Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Supporting Information for

Ultrafine Co₆W₆C as an Efficient Anode Catalyst for Direct Hydrazine Fuel Cells

Mengrui Zhang, Jianping Zhu, Bin Liu, Yongkang Hou, Chao Zhang, * Jingping Wang, and Jingyang Niu*

Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China

Fax: (+ 86)371-23886876 E-mail: zhangchao@henu.edu.cn; jyniu@henu.edu.cn

Results and Discussion

- 1. Characterization data (Fig. S1-S35)
- 2. Tables results (Table S1-S2)

Experimental Section

Chemicals and Reagents.

All chemicals were obtained from commercial suppliers and used without further purification unless specified otherwise: zinc nitrate hexahydrate (99%, AR), 2-methylimidazole (2-mlm, 98%, AR), Triethylamine (TEA, 99%, AR), potassium hydroxide (85%, AR), Hydrazine hydrate (80%, AR), carbon black (EC600JD), 5 wt% Nafion solution.

Characterization

X-ray power diffraction (XRD) was measured on a Bruker D8 Advance X-ray diffractometer equipped with graphite monochromatized Cu K α radiation (λ = 1.54 Å). Liquid ultravioletvisible (UV-vis) spectra were operated on UV-4100 spectrometer. Infrared (IR) spectra were performed on a PerkinElmer spectrum instrument with KBr tabletting, and the range was 400-4500 cm⁻¹. Scanning electron microscopy (SEM) images were carried on JSM-7610F. Transmission electron microscopy (TEM) images were carried out on JEM-2100 with electron energy of 200 kV. N₂ sorption isotherm was operated on Quadrasorb SI-4; Brunauer-Emmett-Teller (BET) surface area and pore size were analyzed using the ASiQwin software.

Electrochemical measurements

All electrochemical experiments were conducted on the CHI 660e electrochemical station in a standard three electrode cell at room temperature. A glassy carbon electrode (GC, diameter = 5mm), an Ag/AgCI electrode (3.5 M KCI), and a carbon rod were used as the working electrode, reference electrode and counter electrode, respectively. The reference electrode was placed in a position very close to the working electrode.

5 mg of the catalysts were dispersed in a mixture of ethanol (0.48 mL) and 5wt% Nafion (0.02

mL) by sonication to form a homogeneous ink. Typically, 10 μ L well-dispersed catalysts (corresponding to a catalyst loading of 0.51 mg cm⁻²) were covered on the GC electrode and then dried in an ambient environment for measurements. Cyclic voltammetry curves were tested in alkaline solution with a scan rate of 5 mV s⁻¹. The Chronoamperometry were tested at a fixed potential vs RHE (HzOR: 0.8 V). The potential vs RHE was converted to RHE via the Nernst equation: $E_{RHE} = E_{Ag/AgCl} + 0.059pH + E^{\theta}_{Ag/AgCl}$

Due to the strong magnetic properties of Co-ZIF-8/C-p samples, TEM tests cannot be performed. To determine the size of Co particles, we use the Sherrer equation to estimate the Co's size on jade software (average particle size 3-5 nm):

D=kλ/βcosθ

D: grain size; k: index, 1.0; λ : X-ray wavelength; β : full width at half maxima, FWHM; θ : angle of deviation.

Turnover frequency (TOF)

The calculation of TOF was based on a previous standard method in electrocatalytic hydrazine oxidation reaction field.¹ The values of TOF were calculated by assuming that all metal atoms are involved in the catalytic processes, which all represent the lowest limits of the models. The values of TOF (e site⁻¹ h⁻¹) were calculated using the following equation:

$$TOF = j^*S_{GEO}/(F^*n)$$

Where *j* (mA cm⁻²) is the as-measured current density at various potential, S_{GEO} (0.19625 cm⁻²) represents the surface area of the glassy carbon electro, F is the Faraday constant (96485 C mol⁻¹), and n is the moles of metal atoms on the electrode, the moles of Co₆W₆C for Co₆W₆C@C can be calculated by the loading weight of catalysts and ICP results.

Determination of Faradaic efficiency

Faradaic efficiency (FE) of $Co_6W_6C@C$ catalyst is defined as the ratio of the amount of experimentally determined N₂ to that of the theoretically expected N₂ from the hydrazine oxidation reaction. The

nitrogen (N_2) product was analyzed by gas chromatography. The standard curve for quantitative detection of N_2 was determined by external standard method, and the conditions for the calibration are the same as the conditions for catalytic reaction.

