Supporting Information for

DABCO Catalyzed [4+2] Annulations of Morita-Baylis-Hillman

Carbonates with Isocyanates

Wei Cai, Yiming Zhou, Yanlin He, and You Huang*

State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

CONTENTS

1.	General methods		
2.	Synthesis of <i>o</i> -amino-acylation aryl MBH carbonates 1		
	2.1	General procedure for the synthesis of substituted o-amino-acylation aryl MBH carbonates	4
	2.2	Characterization Data of o-amino-acylation aryl MBH carbonates	5
3.	General Procedure of Optimization and Substrate Scope		
	3.2.	General procedure 1 (GP1) for the synthesis of 3,4-dihydroquinazolinone	9
	3.3.	Optimization of intermolecular cycloaddition reaction conditions	9
4.	Gram scale reactions and synthetic transformations		10
	4.1.	Gram scale reactions	10
	4.2.	Synthetic transformations	10
5.	Density Functional Theory (DFT) Calculations		
	5.1.	Computational Methods	12
	5.2.	Calculated data	12
6.	Analytical Data		14
	6.1.	DABCO catalyzed [4+2] cycloadducts 3	14
	6.2.	Products of derivatization	24
7.	X-ray (X-ray Crystallographic Analysis	
8.	NMR Spectra		27
	8.1.	o-Amino-acylation aryl MBH carbonates	27
	8.2.	DABCO catalyzed [4+2] cycloadducts 3	49
	8.3.	Products of Derivatization	92

1. General methods

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) were recorded on a Bruker AV 400 (400 MHz) spectrometer with CDCl₃ as solvent (Unless otherwise noted, records are all performed at ambient temperature). Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: proton (CDCl₃: δ 7.26 ppm), carbon (CDCl₃: δ 77.07 ppm) or tetramethylsilane (TMS δ 0.00). Multiplicity is indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublet), m (multiplet). Coupling constants *J* are reported in Hz. HRMS were obtained on Agilent 6520 Q-TOF LC/MS with ESI resource. Melting points were measured on a RY-I apparatus and are reported uncorrected. Column chromatography was performed on silica gel 200-300 mesh.

All reactions were carried out under nitrogen or argon atmosphere. Unless otherwise noted, analytical grade solvents and commercially available reagents were used without further purification. All isocyanates used in the article are commercially available.

2. Synthesis of *o*-amino-acylation aryl MBH carbonates 1

General procedure for the synthesis of substituted o-amino-acylation aryl MBH carbonates

o-amino-acylation aryl MBH carbonates were synthesized following the general procedure shown in the figure above. Depending on which substrates were commercial available, the starting point for the synthesis was *o*-amino benzyl alcohol (S-1) (Commercially available or reduced from *o*-amino benzoic acid¹). Analogues of S-4 have been reported earlier². Step 4 is the classic hydroxyl protection³.

21 kinds of substituted *o*-amino-acylation aryl MBH carbonates were prepared according to the above method (Supplementary Fig. 1).

Figure S1. Scopes of o-amino-acylation aryl MBH carbonates.

¹ L. A. Leth, F. Glaus, M. Meazza, L. Fu, M. K. Thøgersen, E. A. Bitsch and K. A. Jørgensen, *Angew. Chem. Int. Ed.*, 2016, **55**, 15272-15276. ² H. N. Lim, Y. S. Song and K.-J. Lee, *Synthesis*, 2007, **2007**, 3376-3384. ³ Y. Du, X. Lu and C. Zhang, *Angew. Chem., Int. Ed.*, 2003, **42**, 1035-1037.

2.2 Characterization Data of o-amino-acylation aryl MBH carbonates

ethyl 2-(((tert-butoxycarbonyl)oxy)(2-((methoxycarbonyl)amino)phenyl)methyl)acrylate (1a)

CO₂Et OBoc NH CO₂Me **1a**

7.9 g, 52% yield (4 steps). White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11 (s, 1H), 7.84 – 7.71 (m, 1H), 7.32 (t, *J* = 7.4 Hz, 2H), 7.16 – 7.08 (m, 1H), 6.58 (s, 1H), 6.43 (s, 1H), 6.13 – 6.08 (m, 1H), 4.23 – 4.08 (m, 2H), 3.81 (s, 3H), 1.46 (s, 9H), 1.21 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 154.8, 152.6, 139.0, 135.9, 129.3, 129.2, 128.1, 125.1, 124.5, 83.2, 71.2, 61.4, 52.3, 27.7, 13.9. (There is a carbon signal missing, and this situation often occurs later, so no

reminder will be given) **HRMS(ESI)** m/z: $[M + Na]^+$ calcd for $C_{19}H_{25}NNaO_7^+$ 402.1523; Found: 402.1520.

methyl 2-(((tert-butoxycarbonyl)oxy)(2-((methoxycarbonyl)amino)phenyl)methyl)acrylate (1b)

7.0 g, 48% yield (4 steps). White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.10 (s, 1H), 7.76 (s, 1H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.12 (t, *J* = 7.5 Hz, 1H), 6.58 (s, 1H), 6.43 (s, 1H), 6.13 (s, 1H), 3.81 (s, 3H), 3.70 (s, 3H), 1.46 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 154.8, 152.5, 138.8, 135.8, 129.3, 128.1, 125.4, 124.6, 123.7, 83.2, 71.0, 52.4, 27.7. HRMS(ESI) m/z: [M + Na]⁺ calcd for C₁₈H₂₃NNaO₇⁺ 388.1367; Found: 388.1362.

butyl 2-(((tert-butoxycarbonyl)oxy)(2-((methoxycarbonyl)amino)phenyl)methyl)acrylate (1c)

5.2 g, 32% yield (4 steps). White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 (s, 1H), 7.77 (s, 1H), 7.31 (t, *J* = 7.3 Hz, 2H), 7.10 (t, *J* = 7.2 Hz, 1H), 6.57 (s, 1H), 6.42 (s, 1H), 6.17 – 6.06 (m, 1H), 4.09 (qt, *J* = 10.8, 6.7 Hz, 2H), 3.80 (s, 3H), 1.60 – 1.51 (m, 2H), 1.45 (s, 9H), 1.28 (dq, *J* = 14.7, 7.4 Hz, 2H), 0.88 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.5, 154.8, 152.6, 139.1, 135.9, 129.3, 128.1, 125.1, 124.5, 123.4, 83.2, 71.2, 65.3, 52.3, 30.4, 27.7, 19.0, 13.7.

HRMS(ESI) m/z: $[M + Na]^+$ calcd for $C_{21}H_{29}NNaO_7^+$ 430.1836; Found: 430.1831.

isobutyl 2-(((tert-butoxycarbonyl)oxy)(2-((methoxycarbonyl)amino)phenyl)methyl)acrylate (1d)

5.9 g, 36% yield (4 steps). White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.15 (s, 1H), 7.77 (s, 1H), 7.31 (t, *J* = 8.1 Hz, 2H), 7.10 (t, *J* = 7.5 Hz, 1H), 6.57 (s, 1H), 6.43 (s, 1H), 6.10 (s, 1H), 3.93 – 3.81 (m, 2H), 3.79 (s, 3H), 1.89 (dp, *J* = 13.4, 6.7 Hz, 1H), 1.44 (s, 9H), 0.86 (dd, *J* = 6.7, 2.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 165.5, 154.8, 152.6, 139.0, 135.9, 129.3, 128.1, 125.2, 124.5, 123.4, 83.3, 71.4, 71.1, 52.3, 27.7, 27.6, 19.0. HRMS(ESI) m/z: [M + Na]⁺ calcd for C₂₁H₂₉NNaO₇⁺

430.1836; Found: 430.1833.

tert-butyl 2-(((tert-butoxycarbonyl)oxy)(2-((methoxycarbonyl)amino)phenyl)methyl)acrylate (1e)

5.4 g, 33% yield (4 steps). White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 (s, 1H), 7.75 (s, 1H), 7.22 (d, J = 7.3 Hz, 2H), 7.01 (d, J = 6.7 Hz, 1H), 6.46 (s, 1H), 6.26 (s, 1H), 5.91 (s, 1H), 3.71 (s, 3H), 1.38 (s, 9H), 1.26 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 164.5, 154.7, 152.9, 140.2, 136.1, 129.3, 128.3, 124.3, 124.2, 123.0, 83.2, 82.1, 71.5, 52.2, 27.8, 27.7. HRMS(ESI) m/z: [M + Na]⁺ calcd for C₂₁H₂₉NNaO₇⁺ 430.1836; Found: 430.1832.

benzyl 2-(((tert-butoxycarbonyl)oxy)(2-((methoxycarbonyl)amino)phenyl)methyl)acrylate (1f)

4.9 g, 28% yield (4 steps). White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 (s, 1H), 7.77 (s, 1H), 7.33 (ddd, J = 7.9, 4.2, 2.0 Hz, 5H), 7.24 (dd, J = 7.1, 2.4 Hz, 2H), 7.10 (t, J = 7.5 Hz, 1H), 6.60 (s, 1H), 6.46 (s, 1H), 6.13 (s, 1H), 5.16 – 5.07 (m, 2H), 3.78 (s, 3H), 1.44 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 154.8, 152.6, 146.8, 138.7, 135.9, 135.2, 129.3, 128.6, 128.3, 128.2, 125.7, 124.6, 83.3, 71.2, 67.1, 52.3, 27.7, 27.4. HRMS(ESI) m/z: [M + Na]⁺ calcd for

 $C_{24}H_{27}NNaO_7^+$ 464.1680; Found: 464.1677.

ethyl 2-(((tert-butoxycarbonyl)oxy)(2-((ethoxycarbonyl)amino)phenyl)methyl)acrylate (1g)

7.9 g, 50% yield (4 steps). White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 8.00 (s, 1H), 7.75 (s, 1H), 7.31 (t, *J* = 7.2 Hz, 2H), 7.10 (t, *J* = 7.5 Hz, 1H), 6.57 (s, 1H), 6.43 (s, 1H), 6.08 (s, 1H), 4.24 (q, *J* = 7.1 Hz, 2H), 4.19 – 4.07 (m, 2H), 1.45 (s, 9H), 1.34 (t, *J* = 7.1 Hz, 3H), 1.20 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 154.4, 152.6, 139.0, 136.0, 129.2, 128.2,

¹⁹ 125.1, 124.4, 123.7, 123.6, 83.2, 71.3, 61.4, 61.2, 27.7, 14.6, 13.9. **HRMS(ESI)** m/z: $[M + Na]^+$

calcd for $C_{20}H_{27}NNaO_7^+$ 416.1680; Found: 416.1675.

ethyl 2-((2-((tert-butoxycarbonyl)amino)phenyl)((tert-butoxycarbonyl)oxy)methyl)acrylate (1h)

