Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Supporting Information

N-Hydroxyphthalimide-catalyzed chemoselective intermolecular benzylic C–H amination of unprotected arylalkanols

Masatoshi Shibuya,* Takayuki Orihashi, Yamei Li, and Yoshihiko Yamamoto

Table of Contents

1.	Experimental data and possible reaction mechanism	S1
2.	Experimental procedures	
	2-1. General Considerations	S4
	2-2. Preparations and analytical data of arylalkanols	S4
	4-3. Representative procedures for chemoselective benzylic C-H amination	
	of arylalkanols and analytical data of the products	S8
3.	References	S16
4.	NMR Charts	S17

1. Experimental data and possible reaction mechanism

Table S1 Solvent screening using DEAD

a) 0.5 M

Scheme S1 Examination for the cleavage of the N–N bond of 2c

Scheme S2 C-H amination of tertiary alkanol S3

Scheme S3 C-H amination of **1a** in hexafluoroisopropyl methyl ether

NMR charts of the crude materials

solvent: HFIP, internal standard: trimethoxybenzene 13.4 mg (79.7 µmol)

solvent: DCE, internal standard: trimethoxybenzene 5.84 mg (34.7 µmol)

Figure S3 NMR charts of BTCEAD and BTCEAD+HFIP

The signals assigned to the carbonyl carbon and $-CH_2$ - of BTCEAD were shifted downfield by the addition of HFIP.

2. Experimental procedures

2-1. General considerations

All reactions were carried out under an argon atmosphere. Solvents and other reagents were purchased from chemical suppliers and used as receive. Reactions were monitored by thin-layer chromatography (TLC: Merck Silica Gel 60 F₂₅₄). Column chromatography was carried out using neutral silica gel (Cica silica gel 60N, particle size 0.040-0.050 mm, neutral, KANTO CHEMICAL CO., INC.). NMR spectra were measured by JEOL ECS-400 (400 MHz). ¹H and ¹³C NMR chemical shifts are reported in parts per million (ppm, δ scale) relative to residual solvents or internal/external references (¹H NMR: CHCl₃ at 7.26 ppm or tetramethylsilane at 0.00 ppm as an internal reference in CDCl₃; ¹³C NMR: CDCl₃ at 77.00 ppm as an internal reference in CDCl₃). Coupling constants (*J*) are reported in Hz. Multiplicities are reported using the following abbreviations; s, singlet; d, doublet; t, triplet; q, quartet; quint, quintet; m, multiplet; br, broad. Because the rotamers were observed in the NMR charts at 25 °C, ¹H and ¹³C NMR spectra of the C-H amination products were corrected at 50 °C in CDCl₃ or 100 °C in toluene-*d*₈.¹ Infrared (IR) spectra were recorded on a JASCO FT/IR-4200 at 4.0 cm⁻¹ resolution and reported in wavenumbers. Mass spectra were measured by JEOL JMS-T100LP using Electronspray Ionization (ESI) or Direct Analysis in Real Time (DART).

Preparations and Analytical data of arylalkanols

1a–1c, 1j and 9 were purchased from chemical suppliers. 1f, 1g, 1l–1n, 1p–1r, 11, were prepared from the corresponding aromatic aldehyde or ketone (for 11) by the three-step method consisting of HWE reaction using triethyl phosphonoacetate, hydrogenation (H₂, Pd/C), and LiAlH₄ of LiBH₄ (for 1l) reduction.
1d, 1h, 1i, 1k, anc 1o was prepared from the corresponding carboxylic acid by LiAlH₄ or BH₃•THF reduction.
7 was prepared from the corresponding methyl ester by LiAlH₄ reduction.² 13 was prepared by methylation of 3-phenylpropanal using MeMgBr.

 $\begin{array}{c} \text{colorless oil; } ^{1}\text{H NMR (400 MHz, CDCl_{3}, 25 °C) } \delta \ 7.32 - 7.24 \ (\text{m, 2H}), \ 7.20 - \\ 7.14 \ (\text{m, 3H}), \ 3.64 \ (\text{t, } \textit{J} = 6.4 \ \text{Hz}, \ 2\text{H}), \ 2.63 \ (\text{t, } \textit{J} = 7.6 \ \text{Hz}, \ 2\text{H}), \ 1.70 - 1.56 \ (\text{m, 4H}), \ 1.45 - 1.37 \ (\text{m, 2H}), \ 1.23 \ (\text{br s, 1H}); \ ^{13}\text{C NMR (100 MHz, CDCl_{3}, 25 °C) } \delta \end{array}$

142.5, 128.4, 128.2, 125.6, 62.8, 35.9, 32.6, 31.2, 25.4; IR (neat, cm⁻¹) 3334; HRMS (ESI, *m/z*) Calcd. for C₁₁H₁₆NaO ([M+Na]⁺): 187.1099, found 187.1101.

Preparation of 1e

To a degassed solution methyl 10-undecenoate (980 μ L, 4.4 mmol,) in THF (8.8 mL) was added 9-BBN (0.5 M solution in THF, 10 mL, 5.0 mmol) at 0 °C. The solution was stirred for 6 h at room temperature. Then, K₂CO₃ (1.12 g, 8.0 mmol) was added to the solution. After the resultant solution was degassed, a solution of Pd(dppf)Cl₂ (87.2 mg, 0.12 mmol) and PhBr (420 μ L, 4.0 mmol) in degassed DMF (20 mL) was added. After the reaction mixture was stirred at 50 °C for 12 h, H₂O was added. The aqueous layer was extracted with E₂O and the combined organic layers were washed with brine, dried over MgSO₄, and

concentrated in vacuo. The crude product was purified by silica gel column chromatography (hexane/AcOEt 50:1) to afford methyl 11-phenyludecenoate (859 mg, 78%).

To a solution of LiAlH₄ (281 mg, 7.4 mmol) in THF (6 mL) was added a solution of methyl 11phenyldecenoate (858 mg, 3.1 mmol) in THF (6 mL) at 0 °C. The reaction mixture was stirred for 25 min at room temperature. The reaction mixture was carefully quenched with H₂O (1.8 mL), 15% NaOH (1.8 mL), and H₂O (5.4 mL) at 0 °C, and filtered through a pad of Celite. The filtrate was extracted with AcOEt, washed with brine, dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/AtOEt 6:1) to afford phenylalkanol **1e** (704 mg 91%) as a colorless oil.