Typically, the solution of 1 M KOH+ 100 mM N_2H_4 was continuously electrolyzed at a fixed potential of 0.6 V (vs RHE) and 1.2 V (vs RHE) for 3.5 h by using $Co_6W_6C@C$ catalyst. The amount of N_2 was determined by gas chromatography at stipulated times (10, 20, 30, 60, 90, 120, 150, 180 and 210 min).

Preparation of oxygen (O₂)-hydrazine fuel cell (O₂-HzFC)

In our O₂-HzFCs, the Co₆W₆C@C NPs supported on Ni foam were directly utilized as anodes with a polymer binder. The cathode catalysts in this work were all prepared according to previous standard method in this field:² A mixture of Pt/C (20 wt%, 20 mg), 150 μ L Nafion solution (5 wt%), 200 μ L deionized water and 1.8 mL isopropanol was sonication for 2 h to form a homogenous dispersion, which was then brushed onto a piece of carbon paper (1.14 cm⁻²) with a microporous layer. The loading of Pt/C catalyst was 0.6 mg_{Pt} cm⁻².

The membrane electrode assembly (MEA) was fabricated by hot-pressing an anode, a cathode, a KOH-doped polybenzimidazole (PBI) membrane, and gasket at 130 °C for 10 s. The PBI membrane had been pre-treated with 6 M KOH for 5 h at 80 °C, and preserved in deionized water prior to hot-pressing.

The O₂-HzFCs was measured at 80 °C on Model 850e fuel cell test system (see **Fig. S28**). The optimized analyte is 6.0 M KOH + 0.5 M hydrazine hydrate with a flow rate of 1 mL min⁻¹ and the catholyte is oxygen with a flow rate of 0.2 L min⁻¹.

Synthesis of samples

 α -Na₁₀[SiW₉O₃₄]-18H₂O (SiW₉)³ and K₁₀[SiW₉O₃₇Co₃(H₂O)₃] (SiW₉Co₃)⁴ were synthesized according to the literature with some modifications.

Synthesis of ZIF-8: The synthesis of ZIF-8 was based on the previous method with some modifications.⁵ The 2-methylimidazole (2-mlm, 4.42g, 53.90 mmol) and triethylamine (TEA, 2.95 mL) were dissolved in deionized water (50 mL) with vigorous stirring. A mixture of Zn(NO₃)₂·6H₂O (2 g, 6.70 mmol) with 25 mL deionized water was added to the above solution with vigorous stirring for 1 h at room temperature. The resulting white precipitates were collected by centrifuging and washed thoroughly with deionized water for five times. The precipitates were dried in vacuum at 75 °C overnight.

Synthesis of ZIF-8/C (ZIF): The 2-mlm (4.42g, 53.90 mmol), TEA (2.95 mL) and carbon black (0.10 g) were dissolved/dispersed in deionized water (50 mL) with vigorous stirring. A mixture of Zn(NO₃)₂·6H₂O (2g, 6.70 mmol) with 25 mL deionized water was added to the above solution with vigorous stirring for 1 h at room temperature. The resulting dark gray precipitates were collected by centrifuging and washed thoroughly with deionized water for five times. The precipitates were dried in vacuum at 75 °C overnight.

Synthesis of SiW₉**Co**₃**@ZIF:** The 2-mlm (4.42 g, 53.90 mmol), TEA (2.95 mL) and carbon black (0.10 g) were dissolved/dispersed in deionized water (25 mL) with vigorous stirring. Then, an aqueous solution (20 mL) of Zn(NO₃)₂·6H₂O (2 g, 6.70 mmol) and an aqueous solution (20 mL) of SiW₉Co₃ (0.76 g, 0.26 mmol) were simultaneously and slowly added to the above mixture solution with vigorous stirring for 1 h (the molar ratio of SiW₉Co₃: Zn²⁺ =1:25). Gray precipitates were collected by centrifugation and washed with copious water until no SiW₉Co₃ was present in the solution, as evidenced by UV-vis spectroscopy. The product was dried in vacuum at 75 °C overnight.

Synthesis of SiW₉@**ZIF:** The synthesis of SiW₉@ZIF was similar to SiW₉Co₃@ZIF, except that SiW₉Co₃ was replaced by SiW₉ (0.75 g, 0.26 mmol).

