utilises a hybrid basis set formalism known as Gaussian and Plane Wave Method³ (GPW) where the Kohn-Sham orbitals are expanded in terms of contracted Gaussian type orbitals (GTOs), while an auxiliary plane-wave basis set is used to expand the electronic charge density. A double- ζ GTH basis set and their relativistic norm-conserving pseudopotentials (Goedecker, Teter, and Hutter)⁴ optimised for PBE were used in addition to a plane wave basis set with an energy cut-off of 450 Ry.⁵ All calculations were carried out with DZVP-MOLOPT-GTH (valence double-zeta (ζ) plus polarisation, molecularly optimised, Goedecker-Teter-Hutter) basis set for all atoms (H, C,) and DZVP-MOLOPT-SR-GTH (valence double-zeta (ζ) plus polarisation, molecularly optimised, shortrange Goedecker-Teter-Hutter) basis set for Y as implemented in the CP2k.³ The pseudopotential used was GTH-pseudopotential (Goedecker-Teter-Hutter). PBE functional has been used throughout the calculations performed with the CP2k package. To account for dispersion, the DFT-D2 approach implemented in CP2k has been used throughout the calculations. All the ab initio calculations have been performed by the post-Hartree–Fock *ab initio* calculations by using the MOLCAS 8.0 code.⁶ Basis sets for all atoms were taken from the ANO-RCC library as implemented in the MOLCAS

package.

Table S1. List	Element	Basis Sets		of the used
ANO-RCC basis	Dy	8s7p5d3f2g1h.	ANO-RCC-VTZP	sets.
	С	3s2p1d.	ANO-RCC-VDZP	
	C (SWCNT)	3s2p1d.	ANO-RCC-VDZ	
	Н	2s1p.	ANO-RCC-VDZ	

All the calculations were carried out using complete active space (CAS). In the case of Dy, the active space comprised of nine active electrons of Dy^{III} in the seven 4f active orbitals RAS (9,7). The ground-state *f*-electron configuration for Dy^{III} is found to be 4f⁹, which yields ${}^{6}\text{H}_{15/2}$ multiplet as the ground state. The CASSCF calculations were performed with the same basis sets and active spaces to obtain relative energies of the Kramers doublets (KDs), *g* tensors. For Dy^{III}, we used 21

roots in the sextet state and 128 roots in the quartet state in the configuration interaction (CI) procedure. Once these spin-free excited states are obtained, we mixed all of these states by using the RASSI-SO module to compute the spin-orbit coupled states. We obtained eight low-lying KDs for Dy^{III} ion which finally yielded *g*-tensors. All the frequency calculations were carried out in Gaussian 09 program package. For all the elements, TZV basis sets and B3LYP functional⁷ were used for all the calculations implemented in Gaussian 09.⁸

Here, we are using metallic armchair SWCNTs to investigate their effect on the magnetic properties of dysprocenium SIMs. We are using two types of SWCNTs. For model complex **1**, we are using CNT(7,7) in both the arrangements parallel (1^{||}@CNT) as well as perpendicular (1^{\perp}@CNT) having diameter and length of ~8.5 and ~11.0 Å respectively. For complexes **2** and **3**, we are using CNT(10,10) having diameter and length of ~6.8 and ~12.3 Å respectively. For model complex Dy@ stones-wale defected SWCNT) we are using CNT(3,3) having diameter and length 5.35 Å and 10 Å respectively. The CNT(10,10) SWCNT was experimentally synthesized and has been studied widely for use in Li-ion batteries.⁹⁻¹¹ There are also many reports on SWCNTs like CNT(7,7) and CNT(3,3).^{12, 13}

Figure S1: Optimised molecular structure of various dysprosocenium complexes. a.) model $[DyCp_2]^+$ (1) b.) $[Dy(Cp^{ttt})_2]^+$ (2) c.) $[(Cp^{ipr5})Dy(Cp^*)]$ (3); Where, $(Cp^{ttt}=1,2,4-tri(tertbutyl) cyclopentadienide)$, $(Cp^{iPr5} = penta-iso-propylcyclopentadienyl$, $Cp^* = pentamethylcyclopentadienyl$.