9.3 g, 55% yield (4 steps). White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 – 7.67 (m, 2H), 7.31 (t, *J* = 7.6 Hz, 2H), 7.14 – 7.05 (m, 1H), 6.59 (s, 1H), 6.44 (s, 1H), 6.12 – 6.02 (m, 1H), 4.24 – 4.07 (m, 2H), 1.55 (s, 9H), 1.47 (s, 9H), 1.22 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 153.5, 152.5, 139.0, 136.3, 129.1, 128.2, 125.1, 124.1, 123.7, 83.1, 80.2, 71.4, 61.3, 28.4, 27.7, 13.9. **HRMS(ESI)** m/z: [M + Na]⁺ calcd for C₂₂H₃₁NNaO₇⁺ 444.1993; Found: 444.1987.

ethyl 2-(((allyloxy)carbonyl)amino)phenyl)((tert-butoxycarbonyl)oxy)methyl)acrylate (1i)

7.6 g, 47% yield (4 steps). White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.03 (s, 1H), 7.68 (s, 1H), 7.23 (t, J = 7.6 Hz, 2H), 7.03 (t, J = 7.4 Hz, 1H), 6.50 (s, 1H), 6.35 (s, 1H), 6.01 (s, 1H), 5.93 (ddt, J = 16.2, 10.8, 5.6 Hz, 1H), 5.30 (d, J = 17.1 Hz, 1H), 5.17 (d, J = 10.3 Hz, 1H), 4.62 (d, J = 5.5 Hz, 2H), 4.13 – 3.98 (m, 2H), 1.37 (s, 9H), 1.11 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 154.0, 152.6, 139.0, 135.9, 132.8, 129.2, 128.2, 125.1, 124.6, 123.6, 117.8,

83.2, 71.2, 65.9, 65.8, 61.4, 27.7, 13.9. **HRMS(ESI)** m/z: $[M + Na]^+$ calcd for $C_{21}H_{27}NNaO_7^+$ 428.1680; Found: 428.1676.

ethyl 2-(((tert-butoxycarbonyl)oxy)(2-(((((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)carbonyl)amino)-3-methylphenyl)methyl)acrylate (1j)

4.6 g, 23% yield (4 steps). Colorless viscous oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.82 (d, J = 11.4 Hz, 2H), 7.30 (t, J = 6.9 Hz, 2H), 7.08 (t, J = 7.5 Hz, 1H), 6.58 (d, J = 7.1 Hz, 1H), 6.42 (d, J = 3.7 Hz, 1H), 6.05 (s, 1H), 4.68 (tt, J = 10.5, 4.6 Hz, 1H), 4.13 (dddt, J = 14.8, 10.8, 7.3, 3.8 Hz, 2H), 2.17 – 2.10 (m, 1H), 2.07 – 1.99 (m, 1H), 1.69 (d, J = 11.2 Hz, 2H), 1.53 (s, 3H), 1.47 – 1.39 (m, 10H), 1.28 – 1.03 (m, 6H), 0.93 (d, J = 6.5 Hz, 6H), 0.83 (dd, J = 6.9, 3.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 165.2, 154.2, 152.5, 146.7, 138.9, 138.9, 136.2, 129.2,

129.2, 128.4, 128.2, 125.2, 125.1, 124.2, 123.5, 83.1, 75.1, 75.0, 71.6, 71.5, 61.3, 47.3, 47.2, 41.4, 41.3, 34.3, 31.4, 31.4, 27.7, 27.7, 27.4, 26.4, 26.3, 23.7, 23.6, 22.1, 20.8, 20.8, 16.6, 16.6, 13.9, 13.9. **HRMS(ESI)** m/z: $[M + Na]^+$ calcd for C₂₈H₄₁NNaO₇⁺ 526.2775; Found: 526.2770.

ethyl 2-(((tert-butoxycarbonyl)oxy)(2-((methoxycarbonyl)amino)-3-methylphenyl)methyl)acrylate (1k)

5.7 g, 36% yield (4 steps). White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 (s, 1H), 7.22 (dt, *J* = 14.7, 6.7 Hz, 3H), 6.71 (s, 1H), 6.45 (s, 1H), 6.08 (s, 1H), 4.17 (dtd, *J* = 10.8, 7.1, 3.7 Hz, 2H), 3.82 (s, 3H), 2.35 (s, 3H), 1.48 (s, 9H), 1.23 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 154.6, 152.6, 139.3, 136.8, 133.8, 133.7, 131.3, 126.9, 125.8, 125.1, 82.9, 71.6, 61.2, 52.4, 27.7, 18.5, 14.0. HRMS(ESI) m/z: [M + Na]⁺ calcd for C₂₀H₂₇NNaO₇⁺ 416.1680; Found: 416.1676.

ethyl 2-(((tert-butoxycarbonyl)oxy)(2-((methoxycarbonyl)amino)-4-methylphenyl)methyl)acrylate (11)

7.2 g, 46% yield (4 steps). White solid. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.12 (s, 1H), 7.57 (d, *J* = 21.2 Hz, 1H), 7.21 (d, *J* = 8.0 Hz, 1H), 6.93 (d, *J* = 7.8 Hz, 1H), 6.55 (s, 1H), 6.42 (s, 1H),

6.10 (s, 1H), 4.15 (qt, J = 10.7, 5.4 Hz, 2H), 3.81 (s, 3H), 2.34 (s, 3H), 1.46 (s, 9H), 1.21 (t, J = 7.1 Hz, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 165.4, 154.8, 152.7, 139.4, 139.1, 135.7, 128.0, 125.5, 124.9, 124.0, 83.1, 71.1, 61.4, 52.3, 27.7, 21.4, 13.9. **HRMS(ESI)** m/z: [M + Na]⁺ calcd for C₂₀H₂₇NNaO₇⁺ 416.1680; Found: 416.1677.

ethyl 2-(((tert-butoxycarbonyl)oxy)(4-chloro-2-((methoxycarbonyl)amino)phenyl)methyl)acrylate (1m)

8.1 g, 49% yield (4 steps). White solid. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.24 (s, 1H), 7.86 (s, 1H), 7.24 (d, *J* = 8.4 Hz, 1H), 7.07 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.50 (s, 1H), 6.44 (s, 1H), 6.15 – 6.10 (m, 1H), 4.25 – 4.06 (m, 2H), 3.81 (s, 3H), 1.45 (s, 9H), 1.21 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 165.3, 154.4, 152.5, 138.7, 137.1, 135.0, 129.2, 126.6, 125.3, 124.6, 123.0, 83.5, 70.5, 61.5, 52.5, 27.7, 13.9. **HRMS(ESI)** m/z: [M + Na]⁺ calcd for C₁₉H₂₄ClNNaO₇⁺ : 436 1130

436.1133; Found: 436.1130.

ethyl 2-((4-bromo-2-((methoxycarbonyl)amino)phenyl)((tert-butoxycarbonyl)oxy)methyl)acrylate (1n)

6.4 g, 35% yield (4 steps). White solid. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.16 (s, 1H), 7.94 (s, 1H), 7.17 – 7.13 (m, 1H), 7.10 (d, J = 8.4 Hz, 1H), 6.42 (s, 1H), 6.36 (s, 1H), 6.05 (s, 1H), 4.06 (qt, J = 10.8, 5.4 Hz, 2H), 3.73 (s, 3H), 1.38 (s, 9H), 1.14 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 165.3, 154.4, 152.5, 146.8, 138.6, 137.2, 129.5, 127.5, 126.1, 125.3, 123.0, 83.5, 70.5, 61.5, 52.5, 27.7, 13.9. **HRMS(ESI)** m/z: [M + Na]⁺ calcd for C₁₉H₂₄BrNNaO₇⁺ 480.0628;

Found: 480.0624.

ethyl 2-(((tert-butoxycarbonyl)oxy)(5-methoxy-2-((methoxycarbonyl)amino)phenyl)methyl)acrylate (10)

7.2 g, 44% yield (4 steps). White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 (s, 1H), 7.53 (s, 1H), 6.80 (dd, J = 15.4, 5.9 Hz, 2H), 6.53 – 6.47 (m, 1H), 6.37 (d, J = 5.6 Hz, 1H), 6.03 (d, J = 5.0 Hz, 1H), 4.08 (q, J = 7.4 Hz, 2H), 3.76 – 3.65 (m, 6H), 1.39 (d, J = 7.9 Hz, 9H), 1.14 (q, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 156.7, 155.2, 152.5, 139.0, 130.6, 128.8, 125.7, 125.2, 114.7, 113.1, 83.2, 70.9, 61.3, 55.4, 52.2, 27.7, 13.9. HRMS(ESI) m/z: [M + Na]⁺

calcd for $C_{20}H_{27}NNaO_8^+$ 432.1629; Found: 432.1624.

ethyl 2-(((tert-butoxycarbonyl)oxy)(2-((methoxycarbonyl)amino)-5-methylphenyl)methyl)acrylate (1p)

8.0 g, 51% yield (4 steps). White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 (s, 1H), 7.73 (s, 1H), 7.25 (d, *J* = 8.3 Hz, 2H), 6.68 (s, 1H), 6.55 (s, 1H), 6.22 (s, 1H), 4.34 – 4.20 (m, 2H), 3.92 (s, 3H), 2.42 (s, 3H), 1.59 (s, 9H), 1.33 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.4, 155.0, 152.6, 149.8, 139.1, 133.3, 130.1, 128.4, 125.0, 123.8, 83.2, 71.2, 61.4, 52.3, 27.7, 20.9, 13.9. HRMS(ESI) m/z: [M + Na]⁺ calcd for C₂₀H₂₇NNaO₇⁺ 416.1680; Found: 416.1676.

ethyl 2-(((tert-butoxycarbonyl)oxy)(5-fluoro-2-((methoxycarbonyl)amino)phenyl)methyl)acrylate (1q)

6.7 g, 42% yield (4 steps). White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.10 (s, 1H), 7.82 – 7.57 (m, 1H), 7.06 – 6.98 (m, 2H), 6.57 – 6.50 (m, 1H), 6.45 (s, 1H), 6.18 – 6.12 (m, 1H), 4.16 (tdd, J = 10.9, 9.0, 5.4 Hz, 2H), 3.79 (s, 3H), 1.53 (s, 3H), 1.46 (s, 9H), 1.21 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 155.0, 152.4, 146.7, 138.7, 131.8, 125.4, 116.2 (d, J = 22.3 Hz), 114.4 (d, J = 23.5 Hz), 85.2, 83.5, 70.4, 61.5, 52.4, 27.7, 27.4, 13.9. ¹⁹F NMR (377

MHz, Chloroform-d) δ -117.25. **HRMS(ESI)** m/z: [M + Na]⁺ calcd for C₁₉H₂₄FNNaO₇⁺ 420.1429; Found: 420.1424.

ethyl 2-(((tert-butoxycarbonyl)oxy)(5-chloro-2-((methoxycarbonyl)amino)phenyl)methyl)acrylate (1r)

