Supporting Information

Bis(perchlorocatecholato)silane and Heteroleptic Bidonors: Hidden Frustrated Lewis Pairs by Ring Strain

Deborah Hartmann, Sven Braner and Lutz Greb*

Table of contents

1.	Materials and Methods	4
Ζ.	2.1 Synthesis of Si(cat ^{Cl}) ₂ (pyNMe ₂) (1-A)	5 5
	2.2 Synthesis of Si(cat ^{Cl}) ₂ (pyCH ₂ NMe ₂) (1-B)	6
	2.3 Synthesis of Si(cat ^{Cl}) ₂ (pyPPh ₂) (1-C)	7
	2.4 Synthesis of Si(cat ^{Cl}) ₂ (pyCH ₂ PPh ₂) (1-D)	8
	2.5 Reaction of 1-(donor) with aldehydes	9
	2.5.1 Reaction of 1-C + paraformaldehyde	9
	2.5.2 Reaction of 1-D + <i>p</i> -Me-benzaldehyde	10
	2.5.3 Reaction of 1-(PPh₃) + <i>p</i> -NO₂-benzaldehyde	11
	2.6 General procedure for the reaction of 1-(donor) with aldehydes at NMR scale	12
	2.6.1 Reaction of 1-A + paraformaldehyde	12
	2.6.2 Reaction of 1-D + paraformaldehyde	13
	2.6.3 Reaction of 1-(PPh₃) + paraformaldehyde	13
	2.6.4 Reaction of 1-C + <i>p</i> -Me-benzaldehyde	14
	2.6.5 Reaction of 1-(PPh₂) + <i>p</i> -Me-benzaldehvde	. 14
	2.7 Reaction of 1-A + <i>p</i> -X-benzaldehyde	15
	 2.7 Reaction of 1-A + p-X-benzaldehyde	15 15
	 2.7 Reaction of 1-A + p-X-benzaldehyde 2.8 Synthesis of Si(cat^{Cl})₂(pyCH₂NMe₂) (1-(hppH)₂) 2.9 Dehydrogenative coupling of dimethylamine borane 	15 15 16
3.	 2.7 Reaction of 1-A + p-X-benzaldehyde	15 15 16 17 18
3.	 2.7 Reaction of 1-A + p-X-benzaldehyde	15 15 16 17 18 20
3.	 2.7 Reaction of 1-A + p-X-benzaldehyde	15 15 16 17 18 20 21
3.	 2.7 Reaction of 1-A + p-X-benzaldehyde	15 15 16 17 18 20 21 24
3.	 2.7 Reaction of 1-A + p-X-benzaldehyde	15 15 16 17 18 20 21 24 25
3.	 2.7 Reaction of 1-A + p-X-benzaldehyde 2.8 Synthesis of Si(cat^{Cl})₂(pyCH₂NMe₂) (1-(hppH)₂) 2.9 Dehydrogenative coupling of dimethylamine borane Single Crystal X-Ray Diffraction 3.1 Compound Si(cat^{Cl})₂pyNMe₂ (1-A) 3.3 Compound Si(cat^{Cl})₂pyPPh₂ (1-C) 3.4 Compound Si(cat^{Cl})₂pyCH₂PPh₂ (1-D) 3.7 Compound Si(cat^{Cl})₂pyPPh₂·(p-Me-BA) (1-(p-Me-BA)-C) 3.8 Compound Si(cat^{Cl})₂pyPh₂·(BA) (1-(BA)-C) 3.9 Compound Si(cat^{Cl})₂pyCH₂PPh₂·(p-Me-BA) (1-(p-Me-BA)-D) 	15 15 16 17 18 20 21 21 22 25 26
3.	 2.7 Reaction of 1-A + <i>p</i>-X-benzaldehyde	15 15 16 17 18 20 21 24 25 26 27
3.	 2.7 Reaction of 1-A + <i>p</i>-X-benzaldehyde	15 15 16 17 18 20 21 24 25 26 27 28
3.	 2.7 Reaction of 1-A + p-X-benzaldehyde	15 15 16 17 18 20 21 24 25 26 27 28 29
3.	 2.7 Reaction of 1-A + <i>p</i>-X-benzaldehyde	15 15 16 17 18 20 21 22 24 25 26 27 28 29 30 31

	4.3 Reaction of 1-(py) ² with formaldehyde	. 36
	4.4 Reaction of 1-C with formaldehyde	. 38
	4.5 Reaction of 1-(PPh₃) ₂ with formaldehyde	. 40
5.	NMR spectra	. 42
6.	References	. 66

1. Materials and Methods

Unless stated otherwise, all manipulations were carried out under a dry argon atmosphere by using standard Schlenk techniques to prevent oxidation and hydrolysis of the sensitive compounds. Solvents were degassed prior to use with three freeze-pump-thaw cycles and were stored in sealed Schlenk ampulla over activated molecular sieve (3 or 4 Å, respectively) under a dry argon atmosphere. All glassware, syringes, magnetic stirring bars and needles were thoroughly dried. The commercially available chemicals were used as received. Bis-sulfolane adduct $1 \cdot (sulfolane)_{2,1}$ and $2 \cdot ((dimethyl$ amino)methyl)pyridine² were prepared according the literature. All air sensitive compounds were stored in a glove box (Sylatech Y-05-G-7986) under N₂ atmosphere. Purity and identity of the compounds were confirmed by high resolution multinuclear NMR spectroscopy and single crystal X-Ray diffraction (SCXRD). ¹H-, ¹³C-, ²⁹Si and ³¹P NMR spectra were collected with a *Bruker BZH 200/52*, a Bruker DPX 200, a Bruker Avance II 400 or a Bruker Avance III 600 NMR spectrometer and referenced to the solvent in use. NMR data is reported as follows: chemical shift δ [ppm], multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, and combinations), scalar spin-spin coupling constant [Hz] as X_{A-B} (X = number of chemical bonds between coupled nuclei; A, B = coupled nuclei), integration value. NMR spectra were processed and plotted with MestReNova 14.2.³ Mass analysis of the obtained products was attempted by various methods (ESI, LIFDI, EI) but remained unsuccessful. Elemental analysis was not performed.

2. Synthetic Procedures

2.1 Synthesis of Si(cat^{Cl})₂(pyNMe₂) (1-A)

To a suspension of $Si(cat^{Cl})_2 \cdot (sulfolane)_2 (0.31 g, 0.42 mmol, 1.00 eq.)$ in 12 ml dichloromethane, 2-(dimethylamino)pyridine (0.05 g, 0.42 mmol, 1.00 eq.) was added dropwise and the reaction mixture was stirred for 1 hour. A weakly cloudy off-white solution was obtained. 12 ml pentane were added and the precipitate was filtered off, washed two times with 10 ml dichloromethane:pentane 1:1 and dried *in vacuo*. The product was obtained as a colorless solid (0.24 g, 0.37 mmol, 91 %).

Suitable colorless single-crystals for SCXRD were obtained by gaseous diffusion of pentane into a saturated solution of chlorobenzene at -40 °C.

¹**H NMR** (600 MHz, CD_2Cl_2) δ = 8.40 (*pseudo*-t, ³*J*_{H-H} = 7.7 Hz, 1H, H_{py}-1), 8.26 (d, ³*J*_{H-H} = 5.3 Hz, 1H, H_{py}-4), 7.74 (m, 2H, H_{py}-2, H_{py}-3), 3.08 (s, 6H, CH₃).

¹³**C NMR** (151 MHz, CD_2Cl_2) δ = 157.1 (C_{py} -5), 146.9 (C_{py} -1), 145.6 (*ipso*- C_{cat}), 142.1 (C_{py} -3), 127.5 (C_{py} -2), 122.4 (*ortho*- C_{cat}), 118.2 (C-4), 115.6 (*meta*- C_{cat}), 47.8 (2C, CH₃).

²⁹Si NMR (119 MHz, CD₂Cl₂) δ = -134.1.

²⁹Si NMR (79 MHz, *o*-DCB) δ = -133.8.

2.2 Synthesis of Si(cat^{Cl})₂(pyCH₂NMe₂) (1-B)

To a suspension of $Si(cat^{Cl})_2 \cdot (sulfolane)_2$ (25 mg, 33 µmol, 1.00 eq.) in 0.5 ml CD_2Cl_2 was added 2-((dimethylamino)methyl)pyridine (4.5 mg, 33 µmol, 1.00 eq.). Dissolution of the poorly soluble starting material indicated complete reaction. The product was not isolated and contains 2 eq. of sulfolane.

Suitable colorless single-crystals for SCXRD were obtained by gaseous diffusion of pentane into a saturated solution of dichloromethane at -40 °C.

¹**H NMR** (600 MHz, CD₂Cl₂) δ = 8.96 (d, ³*J*_{H-H} = 5.5 Hz, 1H, H_{py}-1), 8.14 (td, ³*J*_{H-H} = 7.7, 1.6 Hz, 1H, H_{py}-3), 7.69 (t, ³*J*_{H-H} = 6.7 Hz, 1H, H_{py}-2), 7.57 (dd, ³*J*_{H-H} = 7.8, 1.2 Hz, 1H, H_{py}-4), 4.89 (d, ²*J*_{H-H} = 15.3 Hz, 1H, CH₂), 3.87 (d, ²*J*_{H-H} = 15.3 Hz, 1H, CH₂), 3.11 (s, 3H, CH₃), 2.32 (s, 3H, CH₃).

¹³**C** NMR (151 MHz, CD_2Cl_2) δ = 149.8 (C_{py} -5), 147.0 (C_{py} -1), 146.2 (*ipso*- C_{cat}), 146.1 (*ipso*- C_{cat}), 145.5 (*ipso*- C_{cat}), 145.4 (*ipso*- C_{cat}), 143.5 (C_{py} -3), 126.4 (C_{py} -2), 124.0 (C_{py} -4), 122.1 (*ortho*- C_{cat}), 121.8 (*ortho*- C_{cat}), 121.7 (*ortho*- C_{cat}), 121.2 (*ortho*- C_{cat}), 115.7 (*meta*- C_{cat}), 115.4 (*meta*- C_{cat}), 115.3 (*meta*- C_{cat}), 115.1 (*meta*- C_{cat}), 63.5 (CH_2), 50.1 (CH_3), 49.0 (CH_3).

²⁹Si NMR (119 MHz, CD_2Cl_2) $\delta = -140.2$.

²⁹Si NMR (119 MHz, *o*-DCB) δ = -139.9.

2.3 Synthesis of Si(cat^{Cl})₂(pyPPh₂) (1-C)

To a suspension of Si(cat^{Cl})₂·(sulfolane)₂ (170 mg, 224 μ mol, 1.00 eq.) in 20 ml dichloromethane was added a solution of 2-(diphenylphosphine)pyridine (59 mg, 224 μ mol, 1.00 eq.) in 5 ml dichloromethane. The reaction mixture was stirred over night and the precipitate was washed three times with 5 ml dichloromethane:pentane 1:1 and dried *in vacuo*. The product was collected as a colorless solid (150 mg, 192 μ mol, 85 %).

Suitable colorless single-crystals for SCXRD were obtained by gaseous diffusion of pentane into a saturated solution of dichloromethane at -40 °C.

¹**H NMR** (400 MHz, CD_2Cl_2) δ = 8.64 (d, ³J_{H-H} = 5.7, 1H, H_{py}-1), 8.23 (*pseudo*-t, ³J_{H-H} = 7.9, 1H, H_{py}-3), 7.92 (d, ³J_{H-H} = 7.6, 1H, H_{py}-4), 7.81 (bs, 1H, H_{py}-2), 7.55 - 7.49 (m, 2H, *para*-H_{phenyl}), 7.49 - 7.43 (m, 4H, *meta*-H_{phenyl}), 7.49 - 7.35 (m, 4H, *ortho*-H_{phenyl}).

¹³**C NMR** (151 MHz, CD_2Cl_2) δ = 145.2 (C_{py} -1), 145.2 (*ipso*- C_{cat}), 143.4 (C_{py} -3), 133.7 (*meta*- C_{phenyl}), 132.4 (C_{py} -4), 132.0 (*para*- C_{phenyl}), 129.7 (d, ¹*J*= 9.3 Hz, *ortho*- C_{phenyl}), 143.4 (C_{py} -2), 122.9 (*ortho*- C_{cat}), 116.3 (*meta*- C_{cat}).

Due to bad solubility, the signals of C_{phenyl} and C_{py} are better visible in the ¹³C-HSCQ experiment as cross-correlation peaks. Therefore, the *ipso*- C_{phenyl} and the C_{py} -5 signals were not observed.

³¹**P NMR** (243 MHz, CD_2Cl_2) δ = 12.1.*

²⁹Si NMR could not be obtained due to bad solubility in common organic solvents.

*for comparison, the shift of the free base: ³¹**P NMR** (243 MHz, CD₂Cl₂) δ = -4.0.

2.4 Synthesis of Si(cat^{Cl})₂(pyCH₂PPh₂) (1-D)

To a suspension of $Si(cat^{Cl})_2 \cdot (sulfolane)_2$ (230 mg, 303 µmol, 1.00 eq.) in 10 ml chlorobenzene was added a solution of 2-((diphenylphosphino)methyl)pyridine (84 mg, 303 µmol, 1.00 eq.) in 5 ml chlorobenzene. A weakly cloudy yellow solution was obtained. 15 ml pentane were added and the precipitate was filtered off, washed two times with 5 ml pentane and dried *in vacuo*. The product was collected as a colorless solid (235 mg, 295 µmol, 97 %).