	2 _{opt}	2 _{x-ray}	3 _{opt}	3 _{x-ray}
Dy-C1	2.554	2.491	2.597	2.587
Dy-C2	2.614	2.706	2.545	2.634
Dy-C3	2.616	2.627	2.590	2.534

Table S2. Dy-C bond lengths and Cp-Dy-Cp angle of 2_{opt}, 2_{x-ray}, 3_{opt}, 3_{x-ray}

Dy-C4	2.480	2.345	2.534	2.417
Dy-C5	2.585	2.288	2.523	2.457
Dy-C6	2.579	2.234	2.594	2.399
Dy-C7	2.624	2.399	2.601	2.596
Dy-C8	2.573	2.642	2.593	2.682
Dy-C9	2.593	2.702	2.589	2.558
Dy-C10	2.522	2.480	2.587	2.392
Ср-Dу-Ср	162.151	180	176.261	180

Table S3. CASSCF+RASSI-SO computed energies of KDs and SINGLE_ANISO computed g-tensorsof 2_{opt} , 2_{x-ray} , 3_{opt} , 3_{x-ray} .

KDs	E(cm ⁻¹)	g _x	g _y	g _z	
					θ
		2 _{opt}			
15/2	0.0	0.000	0.000	20.022	~
13/2	551.38	0.000	0.000	17.025	0.389
11/2	817.89	0.006	0.006	14.477	0.881
9/2	961.43	0.013	0.026	11.862	1.305
7/2	1107.83	0.551	0.572	9.102	1.073
5/2	1273.44	0.221	1.274	6.318	1.194
3/2	1420.85	7.179	5.339	3.258	1.752
1/2	1543.32	0.794	3.820	16.287	90.12
		2 _{x-ray}			
15/2	0.0	0.000	0.000	20.040	~
13/2	690.06	0.000	0.000	16.958	1.688
11/2	952.61	0.002	0.003	14.607	6.975
9/2	1040.94	0.072	0.078	12.069	6.116
7/2	1168.13	0.154	0.270	9.162	5.670
5/2	1353.74	3.824	4.223	5.961	6.670
3/2	1574.57	2.965	3.329	4.981	90.986
1/2	1704.57	11.488	9.504	1.147	0.249

 $\mathbf{3}_{opt}$

15/2	0.0000	0.000	0.000	20.010	~				
13/2	665.11	0.000	0.000	16.933	0.786				
11/2	952.03	0.012	0.012	14.466	2.584				
9/2	1073.91	0.016	0.040	11.884	2.026				
7/2	1219.15	0.285	0.337	9.104	2.630				
5/2	1409.87	0.164	0.456	6.315	1.888				
3/2	1599.48	3.390	3.542	3.945	89.897				
1/2	1732.60	1.069	6.740	14.061	89.987				
	3 _{x-ray}								
15/2	0.0000	0.000	0.000	20.010	~				
13/2	688.26	0.000	0.000	16.924	1.896				
11/2	972.47	0.024	0.025	14.501	5.261				
9/2	1084.90	0.007	0.039	11.996	6.251				
7/2	1227.00	0.047	0.076	9.162	6.215				
5/2	1423.94	0.286	0.426	6.323	4.386				
3/2	1626.72	1.403	2.082	3.634	5.546				
1/2	1761.87	12.245	8.748	1.161	0.759				

Figure S2: Ab *initio* computed magnetisation blockade barriers, along with computed transversal magnetic moments between the connecting pairs for complexes 2_{opt} , 2_{x-ray} , 3_{opt} , 3_{x-ray} .

Binding Energy

The binding energy of the title complexes in SWCNT has been determined by using the equation shown below.

$$\Delta E = \left\{ E_{Dy@SWCNT} \right\} - \left\{ E_{SWCNT} + E_{Dy} \right\}$$

Where ΔE is the binding energy, $E_{Dy@SWCNT}$ is the energy of the complex in SWCNT; E_{SWCNT} is the energy of SWCNT whereas E_{Dy} is the energy of optimized geometry of the title complexes.