Те ОН

¹H NMR (400 MHz, CDCl₃, 25 °C) δ 7.30 – 7.25 (m, 2H), 7.20 – 7.14 (m, 3H), 3.64 (td, *J* = 6.8, 5.6 Hz, 2H), 2.60 (t, *J* = 7.6 Hz, 2H), 1.65 – 1.52 (m, 4H), 1.38 – 1.20 (m, 14H), 1.20 (t, *J* = 5.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 142.9, 128.3,

128.1, 125.5, 62.9, 35.9, 32.7, 31.5, 29.5, 29.4, 29.4, 29.3, 25.7; IR (neat, cm⁻¹) 3332; HRMS (DART, *m/z*) Calcd. for C₁₇H₃₂ NO ([M+ NH₄]⁺): 266.2484, found 266.2494.

colorless oil; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 7.32 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 3.69 (t, *J* = 6.4 Hz, 2H), 2.68 (t, *J* = 8.0 Hz, 2H), 1.94 – 1.85 (m, 2H), 1.31 (s, 9H), 1.26 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 148.6, 138.7, 128.0, 125.2, 62.4, 34.3, 34.2, 31.5, 31.4; IR (neat, cm⁻¹) 3325;

HRMS (ESI, *m/z*) Calcd. for C₁₃H₂₀NaO ([M+Na]⁺): 215.1407, found 215.1412.

white solid; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 7.58 (d, *J* = 7.2 Hz, 2H), 7.53 (d, *J* = 8.0 Hz, 2H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.33 (t, *J* = 7.6 Hz, 1H), 7.28 (d, *J* = 8.0 Hz, 2H), 3.72 (q, *J* = 5.6 Hz, 2H), 2.76 (t, *J* = 7.6 Hz, 2H), 1.98 - 1.90 (m,

2H), 1.27 (t, J = 5.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 140.96, 140.89, 138.8, 128.8, 128.7, 127.1, 127.0, 126.9, 62.2, 34.1, 31.6; IR (neat, cm⁻¹) 3276; HRMS (ESI, *m/z*) Calcd. for C₁₅H₁₆NaO ([M+Na]⁺): 235.1099, found 235.1082.

colorless oil; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 7.17 – 7.12 (m, 2H), 7.00 – 6.92 (m, 2H), 3.67 (td, *J* = 6.4, 5.2 Hz, 2H), 2.69 (t, *J* = 8.0 Hz, 2H), 1.91 – 1.83 (m, 2H), 1.24 (t, *J* = 5.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 161.2 (d, *J* = 242.1 Hz), 137.4, 129.7 (d, *J* = 7.6 Hz), 115.1 (d, *J* = 20.0 Hz), 62.0, 34.3, 31.2;

IR (neat, cm⁻¹) 3335; HRMS (DART, *m/z*) Calcd. for C₉H₁₅ FNO ([M+ NH₄]⁺): 172.1138, found 172.1109.

colorless oil; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 7.25 (d, *J* = 8.4 Hz, 2H), 7.13 (d, *J* = 8.4 Hz, 2H), 3.67 (q, *J* = 5.6 Hz, 2H), 2.69 (t, *J* = 7.6 Hz, 2H), 1.91 – 1.83 (m, 2H), 1.26 (t, *J* = 5.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 140.2, 131.5, 129.7, 128.4, 62.0, 34.0, 31.3; IR (neat, cm⁻¹) 3333; HRMS (DART, *m/z*)

Calcd. for $C_9H_{15}CINO$ ([M+NH₄]⁺): 188.0842, found 188.0828.

colorless oil; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 7.54 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 3.69 (td, *J* = 6.4, 5.2 Hz, 2H), 2.78 (t, *J* = 7.6 Hz, 2H), 1.94 - 1.87 (m, 2H), 1.29 (t, *J* = 5.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ

146.0, 128.7, 128.2 (q, J = 32.4 Hz), 125.3 (q, J = 2.9 Hz), 124.3 (q, J = 271 Hz), 61.9, 33.8, 31.9; IR (neat, cm⁻¹) 3334; HRMS (DART, m/z) Calcd. for C₁₀H₁₅F₃NO ([M+ NH₄]⁺): 222.1106, found 222.1130.

colorless oil; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 7.96 (d, *J* = 7.6 Hz, 2H), 7.27 (d, *J* = 7.6 Hz, 2H), 3.90 (s, 3H), 3.68 (td, *J* = 6.4, 5.2 Hz, 2H), 2.77 (t, *J* = 8.0 Hz, 2H), 1.95 – 1.86 (m, 2H), 1.28 (t, *J* = 5.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 167.1, 147.4, 129.7, 128.4, 127.9, 62.0, 52.0, 33.8,

32.1; IR (neat, cm⁻¹) 3420; HRMS (ESI, *m/z*) Calcd. for C₁₁H₁₄NaO₃ ([M+Na]⁺): 217.0841, found 217.0822.

white solid; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 7.82–7.76 (m, 3H), 7.64 (s, 1H), 7.48–7.39 (m, 2H), 7.35 (dd, *J* = 8.0, 2.0 Hz, 1H), 3.72 (dt, *J* = 6.4, 4.8 Hz, 2H), 2.89 (t, *J* = 7.6 Hz, 2H), 2.04–1.95 (m, 2H), 1.28 (t, *J* = 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 139.3, 133.6, 132.0, 127.9, 127.6, 127.4,

127.2, 126.4, 125.9, 125.2, 62.2, 34.0, 32.2; IR (neat, cm⁻¹) 3269; HRMS (ESI, *m/z*) Calcd. for C₁₃H₁₄NaO ([M+Na]⁺): 209.0942, found 209.0922.

colorless oil; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 8.06 (d, *J* = 8.0 Hz, 1H), 7.88 – 7.84 (m, 1H), 7.72 (d, *J* = 8.0 Hz, 1H), 7.54 – 7.45 (m, 1H), 7.41 (t, *J* = 7.6 Hz, 1H), 7.35 (d, *J* = 6.4 Hz, 2H), 3.79 – 3.72 (m, 2H), 3.19 (t, *J* = 8.0 Hz, 2H), 2.08 – 2.00 (m, 2H), 1.33 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 137.8, 133.8, 131.8, 128.7, 126.5, 125.9, 125.7, 125.4, 125.3, 123.7, 62.3, 33.3, 29.0; IR (neat, cm⁻¹)

3335; HRMS (ESI, *m/z*) Calcd. for C₁₃H₁₄NaO ([M+Na]⁺): 209.0942, found 209.0930.

A colorless oil; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 7.12 (d, *J* = 8.0 Hz, 2H), 6.84 (d, *J* = 8.0 Hz, 2H), 3.79 (s, 3H), 3.67 (q, *J* = 6.0 Hz, 2H), 2.66 (t, *J* = 8.0 Hz, 2H), 1.91 – 1.83 (m, 2H), 1.25 (t, *J* = 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 157.8, 133.8, 129.3, 113.8, 62.3, 55.2, 34.4, 31.1; IR

(neat, cm⁻¹) 3348; HRMS (ESI, *m*/z) Calcd. for C₁₀H₁₄NaO₂ ([M+Na]⁺): 189.0892, found 189.0886.