Synthesis of Co-ZIF-8/C: The synthesis of Co-ZIF-8/C was similar to ZIF-8/C, except the Zn(NO₃)₂·6H₂O solution was replaced by Zn(NO₃)₂·6H₂O (1.71 g, 5.75 mmol)/Co(NO₃)₂·6H₂O (0.24 g, 0.81 mmol) mixture solution.

Synthesis of SiW₉Co₃/ZIF: The SiW₉Co₃ (0.72 g) and ZIF-8 (1.28 g) were mixed together and ground uniformly.

Synthesis of SiW₉Co₃/C: SiW₉Co₃ (0.72 g) and amorphous carbon black (0.3 g) were mixed together and ground uniformly.

Synthesis of SiW₉TM₃@ZIF (TM =Fe, Ni, Mn and Cu): Similar to the synthesis procedure of SiW₉Co₃@ZIF, expect that SiW₉Co₃ was replaced by SiW₉Fe₃ (0.73 g, 0.26 mmol), SiW₉Ni₃ (0.76, 0.26 mmol), SiW₉Mn₃ (0.75 g,0.26 mmol), SiW₉Cu₃ (0.76g, 0.26 mmol).

Synthesis of ZIF-8/C-p: The 0.4 g ZIF-8/C composite was transferred into a temperatureprogrammed furnace under an N₂ flow (40–60 mL min⁻¹), heat-treated at 600 °C for 3 h and then at 900 °C for 4 h with a heating rate of 5 °C min⁻¹. The sample was cooled to room temperature naturally under N₂ flow to obtain ZIF-8/C-p.

Synthesis of Co₆W₆C@C: Similar to the synthesis procedure of ZIF-8/C-p, except the ZIF-8/C was replaced by SiW₉Co₃@ZIF sample. To determine the effect of the calcination temperature on the electrocatalytic performance, the samples were prepared at various temperatures (700, 800, 900, 1000, and 1100 °C)

Synthesis of SiW₉@ZIF-p, Co-ZIF-8/C-p, SiW₉Co₃/ZIF-p, SiW₉Co₃/C-p and SiW₉TM₃@ZIF-

p: Similar to the synthesis procedure of ZIF-8/C-p, except the ZIF-8/C sample was replaced by SiW₉@ZIF, Co-ZIF/8, SiW₉Co₃/ZIF, SiW₉Co₃/C and SiW₉TM₃@ZIF.

Detailed discussions of catalyst synthesis

The Co₆W₆C@C NPs was synthesized by a two-step process: the first step aims to synthesize a Co-, W- and C-containing precursor, and the second step includes a pyrolysis process that converts the precursor into Co₆W₆C NPs. First, SiW₉Co₃ was in situ encapsulated into the cavities of ZIF-8 to obtain POM@ZIF precursors (SiW₉Co₃@ZIF). The addition of carbon black aims to increase the carbon content of the precursor so that the precursor can be converted into bimetallic carbides Co₆W₆C in the pyrolysis process. The preparated SiW₉Co₃@ZIF precursor was washed several times to remove adsorbed SiW₉Co₃ on ZIF-8 NP surfaces. No characteristic $O \rightarrow W$ UV-vis spectroscopy absorption peak was observed in the supernatant solution of the as-synthesized samples (Fig. S1), indicating the complete removal of adsorbed SiW₉Co₃ from the ZIF-8 surfaces. The XRD pattern of the preparated sample was in agreement with the simulation results of ZIF-8 (Fig. S2), indicating the intactness of the ZIF-8 framework and confirming the absence of crystalline aggregation of SiW₉Co₃. Moreover, the IR spectrum of the preparated sample shows characteristic peaks of SiW₉Co₃ (Fig. S3), confirming the presence of SiW₉Co₃ in the as-synthesized samples. Based on these characterizations, we confirm that SiW₉Co₃ clusters have been successfully encapsulated into the cavities of ZIF-8. The as-synthesized sample was denoted as SiW₉Co₃@ZIF hereafter. SEM images of SiW₉Co₃@ZIF suggested that the morphology and size of SiW₉Ni₃@ZIF are similar to those of ZIF nanocrystals (ZIF-8/C) (Fig. S4&S5). ICP-AES result showed that the W and Co contents were found to be 20.73 wt% and 2.36 wt%, respectively, in SiW₉Co₃@ZIF (Table S1)