Geometry	Binding Energy (kJmol ⁻¹)			
1 @CNT	-858.1			
1 [⊥] @CNT	-594.5			
2 ^{II} @CNT	-983.6			
3 ^{II} @CNT	-855.2			

Table S4. Binding energy of the title complexes inside SWCNT.

Table S5. C-H vibrational frequencies of different C-H bonds of the **1**, **1**^{||}**@CNT** and **2** along with experimentally observed values for **2**.

1	2	1 @CNT	2 (Reported)
3146.2	-	3303.1	-
3147.3	-	3306.9	-
3148.7	-	3317.2	-
3149.1	-	3346.1	-
3159.9	-	3356.2	-
3160.6	-	3365.5	-
3162.4	3162.5	3380.9	3181.2
3162.9	3163.9	3388.9	3181.3
3172.4	3185.4	3399.9	3181.3
3172.6	3189.8	3420.5	3181.4

Figure S3. DFT optimised structures (**a**) $1^{||}$ @CNT (**b**) 1^{\perp} @CNT (**c**) $2^{||}$ @CNT and (**d**) $3^{||}$ @CNT (**e**) model Dy^{|||} ion incorporated inside SWCNT. Dotted purple lines show the closest C-H bond distances. Colour code: Dy^{|||} - cyan, C- grey, and H- green. Blueline arrow shows the ground state g_{zz} axis.

KDs	E(cm ⁻¹)	g _x	g _y	g _z	θ
		110	CNT		
1	0.0	0.000	0.000	19.938	~
2	563.97	0.000	0.000	17.005	0.4
3	809.73	0.014	0.014	14.457	1.9
4	946.26	0.007	0.019	11.843	1.8
5	1097.11	0.115	0.127	9.115	2.6
6	1274.09	0.298	0.532	6.386	2.3
7	1440.03	0.444	1.276	3.747	3.3
8	1542.74	11.373	9.654	1.228	0.2
		1⊥@	CNT		
1	0.0	0.000	0.000	19.907	~
2	781.12	0.009	0.012	16.769	3.8
3	1018.68	0.103	0.171	14.261	14.0
4	1091.54	0.018	0.282	12.241	13.3
5	1211.51	0.206	0.490	9.869	15.1
6	1394.95	1.295	1.977	6.409	9.2
7	1600.21	3.307	3.881	7.259	89.3
8	1767.31	0.899	4.643	15.771	90.9

Table S6. CASSCF+RASSI-SO computed energies of all low-lying KDs, and SINGLE_ANISO computed *g*-tensors of $1^{||}$ @CNT and 1^{\perp} @CNT

Figure S4: Ab *initio* computed magnetisation blockade barriers, along with computed transversal magnetic moments between the connecting pairs for complexes $1^{||}$ @CNT and 1^{\perp} @CNT.

Table	S7.	CASSCF+RASSI-SO	computed	energies	of	all	low-lying	KDs,	and	SINGLE_A	NISO
computed g-tensors of 2 @CNT and 3 @CNT											

KDs	E(cm ⁻¹)	g _{xx}	g_{yy}	g _{zz}	θ
1	0.0	0.000	0.000	19.953	~
2	413.9	0.000	0.000	17.081	1.5
3	661.6	0.007	0.008	14.466	2.4
4	822.9	0.039	0.052	11.797	0.9
5	964.6	0.431	0.587	9.126	1.3
6	1082.5	3.058	4.430	5.908	1.1
7	1163.4	2.114	5.775	11.007	90.0
8	1293.5	0.114	0.264	18.308	89.9
		3 @	CNT		
1	0.0	0.000	0.000	19.910	~
2	487.4	0.000	0.000	17.028	0.8

3	749.4	0.006	0.007	14.401	1.2	
4	910.8	0.049	0.059	11.748	1.4	
5	1061.3	0.313	0.435	09.118	0.9	
6	1205.3	0.092	0.609	06.466	0.8	
7	1314.8	6.986	5.953	03.294	1.8	
8	1404.2	0.743	3.299	16.258	89.8	

Figure S5: Ab *initio* computed magnetisation blockade barriers, along with computed transversal magnetic moments between the connecting pairs for complexes **2**^{||}**@CNT** and **3**^{||}**@CNT**.