Suitable colorless single-crystals for SCXRD were obtained by gaseous diffusion of pentane into a saturated solution of dichloromethane at -40 °C and from a saturated chlorobenzene solution at room temperature.

¹**H NMR** (600 MHz, CD₂Cl₂) δ = 9.20 (dd, *J*_{H-H} = 6.0, 1.9 Hz, 1H, H_{py}-1), 8.06 (ddd, *J*_{H-H} = 7.5, 7.5, 1.0 Hz, 1H, H_{py}-3), 7.64 (ddd, *J*_{H-H} = 7.5, 5.9, 1.4 Hz, 1H, H_{py}-2), 7.59 (d, ³*J*_{H-H} = 7.8 Hz, 1H, H_{py}-4), 7.53 (td, *J*_{H-H} = 7.2, 1.6 Hz, 2H, *para*-H_{phenyl}), 7.46 – 7.41 (m, 4H, *ortho*-H_{phenyl}), 7.42 – 7.33 (m, 4H, *meta*-H_{phenyl}), 4.10 (d, ²*J*_{H-P} = 11.0 Hz, 2H, *CH*₂).

¹³**C NMR** (151 MHz, CD_2Cl_2) δ = 151.6 (C_{py} -5), 148.5 (C_{py} -1), 145.6 (*ipso*- C_{cat}), 142.9 (C_{py} -3), 133.2 (d, ${}^{3}J_{C-P}$ = 10.6 Hz, 4C, *meta*- C_{phenyl}), 132.5 (*para*- C_{phenyl}), 129.6 (d, ${}^{2}J_{C-P}$ = 10.3 Hz, 4C, *ortho*- C_{phenyl}), 127.6 (d, ${}^{3}J_{C-P}$ = 5.3 Hz, C_{py} -4), 125.3 (C_{py} -2), 124.9 (*ipso*- C_{phenyl}), 121.9 (*ortho*- C_{cat}), 115.9 (meta- C_{cat}), 31.3 (d, ${}^{1}J_{C-P}$ = 27.0 Hz, CH_2 (C_{py} -6)).

³¹**P NMR** (243 MHz, CD₂Cl₂) δ = -14.4.*

²⁹Si NMR (119 MHz, CD₂Cl₂) δ = -136.9 (d, ¹J_{Si-P} = 161.5 Hz).

*for comparison, the shift of the free base: ³¹**P NMR** (243 MHz, CD₂Cl₂) δ = -11.0.

2.5 Reaction of 1-(donor) with aldehydes

The following section describes procedures for the reaction of **1**-(donor) with aldehydes. Isolation of the products was not attempted, but successful reaction confirmed by multi-nuclear NMR spectroscopy, and if possible, SCXRD. Hence, the samples may contain residuals of sulfolane or excessive donor or substrate.

2.5.1 Reaction of 1-C + paraformaldehyde

To a suspension of $Si(cat^{Cl})_2(sulfolane)_2$ (22.8 mg, 30.0 µmol, 1.00 eq.) in 0.5 ml CD_2Cl_2 **C** (7.90 mg, 30.0 µmol, 1.00 eq.) and paraformaldehyde (0.9 mg, 30.0 µmol, 1.00 eq.) were added. The suspension remained turbid, indicating the poor solubility of the formed product or incomplete reaction (even after 4 weeks). The product was not isolated and the NMR contains 2 eq. of sulfolane.

¹**H NMR** (600 MHz, CD₂Cl₂) δ = 8.78 (d, *J*_{H-H} = 4.8 Hz, 1H, H_{py}-1), 7.91 – 7.85 (m, 1H, H_{py}-4), 7.76 – 7.72 (m, 2H, *para*-H_{phenyl}), 7.65 – 7.59 (m, 4H, *ortho*-H_{phenyl}; 2H, H_{py}-2, H_{py}-3), 7.59 – 7.53 (m, 4H, *meta*-H_{phenyl}), 5.49 (d, ²*J*_{H-P} = 2.1 Hz, 2H, CH_{2-aldehyde}).

¹³**C NMR** (151 MHz, CD_2CI_2) δ = 152.5 (d, ³ J_{C-P} = 19.5 Hz, C_{py} -1), 148.3 (C_{py} -5), 145.6 (*ipso*- C_{cat}), 138.0 (d, ² J_{C-P} = 9.9 Hz, C_{py} -2), 135.7 (d, ⁴ J_{C-P} = 3.1 Hz, *para*- C_{phenyl}), 134.4 (d, ² J_{C-P} = 9.3 Hz, *ortho*- C_{phenyl}), 131.8 (d, ³ J_{C-P} = 22.7 Hz, C_{py} -3), 130.4 (d, ³ J_{C-P} = 12.5 Hz, *meta*- C_{phenyl}), 128.6 (d, ⁴ J_{C-P} = 3.6 Hz, C_{py} -2), 121.7 (*ortho*- C_{cat}), 115.5 (d, ¹ J_{C-P} = 83.7 Hz, *ipso*- C_{phenyl}), 114.9 (*meta*- C_{cat}), 59.2 (d, ¹ J_{C-P} = 69.7 Hz, $CH_{2-aldehyde}$).

³¹**P NMR** (162 MHz, CD_2CI_2) δ = 13.7.

²⁹Si NMR (120 MHz, CD₂Cl₂) δ = -102.6 (d, ³J_{Si-P} = 11.9 Hz).

2.5.2 Reaction of 1-D + p-Me-benzaldehyde

To a suspension of Si(cat^{Cl})₂(pyCH₂PPh₂) (28.0 mg, 35.1 μ mol, 1.00 eq.) in 0.5 ml CD₂Cl₂ *p*-Mebenzaldehyde (4.2 mg, 35.1 μ mol, 1.00 eq.) was added. The suspension became clear indicating the complete consumption of the poorly soluble starting material and a quantitative formation of the product. The product was isolated as a white solid by precipitation with pentane (27.4 mg, 85 %). Suitable colorless single-crystals for SCXRD were obtained by gaseous diffusion of pentane into a saturated solution of dichloromethane at -40 °C.

¹**H NMR** (600 MHz, CD₂Cl₂) δ = 8.49 (ddd, *J*_{H-H} = 4.9, 1.8, 0.9 Hz, 1H, H_{py}-1), 7.75 (*pseudo*-tq, *J*_{H-H} = 7.5, 1.5 Hz, 1H, *para*-H_{phenyl-a}), 7.61 – 7.54 (m, 1H, *para*-H_{phenyl-b}), 7.54 – 7.48 (m, 1H, H_{py}-3), 7.54 – 7.48 (m, 2H, *ortho*-H_{phenyl-b}), 7.54 – 7.48 (m, 2H, *meta*-H_{phenyl-a}), 7.43 (ddd, *J*_{H-H} = 11.3, 8.3, 1.3 Hz, 2H, *ortho*-H_{phenyl-a}), 7.41 – 7.32 (m, 2H, *meta*-H_{phenyl-b}), 7.18 (*pseudo*-ddt, *J*_{H-H} = 7.5, 5.0, 1.2 Hz, 1H, H_{py}-2), 6.94 (d, ³*J*_{H-H} = 1.9 Hz, 1H, H_{py}-4), 6.94 (d, ²*J*_{H-P} = 8.2 Hz, 1H, H_{aldehyde}-5), 6.78 – 6.72 (m, 4H, H_{aldehyde}-2, H_{aldehyde}-3), 4.03 – 3.91 (m, 2H, *CH*₂), 2.16 (d, ⁴*J*_{H-H} = 2.4 Hz, 3H, *CH*_{3-aldehyde}).

¹³**C NMR** (151 MHz, CD₂Cl₂) δ = 149.9 (C_{py}-1), 149.4 (d, ²*J*_{C-P} = 7.2 Hz, C_{py}-5), 146.3 (*ipso*-C_{cat}), 144.9 (*ipso*-C_{cat}), 140.5 (C_{aldehyde}-1), 140.4 (C_{aldehyde}-4), 137.9 (C_{py}-3), 135.3 (d, ⁴*J*_{C-P} = 3.0 Hz, *para*-C_{phenyl-a}), 134.9 (d, ²*J*_{C-P} = 8.0 Hz, *ortho*-C_{phenyl-a}), 134.7 (d, ⁴*J*_{C-P} = 3.0 Hz, *para*-C_{phenyl-b}), 133.8 (d, ²*J*_{C-P} = 8.6 Hz, *ortho*-C_{phenyl-b}), 129.8 (d, ³*J*_{C-P} = 18.2 Hz, *meta*-C_{phenyl-b}), 129.6 (d, ³*J*_{C-P} = 17.8 Hz, *meta*-C_{phenyl-a}), 129.0 (d, ⁴*J*_{C-P} = 2.9 Hz, C_{aldehyde}-2), 127.9 (d, ³*J*_{C-P} = 5.4 Hz, C_{aldehyde}-3), 124.8 (d, ³*J*_{C-P} = 7.8 Hz, C_{py}-4), 123.6 (C_{py}-2), 122.0 (*ortho*-C_{cat}), 120.8 (*ortho*-C_{cat}), 117.2 (d, ¹*J*_{C-P} = 81.7 Hz, *ipso*-C_{phenyl-b}), 116.1 (d, ¹*J*_{C-P} = 80.5 Hz, *ipso*-C_{phenyl-a}), 114.9 (*meta*-C_{cat}), 114.6 (*meta*-C_{cat}), 72.0 (d, ¹*J*_{C-P} = 67.5 Hz, C_{aldehyde}-5), 29.9 (d, ¹*J*_{C-P} = 51.4 Hz, CH₂), 21.1 (d, ⁶*J*_{C-P} = 1.3 Hz, CH₃-aldehyde</sub>).

³¹**P NMR** (243 MHz, CD_2Cl_2) δ = 23.9.

²⁹Si NMR (119 MHz, CD₂Cl₂) δ = -101.9 (d, ³J_{Si-P} = 21.8 Hz).

2.5.3 Reaction of 1-(PPh₃) + p-NO₂-benzaldehyde

To a suspension of Si(cat^{Cl})₂(sulfolane)₂ (15.5 mg, 20.4 μ mol, 1.00 eq.) in 0.5 ml CD₂Cl₂ PPh₃ (5.4 mg, 20.4 μ mol, 1.00 eq.) and *p*-NO₂-benzaldehyde (3.1 mg, 20.4 μ mol, 1.00 eq.) were added. The suspension became clear indicating the complete consumption of the poorly soluble starting material and quantitative formation of the aldehyde-activation product. The product was not isolated and the NMR contains 2 eq. of sulfolane.

Suitable colorless single-crystals for SCXRD were obtained by gaseous diffusion of pentane into a saturated solution of dichloromethane at -40 °C.

¹**H NMR** (600 MHz, CD₂Cl₂) δ = 7.83 (d, ³J_{H-H} = 8.7 Hz, 2H, H_{aldehyde}-2), 7.80 – 7.76 (m, 3H, *para*-C_{phenyl}), 7.59 – 7.55 (m, 6H, *ortho*-C_{phenyl}), 7.48 – 7.42 (m, 6H, *meta*-C_{phenyl}), 7.08 (dd, ³J_{H-H} = 8.9, ⁴J_{H-P} = 2.2 Hz, 2H, H_{aldehyde}-3), 6.58 (d, ²J_{H-P} = 3.3 Hz, 1H, H_{aldehyde}-5).

¹³**C NMR** (151 MHz, CD₂Cl₂) δ = 148.7 (d, ⁵J_{C-P} = 3.2 Hz C_{aldehyde}-1) 145.9 (*ipso*-C_{cat}), 144.6 (*ipso*-C_{cat}), 140.3 (C_{aldehyde}-4), 136.0 (d, ⁴J_{C-P} = 3.0 Hz, *para*-C_{phenyl}), 134.9 (d, ³J_{C-P} = 8.9 Hz, *meta*-C_{phenyl}), 130.6 (d, ²J_{C-P} = 12.4 Hz, *ortho*-C_{phenyl}), 129.6 (d, ³J_{C-P} = 5.2 Hz, C_{aldehyde}-3), 123.5 (d, ⁴J_{C-P} = 2.6 Hz, C_{aldehyde}-2), 122.4 (*ortho*-C_{cat}), 121.2 (*ortho*-C_{cat}), 115.3 (d, ¹J_{C-P} = 82.7 Hz, *ipso*-C_{phenyl}), 115.2 (*meta*-C_{cat}), 114.7 (*meta*-C_{cat}), 74.2 (d, ¹J_{C-P} = 69.8 Hz, C_{aldehyde}-5).

³¹**P NMR** (243 MHz, CD_2CI_2) δ = 21.7.

²⁹Si NMR (119 MHz, CD₂Cl₂) δ = -102.3 (d, ³J_{Si-P} = 19.8 Hz).

2.6 General procedure for the reaction of 1-(donor) with aldehydes at NMR scale

The following reactions were performed at NMR scale, according to the following general procedure:

To a suspension of Si(cat^{Cl})₂·(sulfolane)₂ (20.0 mg, 26.3 μmol, 1.00 eq.) in 0.5 ml dichloromethane or *ortho*-dichlorobenzene were added one equivalent of a bidentate Lewis base/two equivalents of a monodentate Lewis base and one equivalent of paraformaldehyde or *para*-substituted benzaldehyde. The occurrence of a reaction was judged by the clearing of the suspension and/or characteristic NMR shifts (for example the former-aldehydic carbon/proton signals in ¹³C and ¹H NMR).

Suitable colorless single-crystals for SCXRD were obtained by gaseous diffusion of pentane into a saturated solution of dichloromethane or *ortho*-dichlorobenzene at –40 °C (dichloromethane) or room temperature (*ortho*-dichlorobenzene).