A colorless oil; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 7.19 (t, *J* = 7.6 Hz, 1H), 7.15 (d, *J* = 7.6 Hz, 1H), 6.90 (t, *J* = 7.6 Hz, 1H), 6.86 (d, *J* = 7.6 Hz, 1H), 3.84 (s, 3H), 3.60 (q, *J* = 6.0 Hz, 2H), 2.73 (t, *J* = 7.2 Hz, 2H), 1.90 – 1.81 (m, 2H), 1.75 (t, *J* = 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 157.3, 130.1, 129.9, 127.1, 120.6, 110.2,

61.7, 55.3, 32.9, 25.8; IR (neat, cm⁻¹) 3348; HRMS (ESI, *m/z*) Calcd. for C₁₀H₁₄NaO₂ ([M+Na]⁺): 189.0892, found 189.0862.

A colorless oil; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 6.80 (d, *J* = 8.4 Hz, 1H), 6.74 (d, *J* = 8.4 Hz, 1H), 6.73 (s, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.69 (td, *J* = 6.4, 5.2 Hz, 2H), 2.67 (t, *J* = 8.0 Hz, 2H), 1.93 – 1.84 (m, 2H), 1.25 (t, *J* = 5.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 148.8, 147.2, 134.4, 120.1,

111.7, 111.2, 62.3, 55.9, 55.8, 34.4, 31.7; IR (neat, cm⁻¹) 3365; HRMS (ESI, *m/z*) Calcd. for C₁₁H₂₀NO₃ ([M+NH₄]⁺): 214.1443, found 214.1456.

A white solid; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 7.40 (d, *J* = 8.4 Hz, 2H), 7.15 (d, *J* = 8.4 Hz, 2H), 7.10 (br s, 1H), 3.67 (td, *J* = 6.0, 4.4 Hz, 2H), 2.68 (t, *J* = 7.6 Hz, 2H), 2.17 (s, 3 H), 1.91 – 1.83 (m, 2H), 1.27 (br d, *J* = 4.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 157.9; IR (neat, cm⁻¹) 3277;

HRMS (ESI, *m/z*) Calcd. for C₁₁H₁₅NaO₂ ([M+Na]⁺): 216.1001, found 216.0995.

The corresponding ester was prepared from ibuprofen according to the reported protocol.² A white solid; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 7.28 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 3.60 (d, *J* = 6.8 Hz, 2H), 2.45 (d, *J* = 7.2 Hz, 2H), 1.91 - 1.79 (m, 1H), 1.33 (s, 6H), 1.19 (t, *J* = 6.8 Hz, 1H), 0.90

(d, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 143.4, 139.4, 129.1, 125.9, 73.1, 44.9, 39.7, 30.1, 25.3, 22.4; IR (neat, cm⁻¹) 3230; HRMS (ESI, *m/z*) Calcd. for C₁₄H₂₆NO ([M+NH₄]⁺): 224.2014, found 224.2038.

A colorless oil; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 7.40 – 7.20 (m, 5H), 3.69 – 3.54 (m, 2H), 2.99 – 2.88 (m, 1H), 1.91 (q, *J* = 6.8 Hz, 2H), 1.32 (d, *J* = 6.8 Hz, 3H), 1.20 – 1.14 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 146.8, 128.4, 126.9, 126.0, 61.0, 40.9, 36.4, 22.3; IR (neat, cm⁻¹) 3335; HRMS (ESI, *m/z*) Calcd. for C₁₀H₁₈NO ([M+NH₄]⁺): 168.1388, found 168.1359.

A colorless oil; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 7.32 – 7.26 (m, 2H), 7.23 – 7.16 (m, 3H), 3.90 – 3.78 (m, 1H), 2.81 – 2.63 (m, 2H), 1.85 – 1.70 (m, 2H), 1.34 (br s, 1H), 1.23 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 142.0, 128.3, 128.3, 125.7, 67.4, 40.8, 32.1, 23.5; IR (neat, cm⁻¹) 3357; HRMS (ESI, *m/z*) Calcd. for C₁₀H₁₈NO ([M+NH₄]⁺): 168.1388, found 168.1361.

2-2. Representative procedures for chemoselective benzylic C–H amination of arylalkanols and analytical data of the products

Representative procedure A: To a solution of **1a** (40.9 mg, 0.3 mmol) and NHPI (4.9 mg, 0.03 mmol) in HFIP (0.6 mL) was added TrocN=NTroc (BTCEAD, 274 mg, 0.72 mmol) at ambient temperature. The solution was degassed. The reaction mixture was stirred at 60 °C for 5 h. The reaction progress was monitored by TLC analysis. The solvent was removed in vacuo, and the crude product was purified by silica gel column chromatography (hexane/AcOEt 5:2) to afford **2a** (138 mg, 89%) as an amorphous colorless solid.

¹H NMR (400 MHz, CDCl₃, 50 °C) δ 7.45 – 7.30 (m, 5H), 6.68 (br s, 1H), 5.59 (br s, 1H), 5.00 – 4.60 (m, 4H), 4.04 – 3.86 (m, 1H), 3.85 – 3.70 (m, 1H), 2.50 – 2.30 (m, 1H), 2.25 – 2.03 (m, 1H); ¹³C NMR (100 MH, CDCl₃, 50 °C) δ 154.5, 154.5, 137.8, 128.8, 128.5, 128.1, 94.9, 94.8, 75.9, 75.2, 59.7, 59.7, 33.2; IR (neat, cm⁻¹) 3291, 1726; HRMS (ESI, *m/z*) Calcd. for C₁₅H₁₆³⁵Cl₅³⁷ClN₂NaO₅ ([M+Na]⁺): 538.9059,

found 538.9037.

Analytical data of byproducts obtained from the reaction in DCE

An amorphous blue green solid; ¹H NMR (400 MHz, CDCl₃, 50 °C) δ 7.41 – 7.24 (m, 5H), 6.07 (br d, *J* = 4.4 Hz, 1H), 5.58 (t, *J* = 7.6 Hz, 1H), 4.91 (d, *J* = 12.0 Hz, 1H), 4.81 (s, 2H), 4.80 (d, *J* = 12.0 Hz, 1H), 2.91 (br s, 1H), 2.74 (ddd, *J* = 14.0, 7.6, 1.2 Hz, 1H), 2.41 – 2.32 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, 50 °C) δ 155.9, 152.9, 139.8, 128.8, 127.8, 125.9, 94.9, 94.8, 83.3, 75.7, 75.6, 63.1, 43.0; IR (neat, cm⁻¹)

3437, 1727; HRMS (DART, *m/z*) Calcd. for C₁₅H₁₈³⁵Cl₅³⁷ClN₃O₅ ([M+NH₄]⁺): 531.9348, found 531.9334

An amorphous colorless solid; ¹H NMR (400 MHz, CDCl₃, 50 °C) δ 7.44-7.30 (m, 5H), 6.45 (br s, 1H), 5.66–5.52 (m, 1H), 5.00–4.60 (m, 6H), 4.60–4.45 (m, 1H), 4.44–4.26 (m, 1H), 2.65-2.45 (m, 1H), 2.44–2.26 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, 50 °C) δ 154.0, 153.8, 153.8, 136.9, 129.0, 128.8, 128.0, 94.7, 94.7, 94.3, 75.9, 75.7, 75.1, 66.0, 58.8, 29.6;

IR (neat, cm⁻¹) 3304, 1759; HRMS (ESI, *m/z*) Calcd. for C₁₈H₁₇³⁵Cl₇³⁷Cl₂N₂NaO₇ ([M+Na]⁺): 714.8071, found 714.8063.