KDs	E(cm-1)	g_{xx}	g_{yy}	g_{zz}	θ
1	0.00	0.001	0.006	19.34	~
2	91.31	1.398	3.335	13.504	2.4
3	146.77	4.123	5.098	7.001	13.7
4	229.94	2.213	2.751	8.932	89.9
5	341.14	0.006	1.084	11.53	89.9
6	453.16	0.468	0.536	14.149	89.9
7	566.67	0.049	0.135	16.792	89.9
8	660.16	0.06	0.084	19.539	89.9

Table S8. CASSCF+RASSI-SO computed energies of all low-lying KDs, and SINGLE_ANISO computed *g*-tensors of **model Dy ion inbuilt complex**.

Figure S6. Ab *initio* computed magnetisation blockade barriers, along with computed transversal magnetic moments between the connecting pairs for **model Dy ion inbuilt complex**.

Geometry	Calculated energy barrier			Effective energy barrier
		(U_{cal})) (cm ⁻¹)	$(U_{\rm eff})$ (cm ⁻¹) (reported)
	optimised	Inside CNT	XRAY/Model	
			Str.	
1	-	-	921.3	-
2	1273	-	1354	1277
3	1409	-	1424	1541
1 @CNT	-	1543	-	-
1 [⊥] @CNT	-	1211	-	-
2 @CNT	-	1163	-	-
3 ^{II} @CNT	-	1404	-	-
model Dy ion inbuilt complex	-	230	-	-

Table S9. Comparison of energy barrier of the title complexes.

LoProp Charges

Table S10. LoProp charges on atoms of molecule **1** without SWCNT and with SWCNT and the difference ($\Delta \delta$)

	1	1 @CNT		1 [⊥] @CNT	
Atom	Charge	Charge	Δδ	Charge	Δδ
Dy	2.355	2.363	0.008	2.460	0.105
C1	-0.276	-0.243	0.033	-0.315	-0.039
C2	-0.273	-0.315	-0.042	-0.320	-0.047
C3	-0.268	-0.341	-0.073	-0.256	-0.012
C4	-0.271	-0.388	-0.117	-0.298	-0.027
C5	-0.272	-0.235	0.037	-0.304	-0.032

C6	-0.271	-0.329	-0.058	-0.298	-0.027
C7	-0.272	-0.304	-0.032	-0.304	-0.032
C8	-0.277	-0.327	-0.050	-0.315	-0.038
С9	-0.273	-0.340	-0.067	-0.320	-0.047
C10	-0.268	-0.261	0.007	-0.256	0.012
H1	0.136	0.122	-0.014	0.127	-0.009
H2	0.136	0.110	-0.026	0.110	-0.026
Н3	0.137	0.110	-0.027	0.134	-0.003
H4	0.137	0.119	-0.018	0.130	-0.007
H5	0.137	0.114	-0.023	0.112	-0.025
H6	0.137	0.122	-0.015	0.130	-0.007
H7	0.137	0.129	-0.008	0.112	-0.025
H8	0.136	0.119	-0.017	0.127	-0.009
Н9	0.136	0.111	-0.025	0.110	-0.026
H10	0.137	0.122	-0.015	0.134	-0.003

Table S11. LoProp charges on atoms of molecules 2 and 3 without SWCNT and with SWCNT and the difference ($\Delta\delta$)

Atom	2	2 @CNT	3	3 @CNT
Dy	2.299	2.291	2.412	2.296
C1	-0.212	-0.184	-0.132	-0.1925
C2	-0.298	-0.318	-0.151	-0.2115
C3	-0.138	-0.131	-0.143	-0.1799
C4	-0.342	-0.298	-0.1668	-0.1627
C5	-0.165	-0.168	-0.1463	-0.1830
C6	-0.217	-0.193	-0.1565	-0.1624
C7	-0.164	-0.171	-0.2028	-0.1506
C8	-0.337	-0.310	-0.2125	-0.1234
С9	-0.299	-0.112	-0.2486	-0.1854
C10	-0.123	-0.305	-0.2269	-0.1422
С	-0.364	-0.274	-0.2687	-0.2870
С	-0.358	-0.278	-0.2731	-0.2892
С	-0.366	-0.283	-0.2742	-0.2947
С	0.087	0.062	-0.2760	-0.2979