2.6.1 Reaction of 1-A + paraformaldehyde

After mixing of the compounds a colorless suspension was obtained.

¹**H NMR** (400 MHz, CD₂Cl₂) δ = 8.35 (dd, J_{H-H} = 6.7, 1.8 Hz, 1H, H_{py}-1), 7.75 (ddd, J_{H-H} = 8.9, 7.1, 1.8 Hz, 1H, H_{py}-3), 7.03 (td, J_{H-H} = 6.9, 1.3 Hz, 1H, H_{py}-2), 6.95 (dt, J_{H-H} = 8.9, 0.9 Hz, 1H, H_{py}-4), 5.73 (s, 2H, CH_{2-aldehyde}), 3.10 (s, 6H, CH₃).

²⁹Si NMR (80 MHz, CD_2Cl_2) $\delta = -103.1$.

2.6.2 Reaction of **1-D** + paraformaldehyde

After mixing of the compounds a colorless suspension was obtained. ¹H NMR was indicating formation of the desired product beside some unidentified side-products.

¹**H NMR** (400 MHz, CD_2CI_2) δ = 8.23 (d, ³*J*_{H-H} = 5.0 Hz, 1H, H_{py}-1), 7.65 (td, *J*_{H-H} = 7.7, 1.9 Hz, 2H, *para*-H_{phenyl}), 7.60 – 7.56 (m, 1H, H_{py}-3), 7.57 – 7.53 (m, 4H, *meta*-H_{phenyl}), 7.50 – 7.44 (m, 4H, *ortho*-H_{phenyl}), 7.18 (d, ³*J*_{H-H} = 7.9 Hz, 1Hz, H_{py}-4), 7.15 – 7.09 (m, 1H, H_{py}-2), 5.28 (d, ²*J*_{H-P} = 2.1 Hz, 2H, *CH*_{2-aldehyde}), 4.36 (d, ²*J*_{H-P} = 14.4 Hz, 2H, *CH*_{2-py}).

³¹**P NMR** (162 MHz, CD_2Cl_2) δ = 21.3.

²⁹Si NMR (79 MHz, CD_2Cl_2) δ = -102.3.

2.6.3 Reaction of 1-(PPh₃) + paraformaldehyde

After mixing of the compounds a colorless suspension was obtained.

¹**H NMR** (400 MHz, CD_2Cl_2) δ = 7.78 – 7.73 (m, 3H, *para*-H_{phenyl}), 7.60 – 7.51 (m, 12H, *ortho*-H_{phenyl}, *meta*-H_{phenyl}), 5.39 (d, ²J_{H-P} = 1.6 Hz, 2H, CH_{2-aldehyde}).

³¹**P NMR** (243 MHz, CD_2CI_2) δ = 17.7.

²⁹Si NMR (119 MHz, CD_2CI_2) δ = -102.9.

2.6.4 Reaction of 1-C + p-Me-benzaldehyde

After mixing of the compounds a colorless solution was obtained immediately.

Suitable colorless single-crystals for SCXRD were obtained by gaseous diffusion of pentane into a saturated solution of dichloromethane at -40 °C.

¹**H NMR** (400 MHz, CD₂Cl₂) δ = 8.85 (d, ³J_{H-H} = 4.6 Hz, 1H, H_{py}-1), 7.79 – 7.69 (m, 5H), 7.65 – 7.55 (m, 2H), 7.54 – 7.43 (m, 4H), 7.23 (ddd, J_{H-H} = 11.6, 8.4, 1.3 Hz, 2H), 6.82 – 6.69 (m, 4H), 6.65 (d, ²J_{H-P} = 3.3 Hz, 1H, H_{aldehyde}-5), 2.16 (d, J = 2.4 Hz, 3H, CH_{3-aldehyde}).

³¹**P NMR** (162 MHz, CD_2Cl_2) δ = 15.8.

²⁹Si NMR (79 MHz, CD₂Cl₂) δ = -102.3 (d, ³J_{Si-P} = 22.3 Hz).

2.6.5 Reaction of **1-(PPh₃)** + *p*-Me-benzaldehyde

After mixing of the compounds for several minutes a colorless solution was obtained.

Suitable colorless single-crystals for SCXRD were obtained by gaseous diffusion of pentane into a saturated solution of dichloromethane at -40 °C.

¹**H NMR** (600 MHz, CD_2Cl_2) δ = 7.72 (dd, J_{H-H} = 7.6, 1.8 Hz, 3H, *para*-H_{phenyl}), 7.53 (*pseudo*-td, J_{H-H} = 7.9, 3.5 Hz, 6H, H_{phenyl}), 7.48 – 7.39 (m, 6H, H_{phenyl}), 6.83 – 6.71 (m, 4H, H_{aldehyde}), 6.40 (s, 1H, H_{aldehyde}-5), 2.18 (s, 3H, CH_{3-aldehyde}).

³¹**P NMR** (243 MHz, CD_2CI_2) δ = 20.2.

²⁹Si NMR (79 MHz, CD₂Cl₂) δ = -102.3 (d, ³J_{Si-P} = 21.3 Hz).

2.7 Reaction of 1-A + p-X-benzaldehyde

After mixing of the compounds, colored solutions (for X = Me and H: orange, F: red, NO₂: yellow, OMe: purple-dark red) along with colorless solids were obtained.

For X = H, F and Ome suitable colorless single-crystals for SCXRD were obtained by gaseous diffusion of pentane into a saturated solution of dichloromethane at -40 °C.

2.8 Synthesis of Si(cat^{Cl})₂(pyCH₂NMe₂) (1-(hppH)₂)

To a suspension of Si(cat^{Cl})₂(sulfolane)₂ (10.0 mg, 13.2 μ mol, 1.00 eq.) in 0.5 ml dichloromethane or *ortho*-dichlorobenzene hppH (3.7 mg, 31.3 μ mol, 2.00 eq.) was added (hppH = 1,3,4,6,7,8-hexahydro-2*H*-pyrimido[1,2-*a*]pyrimidine). The suspension was stirred for 1 d but poor solubility of the desired product inhibited complete dissolution. The product was not isolated and the NMR contains 2 eq. of the byproduct sulfolane.

Suitable colorless single-crystals for SCXRD were obtained by gaseous diffusion of hexane into a saturated solution of dichloromethane at -40 °C.

¹H NMR: No NMR in deuterated solvent was conducted.

¹³**C NMR** (151 MHz, *o*-DCB) δ = 154.2 (C_{hppH}-10), 146.8 (*ipso*-C_{cat}), 120.8 (*ortho*-C_{cat}), 115.7 (*meta*-C_{cat}), 48.2 (C_{hppH}-4/8), 47.4 (C_{hppH}-4/8), 42.2 (C_{hppH}-2/6), 38.7 (C_{hppH}-2/6), 22.7 (C_{hppH}-3/7), 22.1 (C_{hppH}-3/7).

²⁹Si NMR (119 MHz, *o*-DCB) δ = -151.0.

2.9 Dehydrogenative coupling of dimethylamine borane

Dimethylamine borane (15.5 mg, 263.1 μ mol, 1.00 eq.) was dissolved in 0.5 ml *ortho*-dichlorobenzene:C₆D₆ (99:1) and 5 mol% catalyst (**1-A**, **1-B**, **1-(sulfolane)**₂ or **A**) was added. The mixture was heated in a NMR tube to 100 °C and followed immediately *in situ* by ¹¹B NMR spectroscopy. The extent of reaction ξ was determined by integration of the ¹¹B NMR signals (for this data see Table 2 in the main part). Figure S2.1 exemplary shows the course of the reaction catalyzed by **1-A**. The dehydrogenation is accompanied by the formation of (μ -NMe₂)B₂H₅ (δ = – 17.5 ppm) and minor byproducts at δ = 2.1 and 9.2 ppm.

Fig. S2.1: ¹¹B{¹H} NMR spectra (64 MHz, *ortho*-dichlorobenzene:C₆D₆ (99:1), RT) of the dehydrogenative coupling of HMe₂N-BH₃ (δ = -13.4 ppm, orange) with 5 mol% **1-A** at 100 °C. Stacked spectra resemble different reaction times. Respective ¹¹B NMR shifts of the product (Me₂N-BH₂)₂: δ = 5.2 ppm (blue) and the byproduct (μ -NMe₂)B₂H₅: δ = -17.5 ppm (green).

3. Single Crystal X-Ray Diffraction

Suitable crystals for single-crystal structure determination were taken directly from the mother liquor, taken up in perfluorinated polyether oil and fixed on a cryo loop. Full shells of intensity data were collected at low temperature with a Bruker D8 Venture diffractometer, dual source (Mo-or Cu- K_{α} radiation, microfocus X-ray tube, Photon III detector). Data were processed with the standard Bruker (SAINT, APEX3) software package.^{4, 5} Multiscan absorption correction was applied using the SADABS program.^{6, 7} The structures were solved by intrinsic phasing^{8, 9} and refined using the SHELXTL software package (Version 2014/6 and 2018/3).¹⁰⁻¹³ Graphical handling of the structural data during solution and refinement was performed with OLEX2¹⁴ and shelXle.¹⁵ All non-hydrogen atoms were given anisotropic displacement parameters. Hydrogen atoms bound to carbon were input at calculated positions and refined with a riding model.

For data visualization, Mercury 2020.3.0 was used.¹⁶⁻¹⁹ The thermal displacement ellipsoids are shown at the probability level of 50 %. CCDC numbers 2091065, 2091068, 2091070-2091079, 2091082 and 2091083 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre's and FIZ Karlsruhe's joint Access Service via https://www.ccdc.cam.ac.uk/structures/.

Electron density attributed to solvent of crystallization (dichloromethane, chlorobenzene, fluorobenzene or *o*-difluorobenzene) which could not be modelled was removed from the structures of **1-C**, ([**1**-O-**1**][$C_{21}H_{25}N_4F$]), **1-(***p***-Me-BA)-C** and **1-(BA)-C** with the BYPASS procedure,^{20, 21} as implemented in PLATON (squeeze/hybrid).^{22, 23} Partial structure factors from the solvent masks were included in the refinement as separate contributions to F_{calc} .

For Si(cat^{Cl})₂pyPPh₂ (**1-C**), 120 electrons were found in a volume of 374 Å³ in one void per unit cell. This is consistent with the presence of 3 CH_2Cl_2 per unit cell (1.5 per formula unit) which account for 126 electrons per unit cell.

For $[(cat^{Cl})_2Si-O-Si(cat^{Cl})_2][C_{21}H_{25}N_4F]$ ([1-O-1] $[C_{21}H_{25}N_4F]$), 257 electrons were found in a volume of 691 Å³ in one void per unit cell. This is consistent with the presence of 6 CH₂Cl₂ per unit cell (3 per formula unit) which account for 252 electrons per unit cell.

For Si(cat^{Cl})₂pyPPh₂·(*p*-Me-BA) (**1-(***p***-Me-BA)-C**), 332 electrons were found in a volume of 1028 Å³ in one void per unit cell. This is consistent with the presence of 8 CH₂Cl₂ per unit cell (1 per formula unit) which account for 336 electrons per unit cell.

For Si(cat^{Cl})₂pyPPh₂·(BA) (**1-(BA)-C**), 88 electrons were found in a volume of 362 Å³ in one void per unit cell. This is consistent with the presence of 2 CH₂Cl₂ per unit cell (0.5 per formula unit) which account for 84 electrons per unit cell.

3.1 Compound Si(cat^{Cl})₂pyNMe₂ (1-A)

Identification code	mo_dh302h2_0m
Empirical formula	$C_{19}H_{10}CI_8N_2O_4Si$
Formula weight	641.98
Temperature/K	100.0
Crystal system	monoclinic
Space group	C2/c
a/Å	14.3910(13)
b/Å	8.8970(8)
c/Å	36.446(3)
α/°	90
β/°	93.241(3)
γ/°	90
Volume/Å ³	4659.0(7)
Z	8
ρ _{calc} g/cm ³	1.831
µ/mm⁻¹	1.052
F(000)	2560.0
Crystal size/mm ³	$0.344 \times 0.239 \times 0.182$
Radiation	Μο-Κ _α (λ = 0.71073)
20 range for data collection/°	4.478 to 57.5
Index ranges	$-19 \leq h \leq 19, -12 \leq k \leq 12, -49 \leq l \leq 45$
Reflections collected	89708
Independent reflections	$6036 [R_{int} = 0.0676, R_{sigma} = 0.0273]$
Data/restraints/parameters	6036/0/309
Goodness-of-fit on F ²	1.152
Final R indexes [I>=2σ (I)]	R ₁ = 0.0478, wR ₂ = 0.1161
Final R indexes [all data]	R ₁ = 0.0564, wR ₂ = 0.1220
Largest diff. peak/hole / e Å ⁻³	0.78/-0.55
CCDC number	2091065

3.2 Compound Si(cat^{Cl})₂pyCH₂NMe₂ (1-B)

Identification code	dh177B_P21c
Empirical formula	$C_{22}H_{16}CI_{12}N_2O_4Si$
Formula weight	825.86
Temperature/K	100
Crystal system	monoclinic
Space group	P21/c
a/Å	16.942(3)
b/Å	12.536(3)
c/Å	15.917(3)
α/°	90
β/°	112.19(3)
γ/°	90
Volume/Å ³	3130.2(13)
Z	4
ρ _{calc} g/cm ³	1.752
µ/mm⁻¹	1.135
F(000)	1648.0
Crystal size/mm ³	$0.5 \times 0.2 \times 0.2$
Radiation	Mo- K_{α} ($\lambda = 0.71073$)
20 range for data collection/°	4.16 to 54.2
Index ranges	$-21 \leq h \leq 21, -16 \leq k \leq 16, -20 \leq l \leq 20$
Reflections collected	13294
Independent reflections	$6902 [R_{int} = 0.0812, R_{sigma} = 0.1038]$
Data/restraints/parameters	6902/0/372
Goodness-of-fit on F ²	1.026
Final R indexes [I>=2σ (I)]	$R_1 = 0.0560$, $wR_2 = 0.1111$
Final R indexes [all data]	R ₁ = 0.1155, wR ₂ = 0.1300
Largest diff. peak/hole / e Å ⁻³	0.82/-0.99
CCDC number	2091068