7.3 g, 44% yield (4 steps). White solid. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.17 (s, 1H), 7.72 (s, 1H), 7.27 (d, *J* = 6.8 Hz, 2H), 6.50 (s, 1H), 6.46 (s, 1H), 6.17 - 6.12 (m, 1H), 4.22 - 4.08 (m,

2H), 3.80 (s, 3H), 1.46 (s, 9H), 1.22 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 154.7, 152.4, 138.6, 134.5, 129.7, 129.4, 127.9, 125.6, 124.9, 83.6, 70.3, 61.6, 52.4, 27.7, 13.9. HRMS(ESI) m/z: [M + Na]⁺ calcd for C₁₉H₂₄ClNNaO₇⁺ 436.1133; Found: 436.1128.

ethyl 2-((5-bromo-2-((methoxycarbonyl)amino)phenyl)((tert-butoxycarbonyl)oxy)methyl)acrylate (1s)

5.7 g, 31% yield (4 steps). White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.15 (s, 1H), 7.67 (s, 1H), 7.41 (d, *J* = 8.0 Hz, 2H), 6.50 (s, 1H), 6.46 (s, 1H), 6.14 (s, 1H), 4.16 (qd, *J* = 10.9, 5.5 Hz, 2H), 3.80 (s, 3H), 1.46 (s, 9H), 1.22 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 154.6, 152.4, 138.6, 135.0, 132.2, 130.8, 130.6, 125.6, 125.1, 117.3, 83.6, 70.3, 61.6, 52.4, 27.7, 13.9. HRMS(ESI) m/z: [M + Na]⁺ calcd for C₁₉H₂₄BrNNaO₇⁺ 480.0628; Found: 480.0623.

ethyl 2-(((tert-butoxycarbonyl)oxy)(2-((methoxycarbonyl)amino)-6-methylphenyl)methyl)acrylate (1t)

7.5 g, 48% yield (4 steps). White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 (s, 1H), 7.58 (s, 1H), 7.23 (t, *J* = 7.9 Hz, 1H), 6.94 (d, *J* = 7.5 Hz, 1H), 6.90 (s, 1H), 6.39 (s, 1H), 5.68 (s, 1H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.75 (s, 3H), 2.45 (s, 3H), 1.46 (s, 9H), 1.25 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 154.6, 152.2, 138.2, 137.3, 137.1, 129.2, 127.2, 126.9, 121.6, 83.1, 72.2, 61.2, 52.3, 27.7, 20.2, 14.0. HRMS(ESI) m/z: [M + Na]⁺ calcd for C₂₀H₂₇NNaO₇⁺ 416.1680; Found: 416.1675.

ethyl 2-(((tert-butoxycarbonyl)oxy)(2-((methoxycarbonyl)amino)-3,4-dimethylphenyl)methyl)acrylate (1u)

8.0 g, 49% yield (4 steps). White solid. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.51 (s, 1H), 7.08 (q, *J* = 7.9 Hz, 2H), 6.64 (s, 1H), 6.39 (s, 1H), 6.03 (s, 1H), 4.13 (q, *J* = 7.0 Hz, 2H), 3.73 (d, *J* = 43.5 Hz, 3H), 2.27 (s, 3H), 2.18 (s, 3H), 1.44 (s, 9H), 1.19 (t, *J* = 7.0 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 165.2, 154.9, 152.7, 139.3, 138.6, 135.3, 133.6, 131.2, 128.6, 125.1, 124.9, 82.8, 71.9, 61.1, 52.4, 27.7, 20.6, 15.0, 14.0. **HRMS(ESI)** m/z: [M + Na]⁺ calcd for C₂₁H₂₉NNaO₇⁺ 430.1836;

Found: 430.1831.

General Procedure of Optimization and Substrate Scope

General procedure 1 (GP1) for the synthesis of 3,4-dihydroquinazolinone

o-amino-acylation aryl MBH carbonate **1a** (0.1 mmol, 1.0 eq.) and isocyanate **2a** (0.2 mmol, 2.0 eq.) and CHCl₃ (0.5 mL) were added to a dry flask at room temperature, then DABCO (0.01 mmol, 0.1 eq.) in CHCl₃ (0.5 mL) was added to the above solution in one portion. This solution was stirred at until the complete consumption of the starting materials monitored by TLC. After the removal of the solvent, the residue was purified by flash column chromatography (petroleum ether/ethyl acetate 3:1) to afford product **3aa**.

3.3. Optimization of intermolecular cycloaddition reaction conditions

Table S1 | Optimization of intermolecular cycloaddition on 1a and 2a

Entry	1a/2a	Solvent	Catalyst	Yield of 3aa (%) ^{<i>b</i>}
1	1:1	CHCl ₃	_	no reaction
2	1:1	CHCl ₃	DABCO	63
3	1:0.8	CHCl ₃	DABCO	61
4	1:1.2	CHCl ₃	DABCO	72
5	1:1.5	CHCl ₃	DABCO	87
6	1:2	CHCl ₃	DABCO	96
7	1:2	CHCl ₃	Et ₃ N	mess
8	1:2	CHCl ₃	DMAP	87
9	1:2	CHCl ₃	DBU	92
10	1:2	CHCl ₃	quinine	no reaction
11	1:2	CHCl ₃	PPh ₃	no reaction
12	1:2	MeCN	DABCO	94
13	1:2	toluene	DABCO	93
14	1:2	EtOAc	DABCO	94
15	1:2	THF	DABCO	no reaction

^a 1 mL, ^b 0.01 mmol, ^c Isolated yield.

4. Gram scale reactions and synthetic transformations

Gram scale reactions

Synthesis of 3,4-dihydroquinazolinone 3ha

o-amino-acylation aryl MBH carbonate **1h** (1.69 g, 4 mmol, 1.0 eq.) and isocyanate **2a** (1.01 mL, 8 mmol, 2.0 eq.) and CHCl₃ (35 mL) were added to a 100 mL dry flask at room temperature, then DABCO (44.9 mg, 0.4 mmol, 0.1 eq.) in CHCl₃ (5 mL) was added to the above solution in one portion. The resulting solution of the reaction mixture was stirred at room temperature for 1 h. The solvent was evaporated to give the crude product, which was directly purified by flash chromatography (petroleum ether/ethyl acetate 6:1) to provide the desired product **3ha** as a white solid (1.55 g, 89% yield). The analytical data of the gram scale reaction of **3ha** are consistent with those of the 0.1 mmol scale experiment.

4.2. Synthetic transformations

3ha to 4a (Removal of CO₂^tBu)

To a stirred solution of **3ha** (43.6 mg, 0.1 mmol, 1.0 eq.) in 3 mL THF was added SmI_2 (6 mL, 0.1 M in THF, 6.0 eq.) in one portion at room temperature. The resulting solution of the reaction mixture was stirred for 30 min then evaporated to give the crude product, which was purified by flash chromatography (petroleum ether/ethyl acetate 2:1) to provide the desired product **4a** (24.9 mg, 74% yield).

3ha to 4b (Bromination/Removal of CO₂^tBu)

To a stirred solution of **3ha** (43.6 mg, 0.1 mmol, 1.0 eq.) in 1 mL DCM was added solution of Br₂ (5.6 μ L, 0.11 mmol, 1.1 eq.) in 1mL DCM dropwise at 0 °C. After stirred 1 h, Et₃N (41.7 μ L, 0.3 mmol, 3.0 eq.) was added in one portion. Then the reaction solution was allowed to gradually warm to room temperature and was stirred for 10 min. The solvent was evaporated to give the crude product, which was purified by flash chromatography (petroleum ether/ethyl acetate 2:1) to provide the desired product **4b** (36.1 mg, 89% yield).

3ha to 4c (3+2 cycloaddition)

To a stirred solution of N-hydroxybenzimidoyl chloride (31.1 mg, 0.2 mmol, 2.0 eq.) in 1 mL DCM was added Et₃N (27.8 μ L, 0.2 mmol, 2.0 eq.) at room temperature. After stirred for 10 min, **3ha** (43.6 mg, 0.1 mmol, 1.0 eq.) in 1 mL DCM was added to the solution. The resulting mixture was stirred for 1 h then evaporated to give the crude product, which was purified by flash chromatography (petroleum ether/ethyl acetate 3:1) to provide the desired product **4c** (43.9 mg, 79% yield, d.r. = 4:1, separable).

5. Density Functional Theory (DFT) Calculations

Computational Methods

Density functional theory (DFT) investigations were performed to delineate the detailed mechanism of the Lewis basecatalyzed [4+2] annulations of *o*-amino-acylation aryl MBH carbonates with isocyanates. All DFT calculations were carried out with the Gaussian 09 programs.⁴ The geometry optimizations of the reactants, transition states, and products were performed with the M06-2X/6-31G(d) level.⁵ The frequency calculations were carried out at the same level to conform that there was no imaginary frequency for ground state structures and only one imaginary frequency for transition state structures. The solvent (CHCl₃) effects were considered by single point energy calculations on the gas-phase stationary points using M06-2X functional with the def2-TZVP⁶ basis set in a SMD continuum solvation model. The energies given in this work are M06-2X calculated Gibbs free energies in CHCl₃ solvent noted on figures.⁷ In addition, we utilized a correction of (n-m)*1.89 kcal/mol for a process from m- to n-components to account for the Gibbs energy transition from gas to solution.

5.2. Calculated data

Geometry	E _(elec) ¹	E _(solv) ²	G _(corr) ³	H _(corr) ⁴	IF ⁵
1b	-1280.262547	-1281.1411271	0.344924	0.431572	
PhNCO	-399.491110	-399.730331266	0.072798	0.113236	
CO ₂	-188.517761	-188.594609085	-0.008735	0.015525	
^t BuO ⁻	-232.826769	-233.115475297	0.093301	0.129250	
^t BuOH	-233.442156	-233.660746667	0.108428	0.145078	
DABCO	-345.018414	-345.313541488	0.155886	0.193762	
INT1	-1203.291034	-1204.1723119	0.384822	0.463060	
TS2	-1602.765875	-1603.91012163	0.482940	0.576777	-216.98
INT2	-1602.767490	-1603.92079617	0.484075	0.578424	
TS3	-1602.763167	-1603.90599768	0.484257	0.577439	-224.95
INT3	-1602.797738	-1603.93890157	0.488846	0.580273	
TS4	-1602.799239	-1603.93472055	0.486787	0.578380	-168.80
3	-1257.811614	-1258.62778561	0.302854	0.381959	

Table S2 | The absolute calculation energies, enthalpies and free energies of [4+2] annulation.

¹The electronic energy calculated by M06-2x/6-31G(d) level in gas phase. ²The solvation energy corrections calculated at the M06-2x/def2-TZVP level with the SMD solvation model for acetonitrile minus electronic energy in gas phase. ³The thermal correction to Gibbs free energy calculated by M06-2x/6-31G(d) level in gas phase. ⁴The thermal correction to enthalpy calculated by M06-2x/6-31G(d) level in gas phase. ⁵The M06-2x/6-31G(d) level calculated imaginary frequencies for the transition states.