An amorphous colorless solid; ¹H NMR (400 MHz, CDCl₃, 50 °C) δ 7.42 -7.30 (m, 5H), 6.72 (br s, 1H), 6.50 (br s, 1H), 5.64-5.50 (m, 1H), 4.90 -4.60 (m, 7H), 4.54-4.40 (m, 1H), 4.37-4.26 (m, 1H), 2.60-2.40 (m, 1H), 2.37-2.20 (m, 1H); IR (neat, cm⁻¹) 3300, 1732; HRMS (ESI, *m/z*) Calcd. for C₁₉H₁₉³⁵Cl₇³⁷Cl₂N₄NaO₈ ([M+Na]⁺): 772.8238, found 772.8242.

The crude was purified by flash column chromatography on silica gel (hexane/AcOEt = 9:2) afford **2b** (123.6 mg, 83%) as an amorphous colorless solid; ¹H NMR (400 MHz, CDCl₃, 100 °C) δ 7.42 – 7.28 (m, 5H), 6.67 (br s, 1H), 5.70 – 5.50 (m, 1H), 5.10 – 4.70 (m, 4H), 4.18 – 4.06 1H), 3.94 – 3. 84 (m, 1H), 3.72 (br s, 1H); ¹³C NMR (100 MHz, toluene-*d*₈, 100 °C) δ 156.6, 154.7, 136.9, 129.2, 128.8, 128.5, 95.8, 95.5, 76.4,

76.0, 65.0, 61.6; IR (neat, cm⁻¹) 3460, 3196, 1732; HRMS (ESI, *m/z*) Calcd. for C₁₄H₁₄³⁵Cl₅³⁷ClN₂NaO₅ ([M+Na]⁺): 524.8902, found 524.8895.

The crude was purified by flash column chromatography on silica gel (hexane/AcOEt = 5:2) afford **2c** (140.5 mg, 89%) as an amorphous colorless solid; ¹H NMR (400 MHz, CDCl₃, 50 °C) δ 7.41-7.30 (m, 5H), 6.55 (br s, 1H), 5.48-5.34 (m, 1H), 5.00-4.60 (m, 4H), 3.78-3.64 (m, 2H), 2.30-2.27 (m, 1H), 2.10-1.95 (m, 1H), 1.95-1.77 (m, 1H), 1.77-1.60 (m, 1H), 1.56-1.36

(m, 1H); ¹³C NMR (100 MHz, CDCl₃, 50 °C) δ 154.6, 154.2, 138.0, 128.8, 128.5, 128.2, 95.0, 94.9, 75.9, 75.2, 62.4, 62.4, 29.6, 26.9; IR (neat, cm⁻¹) 3290, 1724; HRMS (ESI, *m/z*) Calcd. for C₁₆H₁₈³⁵Cl₅³⁷ClN₂NaO₅ ([M+Na]⁺): 552.9215, found 552.9211.

The crude was purified by flash column chromatography on silica gel (hexane/AcOEt = 5:2) afford **2d** (149.2 mg, 91%) as an amorphous colorless solid; ¹H NMR (400 MHz, CDCl₃, 50 °C) δ 7.42 – 7.28 (m, 5H), 6.52 (br s, 1H), 5.44 – 5.30 (m, 1H), 5.0 – 4.66 (m, 4H), 3.68 – 3.57 (m, 2H), 2.24 – 2.08 (m, 1H), 2.01 – 1.86 (m, 1H), 1.78 – 1.38 (m, 4H); ¹³C NMR (100 MHz, CDCl₃,

50 °C) δ 154.6, 154.2, 138.0, 128.8, 128.4, 128.2, 95.0, 94.9, 75.9, 75.2, 62.3, 62.3, 32.2, 30.1, 22.6; IR (neat, cm⁻¹) 3288, 1725; HRMS (ESI, *m/z*) Calcd. for C₁₇H₂₀³⁵Cl₅³⁷ClN₂NaO₅ ([M+Na]⁺): 566.9372, found

566.9356.

The crude was purified by flash column chromatography on silica gel (hexane/AcOEt = 4:1) afford **2e** (166.3 mg, 88%) as an amorphous colorless solid; ¹H NMR (400 MHz, CDCl₃, 50 °C) δ 7.40-7.30 (m, 5H), 6.45 (br s, 1H), 5.40-5.30 (m, 1H), 4.94 -4.66 (m, 4H), 3.63 (t, *J* = 6.8 Hz, 2H), 2.18-2.01 (m, 1H), 2.00-1.88 (m, 1H), 1.60-1.50 (m, 2H), 1.40-1.20 (m, 14H); ¹³C NMR (100 MHz, CDCl₃, 50 °C) δ 154.4,

154.1, 138.2, 128.6, 128.2, 128.2, 95.0, 95.0, 75.8, 75.0, 63.0, 62.2, 32.7, 30.5, 29.43, 29.38, 29.34, 29.31, 29.31, 26.3, 25.7; IR (neat, cm⁻¹) 3289, 1728; HRMS (ESI, *m/z*) Calcd. for C₂₃H₃₂³⁵Cl₅³⁷ClN₂NaO₅ ([M+Na]⁺): 651.0311, found 651.0317.

The crude was purified by flash column chromatography on silica gel (hexane/AcOEt = 5:2) to afford **2f** (163.1 mg, 95%) as an amorphous colorless solid; ¹H NMR (400 MHz, CDCl₃, 50 °C) δ 7.39 (br d, *J* = 8.0 Hz, 2H), 7.31 (br d, *J* = 8.0 Hz, 2H), 6.57 (br s, 1H), 5.70-5.50 (s, 1H), 5.00-4.60 (m, 4H), 4.01 - 3.74 (m, 2H), 2.50-2.00 (m, 2H), 1.33 (s, 9H); ¹³C NMR (100 MHz, CDCl₃,

50 °C) δ 154.5, 154.5, 151.6, 134.7, 127.8, 125.8, 95.0, 94.8, 75.9, 75.2, 59.8, 59.8, 34.6, 33.4, 31.3; IR (neat, cm⁻¹) 3289, 1726; HRMS (ESI, *m/z*) Calcd. for C₁₉H₂₄³⁵Cl₅³⁷ClN₂NaO₅ ([M+Na]⁺): 594.9685, found 594.9658.