С	-0.357	-0.279	-0.2737	-0.2910
С	-0.371	-0.286	-0.0374	-0.0469
С	-0.365	-0.290	-0.2600	-0.2963
С	0.100	0.079	-0.2701	-0.2872
С	-0.358	-0.280	-0.0356	-0.0489
С	-0.395	-0.291	-0.2593	-0.2907
С	-0.363	-0.284	-0.2624	-0.2792
С	0.091	0.070	-0.0326	-0.0450
С	-0.368	-0.281	-0.2846	-0.3242
С	-0.364	-0.282	-0.2619	-0.2800
С	-0.357	-0.283	-0.0327	-0.0412
С	0.087	0.067	-0.2658	-0.2843
С	-0.370	-0.286	-0.2562	-0.2858
С	-0.355	-0.283	-0.0323	-0.0418
С	-0.365	-0.286	-0.2627	-0.2804
С	0.096	0.079	-0.2653	-0.2854
С	-0.358	-0.316		
С	-0.394	-0.289		
С	-0.362	-0.282		
С	0.089	0.072		
Н	0.123	0.104	0.1117	0.1100
Н	0.123	0.097	0.0872	0.0960
Н	0.129	0.098	0.1002	0.1018
Н	0.131	0.104	0.1160	0.1143
Н	0.125	0.102	0.1013	0.1043
Н	0.103	0.047	0.0866	0.0892
Н	0.126	0.033	0.0854	0.0806
Н	0.123	0.109	0.1145	0.1189
Н	0.122	0.097	0.1015	0.1098
Н	0.119	0.098	0.0865	0.0799
Н	0.129	0.081	0.1025	0.1102
Н	0.107	0.099	0.1140	0.1210
Н	0.119	0.072	0.1141	0.1146
Н	0.110	0.094	0.0944	0.0942
Н	0.128	0.087	0.0992	0.1059

Н	0.134	0.096	0.0862	0.1001
Н	0.134	0.097	0.1006	0.1041
Н	0.121	0.084	0.0875	0.0905
Н	0.086	0.100	0.1013	0.1049
Н	0.117	0.100	0.0834	0.0771
Н	0.126	0.088	0.1087	0.1113
Н	0.150	0.093	0.0432	0.0628
Н	0.134	0.098	0.0877	0.1028
Н	0.091	0.068	0.0983	0.1062
Н	0.113	0.097	0.0843	0.0906
Н	0.120	0.084	0.0965	0.1011
Н	0.130	0.096	0.0892	0.0985
Н	0.135	0.092	0.1031	0.1142
Н	0.135	0.119	0.0463	0.0298
Н	0.102	0.030	0.0894	0.0994
Н	0.131	0.096	0.0980	0.1041
Н	0.125	0.100	0.0851	0.0933
Н	0.123	0.068	0.0952	0.0968
Н	0.129	0.094	0.0742	0.0966
Н	0.103	0.100	0.1089	0.1206
Н	0.120	0.093	0.0738	0.0605
Н	0.087	0.099	0.0796	0.0944
Н	0.120	0.101	0.0409	0.0632
Н	0.134	0.080	0.0936	0.0883
Н	0.119	0.088	0.1016	0.0952
Н	0.129	0.087	0.0959	0.0986
Н	0.124	0.092	0.0898	0.0960
Н	0.122	0.090	0.0970	0.0989
Н	0.121	0.091	0.0846	0.0892
Н	0.129	0.086	0.0463	0.0736
Н	0.122	0.087	0.0874	0.0869
Н	0.112	0.083	0.1083	0.0922
Н	0.103	0.062	0.0859	0.0925
Н	0.090	0.085	0.0937	0.0996
Н	0.150	0.114	0.0989	0.0979