⁵ (a) Y. Zhao and D. G. Truhlar, Acc. Chem. Res., 2008, 41, 157-167; (b) Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120,

- 215-241; (c) A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652; (d) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785-789.
- ⁶ F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297-305.
- ⁷ A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B. 2009, 113, 6378-6396.

⁴ Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Jr. Montgomery, J. A.; J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and Fox, D. J. Gaussian, Inc., Wallingford CT, **2009**.

6. Analytical Data

DABCO catalyzed [4+2] cycloadducts 3

methyl 4-(3-ethoxy-3-oxoprop-1-en-2-yl)-2-oxo-3-(p-tolyl)-3,4-dihydroquinazoline-1(2H)-carboxylate (3aa)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3aa** as white solid (37.8 mg, 96% yield, mp: 104-106 °C). $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.77 (dd, J = 8.2, 1.2 Hz, 1H), 7.49 (dd, J = 7.6, 1.7 Hz, 1H), 7.37 (td, J = 7.8, 1.6 Hz, 1H), 7.23 – 7.15 (m, 5H), 6.40 (d, J = 1.1 Hz, 1H), 6.07 (d, J = 1.6 Hz, 1H), 5.68 (s, 1H), 4.25 – 4.07 (m, 2H), 3.91 (s, 26 (t, J = 7.2 Hz, 3H) ¹³C NMR (101 MHz, CDCL) δ 165 2, 153 1, 151 9, 138 7, 138 0, 137 2

3H), 2.34 (s, 3H), 1.26 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 153.1, 151.9, 138.7, 138.0, 137.2, 135.3, 129.8, 128.4, 128.2, 126.8, 125.6, 125.3, 124.2, 123.1, 62.8, 61.4, 54.2, 21.1, 14.1. HRMS(ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₃N₂O₅⁺ 395.1602; Found: 395.1603.

methyl 4-(3-ethoxy-3-oxoprop-1-en-2-yl)-3-(4-methoxyphenyl)-2-oxo-3,4-dihydroquinazoline-1(2H)-carboxylate (3ab)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3ab** as white solid (40.6 mg, 99% yield, mp: 136-138 °C). $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.77 (dd, J = 8.2, 1.2 Hz, 1H), 7.49 (dd, J = 7.6, 1.7 Hz, 1H), 7.37 (td, J = 7.6, 1.6 Hz, 1H), 7.26 – 7.15 (m, 3H), 6.95 – 6.81 (m, 2H), 6.40 (d, J = 1.1 Hz, 1H), 6.07 (d, J = 1.5 Hz, 1H), 5.65 (d, J = 1.5 Hz, 1

1.2 Hz, 1H), 4.26 – 4.06 (m, 2H), 3.91 (s, 3H), 3.79 (s, 3H), 1.26 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 158.5, 153.1, 152.0, 138.0, 135.3, 134.1, 128.4, 128.2, 126.9, 126.8, 125.6, 124.2, 123.1, 114.4, 63.0, 61.4, 55.5, 54.1, 14.1. HRMS(ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₃N₂O₆⁺ 411.1551; Found: 411.1554.

methyl 4-(3-ethoxy-3-oxoprop-1-en-2-yl)-3-(4-fluorophenyl)-2-oxo-3,4-dihydroquinazoline-1(2H)carboxylate (3ac)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3ac** as colorless viscous oil (39.4 mg, 99% yield). $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 (d, J = 8.2 Hz, 1H), 7.51 (d, J = 7.7 Hz, 1H), 7.44 – 7.37 (m, 1H), 7.31 (dd, J = 9.0, 4.7 Hz, 2H), 7.24 (t, J = 7.6 Hz, 1H), 7.09 (t, J = 8.7 Hz, 2H), 6.43 (s, 1H), 6.06 (s, 1H), 5.69 (s, 1H), 4.29 – 4.11 (m, 2H), 3.95

(s, 3H), 1.29 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.1, 161.2 (d, J = 247.5 Hz), 153.0, 151.9, 137.9, 137.2, 135.2, 128.6, 127.9, 127.3 (d, J = 8.6 Hz), 126.8, 125.7, 124.3, 123.0, 116.1 (d, J = 23.2 Hz), 62.8, 61.5, 54.2, 14.1. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -114.11 (dt, J = 13.9, 7.8 Hz). HRMS(ESI) m/z: [M + H]⁺ calcd for C₂₁H₂₀FN₂O₅⁺ 399.1351; Found: 399.1352.

methyl 3-(4-chlorophenyl)-4-(3-ethoxy-3-oxoprop-1-en-2-yl)-2-oxo-3,4-dihydroquinazoline-1(2H)-carboxylate (3ad)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3ad** as colorless viscous oil (41 mg, 99% yield). $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.77 (dd, J = 8.3, 1.2 Hz, 1H), 7.48 (dd, J = 7.6, 1.7 Hz, 1H), 7.41 – 7.32 (m, 3H), 7.28 – 7.19 (m, 3H), 6.40 (d, J = 1.1 Hz, 1H), 6.01 (d, J = 1.5 Hz, 1H), 5.68 (d, J = 1.3 Hz, 1H), 4.27 – 4.09 (m, 2H), 3.92 (s, 3H),

1.27 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.1, 152.9, 151.8, 139.7, 137.8, 135.1, 132.6, 129.3, 128.6, 127.7, 126.8, 126.6, 125.7, 124.3, 123.0, 62.5, 61.5, 54.3, 14.1. HRMS(ESI) m/z: [M + H]⁺ calcd for C₂₁H₂₀ClN₂O₅⁺ 415.1055; Found: 415.1058.

methyl 3-(4-bromophenyl)-4-(3-ethoxy-3-oxoprop-1-en-2-yl)-2-oxo-3,4-dihydroquinazoline-1(2H)carboxylate (3ae)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3ae** as colorless viscous oil (41.2 mg, 90% yield). $R_f = 0.4$ (petroleum ether/ethyl acetate = 3:1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.77 (dd, J = 8.3, 1.0 Hz, 1H), 7.52 – 7.45 (m, 3H), 7.38 (td, J = 7.8, 1.7 Hz, 1H), 7.24 – 7.16 (m, 3H), 6.40 (d, J = 1.0 Hz, 1H), 6.01 (d, J = 1.6 Hz, 1H), 5.68 (s, 1H), 4.27 – 4.09 (m, 2H), 3.92 (s, 3H), 1.27 (t, J = 1.0 Hz, 1H), 5.68 (s, 1H), 4.27 – 4.09 (m, 2H), 3.92 (s, 3H), 1.27 (t, J = 1.0 Hz, 1H), 5.68 (s, 1H), 4.27 – 4.09 (m, 2H), 3.92 (s, 3H), 1.27 (t, J = 1.0 Hz, 1H), 5.68 (s, 1H), 4.27 – 4.09 (m, 2H), 3.92 (s, 3H), 1.27 (t, J = 1.0 Hz, 1H), 5.68 (s, 1H), 4.27 – 4.09 (m, 2H), 3.92 (s, 3H), 1.27 (t, J = 1.0 Hz, 1H), 5.68 (s, 1H), 4.27 – 4.09 (m, 2H), 3.92 (s, 3H), 1.27 (t, J = 1.0 Hz, 1H), 5.68 (s, 1H), 4.27 – 4.09 (m, 2H), 3.92 (s, 3H), 1.27 (t, J = 1.0 Hz, 1H), 5.68 (s, 1H), 4.27 – 4.09 (m, 2H), 3.92 (s, 3H), 1.27 (t, J = 1.0 Hz, 1H), 5.68 (s, 1H), 4.27 – 4.09 (m, 2H), 3.92 (s, 3H), 1.27 (t, J = 1.0 Hz, 1H), 5.68 (s, 1H), 4.27 – 4.09 (m, 2H), 3.92 (s, 3H), 1.27 (t, J = 1.0 Hz, 1H), 5.68 (s, 1H), 4.27 – 4.09 (m, 2H), 3.92 (s, 3H), 1.27 (t, J = 1.0 Hz, 1H), 5.68 (s, 1H), 4.27 – 4.09 (m, 2H), 3.92 (s, 3H), 1.27 (t, J = 1.0 Hz, 1H), 5.68 (s, 1H), 4.27 – 4.09 (m, 2H), 3.92 (s, 3H), 1.27 (t, J = 1.0 Hz, 1H), 5.68 (s, 1H), 4.27 – 4.09 (m, 2H), 3.92 (s, 3H), 1.27 (t, J = 1.0 Hz, 1H), 5.68 (s, 1H), 4.27 – 4.09 (m, 2H), 3.92 (s, 3H), 3

7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.1, 152.9, 151.7, 140.2, 137.8, 135.0, 132.2, 128.6, 127.7, 126.9, 125.7, 124.3, 123.0, 120.5, 62.5, 61.5, 54.3, 14.1. HRMS(ESI) m/z: [M + H]⁺ calcd for C₂₁H₂₀BrN₂O₅⁺ 459.0550; Found: 459.0547.

methyl 3-(4-cyanophenyl)-4-(3-ethoxy-3-oxoprop-1-en-2-yl)-2-oxo-3,4-dihydroquinazoline-1(2H)-carboxylate (3af)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3af** as colorless viscous oil (38.9 mg, 96% yield). $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 (d, J = 8.3 Hz, 1H), 7.67 (d, J = 7.3 Hz, 2H), 7.48 (dd, J = 15.7, 7.5 Hz, 3H), 7.40 (t, J = 7.8 Hz, 1H), 7.23 (t, J = 7.6 Hz, 1H), 6.42 (s, 1H), 5.97 (s, 1H), 5.76 (s, 1H), 4.21 (dhept, J = 14.4, 7.5 Hz, 2H), 3.93

(s, 3H), 1.29 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.9, 152.7, 151.6, 145.0, 137.5, 134.7, 133.8, 133.0, 128.9, 127.1, 127.0, 125.9, 124.9, 124.4, 122.8, 118.3, 114.4, 109.9, 61.9, 61.7, 54.4, 14.1. **HRMS(ESI)** m/z: [M + H]⁺ calcd for C₂₂H₂₀N₃O₅⁺ 406.1398; Found: 406.1401.

methyl 4-(3-ethoxy-3-oxoprop-1-en-2-yl)-2-oxo-3-(4-(trifluoromethoxy)phenyl)-3,4-dihydroquinazoline-1(2H)-carboxylate (3ag)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3ag** as colorless viscous oil (45.9 mg, 99% yield). $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 (dd, J = 8.3, 1.2 Hz, 1H), 7.51 (dd, J = 7.6, 1.7 Hz, 1H), 7.43 – 7.34 (m, 3H), 7.27 – 7.20 (m, 3H), 6.43 (d, J = 1.1 Hz, 1H), 6.04 (d, J = 1.5 Hz, 1H), 5.72 (t, J = 1.3 Hz, 1H), 4.30 – 4.11 (m, 2H), 3.94 (s,