The crude was purified by flash column chromatography on silica gel (hexane/AcOEt = 5:2) to afford **2g** (162.9 mg, 92%) as an amorphous colorless solid; ¹H NMR (400 MHz, CDCl₃, 50 °C) δ 7.62-7.54 (m, 4H), 7.48-7.42 (m, 4H), 7.36 (t, *J* = 7.8 Hz, 1H), 6.67 (br s, 1H), 5.70-5.58 (m, 1H), 5.00-4.65 (m, 4H), 4.05-3.93 (m, 1H), 3.89-3.79 (m, 1H), 2.50-2.36 (m, 1H), 2.23-2.10 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, 50 °C) δ 154.6, 154.4, 141.3, 140.3,

136.7, 128.8, 128.7, 127.4, 127.1, 126.9, 94.9, 94.9, 75.8, 75.1, 59.6, 59.6, 33.3; IR (neat, cm⁻¹) 3291, 1726; HRMS (ESI, *m/z*) Calcd. for C₂₁H₂₀³⁵Cl₅³⁷ClN₂NaO₅ ([M+Na]⁺): 614.9372, found 614.9351.

The crude was purified by flash column chromatography on silica gel (hexane/AcOEt = 5:2) to afford **2h** (131.0 mg, 80%) as an amorphous colorless solid; ¹H NMR (400 MHz, CDCl₃, 50 °C) δ 7.42-7.34 (m, 2H), 7.08-6.98 (m, 2H), 6.68 (br s, 1H), 5.62-5.52 (m, 1H), 4.94-4.60 (m, 4H), 4.00-3.86 (m, 1H), 3.85-3.74 (m, 1H), 2.46-2.30 (m, 1H), 2.26-2.00 (m, 1H); ¹³C NMR (100 MHz, 100 MHz,

CDCl₃, 50 °C) δ 162.7 (d, *J* = 247 Hz), 154.5, 154.4, 133.8, 129.8 (d, *J* = 6.7 Hz), 115.7 (d, *J* = 20.0 Hz), 94.9, 94.8, 75.9, 75.2, 59.7, 59.7, 33.4; IR (neat, cm⁻¹) 3291, 1726; HRMS (ESI, *m/z*) Calcd. for C₁₅H₁₅³⁵Cl₅³⁷ClFN₂NaO₅ ([M+Na]⁺): 556.8964, found 556.8966.

The crude was purified by flash column chromatography on silica gel (hexane/AcOEt = 5:2) to afford **2i** (141.9 mg, 85%) as an amorphous colorless solid; ¹H NMR (400 MHz, CDCl₃, 50 °C) δ 7.38–7.30 (m, 4H), 6.70 (br s, 1H), 5.62–5.50 (m, 1H), 4.90–4.60 (m, 4H), 4.00–3.90 (m, 1H), 3.85–3.75 (m, 1H), 2.37–1.70 (m, 3H); ¹³C NMR (100 MHz, CDCl₃, 50 °C) δ 154.5, 154.5,

136.4, 134.5, 129.5, 129.0, 94.9, 94.8, 75.9, 75.3, 59.7, 59.7, 33.2; IR (neat, cm⁻¹) 3290, 1727; HRMS (ESI, *m/z*) Calcd. for C₁₅H₁₅³⁵Cl₆³⁷ClN₂NaO₅ ([M+Na]⁺): 572.8668, found 572.8678.

The crude was purified by flash column chromatography on silica gel (hexane/AcOEt = 5:2) to afford **2j** (152.6 mg, 85%) as an amorphous colorless solid; ¹H NMR (400 MHz, CDCl₃, 50 °C) δ 7.50 (d, *J* = 8.8 Hz, 2H), 7.28 (d, *J* = 8.8 Hz, 2H), 6.71 (br s, 1H), 5.60 - 5.50 (m, 1H), 4.96 - 4.64 (m, 4H), 4.00 - 3.90 (m, 1H), 3.85 - 3.74 (m, 1H), 2.45 - 2.31 (m, 1H), 2.14 - 2.02 (m, 1H); ¹³C NMR

(100 MHz, CDCl₃, 50 °C) δ 154.6, 154.3, 136.9, 131.9, 129.9, 122.5, 94.8, 94.8, 75.8, 75.1, 59.5, 59.5, 33.1; IR (neat, cm⁻¹) 3391, 1726; HRMS (ESI, *m/z*) Calcd. for C₁₅H₁₅Br³⁵Cl₅³⁷ClN₂NaO₅ ([M+Na]⁺): 616.8164, found 616.8183.

The crude was purified by flash column chromatography on silica gel (hexane/AcOEt = 5:2) to afford **2k** (115.3 mg, 66%) as an amorphous colorless solid; ¹H NMR (400 MHz, CDCl₃, 50 °C) δ 7.63 (d, *J* = 8.4 Hz, 2H), 7.54 (d, *J* = 8.4 Hz, 2H), 6.83 (br s, 1H), 5.67-5.58 (m, 1H), 4.98-4.60 (m, 4H), 4.01-3.91 (m, 1H), 3.84-3.75 (m, 1H), 2.52-2.35 (m, 1H), 2.20-2.04 (m, 1H); ¹³C

NMR (100 MHz, CDCl₃, 50 °C) δ 154.5, 154.5, 141.8 (q, *J* = 20.0 Hz), 130.6 (q, *J* = 32.4 Hz), 128.5, 125.7, 123.8 (q, *J* = 271 Hz), 94.7, 94.7, 75.7, 75.0, 59.7, 59.7, 32.7; IR (neat, cm⁻¹) 3290, 1731; HRMS (ESI, *m/z*) Calcd. for C₁₆H₁₅³⁷Cl₅³⁷ClF₃N₂NaO₅ ([M+Na]⁺): 606.8932, found 606.8921.

An amorphous colorless solid, 11.2 mg (6%); ¹H NMR (400 MHz, CDCl₃, 50 °C) δ 7.60 (d, *J* = 8.4 Hz, 2H), 7.54 (d, *J* = 8.4 Hz, 2H), 6.09 (d, *J* = 5.2 Hz, 1H), 5.61 (d, *J* = 7.6 Hz, 1H), 4.94 (d, *J* = 12.0 Hz, 1H), 4.86 – 4.70 (m, 3H), 3.03 (br s, 1H), 2.80 (ddd, *J* = 13.2, 7.6, 1.6 Hz, 1H), 2.27 (ddd, *J* = 13.2, 7.6, 5.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 50 °C) δ 155.9, 152.9, 144.0, 130.2,

126.3, 125.9, 124.0 (q, J = 271 Hz), 94.8, 83.3, 75.8, 75.7, 62.7, 43.1;IR (neat, cm⁻¹) 3437, 1731; HRMS (DART, m/z) Calcd. for C₁₆H₁₇³⁵Cl₅³⁷ClF₃N₃O₅ ([M+NH₄]⁺): 599.9222, found 599.9246. The amount of this compound is too small to obtain ¹³C NMR spectra.

