Electronic Supplementary Information

Low-temperature architecture of cubic-phase CsPbBr₃ single crystal for ultrasensitive weak-light photodetector

Xiangfeng Wei,^{a,‡,}Han Liu,^{a,‡} Zhixiang Zhang,^b Wenchao Xu,^a Wenjun Huang,^a Lin-Bao Luo, ^{b,}* and Jiehua Liu^{a,c,}*

^a Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of

Technology, Hefei, 230009, China

^b School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei,

230009, China

^c Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei,

230009, China

AUTHOR INFORMATION

Corresponding Author

* liujh@hfut.edu.cn, luolb@hfut.edu.cn

[‡]X. Wei and H. Liu contributed equally.

Experimental Section

1. Preparation of precursor solution

The saturated solubility of CsBr or PbBr₂ was firstly investigated in the DMSO solution with excess CsBr or PbBr₂ by increasing temperature from 40 to 60 °C. The saturated solubility of CsBr or PbBr₂ in H₂O and DMSO mixed solution was measured by drying 0.5 g saturated solution at 100 °C for 0.5 hours. The saturated solubility was also investigated in mixed H₂O and DMSO solution with different mass ratios (0 to 50% of H₂O/(H₂O + DMSO)). Saturation solubility of CsBr and PbBr₂ with an equal molar quantity was confirmed as shown in Table S1. The solution was placed at a constant temperature of 60 °C for 6 h and then filtered with a 0.22 µm nylon filter. The filtered solution was then placed in a sample bottle and sealed for future use.

2. CsPbBr₃ single crystal growth

The anti-solvent and co-solvent method was used to realize the growth of single crystal at low temperature. First of all, the above DMSO/H₂O solution has a 1:1 ratio of CsBr/PbBr₂ was titrated by acetonitrile as the anti-solvent to saturation. The proportion of the solution and acetonitrile is 1: 0.09 to make sure that the solution is closed to saturation. The solution was added to a small glass bottle. Then it was put into a big bottle with acetonitrile. After sealed, the bottles were put into an oven at 35 °C and then heating with a rate of 0.3 °C/h to 46 °C. The obtained orange single crystal was dried for physical characterization and testing.

3. Fabrication of photodetector

Au/CsPbBr₃/Au photodetectors were fabricated on (100) facet of cubic CsPbBr₃ single crystals. Au electrodes with a width of 14 μ m were evaporated on the crystal surface when using a mask plate made of Ag micro-wire with a diameter of 10 μ m by thermal evaporation.

4. Characterizations

X-ray diffraction (XRD) patterns were measured with X' Pert PRO MPD X-ray diffractometer using Cu K_{α} radiation at 40 kV and 40 mA. Here, both powder and single crystals XRD were characterized. A field emission scanning electron

microscope (SEM, HITACHI UHR FE-SEM SU8020) was used to obtain SEM images of the concave surface. The steady-state photoluminescence measurements were acquired with an Edinburgh FLS920 fluorescence spectrometer at an excitation wavelength of 490 nm. UV-Vis spectrum was measured on Agilent. UV-Vis spectrophotometer (CARY 5000) with an integrating sphere over the spectral range of 300-800 nm.

Time-resolved photoluminescence (TRPL) spectra were obtained by using the time-correlated single-photon counting technique (TimeHarp 260), and the excitation was provided by a picosecond diode laser (PicoQuant) at the wavelength of 510 nm. The photoluminescence intensity decay curve was fitted with a double exponential decay equation as follows:

$$I(t) = A_1 \exp\left(-\frac{t}{\tau_1}\right) + A_2 \exp\left(-\frac{t}{\tau_2}\right)$$
(1)

In this function, I is the decaying intensity, A_1 and A_2 are the decay amplitude and τ_1 and τ_2 are the fitted decay lifetimes of which the small constant τ_1 is ascribed to recombination due to surface traps and the large time constant τ_2 to the bulk traps. The average lifetime was determined as follows:

$$\tau_{\rm av} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2} \tag{2}$$

The optoelectronic characterization of the single-crystal photodetectors was carried out at room temperature with a semiconductor characterization system (Keithley 4200-SCS), using a laser diode (520 nm) as the illumination source. The power intensity of the incident light was calibrated by a power meter (Thorlabs GmbH., PM100D). To further understand the photoelectric performance of the device, we determined the responsivity (R), external quantum efficiency (EQE), and detectivity (D*) which are three key parameters for photodetectors. Responsivity represents the ratio of photon-excited current to irradiation flux. EQEs can be obtained from responsivity by changing the ratio of current/incident light power to electron quantity/photon quantity to evaluate the photocurrent conversion ability of our devices on different lattice planes. D* is the parameter that characterizes the sensitivity of the detector. The equations are shown below:

$$R = \frac{I_{pc} - I_{dark}}{P \times S}$$
(3)

$$EQE = R \times \frac{hc}{e\lambda}$$
(4)

$$D^* = \mathbf{R} \times \sqrt{\frac{S}{2q \times I_{dark}}} \tag{5}$$

Where I_{pc} is the photocurrent under illumination and I_{dark} is dark current, P is the irradiance power density, and S is the effective illuminated area. Then c stands for the speed of light, e is the elementary charge, and λ is the wavelength of the light source.

Temperature	DMSO	H ₂ O	Equal molar solubility of
(°C)	(wt%)	(wt%)	CsBr/PbBr ₃ (mol/100g)
40	61.8	38.2	0.056
45	61.9	38.1	0.060
50	63.2	36.8	0.065
60	72.8	27.2	0.111

Table S1. The equal molar solubility of CsBr/PbBr₃ with different H₂O and DMSO at different temperature

Figure S1. The saturation solubility curves of CsBr and PbBr₂ in DMSO-H₂O solution at 40, 50, and 60 $^{\circ}$ C.

Figure S2. Powder XRD pattern of CsPbBr₃.

Figure S3. XRD patterns of CsPbBr₃ single crystals in high-precision scanning at room temperature and frozen in liquid N_2 . The frozen single crystal was obtained after first put in liquid N_2 for 3 hours and stored at room temperature for 5 hours.

Figure S4. Time-resolved steady-state photoluminescence of cubic-phase CsPbBr₃ single crystal.

Figure S5. Raman spectrum of cubic-phase CsPbBr3 single crystal.

Figure S6. Current curves of the cubic-phase CsPbBr₃ single-crystal photodetector with at 1-9 V.

Figure S7. current–light intensity fitting curve for $CsPbBr_3$ single-crystal photodetector at different light intensities when the bias voltage is 3V and the light wavelength is 520 nm.

Figure S8. Photograph of $CsPbCl_3$ single crystal obtained with Cs/Pb of 1:1 in H2O/DMSO solution