3H), 1.29 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.1, 152.9, 151.8, 139.7, 137.8, 135.0, 128.6, 127.7, 126.8, 126.6, 125.7, 124.3, 122.9, 121.7, 119.1, 62.5, 61.5, 54.3, 14.0. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -57.97. HRMS(ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₀F₃N₂O₆⁺ 465.1268; Found: 465.1273.

methyl 4-(3-ethoxy-3-oxoprop-1-en-2-yl)-3-(4-nitrophenyl)-2-oxo-3,4-dihydroquinazoline-1(2H)-carboxylate (3ah)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3ah** as colorless viscous oil (37 mg, 87% yield). $R_f = 0.4$ (petroleum ether/ethyl acetate = 3:1). ¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.24 (d, J = 8.4 Hz, 2H), 7.79 (d, J = 8.2 Hz, 1H), 7.51 (d, J = 8.5 Hz, 3H), 7.41 (t, J = 7.7 Hz, 1H), 7.24 (t, J = 7.4 Hz, 1H), 6.43 (s, 1H), 5.98 (s, 1H), 5.81 (s, 1H), 4.21 (tt, J = 17.8, 8.9 Hz, 2H), 3.94 (s, 3H),

1.29 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.9, 152.7, 151.6, 146.7, 145.3, 137.5, 134.7, 128.9, 127.0, 125.9, 124.7, 124.5, 124.4, 122.7, 61.9, 61.7, 54.4, 14.1. HRMS(ESI) m/z: [M + H]⁺ calcd for C₂₁H₂₀N₃O₇⁺ 426.1296; Found: 426.1301.

methyl 4-(3-ethoxy-3-oxoprop-1-en-2-yl)-2-oxo-3-(m-tolyl)-3,4-dihydroquinazoline-1(2H)-carboxylate (3ai)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3ai** as colorless viscous oil (39 mg, 99% yield). $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 (d, J = 8.1 Hz, 1H), 7.50 (d, J = 7.0 Hz, 1H), 7.41 – 7.34 (m, 1H), 7.24 (dt, J = 19.1, 7.6 Hz, 2H), 7.15 – 7.07 (m, 3H), 6.42 (s, 1H), 6.14 – 6.02 (m, 1H), 5.70 (s, 1H), 4.26 – 4.09 (m, 2H), 3.92 (s, 3H), 2.34 (s, 3H), 2.34 (s, 2H) (s, 2H

1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 153.0, 152.0, 141.1, 139.2, 137.9, 135.2, 129.1, 128.5, 128.1, 126.9, 126.1, 125.6, 124.2, 123.1, 122.4, 62.8, 61.4, 54.2, 21.4, 14.1. HRMS(ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₃N₂O₅⁺ 395.1602; Found: 395.1607.

methyl 4-(3-ethoxy-3-oxoprop-1-en-2-yl)-3-(3-methoxyphenyl)-2-oxo-3,4-dihydroquinazoline-1(2H)carboxylate (3aj)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3aj** as colorless viscous oil (40.6 mg, 99% yield). $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 (d, J = 7.8 Hz, 1H), 7.49 (dd, J = 7.6, 1.2 Hz, 1H), 7.37 (td, J = 8.2, 1.4 Hz, 1H), 7.27 (ddd, J = 8.4, 5.5, 2.4 Hz, 1H), 7.20 (td, J = 7.6, 1.0 Hz, 1H), 6.92 – 6.85 (m, 2H), 6.84 – 6.79 (m, 1H), 6.44 – 6.37 (m,

1H), 6.07 (d, J = 1.4 Hz, 1H), 5.71 (s, 1H), 4.27 – 4.09 (m, 2H), 3.92 (s, 3H), 3.78 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.1, 160.0, 153.0, 151.8, 142.3, 137.9, 135.2, 129.9, 128.5, 128.1, 126.9, 125.6, 124.2, 123.0, 117.3, 112.7, 111.4, 62.7, 61.4, 55.4, 54.2, 14.1. HRMS(ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₃N₂O₆⁺ 411.1551; Found: 411.1554.

methyl 4-(3-ethoxy-3-oxoprop-1-en-2-yl)-3-(3-fluorophenyl)-2-oxo-3,4-dihydroquinazoline-1(2H)carboxylate (3ak)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3ak** as colorless viscous oil (36.6 mg, 92% yield). $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.78 (d, J = 8.2 Hz, 1H), 7.49 (d, J = 7.5 Hz, 1H), 7.35 (dt, J = 22.8, 7.9 Hz, 2H), 7.21 (t, J = 7.5 Hz, 1H), 7.13 – 7.04 (m, 2H), 6.98 (t, J = 8.2 Hz, 1H), 6.41 (s, 1H), 6.02 (s, 1H), 5.72 (s, 1H), 4.28 – 4.10 (m, 2H), 3.92

(s, 3H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.1, 162.7 (d, J = 247.0 Hz), 152.9, 151.7, 142.5 (d, J = 10.0 Hz), 137.8, 135.0, 130.2 (d, J = 9.2 Hz), 128.6, 127.7, 126.9, 125.7, 124.3, 122.9, 120.6 (d, J = 3.1 Hz), 114.0 (d, J = 21.0 Hz), 112.8 (d, J = 24.1 Hz), 62.5, 61.5, 54.3, 14.0. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -111.19 (q, J = 8.1 Hz). HRMS(ESI) m/z: [M + H]⁺ calcd for C₂₁H₂₀FN₂O₅⁺ 399.1351; Found: 399.1350.

methyl 3-(3-chlorophenyl)-4-(3-ethoxy-3-oxoprop-1-en-2-yl)-2-oxo-3,4-dihydroquinazoline-1(2H)-carboxylate (3al)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3al** as colorless viscous oil (38.1 mg, 92% yield). $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 (d, J = 8.2 Hz, 1H), 7.52 (d, J = 7.5 Hz, 1H), 7.41 (t, J = 7.7 Hz, 1H), 7.36 (s, 1H), 7.32 (d, J = 7.9 Hz, 1H), 7.28 (s,

1H), 7.24 (t, J = 7.7 Hz, 2H), 6.44 (s, 1H), 6.04 (s, 1H), 5.72 (s, 1H), 4.21 (dtt, J = 22.7, 7.2, 3.7 Hz, 2H), 3.95 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.1, 152.9, 151.7, 142.2, 137.7, 135.0, 134.6, 130.1, 128.6, 127.7, 127.3, 126.9, 125.7, 125.6, 124.4, 123.4, 123.0, 62.5, 61.5, 54.3, 14.1. HRMS(ESI) m/z: [M + H]⁺ calcd for C₂₁H₂₀ClN₂O₅⁺ 415.1055; Found: 415.1059.

methyl 4-(3-ethoxy-3-oxoprop-1-en-2-yl)-2-oxo-3-(o-tolyl)-3,4-dihydroquinazoline-1(2H)-carboxylate (3am)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3am** as white solid (35.9 mg, 91% yield, d.r. = 6:1, mp: 155-157 °C). $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 (t, *J* = 8.5 Hz, 1H), 7.49 (d, *J* = 7.4 Hz, 1H), 7.43 – 7.33 (m, 1H), 7.31 – 7.17 (m, 6H), 6.48 (s, 1H), 6.35 (s, 0H), 6.28 – 6.19 (m, 1H), 5.76 (s, 0H), 5.73 (s, 0H), 5.44 (s, 1H), 4.27 – 4.08 (m, 2H), 3.93

(s, 3H), 2.32 (s, 0H), 1.97 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H), 1.13 (q, J = 9.3, 8.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 153.0, 151.6, 140.1, 138.2, 135.3, 134.9, 131.4, 128.5, 128.5, 128.4, 127.5, 126.9, 126.6, 125.6, 124.2, 123.1, 62.5, 61.4, 54.1, 17.9, 14.0. (Only one set of diastereoisomer peaks is labeled). HRMS(ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₃N₂O₅⁺ 395.1602; Found: 395.1597.

methyl 3-(2-bromophenyl)-4-(3-ethoxy-3-oxoprop-1-en-2-yl)-2-oxo-3,4-dihydroquinazoline-1(2H)-carboxylate (3an)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3an** as white solid (42.6 mg, 93% yield, d.r. = 10:1, mp: 220-222 °C). R_f = 0.5 (petroleum ether/ethyl acetate = 3:1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.80 (d, *J* = 8.3 Hz, 1H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.49 (d, *J* = 7.6 Hz, 1H), 7.39 (dt, *J* = 13.3, 7.6 Hz, 3H), 7.24 (q, *J* = 8.4, 7.7 Hz, 2H), 6.45 (s, 1H), 6.41 (s, 0H), 6.13 (s, 1H), 5.78 (s, 0H), 5.73 (s, 0H),

5.55 (s, 1H), 4.17 (qt, J = 14.4, 7.2 Hz, 2H), 3.95 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H), 1.17 (t, J = 7.1 Hz, 0H). ¹³C **NMR** (101 MHz, CDCl₃) δ 165.2, 153.0, 151.4, 139.8, 138.2, 135.1, 133.8, 130.6, 129.9, 128.3, 128.3, 126.8, 125.6, 124.6, 122.9, 122.3, 62.2, 61.4, 54.2, 14.0 (Only one set of diastereoisomer peaks is labeled). **HRMS(ESI)** m/z: [M + H]⁺ calcd for C₂₁H₂₀BrN₂O₅⁺ 459.0550; Found: 459.0550.

methyl 3-([1,1'-biphenyl]-2-yl)-4-(3-ethoxy-3-oxoprop-1-en-2-yl)-2-oxo-3,4-dihydroquinazoline-1(2H)-carboxylate (3ao)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3ao** as white solid (43.8 mg, 96% yield, d.r. = 10:1, mp: 114-116 °C). R_f = 0.5 (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 (d, *J* = 8.2 Hz, 1H), 7.46 (s, 1H), 7.43 (q, *J* = 5.5, 4.9 Hz, 3H), 7.23 (t, *J* = 7.7 Hz, 1H), 7.09 (d, *J* = 7.2 Hz, 2H), 6.98 (ddt, *J* = 22.0, 14.9, 7.4 Hz, 4H), 6.76 (d, *J* = 7.4 Hz, 1H), 6.65 (d, *J* = 7.9 Hz, 0H),

6.37 (s, 1H), 6.21 (s, 0H), 6.06 (s, 1H), 5.70 (s, 0H), 5.16 (s, 1H), 4.19 – 4.02 (m, 2H), 3.92 (s, 3H), 1.28 (s, 0H), 1.21 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 165.2, 152.9, 152.0, 139.6, 138.7, 138.0, 137.6, 134.5, 131.1, 129.3, 128.6, 128.6, 128.3, 128.2, 128.1, 127.7, 127.6, 126.4, 125.2, 124.1, 123.0, 62.6, 61.2, 54.0, 14.0 (Only one set of diastereoisomer peaks is labeled). **HRMS(ESI)** m/z: [M + H]⁺ calcd for C₂₇H₂₅N₂O₅⁺ 457.1758; Found: 457.1762.