Catalytic activities of Co₆W₆C@C for different pyrolysis temperatures

Efforts at optimizing the HzOR catalytic activity of Co₆W₆C@C was further pursued by testing pyrolysis temperatures at 700 °C, 800 °C, 900 °C, 1000 °C, and 1100 °C. As shown in **Fig. S10c** and **S18**, Co₆W₆C@C exhibited the highest HzOR catalytic activity at 900°C, with a maximum current density of 130 mA cm⁻² at 0.6 V. This peak current density was 2.3, 1.6, 3.3 and 1.8 times greater than those of SiW₉Co₃@ZIF pyrolyzed at 700 °C (57 mA cm⁻²), 800 °C (82 mA cm⁻²), 1000 °C (41 mA cm⁻²) and 1100 °C (71 mA cm⁻²), respectively. XRD results provided explanations for these catalytic activity differences resulting from the use of different temperatures: as shown in **Fig. S19**, after applying pyrolyses at temperatures of 700 °C and 800 °C, the XRD peaks of the resulting Co₆W₆C samples were very weak, indicating that the crystallization processes did not proceed to completion when carrying out pyrolysis at these low temperatures; after applying pyrolyses at temperatures of 1000 °C, peaks corresponding to metallic W and Co species appeared in the XRD patterns of the samples, indicating that the ternary carbide Co₆W₆C was over-reduced at high temperatures (**Fig. S20**).

Fig. S1. UV-vis spectra of H2O, SiW9Co3, 2-mIm and SiW9Co3@ZIF scrubbing solution.

Fig. S2. XRD patterns of ZIF-8 simulation, ZIF-8/C and SiW₉Co₃@ZIF samples.

Fig. S3. IR spectra of ZIF-8/C, SiW9Co3 and SiW9Co3@ZIF samples.

Fig. S4. SEM images of a) ZIF-8/C and b) SiW₉Co₃@ZIF. (inset: particle size distribution of the corresponding samples)

Fig. S5. SEM images of a) ZIF-8, b) carbon black, c) ZIF-8/C and d) SiW9C03@ZIF samples.

Fig. S6. The high-resolution a) W 4f and b) Co 2p XPS spectra of Co₆W₆C@C.

Fig. S7. TEM image of Co₆W₆C@C. (inset: particle size distribution of Co₆W₆C@C)

Fig. S8. EDX spectrum of Co₆W₆C@C.

Fig. S9. HRTEM images of Co₆W₆C@C.

Fig. S10. a) Widened CV curves of a) $Co_6W_6C@C$ in 1 M KOH with and without 100 mM N₂H₄. b) Widened CV curves of different catalysts for HzOR. c) HzOR activities of the $Co_6W_6C@C$ catalyst with different pyrolysis temperatures in 1 M KOH and 100 mM N₂H₄ solution.

Fig. S11. The electrochemical device of HzOR for Co₆W₆C@C.

Fig. S12. a) The TOF of Co₆W₆C@C for HzOR. b) Tafel slope of different catalysts for HzOR.

Fig. S13. a) CVs of $Co_6W_6C@C$ in 1 M KOH solution with different N₂H₄ concentrations (scan rate of 5 mV s⁻¹). b) Relationship between the oxidation peak current densities and the N₂H₄ concentrations.

Fig S14. a) CVs of $Co_6W_6C@C$ at different scan rates in 1 M KOH + 100 mM N_2H_4 solution. b) Relationship between the oxidation peak current densities and the (scanrate)^{1/2}.

Fig S15. XRD patterns of Co₆W₆C@C before and after electrocatalysis.

Fig S16. High-resolution W 4f and Co 2p XPS spectra of $Co_6W_6C@C$ after 1 h and 3.5 h of electrocatalysis (applied potential fixed at 0.8 V vs RHE).

Fig S17. TEM images and EDX mapping of $Co_6W_6C@C$: a, b) as-synthesized, c, b) after electrolysis (1 h) and e, f) after 3.5 h of electrolysis (applied potential fixed at 0.8 V vs RHE).

Fig S18. HzOR activities of the Co₆W₆C@C catalyst with different pyrolysis temperatures in 1 M KOH and 100 Mm N₂H₄ solution.

Fig S19. XRD patterns of pyrolyzed SiW₉Co₃@ZIF at 700°C, 800°C and 900°C.