3.3 Compound Si(cat^{Cl})₂pyPPh₂ (1-C)

Identification code	mo_dhsb11_0m
Empirical formula	C ₂₉ H ₁₄ Cl ₈ NO ₄ PSi
Formula weight	783.07
Temperature/K	100.0
Crystal system	triclinic
Space group	P-1
a/Å	12.5198(17)
b/Å	12.5964(18)
c/Å	12.8616(17)
α/°	63.404(5)
β/°	83.620(5)
γ/°	86.982(5)
Volume/Å ³	1802.5(4)
Z	2
ρ _{calc} g/cm ³	1.443
µ/mm⁻¹	0.736
F(000)	784.0
Crystal size/mm ³	$0.168 \times 0.049 \times 0.029$
Radiation	Μο-Κ _α (λ = 0.71073)
20 range for data collection/°	4.594 to 53.206
Index ranges	$-15 \le h \le 15, -14 \le k \le 15, -16 \le l \le 16$
Reflections collected	28255
Independent reflections	7420 [$R_{int} = 0.1164$, $R_{sigma} = 0.1124$]
Data/restraints/parameters	7420/0/397
Goodness-of-fit on F ²	0.973
Final R indexes [I>=2σ (I)]	R ₁ = 0.0570, wR ₂ = 0.1207
Final R indexes [all data]	R ₁ = 0.1129, wR ₂ = 0.1423
Largest diff. peak/hole / e Å ⁻³	0.48/-0.58
CCDC number	2091070

3.4 Compound Si(cat^{Cl})₂pyCH₂PPh₂ (1-D)

Identification code	mo_dh301_0ma	mo_dh416_0m
Empirical formula	C ₃₀ H ₁₆ Cl ₈ NO ₄ PSi	C ₃₂ H ₂₀ Cl ₁₂ NO ₄ PSi
Formula weight	797.10	966.95
Temperature/K	100.0	100.0
Crystal system	monoclinic	triclinic
Space group	P21/c	P-1
a/Å	23.136(4)	8.7056(5)
b/Å	12.559(2)	11.1906(6)
c/Å	24.311(4)	20.7094(10)
α/°	90	77.511(2)
β/°	115.803(6)	89.089(2)
γ/°	90	75.072(2)
Volume/Å ³	6360.0(19)	1901.61(18)
Z	8	2
ρ _{calc} g/cm ³	1.665	1.689
µ/mm⁻¹	0.836	0.987
F(000)	3200.0	968.0
Crystal size/mm ³	$0.116 \times 0.086 \times 0.074$	$0.41 \times 0.329 \times 0.17$
Radiation	Μο- <i>K</i> _α (λ = 0.71073)	Μο- <i>K</i> _α (λ = 0.71073)
20 range for data collection/°	3.722 to 56.076	3.944 to 60.118
Index ranges	$-30 \le h \le 30, -15 \le k \le 15,$	$-11 \le h \le 12, -15 \le k \le 15,$
	-28 ≤ l ≤ 28	-28 ≤ l ≤ 29
Reflections collected	115559	36496
Independent reflections	13044 [R _{int} = 0.0784,	10828 [R _{int} = 0.0368,
	R _{sigma} = 0.0337]	R _{sigma} = 0.0354]
Data/restraints/parameters	13044/0/811	10828/0/460
Goodness-of-fit on F ²	1.079	1.028
Final R indexes [I>=2σ (I)]	$R_1 = 0.0956$, $wR_2 = 0.1757$	$R_1 = 0.0312$, $wR_2 = 0.0692$
Final R indexes [all data]	R ₁ = 0.1255, wR ₂ = 0.1971	R ₁ = 0.0391, wR ₂ = 0.0729
Largest diff. peak/hole / e Å ⁻³	0.78/-0.90	0.57/-0.65
CCDC number	2091082	2091071

3.5 Compound Si(cat^{Cl})₂pyNMe₂·H₂CO (**1-(OCH₂)-A**)

Identification code	mo_dh390_0m	
Empirical formula	$C_{20}H_{12}CI_8N_2O_5Si$	
Formula weight	672.01	
Temperature/K	100.0	
Crystal system	monoclinic	
Space group	P21/c	
a/Å	14.3396(13)	
b/Å	9.8161(11)	
c/Å	18.6371(17)	
α/°	90	
β/°	108.642(4)	
γ/°	90	
Volume/Å3	2485.7(4)	
Z	4	
ρcalcg/cm3	1.796	
μ/mm-1	0.993	
F(000)	1344.0	
Crystal size/mm3	0.126 × 0.104 × 0.045	
Radiation	Μο- <i>K</i> _α (λ = 0.71073)	
20 range for data collection/°	4.614 to 52.93	
Index ranges	-17 ≤ h ≤ 17, -12 ≤ k ≤ 10, -23 ≤ l ≤ 23	
Reflections collected	34627	
Independent reflections	5023 [Rint = 0.0886, Rsigma = 0.0556]	
Data/restraints/parameters	5023/0/327	
Goodness-of-fit on F2	1.017	
Final R indexes [I>=2σ (I)]	R1 = 0.0629, wR2 = 0.1556	
Final R indexes [all data]	R1 = 0.1017, wR2 = 0.1857	
Largest diff. peak/hole / e Å-3	0.61/-0.52	
CCDC number	2091072	

 $3.6 \ Compound \ [(cat^{Cl})_2Si-O-Si(cat^{Cl})_2][C_{21}H_{25}N_4F] \ ([\textbf{1}-O-\textbf{1}][C_{21}H_{25}N_4F])$

Identification code	mo_dhsb52_0m	
Empirical formula	$C_{45}H_{25}CI_{16}FN_4O_9Si_2$	
Formula weight	1408.07	
Temperature/K	100	
Crystal system	triclinic	
Space group	P-1	
a/Å	13.35(2)	
b/Å	14.77(4)	
c/Å	16.46(3)	
α/°	86.32(7)	
β/°	78.14(3)	
γ/°	82.12(7)	
Volume/Å3	3144(12)	
Z	2	
ρcalcg/cm3	1.488	
μ/mm-1	0.790	
F(000)	1408.0	
Crystal size/mm3	$0.74 \times 0.112 \times 0.1$	
Radiation	Μο- <i>K</i> _α (λ = 0.71073)	
20 range for data collection/°	4.258 to 47.056	
Index ranges	$-14 \le h \le 14$, $-16 \le k \le 16$, $-18 \le l \le 18$	
Reflections collected	23797	
Independent reflections	9126 [Rint = 0.1713, Rsigma = 0.2143]	
Data/restraints/parameters	9126/0/674	
Goodness-of-fit on F2	0.939	
Final R indexes [I>=2σ (I)]	R1 = 0.0858, wR2 = 0.1856	
Final R indexes [all data]	R1 = 0.1995, wR2 = 0.2430	
Largest diff. peak/hole / e Å-3	0.50/-0.44	
CCDC number	2091073	

3.7 Compound Si(cat^{Cl})₂pyPPh₂·(*p*-Me-BA) (**1-(***p***-Me-BA)-C**)

Identification code	mo_dh410_0m	mo_dhsb43_0ma
Empirical formula	C ₃₇ H ₂₂ Cl ₈ NO ₅ PSi	$C_{39}H_{26}CI_{12}NO_5PSi$
Formula weight	903.21	1073.07
Temperature/K	100.0	100.0
Crystal system	monoclinic	orthorhombic
Space group	C2/c	Pna2 ₁
a/Å	33.002(6)	15.5399(11)
b/Å	15.336(3)	16.4844(12)
c/Å	18.448(4)	17.4224(11)
α/°	90	90
β/°	119.585(7)	90
γ/°	90	90
Volume/Å3	8120(3)	4463.0(5)
Z	8	4
ρcalcg/cm3	1.478	1.597
μ/mm-1	0.667	0.852
F(000)	3648.0	2160.0
Crystal size/mm3	$0.581 \times 0.428 \times 0.398$	$0.31 \times 0.24 \times 0.15$
Radiation	Μο- <i>K</i> _α (λ = 0.71073)	Μο- <i>K</i> _α (λ = 0.71073)
20 range for data collection/°	4.368 to 56.798	4.294 to 55.132
Index ranges	-44 ≤ h ≤ 43, -20 ≤ k ≤ 20,	$-20 \le h \le 20, -21 \le k \le 21,$
	-24 ≤ l ≤ 24	-22 ≤ l ≤ 22
Reflections collected	138258	239193
Independent reflections	10166 [Rint = 0.0751,	10295 [Rint = 0.0954,
	Rsigma = 0.0286]	Rsigma = 0.0274]
Data/restraints/parameters	10166/0/479	10295/1/533
Goodness-of-fit on F2	1.026	1.061
Final R indexes [I>=2σ (I)]	R1 = 0.0341, wR2 = 0.0857	R1 = 0.0269, wR2 = 0.0634
Final R indexes [all data]	R1 = 0.0440, wR2 = 0.0927	R1 = 0.0308, wR2 = 0.0654
Largest diff. peak/hole / e Å-3	0.42/-0.42	0.32/-0.38
Flack parameter	-	0.015(15)
CCDC number	2091074	2091083

3.8 Compound Si(cat^{Cl})₂pyPPh₂·(BA) (**1-(BA)-C**)

Identification code	P-1_a	
Empirical formula	$C_{36.5}H_{21}CI_9NO_5PSi$	
Formula weight	931.65	
Temperature/K	100.0	
Crystal system	triclinic	
Space group	P-1	
a/Å	15.162(2)	
b/Å	16.186(2)	
c/Å	18.463(3)	
α/°	109.982(5)	
β/°	90.192(5)	
γ/°	107.734(6)	
Volume/Å3	4026.6(10)	
Z	4	
ρcalcg/cm3	1.537	
μ/mm-1	0.739	
F(000)	1876.0	
Crystal size/mm3	$0.124 \times 0.116 \times 0.059$	
Radiation	Μο- <i>K</i> _α (λ = 0.71073)	
20 range for data collection/°	3.908 to 49.998	
Index ranges	$-19 \leq h \leq 19, -20 \leq k \leq 19, 0 \leq l \leq 23$	
Reflections collected	14102	
Independent reflections	14102 [Rint = ?, Rsigma = 0.1871]	
Data/restraints/parameters	14102/0/964	
Goodness-of-fit on F2	1.045	
Final R indexes [I>=2σ (I)]	R1 = 0.0827, wR2 = 0.2036	
Final R indexes [all data]	R1 = 0.1742, wR2 = 0.2379	
Largest diff. peak/hole / e Å-3	0.73/-0.75	
CCDC number	2091075	

3.9 Compound Si(cat^{Cl})₂pyCH₂PPh₂·(*p*-Me-BA) (**1-(***p***-Me-BA)-D**)

Identification code	mo_dh415_0m
Empirical formula	$C_{40}H_{28}CI_{12}NO_5PSi$
Formula weight	1087.09
Temperature/K	100.0
Crystal system	monoclinic
Space group	P21/n
a/Å	12.6888(10)
b/Å	17.8472(12)
c/Å	20.3151(17)
α/°	90
β/°	90.872(3)
γ/°	90
Volume/Å3	4600.0(6)
Z	4
ρcalcg/cm3	1.570
μ/mm-1	0.827
F(000)	2192.0
Crystal size/mm3	$0.288 \times 0.117 \times 0.09$
Radiation	Μο- <i>K</i> _α (λ = 0.71073)
20 range for data collection/°	3.938 to 52.85
Index ranges	-15 ≤ h ≤ 15, -22 ≤ k ≤ 22, -25 ≤ l ≤ 25
Reflections collected	64408
Independent reflections	9452 [Rint = 0.0742, Rsigma = 0.0423]
Data/restraints/parameters	9452/26/552
Goodness-of-fit on F2	1.033
Final R indexes [I>=2σ (I)]	R1 = 0.0361, wR2 = 0.0791
Final R indexes [all data]	R1 = 0.0529, wR2 = 0.0879
Largest diff. peak/hole / e Å-3	0.76/-0.45
CCDC number	2091076

3.10 Compound Si(cat^{Cl})₂PPh₃·(*p*-Me-BA) (**1-(***p***-Me-BA)-PPh₃**)

Identification code	mo_dh400_0m
Empirical formula	$C_{39}H_{25}CI_{10}O_5PSi$
Formula weight	987.15
Temperature/K	100.0
Crystal system	triclinic
Space group	P-1
a/Å	11.9675(9)
b/Å	12.4047(10)
c/Å	16.8129(13)
α/°	94.060(3)
β/°	106.632(3)
γ/°	117.844(3)
Volume/Å3	2052.1(3)
Z	2
ρcalcg/cm3	1.598
μ/mm-1	0.792
F(000)	996.0
Crystal size/mm3	$0.271 \times 0.103 \times 0.08$
Radiation	Μο- <i>K</i> _α (λ = 0.71073)
20 range for data collection/°	4.006 to 54.524
Index ranges	$-15 \le h \le 15$, $-15 \le k \le 15$, $-21 \le l \le 21$
Reflections collected	83194
Independent reflections	9087 [Rint = 0.0528, Rsigma = 0.0259]
Data/restraints/parameters	9087/1/516
Goodness-of-fit on F2	1.042
Final R indexes [I>=2σ (I)]	R1 = 0.0331, wR2 = 0.0804
Final R indexes [all data]	R1 = 0.0390, wR2 = 0.0844
Largest diff. peak/hole / e Å-3	0.72/-0.60
CCDC number	2091077