methyl 4-(3-ethoxy-3-oxoprop-1-en-2-yl)-3-(naphthalen-1-yl)-2-oxo-3,4-dihydroquinazoline-1(2H)-carboxylate (3ap)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded

dihydroquinazolinone **3ap** as white solid (38.3 mg, 89% yield, d.r. = 8:1, mp: 161-163 °C). $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 (q, *J* = 8.6 Hz, 4H), 7.49 (tt, *J* = 15.3, 7.4 Hz, 6H), 7.36 (t, *J* = 7.6 Hz, 1H), 7.30 (d, *J* = 10.0 Hz, 3H), 6.49 (s, 1H), 6.35 (s, 0H), 6.29 (s, 1H), 5.83 (s, 0H), 5.65 (s, 0H), 5.58 (s, 1H), 4.23 – 4.03 (m, 2H), 3.96 (d, *J* = 7.1 Hz, 3H), 1.21 (t, *J* = 7.1 Hz, 3H), 0.80 (t, *J* = 7.1 Hz, 0H). ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 153.2, 152.2, 138.2, 137.1, 135.5, 134.9, 129.1, 129.1, 128.8, 128.6, 128.3, 127.3, 126.9, 126.5, 126.4, 125.8, 125.4, 124.4, 123.2, 122.0, 62.7, 61.4, 54.2, 14.0 (Only one set of diastereoisomer peaks is labeled). HRMS(ESI) m/z: [M + H]⁺ calcd for C₂₅H₂₃N₂O₅⁺ 431.1602; Found: 431.1605.

methyl 3-(4-chloro-3-(trifluoromethyl)phenyl)-4-(3-ethoxy-3-oxoprop-1-en-2-yl)-2-oxo-3,4dihydroquinazoline-1(2H)-carboxylate (3aq)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3aq** as colorless viscous oil (44.8 mg, 93% yield). $R_f = 0.4$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 (d, J = 8.2 Hz, 1H), 7.66 (d, J = 2.3 Hz, 1H), 7.50 (t, J = 8.9 Hz, 2H), 7.46 – 7.37 (m, 2H), 7.24 (t, J = 7.5 Hz, 1H), 6.42 (s, 1H), 5.97 (s, 1H), 5.70 (s, 1H), 4.29 – 4.10 (m, 2H), 3.93 (s, 3H), 1.28 (t, J = 1.2 Hz, 1H)

7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.0, 152.8, 151.7, 139.8, 134.9, 132.1, 130.4, 129.3 (d, *J* = 14.3 Hz), 129.3 – 128.9 (m), 128.8, 127.2, 126.8, 125.9, 124.5 (d, *J* = 4.4 Hz), 122.9, 62.2, 61.6, 54.4, 14.0. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -62.88. HRMS(ESI) m/z: [M + H]⁺ calcd for C₂₂H₁₉ClF₃N₂O₅⁺ 483.0929; Found: 483.0932.

methyl 3-(2,6-difluorophenyl)-4-(3-ethoxy-3-oxoprop-1-en-2-yl)-2-oxo-3,4-dihydroquinazoline-1(2H)-carboxylate (3ar)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3ar** as colorless viscous oil (30.4 mg, 73% yield). $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 (d, *J* = 8.1 Hz, 1H), 7.39 (ddd, *J* = 34.4, 15.4, 7.7 Hz, 3H), 7.25 (t, *J* = 7.4 Hz, 1H), 6.93 (t, *J* = 8.3 Hz, 2H), 6.41 (s, 1H), 5.99 (s, 1H), 5.58 (s, 1H), 4.28 – 4.08 (m, 2H), 3.96 (s, 3H), 1.27 (t, *J* = 7.0 Hz, 3H). ¹³C

NMR (101 MHz, CDCl₃) δ 165.2, 163.5 – 156.5 (m), 152.9, 151.3, 137.9, 135.2, 130.0 (d, J = 10.1 Hz), 128.6, 127.7, 126.5, 125.7, 125.0, 122.9, 111.8 (d, J = 18.9 Hz), 105.9 – 104.6 (m), 62.6, 61.4, 54.3, 14.0. ¹⁹F **NMR** (377 MHz, Chloroform-*d*) δ -108.78 (p, J = 7.7 Hz), -113.26. **HRMS(ESI)** m/z: [M + H]⁺ calcd for C₂₁H₁₉F₂N₂O₅⁺ 417.1257; Found: 417.1260.

methyl 3-benzyl-4-(3-ethoxy-3-oxoprop-1-en-2-yl)-2-oxo-3,4-dihydroquinazoline-1(2H)-carboxylate (3as)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3as** as white solid (25.2 mg, 64% yield, mp: 64-66 °C). $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (d, J = 8.1 Hz, 1H), 7.35 – 7.29 (m, 1H), 7.28 – 7.23 (m, 3H), 7.22 – 7.19 (m, 1H), 7.18 – 7.14 (m, 2H), 7.14 – 7.08 (m, 1H), 6.24 (s, 1H), 5.67 (d, J = 1.2 Hz, 1H), 5.24 (d, J = 15.1 Hz, 2H), 4.25 – 4.12 (m, 3H), 3.92 (s, 3H),

1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.5, 153.1, 152.8, 137.5, 135.8, 135.4, 128.7, 128.2, 128.0, 127.8, 126.4, 125.5, 124.6, 122.8, 61.3, 57.8, 54.1, 50.7, 14.1. HRMS(ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₃N₂O₅⁺ 395.1601; Found: 395.1604.

methyl 3-(2-butoxy-2-oxoethyl)-4-(3-ethoxy-3-oxoprop-1-en-2-yl)-2-oxo-3,4-dihydroquinazoline-1(2H)-carboxylate (3at)

dihydroquinazolinone **3at** as colorless viscous oil (37.2 mg, 89% yield). $R_f = 0.5$ (petroleum ether/ethyl acetate = 6:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (d, J = 8.2 Hz, 1H), 7.39 – 7.33 (m, 1H), 7.30 (d, J = 7.4 Hz, 1H), 7.20 (t, J = 7.4 Hz, 1H), 6.30 (s, 1H), 5.56 (s, 1H), 5.35 (s, 1H), 4.23 (q, J = 6.9 Hz, 2H), 4.14 – 3.99 (m, 3H), 3.89 (s, 3H), 1.48 (dt, J = 13.3, 6.6 Hz, 2H), 1.31 (t, J = 7.1 Hz, 3H), 1.23 (dq, J = 15.0, 7.6 Hz, 3H), 0.85 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.6, 165.8, 152.9, 152.3, 137.7, 135.4, 128.3, 127.9, 126.2, 126.0, 125.7, 123.1, 65.3, 61.5, 60.0, 54.1, 49.7, 30.4, 18.9, 14.1, 13.6. HRMS(ESI) m/z: [M + Na]⁺ calcd for C₂₁H₂₆N₂NaO₇⁺ 441.1632; Found: 441.1628

methyl 4-(3-methoxy-3-oxoprop-1-en-2-yl)-2-oxo-3-(p-tolyl)-3,4-dihydroquinazoline-1(2H)-carboxylate (3ba)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3ba** as white solid (34.6 mg, 91% yield, mp: 102-104 °C). $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (d, J = 8.2 Hz, 1H), 7.50 (d, J = 7.4 Hz, 1H), 7.39 (t, J = 7.8 Hz, 1H), 7.21 (d, J = 9.5 Hz, 5H), 6.42 (s, 1H), 6.11 (s, 1H), 5.70 (s, 1H), 3.93 (s, 3H), 3.74 (s, 3H), 2.36 (s, 3H). ¹³C NMR (101 MHz,

CDCl₃) δ 165.6, 153.0, 151.9, 138.7, 137.7, 137.1, 135.3, 129.8, 128.4, 128.2, 126.8, 125.6, 125.2, 124.4, 123.1, 62.8, 54.1, 52.2, 21.1. **HRMS(ESI)** m/z: [M + H]⁺ calcd for C₂₁H₂₁N₂O₅⁺ 381.1445; Found: 381.1449.

methyl 4-(3-butoxy-3-oxoprop-1-en-2-yl)-2-oxo-3-(p-tolyl)-3,4-dihydroquinazoline-1(2H)-carboxylate (3ca)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3ca** as colorless viscous oil (41.8 mg, 99% yield). $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 (d, J = 7.9 Hz, 1H), 7.51 (d, J = 7.2 Hz, 1H), 7.39 (t, J = 7.3 Hz, 1H), 7.21 (s, 5H), 6.41 (s, 1H), 6.09 (s, 1H), 5.71 (s, 1H), 4.23 - 4.05 (m, 2H), 3.94 (s, 3H), 2.36 (s, 3H), 1.68 - 1.56 (m, 2H), 1.43 - 1.31 (m, 2H),

0.94 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 153.1, 151.9, 138.7, 138.0, 137.1, 135.3, 129.8, 128.4, 128.2, 126.8, 125.6, 125.2, 124.0, 123.1, 65.2, 62.8, 54.1, 30.5, 21.1, 19.1, 13.7. HRMS(ESI) m/z: [M + H]⁺ calcd for C₂₄H₂₇N₂O₅⁺ 423.1915; Found: 423.1922.

methyl 4-(3-isobutoxy-3-oxoprop-1-en-2-yl)-2-oxo-3-(p-tolyl)-3,4-dihydroquinazoline-1(2H)-carboxylate (3da)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3da** as colorless viscous oil (32.1 mg, 76% yield). $R_f = 0.5$ (petroleum ether/ethyl acetate = 6:1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.78 (d, J = 8.2 Hz, 1H), 7.49 (d, J = 7.5 Hz, 1H), 7.37 (t, J = 7.7 Hz, 1H), 7.23 – 7.13 (m, 5H), 6.39 (s, 1H), 6.08 (s, 1H), 5.69 (s, 1H), 3.97 – 3.82 (m, 5H), 2.34 (s, 3H), 1.93 (dp, J = 13.3, 6.7 Hz, 1H), 0.95 – 0.88 (m,

6H). ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 153.1, 151.9, 138.7, 138.1, 137.1, 135.3, 129.8, 128.4, 128.2, 126.9, 125.6, 125.2, 123.9, 123.0, 71.4, 62.8, 54.1, 27.7, 21.1, 19.1, 19.1. **HRMS(ESI)** m/z: [M + H]⁺ calcd for C₂₄H₂₇N₂O₅⁺ 423.1915; Found: 423.1917.