The crude was first purified by flash column chromatography on silica gel (AcOEt), and then by PTLC separation to afford **2I** (112.0 mg, 65%) as an amorphous colorless solid; ¹H NMR (400 MHz, CDCl₃, 50 °C) δ 8.03 (d, *J* = 8.0 Hz, 2H), 7.48 (d, *J* = 8.0 Hz, 2H), 6.73 (br s, 1H), 5.67 - 5.57 (m, 1H), 4.90 - 4.64 (m, 4H), 4.01 - 3.90 (m, 1H), 3.92 (s, 3H), 3.85 - 3.75 (m, 1H),

2.50 – 2.32 (m, 1H) , 2.18 – 2.05 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, 50 °C) δ 166.6, 154.6, 154.4, 142.9, 130.2, 130.0, 128.1, 94.8, 94.8, 75.9, 75.2, 59.6, 59.6, 52.1, 33.0; IR (neat, cm⁻¹) 3280, 1719; HRMS (ESI, *m/z*) Calcd. for C₁₇H₁₈³⁵Cl₅³⁷ClN₂NaO₇ ([M+Na]⁺): 596.9113, found 596.9123.

An amorphous light brown solid, 17.2 mg (10%); ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 8.01 (d, *J* = 8.4 Hz, 2H), 7.48 (d, *J* = 8.4 Hz, 2H), 6.09-6.06 (m, 1H), 5.61 (t, *J* = 7.6 Hz, 1H), 4.93 (d, *J* = 11.2 Hz, 1H), 4.85-4.77 (m, 2H), 4.79 (d, *J* = 11.2 Hz, 1H), 3.91 (s, 3H), 2.88-2.83 (m, 1H), 2.79 (ddd, *J* = 13.2, 8.0, 1.6 Hz, 1H), 2.33-2.24 (m, 1H); ¹³C NMR (100 MHz, CDCl₃,

25 °C) δ 166.6, 155.9, 152.9, 145.0, 130.2, 129.9, 125.9, 94.84, 94.80, 83.2, 75.72, 75.66, 62.9, 52.1, 43.1; IR (neat, cm⁻¹) 3430, 3305, 1722; HRMS (DART, *m*/*z*) Calcd. for C₁₇H₂₀Cl₆N₃O₇ ([M+NH₄]⁺): 589.9403, found 589.9387.

Representative procedure B: To a solution of **1m** (55.4 mg, 0.3 mmol) and NHPI (5.0 mg, 0.03 mmol) in HFIP (0.3 mL) and DCE (0.3 mL) was added TrocN=NTroc (BTCEAD, 275 mg, 0.72 mmol) at ambient temperature. The solution was degassed. The reaction mixture was stirred at 60 °C for 6 h. The reaction progress was monitored by TLC analysis. The solvent was removed in vacuo, and the crude product was purified by silica gel column chromatography (hexane/AcOEt 5:2) to afford **2m** (117 mg, 70%) as an amorphous colorless solid and the purification by silica gel column chromatography (hexane/AcOEt 5:2) to afford **2m** (hexane/AcOEt 2:1) afforded **6** (4.7 mg, 3%) as an amorphous colorless solid.

¹H NMR (400 MHz, CDCl₃, 50 °C) δ 8.30 – 7.80 (m, 3H), 7.60 – 7.40 (m, 4H), 6.48 – 6.40 (m, 1H), 6.15 (br s, 1H), 5.10 – 4.60 (m, 4H), 4.16 – 3.80 (m, 2H), 2.76 – 2.44 (m, 1H), 2.30 – 2.10 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, 50 °C) δ 154.9, 154.6, 133.9, 132.5, 131.4, 131.6, 129.4, 129.0, 127.1, 126.2, 125.1, 122.8, 94.8, 94.7, 75.6, 75.0, 59.0, 53.8, 33.4; IR (neat, cm⁻¹) 3294, 1720; HRMS (ESI, *m/z*)

Calcd. for $C_{19}H_{18}^{35}Cl_5^{37}ClN_2NaO_5$ ([M+Na]⁺): 588.9215, found 588.9226.

An amorphous colorless solid;¹H NMR (400 MHz, CDCl₃, 50 °C) δ 8.17 -8.09 (m, 1H), 8.08-7.95 (m, 1H), 7.78-7.68 (m, 1H), 7.62-7.50 (m, 2H), 7.42-7.33 (m, 1H), 5.00-4.60 (m, 4H), 3.80-3.70 (m, 2H), 3.26 -3.14 (m, 2H), 2.08-1.97 (m, 2H); ¹³C NMR (100 MHz, CDCl₃, 50 °C) δ 154.3, 154.3, 140.2, 135.3, 132.8, 130.2, 126.8, 126.4, 125.8, 125.8,

124.5, 122.9, 94.7, 94.7, 75.9, 75.4, 62.3, 33.4, 29.2; IR (neat, cm⁻¹) 3292, 2954, 1734; HRMS (DART, *m/z*) Calcd. for C₁₉H₂₂³⁵Cl₅³⁷ClN₃O₅ ([M+NH₄]⁺): 583.9661, found 583.9681.

The crude was purified by flash column chromatography on silica gel (hexane/AcOEt = 5:2) to afford **2n** (147.4 mg, 87%) as an amorphous colorless solid; ¹H NMR (400 MHz, CDCl₃, 50 °C) δ 7.88 – 7.80 (m, 4H), 7.54 – 7.48 (m, 3H), 6.64 (br s, 1H), 5.82 – 5.71 (m, 1H), 5.00 – 4.64 (m, 4H), 4.07 – 3.94 (m, 1H), 3.92 – 3.82 (m, 1H), 2.58 – 2.40 (m, 1H), 2.30 – 2.20 (m, 1H); ¹³C NMR

(100 MHz, CDCl₃, 50 °C) δ 154.5, 154.5, 135.1, 133.3, 133.2, 128.7, 128.1, 127.7, 127.1, 126.5, 126.4, 126.0, 94.9, 94.8, 75.9, 75.1, 59.8, 59.8, 33.2; IR (neat, cm⁻¹) 3291, 1726; HRMS (ESI, *m/z*) Calcd. for C₁₉H₁₈³⁵Cl₆³⁷ClN₂NaO₅ ([M+Na]⁺): 588.9215, found 588.9191.

The crude was first purified by flash column chromatography on silica gel (hexane/AcOEt = 2:1) to afford **20** (145.9 mg, 89%) as an amorphous colorless solid; ¹H NMR (400 MHz, CDCl₃, 50 °C) δ 7.30 (d, *J* = 8.4 Hz, 2H), 6.89 (d, *J* = 8.4 Hz, 2H), 6.55 (br s, 1H), 5.61-5.49 (m, 1H), 5.00-4.60 (m, 4H), 4.00-3.88 (m, 1H), 3.85-3.74 (m, 1H), 3.81 (s, 3H), 2.42-2.26 (m, 1H), 2.20-2.02 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, 50 °C) δ 159.8, 154.4, 154.4, 129.9, 129.4,

114.2, 95.0, 94.8, 75.8, 75.2, 59.8, 59.8, 55.3, 33.5; IR (neat, cm⁻¹) 3287, 1726; HRMS (ESI, *m*/*z*) Calcd. for C₁₆H₁₈³⁵Cl₅³⁷ClN₂NaO₆ ([M+Na]⁺): 568.9164, found 568.9143.