Fig S20. XRD patterns of pyrolyzed SiW₉Co₃@ZIF at 1000°C and 1100°C.

Fig. S21. XRD patterns of ZIF simulation, Co-ZIF-8/C and SiW9@ZIF.

Fig. S22. IR spectra of ZIF-8/C, Co-ZIF-8/C, SiW9 and SiW9@ZIF

Fig. S23. XRD patterns of SiW9@ZIF-p and Co-ZIF-8/C-p.

Fig. S24. TEM image of SiW9@ZIF-p. (inset: particle size distribution of WC).

Fig. S25. CVs of a) $Co_6W_6C@C$, b) SiW₉@ZIF-p and c) Co-ZIF-8/C-p samples with different rates. (The capacitive current at -0.05 V as a function of scan rate for the corresponding samples.

Fig. S26. XRD patterns of Co₆W₆C@C, SiW₉Co₃/ZIF-p and SiW₉Co₃/C-p.

Fig. S27. TEM image of a) SiW₉Co₃/ZIF-p and b) SiW₉Co₃/C-p. (inset: particle size distribution)

Fig. S28. Photograph of the setup for O₂-HzFC.

Fig. S29. XRD patterns of different $SiW_9TM_3@ZIF$ (TM = Fe, Ni, Mn and Cu) samples.

Fig. S30. IR spectra of different SiW₉TM₃@ZIF (TM = Fe, Ni, Mn and Cu) samples.

Fig S31. XRD pattern of SiW9Ni3@ZIF-p.

Fig S32. XRD pattern of SiW₉Fe₃@ZIF-p.

Fig. S33. XRD patterns of SiW9Cu3@ZIF-p and SiW9Mn3@ZIF-p.

Fig. S34. HzOR catalytic activities of different $SiW_9TM_3@ZIF$ -p in 1M KOH and 100 mM N₂H₄ solution.

Fig S35. Polarization and power density plots for SiW₉Ni₃@ZIF-p at 80 °C. Testing conditions: the anolyte is 6.0 M KOH + 0.5 M hydrazine hydrate with a flow rate of 1 mL min⁻¹; the catholyte is O_2 with a flow rate of 0.2 L min⁻¹.

Samples	Atomic contents					
	C (wt %)	H (wt %)	N (wt %)	Zn (wt %)	W (wt %)	Co (wt %)
ZIF-8	47.63	6.27	22.71	22.98	—	—
ZIF-8/C	48.79	6.01	22.23	22.86	_	—
ZIF-8/C-p	80.72	1.31	17.21			
SiW ₉ Co ₃ @ZIF	38.41	2.33	15.43	17.26	20.73	2.36
Co ₆ W ₆ C@C	40.12	1.29	0.62	_	42.20	12.78
Co ₆ W ₆ C@C after electrolysis 1h	47.32	1.01	0.51	_	33.16	7.31
Co ₆ W ₆ C@C after electrolysis 3.5h	68.25	1.11	0.59	_	12.05	5.52

Table S1. The element analysis of as-synthesized samples

Catalysts	Condition	Onset potential (V) ^b	Specific activity at $E = 0.60 V$ (mA cm ⁻²)	Peak specific activity (mA cm ⁻²) @potential (V vs RHE)	Peak mass activity (mA mg ⁻¹)	P _{max} (mW cm ⁻²) ^c	Ref ^d
Co ₆ W ₆ C@C	1M KOH + 100 mM N ₂ H ₄	0.26	130	130@0.6	472	203	This work
Co ₃ Ta	1M KOH + 100 mM N ₂ H ₄	-0.086	n.m.	50@0.16	n.m.	n.m.	6
SeNCM	1M KOH + 100 mM N ₂ H ₄	0.43	~20	30.8@0.8	n.m.	180	7
Ni ₁ Co ₃	1M KOH + 100 mM N ₂ H ₄	-0.15	~10	40@0.1	n.m.	n.m.	8
CaSC-Co ^R	0.1M KOH + 50 mM N ₂ H ₄	0.5 V	~1.2	3@0.9	n.m.	n.m.	9
Fe ₂ MoC	1M KOH + 100 mM N ₂ H ₄	0.27	15	15@0.6	n.m.	n.m.	10
MoC _x	0.2M KOH + 10 mM N ₂ H ₄	0.80	~1	8@1.2	n.m.	150	11
ZnO/SWCNT	0.1M NaOH + 1 mM N ₂ H ₄	0.60	0	140@1.32	n.m.	n.m.	12
Ni _{0.9} Co _{0.1} - ANSA	3M NaOH + 0.5 M N ₂ H ₄	-0.2	n.m.	280@0.15	n.m.	n.m.	13
Ni-Cu	3M NaOH + 0.1 M N ₂ H ₄	-0.1	n.m.	340@0.45	n.m.	n.m.	14
Fe-CoS ₂	1M KOH + 100 mM N ₂ H ₄	0.15	n.m.	300@0.2	n.m.	125	15