methyl 4-(3-(tert-butoxy)-3-oxoprop-1-en-2-yl)-2-oxo-3-(p-tolyl)-3,4-dihydroquinazoline-1(2H)-carboxylate (3ea)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3ea** as white solid (38.8 mg, 92% yield, mp: 83-85 °C). $R_f = 0.5$ (petroleum ether/ethyl acetate = 6:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (d, *J* = 8.2 Hz, 1H), 7.51 (d, *J* = 7.5 Hz, 1H), 7.39 (t, *J* = 7.7 Hz, 1H), 7.23 (d, *J* = 8.7 Hz, 5H), 6.29 (s,

1H), 5.99 (s, 1H), 5.70 (s, 1H), 3.95 (s, 3H), 2.37 (s, 3H), 1.47 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 164.5, 153.2, 151.9, 139.3, 138.8, 137.0, 135.3, 129.8, 128.4, 128.3, 126.6, 125.4, 125.4, 123.0, 82.1, 62.7, 54.1, 28.0, 21.1. HRMS(ESI) m/z: [M + H]⁺ calcd for C₂₄H₂₇N₂O₅⁺ 423.1915; Found: 423.1916.

methyl 4-(3-(benzyloxy)-3-oxoprop-1-en-2-yl)-2-oxo-3-(p-tolyl)-3,4-dihydroquinazoline-1(2H)-carboxylate (3fa)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3fa** as colorless viscous oil (21.9 mg, 48% yield). $R_f = 0.5$ (petroleum ether/ethyl acetate = 6:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.77 (d, J = 8.1 Hz, 1H), 7.41 (d, J = 7.6 Hz, 1H), 7.35 (d, J = 6.9 Hz, 4H), 7.32 – 7.28 (m, 2H), 7.25 (s, 1H), 7.16 (d, J = 5.9 Hz, 5H), 6.44 (s, 1H), 6.09 (s, 1H), 5.68 (s, 1H), 5.22 (d, J = 12.2 Hz, 1H), 5.06 (d, J = 12.2

Hz, 1H), 3.90 (s, 3H), 2.33 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 165.0, 153.1, 151.9, 138.7, 137.8, 137.2, 135.3, 135.2, 129.8, 129.5, 128.7, 128.5, 128.4, 128.1, 126.9, 125.6, 125.3, 124.7, 123.0, 67.2, 62.9, 54.1, 21.1. **HRMS(ESI)** m/z: [M + H]⁺ calcd for C₂₇H₂₅N₂O₅⁺ 457.1758; Found: 457.1762.

ethyl 4-(3-ethoxy-3-oxoprop-1-en-2-yl)-2-oxo-3-(p-tolyl)-3,4-dihydroquinazoline-1(2H)-carboxylate (3ga)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3ga** as colorless viscous oil (40.4 mg, 99% yield). $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 (d, J = 8.2 Hz, 1H), 7.50 (d, J = 7.4 Hz, 1H), 7.38 (t, J = 7.8 Hz, 1H), 7.22 (d, J = 9.0 Hz, 5H), 6.43 (s, 1H), 6.12 (s, 1H), 5.70 (s, 1H), 4.48 – 4.30 (m, 2H), 4.28 – 4.12 (m, 2H), 2.36 (s, 3H), 1.38 (t, J = 7.1 Hz,

3H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 152.5, 152.0, 138.8, 138.1, 137.0, 135.3, 129.7, 128.4, 128.2, 126.8, 125.4, 125.0, 124.1, 123.0, 63.4, 62.7, 61.4, 21.0, 14.3, 14.1. HRMS(ESI) m/z: [M + H]⁺ calcd for C₂₃H₂₅N₂O₅⁺ 409.1758; Found: 409.1760.

tert-butyl 4-(3-ethoxy-3-oxoprop-1-en-2-yl)-2-oxo-3-(p-tolyl)-3,4-dihydroquinazoline-1(2H)-carboxylate (3ha)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3ha** as white solid (40.1 mg, 92% yield, mp: 73-75 °C). $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1). ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.45 (d, J = 7.5 Hz, 1H), 7.37 – 7.30 (m, 1H), 7.16 (d, J = 8.1 Hz, 5H), 6.42 (s, 1H), 6.12 (s, 1H), 5.67 (s, 1H), 4.27 – 4.10 (m, 2H), 2.33 (s, 3H), 1.55 (s, 9H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz,

CDCl₃) δ 165.3, 152.3, 151.1, 138.9, 138.4, 136.7, 135.4, 129.7, 128.3, 127.6, 126.8, 125.0, 124.9, 124.1, 122.3, 83.6, 62.5, 61.3, 28.0, 21.0, 14.1. **HRMS(ESI)** m/z: [M + H]⁺ calcd for C₂₅H₂₉N₂O₅⁺ 437.2071; Found: 437.2071.

allyl 4-(3-ethoxy-3-oxoprop-1-en-2-yl)-2-oxo-3-(p-tolyl)-3,4-dihydroquinazoline-1(2H)-carboxylate (3ia)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3ia** as colorless viscous oil (37.8 mg, 90% yield). $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 (d, *J* = 8.2 Hz, 1H), 7.51 (d, *J* = 7.5 Hz, 1H), 7.38 (t, *J* = 7.7 Hz, 1H), 7.26 – 7.11 (m, 5H), 6.42 (s, 1H), 6.11 (s, 1H), 6.00 (ddt, *J* = 16.3, 10.7, 5.5 Hz, 1H), 5.71 (s, 1H), 5.45 (d, *J* = 17.1 Hz, 1H), 5.29 (d, *J* = 10.5

Hz, 1H), 4.83 (d, J = 5.0 Hz, 2H), 4.32 – 4.08 (m, 2H), 2.36 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 152.3, 151.8, 138.8, 138.2, 137.0, 135.3, 131.5, 129.7, 128.4, 128.2, 126.8, 125.5, 125.1, 124.1, 123.0, 118.9, 67.7, 62.8, 61.3, 21.0, 14.0. HRMS(ESI) m/z: [M + H]⁺ calcd for C₂₄H₂₅N₂O₅⁺ 421.1758; Found:

421.1753.

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 4-(3-ethoxy-3-oxoprop-1-en-2-yl)-2-oxo-3-(p-tolyl)-3,4-dihydroquinazoline-1(2H)-carboxylate (3ja)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3ja** as colorless viscous oil (44.1 mg, 85% yield, d.r. = 1:1). $R_f = 0.5$ (petroleum ether/ethyl acetate = 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 (dd, J = 54.2, 8.2 Hz, 1H), 7.46 (d, J = 7.5 Hz, 1H), 7.35 (q, J = 7.4 Hz, 1H), 7.18 (d, J = 7.4 Hz, 5H), 6.36 (d, J = 10.3 Hz, 1H), 6.09 (d, J = 12.2 Hz, 1H), 5.66 (d, J = 10.1 Hz, 1H), 4.80 (td, J = 10.9, 4.3 Hz, 1H), 4.28 – 4.09 (m, 2H), 2.33 (s, 3H), 2.25 – 1.87 (m, 2H), 1.69 (d, J = 10.7 Hz, 2H), 1.56 – 1.43 (m, 2H), 1.27 (t, J = 7.1 Hz, 4H), 1.06 (q, J = 11.8 Hz, 2H), 0.92 (d, J = 6.3

Hz, 4H), 0.84 (d, J = 7.0 Hz, 2H), 0.78 (d, J = 6.9 Hz, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 165.2, 152.4, 152.1, 152.0, 151.8, 139.0, 138.4, 138.3, 136.9, 136.8, 135.4, 129.8, 129.7, 128.5, 128.4, 128.2, 127.8, 126.8, 126.7, 125.3, 125.2, 125.0, 124.8, 123.9, 123.5, 122.5, 78.1, 77.9, 77.3, 62.9, 62.6, 61.3, 61.3, 47.0, 46.7, 40.8, 40.1, 34.2, 34.1, 31.5, 31.5, 26.1, 25.7, 23.1, 23.1, 22.1, 22.0, 21.0, 20.9, 20.9, 16.1, 16.0, 14.1. HRMS(ESI) m/z: [M + H]⁺ calcd for C₃₁H₃₉N₂O₅⁺ 519.2854; Found: 519.2850.

methyl 4-(3-ethoxy-3-oxoprop-1-en-2-yl)-8-methyl-2-oxo-3-(p-tolyl)-3,4-dihydroquinazoline-1(2H)-carboxylate (3ka)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3ka** as colorless viscous oil (40.4 mg, 99% yield). $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 (d, J = 7.2 Hz, 1H), 7.28 (d, J = 9.3 Hz, 1H), 7.22 (d, J = 6.0 Hz, 5H), 6.40 (s, 1H), 6.01 (s, 1H), 5.68 (s, 1H), 4.24 (dq, J = 10.9, 7.1 Hz, 1H), 4.18 – 4.08 (m, 1H), 3.88 (s, 3H), 2.42 – 2.33 (m, 6H), 1.27 (t, J = 7.1

Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 152.2, 151.8, 138.7, 138.4, 137.1, 134.5, 134.4, 131.5, 131.1, 129.7, 126.8, 125.0, 124.8, 123.6, 63.7, 61.4, 53.9, 21.1, 18.3, 14.0. HRMS(ESI) m/z: [M + H]⁺ calcd for C₂₃H₂₅N₂O₅⁺ 409.1758; Found: 409.1764.

methyl 4-(3-ethoxy-3-oxoprop-1-en-2-yl)-7-methyl-2-oxo-3-(p-tolyl)-3,4-dihydroquinazoline-1(2H)-carboxylate (3la)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3la** as white solid (40.4 mg, 99% yield, mp: 105-107 °C). $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.59 (s, 1H), 7.35 (d, *J* = 7.9 Hz, 1H), 7.17 (s, 4H), 7.01 (d, *J* = 7.9 Hz, 1H), 6.37 (s, 1H), 6.04 (s, 1H), 5.64 (s, 1H), 4.25 - 4.07 (m, 2H), 3.91 (s, 3H), 2.39 (s, 3H), 2.33 (s, 3H), 1.25 (t, *J* = 7.1 Hz, 1H)

3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 153.2, 152.0, 138.8, 138.6, 138.2, 137.0, 135.2, 129.7, 126.6, 126.3, 125.4, 125.2, 123.9, 123.4, 62.6, 61.3, 54.1, 21.5, 21.0, 14.1. **HRMS(ESI)** m/z: [M + H]⁺ calcd for C₂₃H₂₅N₂O₅⁺ 409.1758; Found: 409.1762.

methyl 7-chloro-4-(3-ethoxy-3-oxoprop-1-en-2-yl)-2-oxo-3-(p-tolyl)-3,4-dihydroquinazoline-1(2H)-carboxylate (3ma)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3ma** as white solid (36 mg, 84% yield, mp: 137-139 °C). $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 (d, J = 2.1

Hz, 1H), 7.43 (d, J = 8.2 Hz, 1H), 7.17 (d, J = 4.9 Hz, 5H), 6.42 (s, 1H), 6.08 (s, 1H), 5.65 (s, 1H), 4.26 – 4.09 (m, 2H), 3.93 (s, 3H), 2.34 (s, 3H), 1.27 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.0, 152.9, 151.4, 138.5, 137.6, 137.3, 136.2, 134.3, 129.8, 127.9, 126.4, 125.7, 125.2, 124.4, 123.0, 62.3, 61.5, 54.4, 21.1, 14.1. HRMS(ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₂ClN₂O₅⁺ 429.1212; Found: 429.1216.

