Supporting Information

Solvent-assisted Crystallization of Two-dimensional

Ruddlesden-Popper Perovskite

Yingjie Su^a, Cai Xu^a, Liguo Gao^{a,*}, Guoying Wei^b, Tingli Ma^{b,c,*}

a State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China.

b Department of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, P. R. China.

c Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Fukuoka 808-0196, Japan.

Corresponding Author

*Liguo Gao

E-mail: liguo.gao@dlut.edu.cn; ORCID: 0000-0002-5390-3663.

*Tingli Ma

E-mail: tinglima@life.kyutech.ac.jp; ORCID: 0000-0002-3310-459X.

1. Materials

15 $\Omega \cdot \Box^{-1}$ ITO was purchased from Yingkou OPV Tech New Energy Co. PEDOT:PSS (Al 4083), BAI (99.5%), MAI (99.5%) and PC₆₁BM (99.1%) were purchased from Xi'an Polymer Light Technology Corp. PbI₂ (99.9%) was purchased from Advanced Election Technology CO,. Ltd. BCP (95%) were purchased from Aladdin. PbCl₂ (99.999%), dimethyl sulfoxide (DMSO, hybridoma, 99.7%), N,Ndimethylformamide (DMF, for HPLC, 99.9%), Chlorobenzene (for HPLC, 99.9%) and isopropanol (99.5%) were purchased from Sigma-Aldrich.

2. Device Fabrication

PEDOT:PSS was spin-coated on clean and UV-ozone-treated ITO at 5000 rpm for 30 s, and then annealed at 130°C for 20 min. Under N₂ atmosphere, the composition of BAI:MAI:PbCl₂:PbI₂ with a stoichiometric ratio of 2:3:0.08:3.92 was dissolved in DMF to prepare a perovskite precursor solution with a concentration of 0.8 M.

Control method to deposit perovskite film: the 2D perovskite films were prepared by a one-step method with a spin speed of 5000 rpm for 30 s. Solventassisted method to deposit perovskite film: drop 160 μ L DMSO on the ITO with PEDOT:PSS, spin-coated at a low speed of 1000 rpm for 6 s, and dynamic spincoated 60 μ L the perovskite precursor solution at the 5th second, and then spin at a high speed of 5000 rpm for 10 s, and then anneal at 100°C for 15 min. PCBM (20 mg mL⁻¹ in CB) and BCP (0.5 mg mL⁻¹ in IPA) were spin-coated at 2000 rpm and 5000 rpm for 30 s, and then annealed at 75°C for 10 min and 5 min, respectively. Finally, 70 nm silver was deposited as a metal electrode in a vacuum environment.

3. Characterization

Keithley 2460 (Keithley, America) was used to measure the J-V characteristics

of cells at AM 1.5G. The Incident photon-to-electron conversion efficiency (IPCE) is measured by using a computer-controlled xenon lamp combined with a monochromator (PEC-S20, Peccell). Photoluminescence (PL) spectra is measured by C5410 (Hamamatsu) at an excitation wavelength of 495 nm. The scanning electron microscopy (SEM) images were measured on a high-resolution field emission Nano SEM 450 (FEI, USA). The crystal structure and light absorption of 2D perovskite were measured using X-ray diffraction (XRD) (XRD-7000S Shimadzu, Japan) and UV-vis spectral (Lambda950), respectively. EIS/TPC/TPV/IMPS/IMVS are all measured using electrochemical workstation (Zennium Zahner, Germany).

Figures

Fig. S1. Schematic diagram of devices with the structure of Glass/ITO/PEDOT:PSS/perovskite/PC₆₁BM/BCP/Ag.

Fig. S3. UV-vis absorption characteristics of perovskite films prepared by different methods.

Fig. S4. Optical images for perovskite crystalline growth with different time on 100°C hot plate,
(a) control; (b) DMSO-assisted. UV-vis absorption spectra of perovskite films with time variation,
(c) control, (d) DMSO-assisted.

Fig. S5. Optical images for perovskite crystalline growth with different time on 100°C hot plate, (a) DMSO-assisted; (b) control-8:2 (DMF:DMSO); (c) control-7:3 (DMF:DMSO); (d) control-5:5 (DMF:DMSO).

Fig. S6. J-V curves of devices with different preparation methods, corresponding to Figure S3.

films prepared by different processes.					
		V _{oc} [V]	J _{sc} [mA/cm ²]	FF	PCE [%]
DMSO-assisted	best	1.05	17.17	0.69	12.42
	average	1.05±0.02	15.82±1.31	0.68±0.04	11.31±0.67
control	best	1.04	11.81	0.68	8.37
	average	1.04±0.03	10.18±1.66	0.61±0.06	6.40±1.07

 Table S1. Photovoltaic parameters of solar cells based on (BA)₂(MA)₃Pb₄(I_{0.98}Cl_{0.02})₁₃ perovskite

There are 30 devices taken into account to calculate the average parameters of devices.

SI 1. The density of defect states is calculated by the dark J-V curve of the device with the

structure of ITO/SnO₂/2D PVK/PC₆₁BM/BCP/ Ag. The trap-state density was determined from

$$N_{\rm t} = \frac{2\epsilon_0\epsilon_{\rm r}V_{\rm TFL}}{qL^2}$$

the following equation:

where N_{t} is the trap density, V_{TFL} is the trap-filling limit voltage, and \boldsymbol{q} is the elemental charge.