Н	0.110	0.102	
Н	0.132	0.126	
Н	0.129	0.082	
Н	0.118	0.084	
Н	0.133	0.083	
Н	0.126	0.103	
Н	0.135	0.123	
Н	0.134	0.122	

Figure S7a. Plots showing the crystal filed parameters for the complex 1||@CNT

Figure S7b. Plots showing the crystal filed parameters for the complex 1||@CNT

Table S12. CASSCF+RASSI-SO computed energies of all low-lying KDs, and SINGLE_ANISO computed *g*-tensors of of **1**||@CNT at the displacement, $\chi_j \left(\frac{1}{\sqrt{\mu_j}}a.u.\right) = 0.00$, **0.3, 0.6, 1.0, (-0.3), (-0.6)** and **(-1.0)**.

KDs	E(cm ⁻¹)	g _{xx}	g _{yy}	g _{zz}				
$\chi_j \left(\frac{1}{\sqrt{\mu_j}} a.u. \right) = 0.00$								
1	0.0	0.000	0.000	20.007				
2	553.5	0.000	0.000	17.020				
3	792.0	0.018	0.019	14.499				
4	912.8	0.012	0.023	11.885				
5	1053.6	0.048	0.059	9.123				
6	1228.0	0.377	0.476	6.362				
7	1397.8	0.370	1.224	3.711				
8	1505.7	11.352	9.753	1.212				

		$\chi_j \left(\frac{1}{\sqrt{\mu_j}} a \right)$	(u.) = 0.3					
1	0.0	0.000	0.000	20.007				
2	552.1	0.000	0.000	17.023				
3	790.2	0.018	0.019	14.500				
4	911.4	0.012	0.024	11.900				
5	1051.8	0.060	0.072	09.138				
6	1225.6	0.682	0.808	06.359				
7	1395.4	0.362	1.811	03.701				
8	1503.1	11.621	9.477	1.207				
		$\chi_j \left(\frac{1}{\sqrt{\mu_j}}a\right)$	u.) = 0.6					
1	0.0	0.000	0.000	20.007				
2	553.0	0.000	0.000	17.021				
3	791.4	0.018	0.019	14.500				
4	912.3	0.012	0.023	11.889				
5	1053.0	0.050	0.006	9.127				
6	1227.3	0.450	0.553	6.362				
7	1397.1	0.314	1.315	3.710				
8	1504.9	11.370	9.736	1.212				
	$\chi_j \left(\frac{1}{\sqrt{\mu_i}} a.u. \right) = 1.0$							
1	0.0	0.000	0.000	20.007				
2	552.6	0.000	0.000	17.022				
3	790.8	0.018	0.019	14.500				
4	911.9	0.012	0.023	11.893				

5	1052.5	0.053	0.064	09.131					
6	1226.6	0.542	0.652	06.361					
7	1396.3	0.298	1.490	03.707					
8	1504.1	11.449	9.655	1.211					
$\chi_j\left(\frac{1}{\sqrt{\mu_j}}a.u.\right) = -0.3$									
1	0.0	0.000	0.000	20.007					
2	555.5	0.000	0.000	17.016					
3	794.3	0.019	0.019	14.494					
4	914.5	0.012	0.023	11.875					
5	1055.4	0.048	0.059	09.116					
6	1230.1	0.388	0.491	06.358					
7	1400.4	0.724	1.620	03.701					
8	1509.0	11.719	9.372	1.205					
		$\chi_j \left(\frac{1}{\sqrt{\mu_j}}a.u\right)$	(n) = -0.6						
1	0.0	0.000	0.000	20.007					
2	554.0	0.000	0.000	17.019					
3	792.6	0.018	0.019	14.498					
4	913.3	0.012	0.023	11.881					
5	1054.1	0.047	0.058	09.120					
6	1228.7	0.335	0.433	06.361					
7	1398.6	0.462	1.233	03.710					
8	1506.6	11.401	9.702	1.211					
$\chi_j \left(\frac{1}{\sqrt{\mu_j}} a.u. \right) = -1.0$									