Table S2. Comparison of activity and O ₂ -HzFCs	performance between the Co ₆ W ₆ C@C and othe	er HzOR catalysts reported in the literature ^a .

Note: ^aHzOR, hydrazine oxidation reaction. Scan rate: 5-50 mV s⁻¹. ^bAll potentials have been converted to RHE *via* the Nernst equation. ^c P_{max}: peak power density. ^d References: Ref. n.m.: not mentioned.

References

- Y. Zheng, F. He, M. Chen, J. Zhang, G. Hu, D. Ma, J. Guo, H. Fan, W. Li and X. Hu, ACS Appl. Mater. Interfaces, 2020, 12, 38183–38191. 1 2
- Y. Vang, Q. Wang, L. Wan, Y. Han, Y. Hong, L. Huang, X. Yang, Y. Wang, K. Zaghib and Z. Zhou, J. Colloid Interface Sci., 2020, 563, 27–32. Gilbert. Herve and Andre. Teze, Inorg. Chem., 1977, 16, 2115–2117.
- 3
- 4
- J. L. F. Ortega, P. Sethuraman, D. E. Katsoulis, C. E. Costello and M. T. Pope, J Chem Soc Dalton Trans, 1992, 1901–1906.
 J. Zhu, L. Qin, A. Uliana, J. Hou, J. Wang, Y. Zhang, X. Li, S. Yuan, J. Li, M. Tian, J. Lin and B. Van der Bruggen, ACS Appl. Mater. Interfaces, 2017, 9, 1975–1986. 5

- 5 J. Zhu, L. Qin, A. Unana, J. Hou, J. Wang, Y. Zhang, X. Li, S. Yuan, J. Li, M. Hian, J. Lin and B. Van der Bruggen, ACS Appl. Mater. Interfaces, 2017, 9, 1975–1986
 6 G. Feng, L. An, B. Li, Y. Zuo, J. Song, F. Ning, N. Jiang, X. Cheng, Y. Zhang and D. Xia, Nat. Commun., 2019, 10, 4514.
 7 T. Wang, Q. Wang, Y. Wang, Y. Da, W. Zhou, Y. Shao, D. Li, S. Zhan, J. Yuan and H. Wang, Angew Chem, 2019, 7.
 8 H. Wang, Y. Ma, R. Wang, J. Key, V. Linkov and S. Ji, Chem. Commun., 2015, 51, 3570–3573.
 9 V. H. Fragal, E. H. Fragal, T. Zhang, X. Huang, T. S. P. Cellet, G. M. Pereira, A. Jitianu, A. F. Rubira, R. Silva and T. Asefa, Adv. Funct. Mater., 2019, 29, 1808486.
 10 K. Ojha, E. M. Farber, T. Y. Burshtein and D. Eisenberg, Angew. Chem. Int. Ed., 2018, 57, 17168–17172.
 11 J. Deng, X. Li, S. Imhanria, K. Chen, X. Deng and W. Wang, Electrochimica Acta, 2021, 138417.
 22 K. N. Lu, K. M. Pari, Y. H. Provend, C. H. Serg, Ch. et al. (2019, 27, 2010).

- 12 K. N. Han, C. A. Li, M.-P. N. Bui, X.-H. Pham and G. H. Seong, Chem Commun, 2011, 47, 938–940.

- G. Feng, Y. Kuang, P. Li, N. Han, M. Sun, G. Zhang and X. Sun, *Adv. Sci.*, 2017, 4, 1600179.
 M. Sun, Z. Lu, L. Luo, Z. Chang and X. Sun, *Nanoscale*, 2016, 8, 1479–1484.
 X. Liu, J. He, S. Zhao, Y. Liu, Z. Zhao, J. Luo, G. Hu, X. Sun and Y. Ding, *Nat. Commun.*, 2018, 9, 4365.