3.11 Compound Si(cat^{Cl})₂PPh₃·(*p*-NO₂-BA) (**1-(***p***-NO₂-BA)-PPh₃**)

Identification code	mo_dh431_0m_4
Empirical formula	C ₇₇ H ₄₆ Cl ₂₂ N ₂ O ₁₄ P ₂ Si ₂
Formula weight	2121.18
Temperature/K	100.0
Crystal system	triclinic
Space group	P-1
a/Å	11.1778(8)
b/Å	11.9331(9)
c/Å	17.3665(12)
α/°	83.309(3)
β/°	88.887(2)
γ/°	67.403(3)
Volume/Å3	2123.2(3)
Z	1
ρcalcg/cm3	1.659
μ/mm-1	0.837
F(000)	1066.0
Crystal size/mm3	$0.22 \times 0.186 \times 0.104$
Radiation	Μο-Κ _α (λ = 0.71073)
20 range for data collection/°	3.948 to 49.992
Index ranges	$-12 \le h \le 13, -12 \le k \le 14, -20 \le l \le 20$
Reflections collected	6981
Independent reflections	6981 [Rint = ?, Rsigma = 0.0668]
Data/restraints/parameters	6981/477/550
Goodness-of-fit on F2	1.055
Final R indexes [I>=2σ (I)]	R1 = 0.0530, wR2 = 0.1134
Final R indexes [all data]	R1 = 0.0743, wR2 = 0.1207
Largest diff. peak/hole / e Å-3	0.56/-0.42
CCDC number	2091078

3.12 Compound Si(cat^{Cl})₂(hppH)₂ (1-(hppH)₂)

Identification code	mo_dh457B_2_0m
Empirical formula	$C_{26}H_{26}CI_8N_6O_4Si$
Formula weight	798.22
Temperature/K	100.0
Crystal system	triclinic
Space group	P-1
a/Å	8.4949(8)
b/Å	8.5627(7)
c/Å	11.6916(9)
α/°	110.389(3)
β/°	91.093(3)
γ/°	90.987(4)
Volume/Å ³	796.75(12)
Z	1
ρ _{calc} g/cm ³	1.664
µ/mm⁻¹	0.790
F(000)	406.0
Crystal size/mm ³	0.209 × 0.075 × 0.05
Radiation	Μο- <i>K</i> _α (λ = 0.71073)
20 range for data collection/°	4.798 to 57.528
Index ranges	$-11 \leq h \leq 11, -11 \leq k \leq 11, -15 \leq l \leq 15$
Reflections collected	15996
Independent reflections	4071 [R _{int} = 0.0281, R _{sigma} = 0.0249]
Data/restraints/parameters	4071/151/208
Goodness-of-fit on F ²	1.065
Final R indexes [I>=2σ (I)]	R ₁ = 0.0362, wR ₂ = 0.0921
Final R indexes [all data]	$R_1 = 0.0422$, $wR_2 = 0.0950$
Largest diff. peak/hole / e Å ⁻³	0.56/-0.40
CCDC number	2091079

4. Computational Section

Geometry optimizations and single point energy calculations have been performed with ORCA 4.2.3.²⁴ The structures of all involved compounds were optimized with the PBEh-3c/def2-mSVP as implemented in ORCA, using *grid5* settings.²⁵ All calculated structures have been confirmed as energetic minima on the potential energy surface by analytical calculation of harmonic frequencies at the PBEh-3c level, revealing only positive Hessian eigenvalues, or one negative in case of the transition state. Enthalpies at 298.15 K have been calculated at the same level of theory by using the rigid-rotor harmonic oscillator (RRHO) approximation,²⁶ as implemented in ORCA. The following input line was used:

! PBEh-3c Grid5 OPT TightSCF FREQ

Final single point enthalpies were obtained on PW6B95²⁷-D3(BJ)/def2-QZVPP²⁸⁻³⁰ including Grimme's semi-empirical dispersion correction (D3)³¹ with Becke-Johnson damping function (BJ).³²⁻³⁴ In all DFT computations, the resolution-of-identity³⁵ and "chain of spheres"³⁶ approximation in the form of RIJCOSX was used in combination with matching auxiliary basis sets (def2/J).³⁷

! PW6B95 D3BJ def2-QZVPP RIJCOSX def2/J grid5 finalgrid7 gridx6 TightSCF

Solvation free energies were obtained by COSMO-RS in dichloromethane as implemented in ADF³⁸ based on BP86/TZP³⁹ single point energy calculations for the electrostatic solute-solvent interaction on the PBEh-3c gas-phase structures.⁴⁰⁻⁴³ The following input line was used:

The numerical data and a summary of all the relevant values can be found in tables S4.1-10.

4.1 Reaction of 1-A with formaldehyde

As a first reaction step the dissociation of one of the two donor sites was considered necessary. Ring opening by Si-NMe₂-bond dissociation (see Fig. S4.1) is thermodynamically favored and proceeds *via* a slightly lower energetic pathway than ring opening by Si-py-bond cleavage (see Fig. S4.2). Opening of the Si-NMe₂-bond is followed by coordination of the formaldehyde *via* an easily accessible transition state ($\Delta G^* = 109.0 \text{ kJ mol}^{-1}$). **INT2** converts through a slightly lower transition states to final product **1-(OCH₂)-A** by concerted Si-N-bond elongation and C=O insertion in the binding pocket.

The second conceivable pathway proceeds in a similar fashion. After ring opening by Si-py-bond cleavage, the formaldehyde coordinates to the silicon center. Subsequently, the base **A** rotates along the Si-NMe₂-bond until the N(py) reaches spatial proximity to attack the aldehydic carbon atom, yielding the thermodynamic minimum **1-(OCH₂)-A** without another reaction barrier.

Fig. S4.1: Reaction coordinate for the formaldehyde activation with **1-A** using density functional theory. Calculations were carried out at the PW6B95-D3(BJ)/def2-QZVPP//PBEh-3c level of theory. The given values are free enthalpies and were obtained after considering the solvent environment (CH_2Cl_2) with the COSMO-RS scheme. The values in square brackets correspond to gas phase enthalpies.

Fig. S4.2: Reaction coordinate for the formaldehyde activation with **1-A** *via* the high-energetic pathway using density functional theory. Calculations were carried out at the PW6B95-D3(BJ)/def2-QZVPP//PBEh-3c level of theory. The given values are free enthalpies and were obtained after considering the solvent environment (CH_2Cl_2) with the COSMO-RS scheme. The values in square brackets correspond to gas phase enthalpies.

Compound	∆H (PBEh-3c)	∆G (PBEh-3c)	∆H (PW6B95)	∆G (PW6B95)	∆H (PW6B95) + COSMO RS	∆G (PW6B95) + COSMO RS	
1-A + H₂CO	0.00	0.00	0.00	0.00	0.00	0.00	
TS1 + H₂CO	20.72	21.72	15.53	16.53	29.60	29.38	
INT1 + H ₂ CO	20.76	17.56	9.29	6.09	29.10	24.08	
TS2	33.92	82.45	34.98	83.51	72.38	109.03	
INT2	18.52	67.84	19.70	69.03	41.44	80.25	
TS3	31.47	83.90	23.22	75.64	63.10	104.98	
1-(OCH₂)-A	-87.27	-31.07	-87.62	-31.41	-66.33	-18.50	
energies for higher	energetic path	<u>1</u>					
TS1' + H ₂ CO	45.70	51.44	35.22	40.95	51.96	57.25	
INT1' + H ₂ CO	41.85	43.25	30.23	31.63	52.34	53.79	
TS2'	34.03	84.35	24.80	75.12	70.76	110.63	
INT2'	19.65	72.64	11.77	64.76	49.60	92.15	

Table S4.1: Summary of the energies relative to the ground state **1-A + H₂CO**, obtained by PBEh-3c, PW6B95 and PW6B95 incl. COSMO RS

Table S4.2: Numerical data for the involved structures in the reaction of 1-A and formaldehyde (H ₂ CO), obtained by PBEh-3c, PW6B95 and PW6B95 incl. COSMO RS.
--

Compound	Final Gibbs free energy [Eh]	Final entropy term [Eh]	Final entropy term [kJ mol ⁻¹]	Total enthalpy H [Eh]	Total correction [Eh]	Total correction [kJ mol ⁻¹]	final singlepoint energy [Eh]	final singlepoint energy [kJ mol ⁻¹]	H [kJ mol ⁻¹] = E _{el} (SP) + total corr. (FREQ) + k _B T	G [kJ mol ⁻¹] = H - final entropy term (FREQ)	∆H [kJ mol ⁻¹]	∆G (295.15K) [kJ mol ⁻¹]	H [kJ mol ⁻¹]	G (295.15K) [kJ mol ⁻¹]
	PBEh-3c Grid5 OPT TightSCF FREQ						PW6B95/def2-QZVPP			COSM	COSMO RS		rr. values	
H₂CO	-114.245036	0.025446	66.81	-114.219591	0.030515	80.12	-114.689604	-301117.51	-301037.39	-301104.20	-19.65	-10.50	-301057.04	-301114.70
1-A	-5104.713327	0.090483	237.56	-5104.622844	0.307982	808.61	-5117.040161	-13434787.10	-13433978.49	-13434216.05	-129.88	-120.68	-13434108.37	-13434336.74
TS1	-5104.705052	0.090101	236.56	-5104.614951	0.306664	805.15	-5117.032927	-13434768.10	-13433962.96	-13434199.52	-115.80	-107.83	-13434078.76	-13434307.35
INT1	-5104.706638	0.091701	240.76	-5104.614937	0.308118	808.96	-5117.036760	-13434778.17	-13433969.20	-13434209.96	-110.06	-102.69	-13434079.26	-13434312.66
TS2	-5218.926959	0.097445	255.84	-5218.829514	0.340387	893.69	-5231.718330	-13735874.59	-13734980.90	-13735236.75	-112.12	-105.66	-13735093.03	-13735342.41
INT2	-5218.932524	0.097141	255.04	-5218.835383	0.341839	897.50	-5231.725603	-13735893.68	-13734996.19	-13735251.23	-127.78	-119.96	-13735123.97	-13735371.19
TS3	-5218.926407	0.095960	251.94	-5218.830447	0.340806	894.79	-5231.723230	-13735887.45	-13734992.67	-13735244.61	-109.64	-101.85	-13735102.31	-13735346.46
1-(OCH ₂)-A	-5218.970196	0.094520	248.16	-5218.875676	0.344804	905.28	-5231.769443	-13736008.79	-13735103.50	-13735351.67	-128.23	-118.27	-13735231.74	-13735469.94
<u>energies for hi</u>	igher energetic path													
TS1'	-5104.693734	0.088297	231.82	-5104.605437	0.307075	806.22	-5117.025841	-13434749.50	-13433943.27	-13434175.10	-113.14	-104.39	-13434056.41	-13434279.48
INT1'	-5104.696853	0.089949	236.16	-5104.606904	0.308285	809.40	-5117.028949	-13434757.66	-13433948.26	-13434184.42	-107.77	-98.53	-13434056.03	-13434282.95
TS2'	-5218.926236	0.096763	254.05	-5218.829473	0.340850	894.90	-5231.722672	-13735885.99	-13734991.09	-13735245.14	-103.56	-95.66	-13735094.65	-13735340.80
INT2'	-5218.930696	0.095745	251.38	-5218.834952	0.342610	899.52	-5231.729394	-13735903.64	-13735004.12	-13735255.49	-111.70	-103.80	-13735115.81	-13735359.29
1.4.1.60	5210 050262	0 115020	204.27	5240 042425	0 220 400	000 72	5224 220205	12725004 61	12225015 00	12725220.20	140 52	121 10	12725165 44	12725451 44
1-A + H ₂ CO	-5218.958363	0.115929	304.37	-5218.842435	0.338498	888.73	-5231.729765	-13/35904.61	-13/35015.88	-13/35320.26	-149.53	-131.18	-13/35165.41	-13/35451.44
	-5218.950089	0.115547	303.37	-5218.834541	0.337179	005.40	-5231.722530	-13/35885.02	-13/35000.35	-13/30303.72	-135.45	-118.33	-13/35135.81	-13/35422.05
TS2	-5333.215232	0.007445	314.97	-5187.243403	0.375320	965.40	-2340.429047	-1403/120.30	-14030140.90	-14030455.87	-147.88	-128.77	-14030288.78	12725242 41
132	-3218.920939	0.097445	255.64	-3210.029314	0.340387	807 50	-5251.716550	12725002 60	12724006 10	12725250.75	-112.12	-105.00	12725122.03	12725271 10
1112	-5218.932324	0.097141	255.04	-5218.8355355	0.341833	897.50	-5231.723003	-12725887 /5	-1272/002 67	-12725244 61	-127.78	-101 85	-12725102 21	-12725246 46
1-(OCH_)-A	-5218.920407	0.094520	231.34	-5218.875676	0 344804	905.28	-5231 769443	-13736008 79	-13735103 50	-13735351 67	-128 23	-118 27	-13735231 74	-13735469 94
energies for hi	inher energetic nath	0.05 1020	210120	52101070070	0.011001	505120	52021/05110	10700000075	10,00100100	10,0000110,	120120	110127	10700201171	20700100101
1-A + H ₂ CO	-5218 958363	0 115929	304 37	-5218 842435	0 338498	888 73	-5231 729765	-13735904 61	-13735015 88	-13735320 26	-149 53	-131 18	-13735165 41	-13735451 44
TS1' + H ₂ CO	-5218 938770	0 113743	298.63	-5218 825028	0 337590	886 34	-5231 715444	-13735867.01	-13734980 67	-13735279 30	-132 79	-114 89	-13735113 45	-13735394 19
INT1' + H2CO	-5218.941890	0.115395	302.97	-5218.826494	0.338801	889.52	-5231.718553	-13735875.17	-13734985.65	-13735288.62	-127.42	-109.02	-13735113.07	-13735397.65
TS2'	-5218.926236	0.096763	254.05	-5218.829473	0.340850	894.90	-5231.722672	-13735885.99	-13734991.09	-13735245.14	-103.56	-95.66	-13735094.65	-13735340.80
INT2'	-5218.930696	0.095745	251.38	-5218.834952	0.342610	899.52	-5231.729394	-13735903.64	-13735004.12	-13735255.49	-111.70	-103.80	-13735115.81	-13735359.29
1-(OCH ₂)-A	-5218.970196	0.094520	248.16	-5218.875676	0.344804	905.28	-5231.769443	-13736008.79	-13735103.50	-13735351.67	-128.23	-118.27	-13735231.74	-13735469.94

absolute values

summed values

4.2 Reaction of **1-B** with formaldehyde

As a first reaction step the dissociation of the two donor sites is possible. Ring opening by Si-NMe₂bond dissociation (black) is slightly thermodynamically favored compared to the corresponding reaction pathway through initial Si-pyridine bond dissociation (grey).