1	0.0	0.000	0.000	20.007	
2	554.6	0.000	0.000	17.018	
3	793.3	0.019	0.019	14.497	
4	913.8	0.012	0.023	11.878	
5	1054.6	0.047	0.058	09.118	
6	1229.3	0.332	0.432	06.360	
7	1399.4	0.572	1.344	03.707	
8	1507.6	11.510	9.590	1.209	

Figure S8: Ab *initio* computed magnetisation blockade barriers, along with computed transversal magnetic moments between the connecting pairs for complex **1**||@CNT at a displacement of

Figure S9: Ab *initio* computed magnetisation blockade barriers, along with computed transversal magnetic moments between the connecting pairs for complex **1**||@CNT at a displacement of

$$\chi_j \left(\frac{1}{\sqrt{\mu_j}} a. u. \right) = 0.3$$

Figure S10: Ab *initio* computed magnetisation blockade barriers, along with computed transversal magnetic moments between the connecting pairs for complex **1**||@CNT at a

displacement of
$$\chi_j \left(\frac{1}{\sqrt{\mu_j}} a.u. \right) = 0.6$$

Figure S11: Ab *initio* computed magnetisation blockade barriers, along with computed transversal magnetic moments between the connecting pairs for complex **1**||@CNT at a

$$\chi_j \left(\frac{1}{\sqrt{\mu_j}} a.u. \right) = 1.0$$
 displacement of

Figure S12: Ab initio computed magnetisation blockade barriers, along with computed transversal magnetic moments between the connecting pairs for complex 1||@CNT at a $\chi_j \left(\frac{1}{\sqrt{\mu_j}} a.u. \right)$ =- 0.3

displacement of

Figure S13: Ab *initio* computed magnetisation blockade barriers, along with computed transversal magnetic moments between the connecting pairs for complex **1**||@CNT at a

displacement of
$$\chi_j \left(\frac{1}{\sqrt{\mu_j}}a.u.\right) = -0.6$$

Figure S14: Ab *initio* computed magnetisation blockade barriers, along with computed transversal magnetic moments between the connecting pairs for complex **1**||@CNT at a

displacement of $\chi_j \left(\frac{1}{\sqrt{\mu_j}}a.u.\right) = -1.0$

KDs	E(cm-1)	g_{xx}	g_{yy}	g_{zz}	
1	0.00	0.000	0.000	20.148	
2	419.3	0.000	0.000	17.162	
3	670.7	0.002	0.002	14.521	
4	834.0	0.017	0.021	11.857	
5	980.3	0.230	0.307	9.189	
6	1107.9	2.751	3.579	6.123	
7	1198.2	2.381	6.246	10.562	
8	1327.4	0.200	0.546	18.240	

Table S13. CASSCF+RASSI-SO computed energies of all low-lying KDs, and SINGLE_ANISO computed *g*-tensors of **2-CA**[#]@CNT.

Figure S15. Ab *initio* computed magnetisation blockade barriers, along with computed transversal magnetic moments between the connecting pairs for **2-CA^{II}@CNT**.

Table S14. CASSCF+RASSI-SO computed energies of all low-lying KDs, and SINGLE_ANISO computed *g*-tensors of **3-CA**[#]**@CNT**.

KDs	E(cm-1)	g_{xx}	$g_{_{YY}}$	g_{zz}	
1	0.00	0.000	0.000	20.000	
2	522.5	0.000	0.000	17.308	
3	784.8	0.002	0.002	14.453	
4	934.3	0.014	0.018	11.818	
5	1084.2	0.006	1.084	11.538	
6	1245.7	0.061	0.384	6.417	

7	1387.3	3.370	3.616	4.347	
8	1482.2	1.067	6.483	14.147	

Figure S16. Ab *initio* computed magnetisation blockade barriers, along with computed transversal magnetic moments between the connecting pairs for **3-CA^{II}@CNT**.