The crude was first purified by flash column chromatography on silica gel (hexane/AcOEt = 5:2) to afford **2p** (153.7 mg, 93%) as an amorphous colorless solid; ¹H NMR (400 MHz, CDCl₃, 50 °C) δ 7.37 – 7.27 (m, 2H), 7.00 – 6.93 (m, 1H), 6.92 (d, *J* = 8.4 Hz, 1H), 6.52 (br s, 1H), 5.96 – 5.80 (m, 1H), 4.90 – 4.60 (m, 4H), 4.05 – 3.92 (m, 1H), 3.90 – 3.76 (m, 1H), 3.84 (s, 3H), 2.43 – 2.25 (m, 1H), 2.14 – 2.00 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, 50 °C) δ 157.5, 154.6, 154.6, 129.7,

128.9, 125.8, 120.6, 110.9, 95.0, 94.9, 75.9, 75.1, 59.6, 55.6, 54.2, 33.3; IR (neat, cm⁻¹) 3286, 1725; HRMS (ESI, *m/z*) Calcd. for C₁₆H₂₂³⁵Cl₅³⁷ClN₃O₆ ([M+Na]⁺): 563.9610, found 563.9639.

The crude was first purified by flash column chromatography on silica gel (hexane/AcOEt = 2:1) to afford **2q** (110.3 mg, 64%) as an amorphous colorless solid; ¹H NMR (400 MHz, CDCl₃, 50 °C) δ 6.92 (d, *J* = 8.0 Hz, 1H), 6.91 (s, 1H), 6.84 (d, *J* = 8.0 Hz, 1H), 6.58 (br s, 1H), 5.57-5.48 (br s, 1H), 4.90-4.60 (m, 4H), 4.00-3.75 (m, 2H), 3.86 (s, 3H), 3.85 (s, 3H), 2.40-2.25 (m, 1H), 2.15-2.03 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, 50 °C) δ 154.4, 154.4,

149.4, 149.4, 130.4, 120.4, 112.0, 111.5, 95.0, 94.9, 75.8, 75.1, 59.7, 59.7, 56.1, 56.0, 33.5; IR (neat, cm⁻¹) 3289, 1730; HRMS (ESI, *m/z*) Calcd. for C₁₇H₂₀³⁵Cl₅³⁷ClN₂NaO₇ ([M+Na]⁺): 598.9270, found 598.9269.

The crude was first purified by flash column chromatography on silica gel (hexane/AcOEt = 3:5) to afford **2r** (108.8 mg, 63%) as an amorphous colorless solid; ¹H NMR (400 MHz, CDCl₃, 50 °C) δ 7.47 (br d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.19 (br s, 1H), 6.77 (br s, 1H), 5.62-5.48 (m, 1H), 4.96-4.54 (m, 4H), 4.00-3.86 (m, 1H), 3.84-3.74 (m, 1H), 2.44-2.28 (m, 1H), 2.16 (s, 3H), 2.16-2.12 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, 50 °C) δ 168.7,

154.8, 154.4, 138.0, 133.8, 128.8, 120.3, 94.9, 94.9, 75.8, 75.1, 59.7, 59.7, 33.3, 24.4; IR (neat, cm⁻¹) 3305, 1719; HRMS (ESI, *m/z*) Calcd. for C₁₇H₁₉³⁵Cl₅³⁷ClN₃NaO₆ ([M+Na]⁺): 595.9273, found 595.9280.

An amorphous light-brown solid, 1.72 mg (5%, as small amounts of inseparable impurities were contained, the yield was determined by ¹H NMR spectroscopy with mesitylene as internal standard.): ¹H NMR (400 MHz, CDCl₃, 50 °C) δ 7.60-7.42 (m, 2H), 7.36-7.28 (m, 2H), 7.20 (br s, 1H), 6.61 (br s, 1H), 5.60-

5.55 (m, 1H), 5.00-4.60 (m, 6H), 4.57-4.44 (m, 1H), 4.40-4.30 (m, 1H), 2.58-2.44 (m, 1H), 2.38-2.25 (m, 1H), 2.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 50 °C) δ 168.5, 153.9, 153.9, 153.8, 138.2, 132.0, 128.7, 120.1, 94.7, 94.7, 94.3, 75.7, 75.3, 75.1, 66.0, 57.4, 24.6; IR (neat, cm⁻¹) 3306, 2959, 1760; HRMS (ESI, *m/z*) Calcd. for C₂₀H₂₀³⁵Cl₇³⁷Cl₂N₃NaO₈ ([M+Na]⁺): 771.8286, found 771.8279.

The crude was first purified by flash column chromatography on silica gel (hexane/AcOEt = 4:1) to afford **8** (156.8 mg, 89%) as an amorphous colorless solid; ¹H NMR (400 MHz, CDCl₃, 50 °C) δ 7.38–7.27 (m, 4H), 6.46 (br s, 1H), 4.98–4.60 (m, 5H), 3.61 (s, 2H), 2.48–2.34 (m, 1H), 1.33 (s, 6H), 1.25 (br s, 3H), 0.80 (br d, *J* = 6.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, 50 °C) δ 154.3, 154.3, 146.7, 134.7, 129.0, 126.5, 95.0, 95.0, 75.8,

75.1, 72.9, 69.2, 40.0, 28.3, 25.3, 20.4, 20.2; IR (neat, cm⁻¹) 3279, 1725; HRMS (ESI, *m/z*) Calcd. for C₂₀H₂₆³⁵Cl₅³⁷ClN₂NaO₅ ([M+Na]⁺): 608.9841, found 608.9847.

The crude was first purified by flash column chromatography on silica gel (hexane/AcOEt = 2:1), and then purified by PTLC to afford **10** (123.8 mg, 77%) as an amorphous colorless solid; ¹H NMR (400 MHz, CDCl₃, 50 °C) δ 7.26 (d, *J* = 8.4 Hz, 2H), 6.91 (d, *J* = 8.4 Hz, 2H), 6.81 (br s, 1H), 4.95 -4.65 (m, 6H), 4.09 (t, *J* = 4.4 Hz, 2H), 3.96 (br t, *J* = 4.4 Hz, 2H), 1.94

(br s, 1H); ¹³C NMR (100 MHz, CDCl₃, 50 °C) δ 158.8, 154.2, 153.6, 130.3, 127.8, 115.0, 94.9, 94.8, 75.9, 75.1, 69.4, 61.4, 53.4; IR (neat, cm⁻¹) 3295, 1731; HRMS (DART, *m/z*) Calcd. for C₁₅H₂₀³⁵Cl₅³⁷ClN₃O₆ ([M+ NH₄]⁺): 549.9454, found 549.9458.