Fig. S4.3: Reaction coordinate for the formaldehyde activation with **1-B** using density functional theory. Calculations were carried out at the PW6B95-D3(BJ)/def2-QZVPP//PBEh-3c level of theory. The given values are free enthalpies and were obtained after considering the solvent environment (CH₂Cl₂) with the COSMO-RS scheme. The values in square brackets correspond to gas phase enthalpies. Ring opening by Si-NMe₂-bond cleavage (black) is slightly thermodynamically favored compared to the corresponding reaction pathway through initial Si-pyridine bond dissociation.

Compound	∆H (PBEh-3c)	∆G (PBEh-3c)	∆H (PW6B95)	∆G (PW6B95)	Δ H (PW6B95) + COSMO RS	Δ G (PW6B95) + COSMO RS
1-B + H ₂ CO	0.00	0.00	0.00	0.00	0.00	0.00
INT1 + H ₂ CO	97.99	89.79	88.23	80.02	106.55	97.15
TS1	100.80	149.57	100.37	149.14	125.02	164.74
INT2	-10.72	44.93	0.12	55.78	-25.32	25.46
1-(OCH₂)-B	-28.24	21.41	-17.62	32.04	-10.27	32.42
<u>energies for al</u>	ternate path via	<u>a Si-py dissociati</u>	<u>on</u>	0.00	0.00	0.00
1-B + H ₂ CO	0.00	0.00	0.00	0.00	0.00	0.00
INT1' + H ₂ CO	82.27	78.79	74.85	71.37	98.06	94.93
TS1'	96.04	145.91	94.55	144.42	132.21	171.62
INT2'	83.38	132.44	81.20	130.25	109.99	149.89
TS2'	100.85	155.35	97.49	151.98	124.43	169.04
INT3'	-2.19	55.67	8.17	66.02	0.01	53.67
1-(OCH ₂)-B'	-26.49	23.73	-11.39	38.82	7.11	49.74

Table S4.3: Summary of the energies relative to the ground state **1-B + H₂CO**, obtained by PBEh-3c, PW6B95 and PW6B95 incl. COSMO RS

Table S4.4: Numerical data for the involved structures in the reaction of 1-B and formaldehyde (H2CO), obtained by PBEh-3c, PW6B95 and PW6B95 incl. COSMO RS.

	Compound	Final Gibbs free energy [Eh]	Final entropy term [Eh]	Final entropy term [kJ mol ⁻¹]	Total enthalpy H [Eh]	Total correction [Eh]	Total correction [kJ mol ⁻¹]	final singlepoint energy [Eh]	final singlepoint energy [kJ mol ⁻¹]	H [kJ mol ⁻¹] = E _{el} (SP) + total corr. (FREQ) + k _B T	G [kJ mol ⁻¹] = H - final entropy term (FREQ)	∆H [kJ mol ^{_1}]	ΔG (295.15K) [kJ mol ⁻¹]	H [kJ mol ⁻¹]	G (295.15K) [kJ mol ⁻¹]	
			! PB	Eh-3c Grid5 Ol	PT TightSCF FREG	1		PW6B95/de	f2-QZVPP			COSM	10 RS	solvent corr	solvent corrected values	
	H₂CO	-114.245036	0.025446	66.81	-114.219591	0.030515	80.12	-114.689604	-301117.51	-301037.39	-301104.20	-19.65	-10.50	-301057.04	-301114.70	
	1-B	-5143.925369	0.090844	238.51	-5143.834525	0.339662	891.78	-5156.440762	-13538233.36	-13537341.58	-13537580.09	-132.24	-123.47	-13537473.82	-13537703.56	
	INT1	-5143.891170	0.093969	246.72	-5143.797201	0.338551	888.87	-5156.406047	-13538142.22	-13537253.35	-13537500.07	-113.91	-106.34	-13537367.27	-13537606.41	
	TS1	-5258.113438	0.097714	256.55	-5258.015724	0.371930	976.50	-5271.093888	-13839255.10	-13838278.60	-13838535.15	-127.24	-118.37	-13838405.84	-13838653.52	
_	INT2	-5258.153291	0.095091	249.66	-5258.058200	0.376033	987.27	-5271.136174	-13839366.13	-13838378.85	-13838628.51	-177.33	-164.29	-13838556.18	-13838792.80	
j S	1-(ОСН ₂)-В	-5258.162251	0.097379	255.67	-5258.064873	0.376248	987.84	-5271.143146	-13839384.43	-13838396.59	-13838652.26	-144.55	-133.59	-13838541.13	-13838785.84	
2	energies for al	ternate path via	Si-py dissocia	<u>tion</u>												
יר	H₂CO	-114.245036	0.025446	66.81	-114.219591	0.030515	80.12	-114.689604	-301117.51	-301037.39	-301104.20	-19.65	-10.50	-301057.04	-301114.70	
	1-B	-5143.925369	0.090844	238.51	-5143.834525	0.339662	891.78	-5156.440762	-13538233.36	-13537341.58	-13537580.09	-132.24	-123.47	-13537473.82	-13537703.56	
Ś	INT1'	-5143.895358	0.092168	241.99	-5143.803190	0.339242	890.68	-5156.411834	-13538157.41	-13537266.73	-13537508.72	-109.02	-99.91	-13537375.75	-13537608.63	
	TS1'	-5258.114831	0.097294	255.45	-5258.017537	0.372366	977.65	-5271.096543	-13839262.07	-13838284.43	-13838539.87	-114.23	-106.77	-13838398.65	-13838646.64	
	INT2'	-5258.119963	0.097606	256.26	-5258.022357	0.373605	980.90	-5271.102867	-13839278.68	-13838297.78	-13838554.04	-123.10	-114.33	-13838420.87	-13838668.37	
	TS2'	-5258.111236	0.095533	250.82	-5258.015704	0.372687	978.49	-5271.095745	-13839259.98	-13838281.49	-13838532.31	-124.94	-116.91	-13838406.43	-13838649.22	
	INT3'	-5258.149202	0.094254	247.46	-5258.054948	0.375874	986.86	-5271.132952	-13839357.66	-13838370.81	-13838618.27	-160.04	-146.33	-13838530.85	-13838764.60	
	1-(OCH ₂)-B'	-5258.161367	0.097162	255.10	-5258.064205	0.375011	984.59	-5271.139539	-13839374.96	-13838390.37	-13838645.47	-133.38	-123.05	-13838523.75	-13838768.52	
	1-B + H ₂ CO	-5258.170405	0.116290	305.32	-5258.054115	0.370177	971.90	-5271.130366	-13839350.87	-13838378.97	-13838684.29	-151.89	-133.97	-13838530.86	-13838818.26	
	INT1 + H ₂ CO	-5258.136206	0.119415	313.52	-5258.016791	0.369067	968.98	-5271.095651	-13839259.73	-13838290.75	-13838604.27	-133.56	-116.84	-13838424.31	-13838721.11	
	TS1	-5258.113438	0.097714	256.55	-5258.015724	0.371930	976.50	-5271.093888	-13839255.10	-13838278.60	-13838535.15	-127.24	-118.37	-13838405.84	-13838653.52	
ņ	INT2	-5258.153291	0.095091	249.66	-5258.058200	0.376033	987.27	-5271.136174	-13839366.13	-13838378.85	-13838628.51	-177.33	-164.29	-13838556.18	-13838792.80	
	1-(ОСН ₂)-В	-5258.162251	0.097379	255.67	-5258.064873	0.376248	987.84	-5271.143146	-13839384.43	-13838396.59	-13838652.26	-144.55	-133.59	-13838541.13	-13838785.84	
2	energies for al	ternate path via	Si-py dissocia	<u>tion</u>												
Ú	1-B + H₂CO	-5258.170405	0.116290	305.32	-5258.054115	0.370177	971.90	-5271.130366	-13839350.87	-13838378.97	-13838684.29	-151.89	-133.97	-13838530.86	-13838818.26	
Ę	INT1' + H ₂ CO	-5258.140395	0.117614	308.80	-5258.022780	0.369757	970.80	-5271.101437	-13839274.92	-13838304.13	-13838612.92	-128.67	-110.41	-13838432.80	-13838723.33	
ñ	TS1'	-5258.114831	0.097294	255.45	-5258.017537	0.372366	977.65	-5271.096543	-13839262.07	-13838284.43	-13838539.87	-114.23	-106.77	-13838398.65	-13838646.64	
	INT2'	-5258.119963	0.097606	256.26	-5258.022357	0.373605	980.90	-5271.102867	-13839278.68	-13838297.78	-13838554.04	-123.10	-114.33	-13838420.87	-13838668.37	
	TS2'	-5258.111236	0.095533	250.82	-5258.015704	0.372687	978.49	-5271.095745	-13839259.98	-13838281.49	-13838532.31	-124.94	-116.91	-13838406.43	-13838649.22	
	INT3'	-5258.149202	0.094254	247.46	-5258.054948	0.375874	986.86	-5271.132952	-13839357.66	-13838370.81	-13838618.27	-160.04	-146.33	-13838530.85	-13838764.60	
	1-(OCH2)-B'	-5258.161367	0.097162	255.10	-5258.064205	0.375011	984.59	-5271.139539	-13839374.96	-13838390.37	-13838645.47	-133.38	-123.05	-13838523.75	-13838768.52	

35

4.3 Reaction of 1-(py)₂ with formaldehyde

Dissociation of the first equivalent pyridine (pathway to the left) is accessible for entropic reason but the enthalpy considerably large. Additionally, the occourence of a termolecular reaction between **1**-(**py**), **py**, and **OCH**₂ renders this pathway entropically disfavoured. Concerted Si-pyridine dissociation and C=O insertion proceeds through a high-energy transition state, leading to **INT1**. The subsequent release of the second equivalent pyridine is slightly endergonic ($\Delta G = 6.1$ kJ mol⁻¹).

Fig. S4.4: Reaction coordinate for the formaldehyde activation with $1-(py)_2$ using density functional theory. Calculations were carried out at the PW6B95-D3(BJ)/def2-QZVPP//PBEh-3c level of theory. The given values are free enthalpies and were obtained after considering the solvent environment (CH₂Cl₂) with the COSMO-RS scheme. The values in square brackets correspond to gas phase enthalpies. Dissociation of the first equivalent pyridine (pathway to the left) is energetically accessible but no reaction pathway from the mono-adduct was found. Concerted Si-pyridine dissociation and C=O insertion proceeds through a high-energy transition state.