S28

Figure S17. DFT optimized structures, Front view of a) **2-CA^{II}@CNT** b) **3^{II}@CNT**. Dotted purple lines show the closest C-H bond distances. Colour code: Dy^{III} - cyan, C- grey, and H- green. Blueline arrow shows the g_{zz} axis. In back, black colour chemdraw structure is counter anion [B(C₆F₅)₄]⁻

Figure S18. DFT optimized structures, Side view of a) **2-CA^{II}@CNT**. Dotted purple lines show the closest C-H bond distances. Colour code: Dy^{III} - cyan, C- grey, and H- green. Blueline arrow shows the g_{zz} axis. In back, black colour chemdraw structure is counter anion $[B(C_6F_5)_4]^-$

Figure S19. DFT optimized structures, Side view of a) **3-CA**^{II}**@CNT**. Dotted purple lines show the closest C-H bond distances. Colour code: Dy^{III} - cyan, C- grey, and H- green. Blueline arrow shows the g_{zz} axis. In back, black colour chemdraw structure is counter anion $[B(C_6F_5)_4]^-$

Figure S20. DFT optimized structures a) **3-CA**^{\parallel}*@***CNT** (see Fig. 1 for colour code and description). For visibility, [B(C₆F₅)₄]⁻ is shown as a pink sphere.

Figure S21. Relative energy vs displacement graph, when inside the CNT of 1^{\parallel} @CNT, the complex is displaced by 0.5 Å along the length of CNT.

References:

- 1. B. G. Lippert, J. H. PARRINELLO and MICHELE, *Mol. Phys.*, 1997, **92**, 477-488.
- 2. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing and J. Hutter, *Comput. Phys. Commun.*, 2005, **167**, 103-128.
- 3. T. D. Kühne, M. lannuzzi, M. Del Ben, V. V. Rybkin, P. Seewald, F. Stein, T. Laino, R. Z. Khaliullin, O. Schütt and F. Schiffmann, *J. Chem. Phys.*, 2020, **152**, 194103.
- 4. G. Lippert, J. Hutter and M. Parrinello, *Theor. Chem. Acc.*, 1999, **103**, 124-140.
- 5. J. Paier, R. Hirschl, M. Marsman and G. Kresse, *J. Chem. Phys.*, 2005, **122**, 234102.
- F. Aquilante, J. Autschbach, R. K. Carlson, L. F. Chibotaru, M. G. Delcey, L. De Vico, I. Fdez. Galván, N. Ferré, L. M. Frutos, L. Gagliardi, M. Garavelli, A. Giussani, C. E. Hoyer, G. Li Manni, H. Lischka, D. Ma, P. Å. Malmqvist, T. Müller, A. Nenov, M. Olivucci, T. B. Pedersen, D. Peng, F. Plasser, B. Pritchard, M. Reiher, I. Rivalta, I. Schapiro, J. Segarra-Martí, M. Stenrup, D. G. Truhlar, L. Ungur, A. Valentini, S. Vancoillie, V. Veryazov, V. P. Vysotskiy, O. Weingart, F. Zapata and R. Lindh, *J. Comput. Chem.*, 2016, **37**, 506-541.
- 7. T. H. Dunning and P. J. Hay, *Modern theoretical chemistry*, 1977, **3**, 1-28.
- 8. M. Frisch, G. Trucks, H. B. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci and G. Petersson, *Inc., Wallingford, CT*, 2009, **200**, 28.
- 9. J. Ogier, T. Arnauld and E. Doris, *Future medicinal chemistry*, 2009, **1**, 693-711.
- 10. S. Sun, S. Wang, S. Li, Y. Li, Y. Zhang, J. Chen, Z. Zhang, S. Fang and P. Wang, *Journal of Materials Chemistry A*, 2016, **4**, 18646-18653.
- 11. J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate and H. Dai, *Nature*, 1998, **395**, 878-881.
- 12. A. Khorsand, S. Jamehbozorgi, R. Ghiasi and M. Rezvani, *Physica E: Low-dimensional Systems and Nanostructures*, 2015, **72**, 120-127.
- 13. M. Rezvani, M. D. Ganji and M. Faghihnasiri, *Physica E: Low-dimensional Systems and Nanostructures*, 2013, **52**, 27-33.