The crude was purified by flash column chromatography on silica gel (hexane/AcOEt = 3:1) afford **12** (66.2 mg, <42%) with unidentified byproducts; ¹H NMR (400 MHz, CDCl₃, 50 °C) δ 7.67-7.19 (m, 6H), 4.95-4.56 (m, 4H), 4.05-3.96 (m, 2H), 2.90-2.82 (m, 1H), 2.20-2.10 (m, 1H), 1.61 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 50 °C) δ 155.2, 147.2, 128.6, 128.4, 126.7, 124.8, 95.1, 94.9, 75.5,

75.1, 66.0, 59.0, 37.3, 27.2; IR (neat, cm⁻¹) 3309, 2956, 1733; HRMS (ESI, *m/z*) Calcd. for C₁₆H₁₈Cl₆N₂NaO₅ ([M+Na]⁺): 552.9210, found 552.9215.

The crude was purified by flash column chromatography on silica gel (hexane/AcOEt = 3:1) afford **14** (117.6 mg, 74%, an 5:4 inseparable mixture of diastereomers) as an amorphous colorless solid: major diastereomer; ¹H NMR (400 MHz, toluene- d_8 , 100 °C) δ 7.35–7.27 (m, 2H), 7.17–6.94 (m, 3H), 6.14 (s, 1H), 5.56–5.46 (m, 1H), 4.70–4.30 (m, 4H), 3.70–3.58 (m, 1H), 2.30–1.60 (m, 2H), 1.00–0.91 (m, 3H); minor diastereomer; ¹H NMR (400 MHz, toluene- d_8 , 100 °C) δ 7.28–7.20 (m, 2H),

7.17-6.94 (m, 3H), 6.47 (s, 1H), 5.67-5.57 (m, 1H), 4.70-4.30 (m, 4H), 4.15-4.00 (m, 1H), 2.30-1.60 (m, 2H), 1.20-1.10 (m, 3H); major and minor diastereomers ¹³C NMR (100 MHz, toluene- d_8 , 100 °C) δ 154.9, 154.9, 154.8, 154.5, 139.4, 139.4, 129.1, 129.0, 128.8, 128.7, 128.53, 128.47, 96.0, 95.9, 95.9, 95.8, 76.3, 76.3, 75.7, 75.7, 66.4, 64.8, 61.4, 60.4, 40.9, 40.5, 24.7, 23.6; IR (neat, cm⁻¹) 3290, 1726; HRMS (ESI, *m/z*) Calcd. for C₁₆H₁₈³⁵Cl₅³⁷ClN₂NaO₅ ([M+Na]⁺): 552.9215, found 552.9215.

An amorphous colorless solid (8.0 mg, 5%). The following data were collected using the material obtained from the reaction in DCE; ¹H NMR (400 MHz, CDCl₃, 50 °C) δ 7.41-7.30 (m, 5H), 6.66 (br, 1H), 5.94-5.82 (m, 1H), 4.90-4.68 (m, 4H), 3.40-3.28 (m, 1H), 3.12-2.98 (m, 1H), 2.20 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 50 °C) δ 204.9, 154.7, 153.7, 137.5, 128.8, 128.5, 127.7, 94.8, 94.8, 75.9, 75.2, 58.0, 44.7, 30.1; IR

(neat, cm⁻¹) 3285, 1728; HRMS (ESI, *m/z*) Calcd. for C₁₆H₁₆³⁵Cl₅³⁷ClN₂NaO₆ ([M+Na]⁺): 550.9059, found 550.9059.

The crude was purified by flash column chromatography on silica gel (hexane/AcOEt = 8:1) afford **S4** (143.5 mg, 88%) as an amorphous colorless solid; ¹H NMR (400 MHz, CDCl₃, 50 °C) δ 7.46–7.24 (m, 5H), 6.94 (br s, 1H), 5.68 (s, 1H), 5.10–4.50 (m, 4H), 3.98–3.85 (m, 0.25H), 2.70–2.54 (m, 0.25H), 2.54–2.48 (m, 0.75H), 1.94–1.82 (m, 0.75H), 1.80–1.68 (m, 0.25H), 1.70–1.52 (m, 0.75H), 1.33 (s, 6H); ¹³C NMR (100

MHz, toluene-*d*₈, 100 °C) δ 155.1, 153.9, 139.3, 128.7, 128.2, 127.8, 94.5, 94.9, 75.8, 75.2, 70.1, 57.9, 42.2, 32.4, 28.0; IR (neat, cm⁻¹) 3292, 1727; HRMS (ESI, *m/z*) Calcd. for C₁₇H₂₀³⁵Cl₅³⁷ClN₂NaO₅ ([M+Na]⁺): 566.9372, found 566.9354.

Preparation of free amino alcohol 18 from 2c

To a solution of **2c** (48.9 mg, 0.092 mmol) in glacial acetic acid (1.3 mL) was added zinc dust (477 mg, 7.3 mmol) at room temperature. After the solution was stirred for 30 min, acetone (66.9 μ L, 0.9 mmol) was added. The reaction mixture was stirred at room temperature for 30 min. Then, CH₂Cl₂ (6 ml) was added and the resultant mixture was sonicated for 1 min. The mixture was filtered through a pad of Celite. Sat. aqueous Na₂CO₃ was added to the filtrate, and the mixture was extracted with CH₂Cl₂. The combined organic layer was washed with brine and dried over MgSO₄. and concentrated in vacuo. The crude product was purified by silica gel column chromatography (CHCl₃/MeOH 5:1) to afford (11.7 mg, 78%) as a white solid. Analytical data were identical with those of an authentic sample which was prepared from benzoate **17**.

Authentic sample: A white solid; Mp 72.2-73.7 °C; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 7.27-7.22 (m, 5H), 3.95-3.88 (m, 1H), 3.72-3.57 (m, 2H), 3.40-3.15 (m, 3H), 1.79-1.64 (m, 2H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 146.5, 128.6, 127.1, 125.8, 62.8, 56.2, 37.4, 30.7; IR (neat, cm⁻¹) 3344, 3277, 2935; HRMS (DART, *m/z*) Calcd. for C₁₀H₁₆NO ([M+H]⁺): 166.1205, found 166.1232.

3. References

- 1) Y. Amaoka, S. Kamijo, T. Hoshikawa and M. Inoue, *J. Org. Chem.*, 2012, **77**, 9959-9969.
- 2) E. Banoglu, B. Caliskan, S. Luderer, G. Eren, Y. Ozkan, W. Altenhofen, C. Weinigel, D. Barz, J. Gerstmeier, C. Pergola and O. Werz, *Bioorg. Med. Chem.*, 2012, **20**, 3728-3741.

4. NMR Charts