		-				
Compound	∆H (PBEh-3c)	ΔG (PBEh-3c)	∆H (PW6B95)	∆G (PW6B95)	∆H (PW6B95) + COSMO RS	ΔG (PW6B95) + COSMO RS
1-(py) + py + H ₂ CO	124.68	65.35	113.69	54.36	92.36	42.27
1-(py) ₂ + H ₂ CO	0.00	0.00	0.00	0.00	0.00	0.00
TS1	57.05	102.84	56.62	102.41	66.35	105.72
INT1	-61.97	-3.12	-47.59	11.26	-49.65	5.12
1-(OCH ₂)-(py) ₂ + py	24.03	24.03	29.14	29.15	8.15	11.24

Table S4.5: Summary of the energies relative to the ground state **1-(py)**₂ + H₂CO, obtained by PBEh-3c, PW6B95 and PW6B95 incl. COSMO RS

	Compound	Final Gibbs free energy [Eh]	Final entropy term [Eh]	Final entropy term [kJ mol ⁻¹]	Total enthalpy H [Eh]	Total correction [Eh]	Total correction [kJ mol ⁻¹]	final singlepoint energy [Eh]	final singlepoint energy [kJ mol ⁻¹]	H [kJ mol ⁻¹] = E _{el} (SP) + total corr. (FREQ) + k _B T	G [kJ mol ⁻¹] = H - final entropy term (FREQ)	∆H [kJ mol ⁻¹]	∆G (295.15K) [kJ mol⁻¹]	H [kJ mol ⁻¹]	G (295.15K) [kJ mol ⁻¹]
			! PE	8Eh-3c Grid5 (OPT TightSCF FRE	Q		PW6B95/de	PW6B95/def2-QZVPP		-QZVPP		0 RS	solvent corrected values	
	H₂CO	-114.245036	0.025446	66.81	-114.219591	0.030515	80.12	-114.689604	-301117.51	-301037.39	-301104.20	-19.65	-10.50	-301057.04	-301114.70
les	ру	-247.665670	0.032455	85.21	-247.633215	0.095842	251.63	-248.715831	-653003.33	-652751.69	-652836.90	-27.27	-18.41	-652778.97	-652855.31
valu	1-(py)	-4971.093881	0.084484	221.81	-4971.009397	0.228642	600.30	-4982.834894	-13082431.22	-13081830.92	-13082052.73	-114.40	-105.93	-13081945.32	-13082158.67
ute	1-(py)2	-5218.784440	0.094341	247.69	-5218.690099	0.328052	861.30	-5231.597596	-13735557.60	-13734696.30	-13734943.99	-120.35	-112.26	-13734816.65	-13735056.25
bsol	TS1	-5332.990305	0.102346	268.71	-5332.887959	0.360428	946.30	-5346.267495	-14036623.38	-14035677.08	-14035945.79	-130.27	-119.45	-14035807.34	-14036065.24
а	INT1	-5333.030664	0.097370	255.65	-5332.933293	0.364215	956.25	-5346.310974	-14036737.53	-14035781.29	-14036036.93	-142.06	-128.90	-14035923.34	-14036165.83
	1-(OCH ₂)-(py) ₂	-5085.354652	0.087329	229.28	-5085.267323	0.265351	696.68	-5097.562893	-13383649.54	-13382952.86	-13383182.14	-133.72	-122.26	-13383086.58	-13383304.41
ī															
sər	1-(py) + py + H ₂ CO	-5333.004587	0.142384	373.83	-5332.862203	0.354999	932.05	-5346.240329	-14036552.06	-14035620.01	-14035993.84	-161.32	-134.84	-13383002.37	-13383273.37
valı	1-(py) ₂ + H ₂ CO	-5333.029476	0.119787	314.50	-5332.909689	0.358568	941.42	-5346.287199	-14036675.11	-14035733.69	-14036048.19	-140.00	-122.76	-14035873.69	-14036170.96
ned	TS1	-5332.990305	0.102346	268.71	-5332.887959	0.360428	946.30	-5346.267495	-14036623.38	-14035677.08	-14035945.79	-130.27	-119.45	-14035807.34	-14036065.24
nmn	INT1	-5333.030664	0.097370	255.65	-5332.933293	0.364215	956.25	-5346.310974	-14036737.53	-14035781.29	-14036036.93	-142.06	-128.90	-14035923.34	-14036165.83
S	1-(OCH ₂)-py + py	-5333.020322	0.119783	314.49	-5332.900538	0.361193	948.31	-5346.278724	-14036652.86	-14035704.55	-14036019.04	-160.99	-140.68	-14035865.55	-14036159.72

Table S4.6: Numerical data for the involved structures in the reaction of 1-(py)₂ and formaldehyde (H₂CO), obtained by PBEh-3c, PW6B95 and PW6B95 incl. COSMO RS.

4.4 Reaction of **1-C** with formaldehyde

The dissociation of the PPh₂-sidearm is only slightly endergonic, and the subsequent insertion of formaldehyde into the P-Si pocket proceeds *via* an easily accessible transition state ($\Delta G^* = 71.1 \text{ kJ} \text{ mol}^{-1}$). The overall reaction is exergonic by 50.7 kJ mol⁻¹.

Fig. S4.5: Reaction coordinate for the formaldehyde activation with **1-C** using density functional theory. Calculations were carried out at the PW6B95-D3(BJ)/def2-QZVPP//PBEh-3c level of theory. The given values are free enthalpies and were obtained after considering the solvent environment (CH_2Cl_2) with the COSMO-RS scheme. The values in square brackets correspond to gas phase enthalpies.

Compound ∆⊦	I (PBEh-3c)∆0	G (PBEh-3c)∆	.H (PW6B95)∠	\G (PW6B95)	∆H (PW6B95) + COSMO RS	ΔG (PW6B95) + COSMO RS
1-C + H ₂ CO	0	0	0	0	0	0
TS1 + H ₂ CO	13.27	17.38	5.80	9.91	13.35	16.98
INT1 + H ₂ CO	15.19	13.59	8.15	6.54	16.27	14.76
TS2	8.44	62.68	14.43	68.67	26.86	71.10
INT2	-68.17	-13.30	-59.47	-4.61	-72.93	-25.39
TS3	-77.73	-20.54	-68.45	-11.27	-81.88	-32.32
1-(OCH ₂)-C	-117.75	-61.99	-113.50	-57.74	-98.38	-50.72

Table S4.7: Summary of the energies relative to the ground state **1-C + H₂CO**, obtained by PBEh-3c, PW6B95 and PW6B95 incl. COSMO RS

Compound	Final Gibbs free energy [Eh]	Final entropy term [Eh]	Final entropy term [kJ mol ⁻¹]	Total enthalpy H [Eh]	Total correction [Eh]	Total correction [kJ mol ⁻¹]	final singlepoint energy [Eh]	final singlepoint energy [kJ mol ⁻¹]	H [kJ mol ⁻¹] = E _{el} (SP) + total corr. (FREQ) + k _B T	G [kJ mol ⁻¹] = H - final entropy term (FREQ)	∆H [kJ mol ⁻¹]	∆G (295.15K) [kJ mol ⁻¹]	H [kJ mol ⁻¹]	G (295.15K) [kJ mol ⁻¹]
		! PBI	Eh-3c Grid5 (OPT TightSCF FRE	2		PW6B95/	PW6B95/def2-QZVPP			COSN	10 RS	solvent corrected values	
H₂CO	-114.245036	0.025446	66.81	-114.219591	0.030515	80.12	-114.69	-301117.51	-301037.39	-301104.20	-19.65	-10.50	-301057.04	-301114.70
1-C	-5773.566918	0.105116	275.98	-5773.461802	0.417891	1097.17	-5788.04	-15196501.15	-15195403.97	-15195679.96	-133.26	-124.72	-15195537.23	-15195804.68
TS1	-5773.560300	0.103551	271.87	-5773.456750	0.416992	1094.81	-5788.04	-15196492.99	-15195398.17	-15195670.05	-125.71	-117.65	-15195523.89	-15195787.70
INT1	-5773.561742	0.105727	277.59	-5773.456016	0.417950	1097.33	-5788.04	-15196493.16	-15195395.83	-15195673.41	-125.13	-116.50	-15195520.96	-15195789.91
TS2	-5887.788081	0.109902	288.55	-5887.678179	0.451533	1185.50	-5902.73	-15497612.44	-15496426.94	-15496715.49	-140.47	-132.79	-15496567.41	-15496848.28
INT2	-5887.817022	0.109665	287.93	-5887.707357	0.453670	1191.11	-5902.76	-15497691.95	-15496500.84	-15496788.77	-166.36	-156.00	-15496667.20	-15496944.77
TS3	-5887.819779	0.108782	285.61	-5887.710997	0.452499	1188.04	-5902.76	-15497697.86	-15496509.82	-15496795.43	-166.34	-156.27	-15496676.16	-15496951.70
1-(OCH ₂)-C	-5887.835566	0.109324	287.03	-5887.726242	0.453473	1190.59	-5902.78	-15497745.46	-15496554.87	-15496841.90	-137.79	-128.20	-15496692.66	-15496970.10
I														
1-C + H ₂ CO	-5887.811955	0.130562	342.79	-5887.681393	0.448406	1177.29	-5902.73	-15497618.66	-15496441.37	-15496784.16	-152.91	-135.22	-15496594.28	-15496919.38
TS1 + H ₂ CO	-5887.805337	0.128997	338.68	-5887.676340	0.447507	1174.93	-5902.73	-15497610.50	-15496435.57	-15496774.25	-145.36	-128.15	-15496580.93	-15496902.40
INT2 + H ₂ CO	-5887.806779	0.131173	344.39	-5887.675606	0.448466	1177.45	-5902.73	-15497610.67	-15496433.22	-15496777.62	-144.79	-127.00	-15496578.01	-15496904.61
TS2	-5887.788081	0.109902	288.55	-5887.678179	0.451533	1185.50	-5902.73	-15497612.44	-15496426.94	-15496715.49	-140.47	-132.79	-15496567.41	-15496848.28
INT3	-5887.817022	0.109665	287.93	-5887.707357	0.453670	1191.11	-5902.76	-15497691.95	-15496500.84	-15496788.77	-166.36	-156.00	-15496667.20	-15496944.77
TS3	-5887.819779	0.108782	285.61	-5887.710997	0.452499	1188.04	-5902.76	-15497697.86	-15496509.82	-15496795.43	-166.34	-156.27	-15496676.16	-15496951.70
1-(OCH ₂)-C	-5887.835566	0.109324	287.03	-5887.726242	0.453473	1190.59	-5902.78	-15497745.46	-15496554.87	-15496841.90	-137.79	-128.20	-15496692.66	-15496970.10

Table S4.8: Numerical data for the involved structures in the reaction of 1-C and formaldehyde (H₂CO), obtained by PBEh-3c, PW6B95 and PW6B95 incl. COSMO RS.

absolute values

summed values

4.5 Reaction of 1-(PPh₃)₂ with formaldehyde

The dissociation of one PPh₃ is almost thermoneutral and entropy-driven, thus much less unfavorable in comparison to the dissociation of pyridine from 1-(pyridine)₂ (cf. Figure S4.4).

Fig. S4.6: Reaction coordinate for the formaldehyde activation with $1-(PPh_3)_2$ using density functional theory. Calculations were carried out at the PW6B95-D3(BJ)/def2-QZVPP//PBEh-3c level of theory. The given values are free enthalpies and were obtained after considering the solvent environment (CH₂Cl₂) with the COSMO-RS scheme. The values in square brackets correspond to gas phase enthalpies.

Table S4.9: Summary of the energies relative to the ground state 1-(PPh ₃) ₂ + H ₂ CO, obtained by
PBEh-3c, PW6B95 and PW6B95 incl. COSMO RS.

Compound	∆H (PBEh-3c)	∆G (PBEh-3c)	∆H (PW6B95)	∆G (PW6B95)	∆H (PW6B95) + COSMO RS	Δ G (PW6B95) + COSMO RS
1-(PPh ₃) ₂ + H ₂ CO	0.00	0.00	0.00	0.00	0.00	0.00
$1-(PPh_3) + PPh_3 + H_2CO$	100.42	32.53	91.53	23.64	58.99	-1.10
INT1 + PPh3	51.23	33.31	54.29	36.37	28.83	9.82
INT2	-105.64	-51.10	-102.16	-47.62	-121.05	-70.49
1-(OCH ₂)-PPh ₃ + PPh ₃	-33.78	-48.48	-32.07	-46.76	-85.62	-98.40

	Compound	Final Gibbs free energy [Eh]	Final entropy term [Eh]	Final entropy term [kJ mol ⁻¹]	Total enthalpy H [Eh]	Total correction [Eh]	Total correction [kJ mol ⁻¹]	final singlepoint energy [Eh]	final singlepoint energy [kJ mol ⁻¹]	H [kJ mol ⁻¹] = E _{el} (SP) + total corr. (FREQ) + k _B T	G [kJ mol ⁻¹] = H - final entropy term (FREQ)	∆H [kJ mol ⁻¹]	∆G (295.15K) [kJ mol ⁻¹]	H [kJ mol ⁻¹]	G (295.15K) [kJ mol ⁻¹]
	! PBEh-3c Grid5 OPT TightSCF FREQ					PW6B95/def2-QZVPP				COSMO RS		solvent corrected values			
absolute values	H₂CO	-114.245036	0.025446	66.81	-114.219591	0.030515	80.12	-114.689604	-301117.51	-301037.39	-301104.20	-19.65	-10.50	-301057.04	-301114.70
	PPh ₃	-1034.118852	0.058289	153.04	-1034.060562	0.297843	781.99	-1037.857753	-2724895.16	-2724113.17	-2724266.21	-51.49	-44.03	-2724164.66	-2724310.24
	1-(PPh ₃) ₂	-6791.672280	0.138576	363.83	-6791.533705	0.731469	1920.47	-6809.871131	-17879314.20	-17877393.73	-17877757.56	-131.66	-125.39	-17877525.38	-17877882.94
	1-(PPh₃)	-5757.541040	0.106145	278.68	-5757.434895	0.430297	1129.74	-5771.975186	-15154318.77	-15153189.03	-15153467.71	-112.71	-106.09	-15153301.74	-15153573.80
	INT2	-6905.936780	0.143248	376.10	-6905.793532	0.766606	2012.72	-6924.604267	-18180546.01	-18178533.28	-18178909.38	-170.19	-158.75	-18178703.47	-18179068.13
	1-(OCH ₂)-PPh ₃	-5871.816929	0.111328	292.29	-5871.705600	0.465674	1222.63	-5886.716728	-15455572.65	-15454350.02	-15454642.31	-153.36	-143.49	-15454503.39	-15454785.81
	INT1	-5871.785780	0.112559	295.52	-5871.673220	0.464425	1219.35	-5886.682587	-15455483.01	-15454263.66	-15454559.19	-125.27	-118.40	-15454388.94	-15454677.59
	I														
ummed values	1-(PPh ₃) ₂ + H ₂ CO	-6905.917317	0.164021	430.64	-6905.753295	0.761985	2000.59	-6924.560734	-18180431.71	-18178431.12	-18178861.76	-151.31	-135.89	-18178582.43	-18178997.65
	$1-(PPh_3) + PPh_3 + H_2CO$	-6905.904928	0.189880	498.53	-6905.715048	0.758656	1991.85	-6924.522542	-18180331.44	-18178339.59	-18178838.12	-183.85	-160.62	-18178523.44	-18178998.74
	INT1 + PPh3	-6905.904631	0.170848	448.56	-6905.733783	0.762269	2001.34	-6924.540340	-18180378.17	-18178376.83	-18178825.39	-176.77	-162.44	-18178553.60	-18178987.83
	INT2	-6905.936780	0.143248	376.10	-6905.793532	0.766606	2012.72	-6924.604267	-18180546.01	-18178533.28	-18178909.38	-170.19	-158.75	-18178703.47	-18179068.13
SI	1-(OCH ₂)-PPh ₃ + PPh ₃	-6905.935780	0.169618	445.33	-6905.766163	0.763517	2004.61	-6924.574481	-18180467.80	-18178463.19	-18178908.52	-204.86	-187.52	-18178668.05	-18179096.05

Table S4.10: Numerical data for the involved structures in the reaction of 1-{PPh₃}₂ and formaldehyde (H₂CO), obtained by PBEh-3c, PW6B95 and PW6B95 incl. COSMO RS.

Figure S5.1: ¹H NMR (600 MHz, CD₂Cl₂, RT) of **1-A**. Residual proton signals marked with ° (solvent), * (sulfolane), § (pentane) and \$ (grease).

(ppm)

Figure S5.2: ¹³C NMR (151 MHz, CD₂Cl₂, RT) of **1-A**. Residual carbon signals marked with ° (solvent) and * (sulfolane).

a district all and a land a land a land a second de land a second de land a l

200 150 100 50 0 -50 -100 -150 -200 (ppm) Figure S5.3: ²⁹Si NMR (119 MHz, CD₂Cl₂, RT) of **1-A**.

Figure S5.4: ¹H NMR (600 MHz, CD₂Cl₂, RT) of **1-B**. Residual proton signals marked with ° (solvent), * (sulfolane), § (pentane) and \$ (grease).

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 (ppm)

Figure S5.5: ¹³C NMR (151 MHz, CD₂Cl₂, RT) of **1-B**. Residual carbon signals marked with ° (solvent) and * (sulfolane).

Figure S5.6: ²⁹Si NMR (119 MHz, CD₂Cl₂, RT) of **1-B**.

Figure S5.7: ¹H NMR (600 MHz, CD₂Cl₂, RT) of **1-C**. Residual proton signals marked with ° (solvent), * (sulfolane), § (pentane) and \$ (grease).

(ppm)

Figure S5.8: ¹³C NMR (151 MHz, CD₂Cl₂, RT) of **1-C**. Residual carbon signals marked with ° (solvent) and * (sulfolane).

Figure S5.9: Aromatic region of ¹H-¹³C-HSQC NMR (600 MHz, 151 MHz, CD₂Cl₂, RT) of **1-C**.

Figure S5.10: ³¹P NMR (243 MHz, CD₂Cl₂, RT) of 1-C.

Figure S5.11: ¹H NMR (200 MHz, CD₂Cl₂, RT) of **1-D**. Residual proton signals marked with ° (solvent), * (sulfolane), § (pentane) and \$ (grease).

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 (ppm)

Figure S5.12: ¹³C NMR (151 MHz, CD₂Cl₂, RT) of **1-D**. Residual carbon signals marked with ° (solvent) and * (sulfolane).

Figure S5.15: ¹H NMR (600 MHz, CD₂Cl₂, RT) of **1-(OCH₂)-C**. Residual proton signals marked with ° (solvent), * (sulfolane).

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 (ppm)

Figure S5.16: ¹³C NMR (151 MHz, CD₂Cl₂, RT) of **1-(OCH₂)-C**. Residual carbon signals marked with ° (solvent) and * (sulfolane).

Figure S5.18: ¹H-²⁹Si-HMBC NMR (600 MHz, CD₂Cl₂, RT) of **1-(OCH₂)-C**.

Figure S5.19: ¹H NMR (600 MHz, CD₂Cl₂, RT) of **1-(***p***-Me-BA)-D**. Residual proton signals marked with ° (solvent), § (pentane) and \$ (grease).

(ppm)

Figure S5.20: ¹³C NMR (151 MHz, CD₂Cl₂, RT) of **1-(***p***-Me-BA)-D**. Residual carbon signals marked with ° (solvent).

-23.9

Figure S5.23: ¹H NMR (600 MHz, CD₂Cl₂, RT) of **1-(***p***-NO₂-BA)-PPh₃**. Residual proton signals marked with ° (solvent), § (pentane) and \$ (grease).

 NO_2

-21.7

Figure S5.25: ¹H-²⁹Si-HMBC NMR (400 MHz, CD₂Cl₂, RT) of **1-(***p***-NO₂-BA)-PPh₃**.

Figure S5.26: ¹H NMR (400 MHz, CD_2Cl_2 , RT) of **1-(OCH₂)-A**. Residual proton signals marked with ° (solvent), * (impurity in **A**), § (pentane) and \$ (grease).

Figure S5.27: ¹H-²⁹Si-HMBC NMR (400 MHz, CD₂Cl₂, RT) of **1-(OCH₂)-A**.

Figure S5.28: ¹H NMR (600 MHz, CD₂Cl₂, RT) of **1-(OCH₂)-D**. Residual proton signals marked with ° (solvent), § (unidentified byproduct) and * (sulfolane).

Figure S5.29: ³¹P NMR (243 MHz, CD₂Cl₂, RT) of **1-(OCH₂)-D**. Phosphorus signal from excess **D** marked with *.

Figure S5.30: : ¹H-²⁹Si-HMBC NMR (600 MHz, CD₂Cl₂, RT) of 1-(OCH₂)-D.

Figure S5.32: ³¹P NMR (243 MHz, CD₂Cl₂, RT) of **1-(OCH₂)-PPh₃**. Phosphorus signal from excess PPh₃ marked with *.

-15.8

Figure S5.35: ³¹P NMR (243 MHz, CD₂Cl₂, RT) of 1-(*p*-MeBA)-C. Phosphorus signal from excess C marked with *.

Figure S5.37: ¹H NMR (600 MHz, CD_2Cl_2 , RT) of **1-**(*p*-Me-BA)-PPh₃. Residual proton signals marked with ° (solvent), * (sulfolane) and § (*p*-Me-BA).

220 180 140 100 60 20 -20 -60 -100 -140 -180 -220 -260 -300 -340 (ppm) Figure S5.38: ³¹P NMR (243 MHz, CD₂Cl₂, RT) of 1-(*p*-Me-BA)-PPh₃. Phosphorus signal from excess PPh₃ marked with *.

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 Ó -10 (ppm)

Figure S5.40: ¹³C NMR (151 MHz, o-DCB, RT) of 1-(hppH)₂. Residual proton signals marked with ° (solvent) and * (sulfolane).

-150

-200

200

150

(ppm) Figure S5.41: ²⁹Si NMR (119 MHz, *o*-DCB, RT) of 1-(hppH)₂.

50

100

Ó

-50

-100

6. References

- 1. T. Thorwart, D. Roth and L. Greb, *Chemistry*, 2021, DOI: 10.1002/chem.202101138.
- 2. B.-S. Kim, J. Jiménez, F. Gao and P. J. Walsh, *Organic letters*, 2015, **17**, 5788–5791.
- 3. M. R. Willcott, *Journal of the American Chemical Society*, 2009, **131**, 13180-13180.
- 4. Z. Otwinowski and W. Minor, *Methods Enzymol*, 1997, **276**, 307-326.
- 5. SAINT, *Journal*, 2016.
- 6. G. M. Sheldrick, *Journal*, 2004-2014.
- 7. L. Krause, R. Herbst-Irmer, G. M. Sheldrick and D. Stalke, *Journal of Applied Crystallography*, 2015, **48**, 3-10.
- 8. G. M. Sheldrick, *Journal*, 2014-2018.
- 9. G. M. Sheldrick, *Acta Crystallographica Section A Foundations of Crystallography*, 2015, DOI: 10.1107/S2053273314026370, 3-8.
- 10. G. M. Sheldrick, *Journal*, 2012-2018.
- 11. W. Robinson and G. M. Sheldrick, *Journal*, 1988.
- 12. G. M. Sheldrick, *Acta Crystallographica Section A Foundations of Crystallography*, 2008, **64**, 112-122.
- 13. G. M. Sheldrick, *Acta Crystallographica Section C Structural Chemistry*, 2015, **71**, 3-8.
- 14. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *Journal of Applied Crystallography*, 2009, **42**, 339-341.
- 15. C. B. Hübschle, G. M. Sheldrick and B. Dittrich, *J Appl Crystallogr*, 2011, 44, 1281-1284.
- 16. I. J. Bruno, J. C. Cole, P. R. Edgington, M. Kessler, C. F. Macrae, P. McCabe, J. Pearson and R. Taylor, *Acta Crystallogr B*, 2002, **58**, 389-397.
- C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, *Journal of Applied Crystallography*, 2008, 41, 466-470.
- 18. C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van de Streek, *Journal of Applied Crystallography*, 2006, **39**, 453-457.
- 19. C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler and P. A. Wood, *J Appl Crystallogr*, 2020, **53**, 226-235.
- 20. P. van der Sluis and A. L. Spek, *Acta Crystallographica Section A Foundations of Crystallography*, 1990, **46**, 194-201.
- 21. A. L. Spek, Acta Crystallographica Section C Structural Chemistry, 2015, **71**, 9-18.
- 22. A. L. Spek, Journal.
- 23. A. L. Spek, Journal of Applied Crystallography, 2003, 7-13.
- 24. F. Neese, Wires. Comput. Mol. Sci., 2012, 2, 73-78.
- 25. S. Grimme, J. G. Brandenburg, C. Bannwarth and A. Hansen, *J. Chem. Phys.*, 2015, **143**, 054107.
- 26. S. Grimme, *Chem-Eur. J.*, 2012, **18**, 9955-9964.
- 27. Y. Zhao and D. G. Truhlar, J. Phys. Chem. A, 2005, **109**, 5656-5667.
- 28. A. Schafer, C. Huber and R. Ahlrichs, *Journal of Chemical Physics*, 1994, **100**, 5829-5835.
- 29. F. Weigend, F. Furche and R. Ahlrichs, *The Journal of Chemical Physics*, 2003, **119**, 12753-12762.
- 30. F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297-3305.
- 31. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, *J. Chem. Phys.*, 2010, **132**.
- 32. E. R. Johnson and A. D. Becke, J. Chem. Phys., 2005, **123**.
- 33. A. D. Becke and E. R. Johnson, J. Chem. Phys., 2005, **122**.
- 34. S. Grimme, S. Ehrlich and L. Goerigk, *J. Comput. Chem.*, 2011, **32**, 1456-1465.
- 35. K. Eichkorn, O. Treutler, H. Ohm, M. Haser and R. Ahlrichs, *Chem. Phys. Lett.*, 1995, **242**, 652-660.
- 36. F. Neese, F. Wennmohs, A. Hansen and U. Becker, *Chem. Phys.*, 2009, **356**, 98-109.
- 37. K. Eichkorn, F. Weigend, O. Treutler and R. Ahlrichs, *Theor. Chem. Acc.*, 1997, **97**, 119-124.

- E. J. Baerends, T. Ziegler, A. J. Atkins, J. Autschbach, D. Bashford, O. Baseggio, A. Brces, F. M. Bickelhaupt, C. Bo, P. M. Boerritger, L. Cavallo, C. Daul, D. P. Chong, D. V. Chulhai, L. Deng, R. M. Dickson, J. M. Dieterich, D. E. Ellis, M. van Faassen, A. Ghysels, A. Giammona, S. J. A. van Gisbergen, A. Goez, A. W. Gtz, S. Gusarov, F. E. Harris, P. van den Hoek, Z. Hu, C. R. Jacob, H. Jacobsen, L. Jensen, L. Joubert, J. W. Kaminski, G. van Kessel, C. Knig, F. Kootstra, A. Kovalenko, M. Krykunov, E. van Lenthe, D. A. McCormack, A. Michalak, M. Mitoraj, S. M. Morton, J. Neugebauer, V. P. Nicu, L. Noodleman, V. P. Osinga, S. Patchkovskii, M. Pavanello, C. A. Peeples, P. H. T. Philipsen, D. Post, C. C. Pye, H. Ramanantoanina, P. Ramos, W. Ravenek, J. I. Rodrguez, P. Ros, R. Rger, P. R. T. Schipper, D. Schlns, H. van Schoot, G. Schreckenbach, J. S. Seldenthuis, M. Seth, J. G. Snijders and Sol, *Journal*.
- 39. E. Van Lenthe and E. J. Baerends, J. Comput. Chem., 2003, 24, 1142-1156.
- 40. F. Eckert and A. Klamt, *AlChE J.*, 2002, **48**, 369-385.
- 41. A. Klamt and M. Diedenhofen, J. Comput. Aided Mol. Des., 2010, 24, 357-360.
- 42. A. Klamt, J. Phys. Chem., 1995, 99, 2224-2235.
- 43. A. Klamt, B. Mennucci, J. Tomasi, V. Barone, C. Curutchet, M. Orozco and F. J. Luque, *Acc. Chem. Res.*, 2009, **42**, 489-492.