methyl 7-bromo-4-(3-ethoxy-3-oxoprop-1-en-2-yl)-2-oxo-3-(p-tolyl)-3,4-dihydroquinazoline-1(2H)-carboxylate (3na)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3na** as white solid (34.9 mg, 74% yield, mp: 111-113 °C). $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.02 (d, J = 2.0 Hz, 1H), 7.42 – 7.32 (m, 2H), 7.19 (s, 4H), 6.44 (d, J = 0.9 Hz, 1H), 6.11 (d, J = 1.7 Hz, 1H), 5.65 (s, 1H), 4.29 – 4.09 (m, 2H), 3.95 (s, 3H), 2.36 (s, 3H), 1.29 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 165.0, 152.9, 151.4, 138.5, 137.5, 137.3, 136.3, 129.8, 128.6, 128.2, 126.9, 125.8, 125.1, 124.4, 122.1, 62.4, 61.5, 54.4, 21.1, 14.1. HRMS(ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₂BrN₂O₅⁺ 473.0707; Found: 473.0704.

methyl 4-(3-ethoxy-3-oxoprop-1-en-2-yl)-6-methoxy-2-oxo-3-(p-tolyl)-3,4-dihydroquinazoline-1(2H)-carboxylate (3oa)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **30a** as colorless viscous oil (39.4 mg, 93% yield). $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 (d, J = 8.9 Hz, 1H), 7.20 (s, 4H), 7.05 (d, J = 2.9 Hz, 1H), 6.93 (dd, J = 9.0, 2.9 Hz, 1H), 6.42 (s, 1H), 6.08 (s, 1H), 5.65 (s, 1H), 4.26 – 4.12 (m, 2H), 3.92 (s, 3H), 3.83 (s, 3H), 2.36 (s,

3H), 1.29 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 157.2, 153.1, 152.1, 138.8, 137.9, 137.1, 129.8, 129.3, 128.4, 125.3, 124.5, 124.1, 113.9, 111.8, 62.9, 61.4, 55.6, 54.0, 21.0, 14.1. HRMS(ESI) m/z: [M + H]⁺ calcd for C₂₃H₂₅N₂O₆⁺ 425.1707; Found: 425.1708.

methyl 4-(3-ethoxy-3-oxoprop-1-en-2-yl)-6-methyl-2-oxo-3-(p-tolyl)-3,4-dihydroquinazoline-1(2H)-carboxylate (3pa)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3pa** as white solid (36.7 mg, 90% yield, mp: 40-42 °C). $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.63 (d, J = 8.3 Hz, 1H), 7.28 (s, 1H), 7.17 (d, J = 6.3 Hz, 5H), 6.41 – 6.36 (m, 1H), 6.04 (d, J = 1.3 Hz, 1H), 5.63 (s, 1H), 4.27 – 4.08 (m, 2H), 3.90 (s, 3H), 2.34 (d, J = 4.4 Hz, 6H), 1.26 (t, J = 7.1 Hz,

3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 153.1, 152.0, 138.8, 138.1, 137.1, 135.4, 132.9, 129.7, 129.0, 128.3, 127.2, 125.3, 124.1, 123.0, 62.8, 61.3, 54.1, 21.1, 21.0, 14.1. **HRMS(ESI)** m/z: [M + H]⁺ calcd for C₂₃H₂₅N₂O₅⁺ 409.1758; Found: 409.1759.

methyl 4-(3-ethoxy-3-oxoprop-1-en-2-yl)-6-fluoro-2-oxo-3-(p-tolyl)-3,4-dihydroquinazoline-1(2H)-carboxylate (3qa)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3qa** as white solid (35.9 mg, 87% yield, mp: 44-46 °C). $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.75 (dd, J = 9.0, 4.8 Hz, 1H), 7.23 (dd, J = 8.2, 2.8 Hz, 1H), 7.18 (s, 4H), 7.07 (td, J = 8.8, 2.9 Hz, 1H),

6.43 (s, 1H), 6.13 – 6.06 (m, 1H), 5.62 (s, 1H), 4.19 (dddd, J = 18.0, 10.8, 7.2, 3.7 Hz, 2H), 3.91 (s, 3H), 2.34 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 165.0, 159.9 (d, J = 246.3 Hz), 153.0, 151.7, 138.5, 137.4, 137.3, 131.4, 130.2 (d, J = 8.1 Hz), 129.8, 125.2, 124.9 (d, J = 8.4 Hz), 124.5, 115.3 (d, J = 22.8 Hz), 113.8 (d, J = 24.2 Hz), 62.5, 61.5, 54.2, 21.1, 14.0. ¹⁹**F** NMR (377 MHz, Chloroform-*d*) δ -116.04 (td, J = 8.1, 5.0 Hz). HRMS(ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₂FN₂O₅⁺ 413.1507; Found: 413.1510.

methyl 6-chloro-4-(3-ethoxy-3-oxoprop-1-en-2-yl)-2-oxo-3-(p-tolyl)-3,4-dihydroquinazoline-1(2H)-carboxylate (3ra)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3ra** as white solid (42.4 mg, 99% yield, mp: 43-45 °C). $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 (d, J = 8.7 Hz, 1H), 7.50 (s, 1H), 7.37 – 7.30 (m, 1H), 7.17 (s, 4H), 6.44 (s, 1H), 6.08 (s, 1H), 5.62 (s, 1H), 4.32 – 4.09 (m, 2H), 3.91 (s, 3H), 2.34 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR

(101 MHz, CDCl₃) δ 164.9, 152.9, 151.5, 138.4, 137.4, 133.9, 131.0, 129.9, 129.7, 128.5, 126.9, 125.3, 124.7, 124.4, 62.4, 61.6, 54.3, 21.1, 14.1. **HRMS(ESI)** m/z: [M + H]⁺ calcd for C₂₂H₂₂ClN₂O₅⁺ 429.1212; Found: 429.1211.

methyl 6-bromo-4-(3-ethoxy-3-oxoprop-1-en-2-yl)-2-oxo-3-(p-tolyl)-3,4-dihydroquinazoline-1(2H)-carboxylate (3sa)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3sa** as white solid (34.5 mg, 73% yield, mp: 108-110 °C). $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.70 – 7.63 (m, 2H), 7.48 (dd, J = 8.7, 2.2 Hz, 1H), 7.17 (s, 4H), 6.44 (s, 1H), 6.12 – 6.04 (m, 1H), 5.61 (s, 1H), 4.20 (dddd, J = 34.8, 14.3, 10.8, 7.1 Hz, 2H), 3.91 (s, 3H), 2.34 (s, 3H), 1.29 (t, J = 3.2 Hz, 1H), 7.17 (s, 2H), 3.91 (s, 3H), 2.34 (s, 3H), 1.29 (t, J = 3.2 Hz, 1H), 7.17 (s, 2H), 3.91 (s, 3H), 2.34 (s, 3H), 1.29 (t, J = 3.2 Hz, 1H), 7.17 (s, 2H), 3.91 (s, 3H), 2.34 (s, 3H), 1.29 (t, J = 3.2 Hz, 1H), 7.17 (s, 2H), 3.91 (s, 3H), 2.34 (s, 3H), 1.29 (t, J = 3.2 Hz, 1H), 7.17 (s, 2H), 3.91 (s, 3H), 2.34 (s, 3H), 1.29 (t, J = 3.2 Hz, 1H), 7.17 (s, 2H), 3.91 (s, 3H), 2.34 (s, 3H), 1.29 (t, J = 3.2 Hz, 1H), 7.17 (s, 2H), 3.91 (s, 3H), 2.34 (s, 3H), 1.29 (t, J = 3.2 Hz, 1H), 7.17 (s, 2H), 3.91 (s, 3H), 2.34 (s, 3H), 1.29 (t, J = 3.2 Hz, 1H), 7.17 (s, 2H), 3.91 (s, 3H), 2.34 (s, 3H), 1.29 (t, J = 3.2 Hz, 1H), 7.17 (s, 2H), 3.91 (s, 3H), 2.34 (s, 3H), 1.29 (t, J = 3.2 Hz, 1H), 7.17 (s, 2H), 3.91 (s, 3H), 2.34 (s, 3H), 3.91 (s, 3H), 3.9

7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.9, 152.8, 151.4, 138.4, 137.4, 137.4, 134.4, 131.4, 130.0, 129.9, 129.8, 125.3, 124.8, 124.6, 118.7, 62.3, 61.6, 54.3, 21.1, 14.1. HRMS(ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₂BrN₂O₅⁺ 473.0707; Found: 473.0707.

methyl 4-(3-ethoxy-3-oxoprop-1-en-2-yl)-5-methyl-2-oxo-3-(p-tolyl)-3,4-dihydroquinazoline-1(2H)-carboxylate (3ta)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3ta** as white solid (39.6 mg, 97% yield, mp: 92-94 °C). $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 (d, J = 8.0 Hz, 1H), 7.34 (t, J = 7.8 Hz, 1H), 7.17 (dq, J = 16.9, 7.7 Hz, 5H), 6.28 (s, 1H), 5.87 (s, 1H), 5.50 (s, 1H), 4.15 (dt, J = 14.4, 7.2 Hz, 1H), 4.00 (dq, J = 13.1, 6.4, 5.8 Hz, 1H), 3.93 (s, 3H),

2.37 (d, J = 6.3 Hz, 6H), 1.13 (t, J = 7.0 Hz, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 165.7, 153.3, 151.3, 139.2, 137.9, 137.1, 136.4, 133.8, 129.7, 128.3, 127.8, 127.6, 126.5, 126.2, 121.5, 61.3, 59.6, 54.1, 21.1, 18.6, 13.8. **HRMS(ESI)** m/z: [M + H]⁺ calcd for C₂₃H₂₅N₂O₅⁺ 409.1758; Found: 409.1766.

methyl 4-(3-ethoxy-3-oxoprop-1-en-2-yl)-7,8-dimethyl-2-oxo-3-(p-tolyl)-3,4-dihydroquinazoline-1(2H)-carboxylate (3ua)

The reaction was conducted on a 0.1 mmol scale according to the GP2 and afforded dihydroquinazolinone **3ua** as colorless viscous oil (41.8 mg, 99% yield). $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.29 (d, *J* = 4.9 Hz, 1H),

7.20 (s, 4H), 7.12 (d, J = 7.6 Hz, 1H), 6.37 (s, 1H), 6.00 (s, 1H), 5.65 (s, 1H), 4.23 (dq, J = 14.2, 7.1 Hz, 1H), 4.17 – 4.06 (m, 1H), 3.87 (s, 3H), 2.35 (d, J = 5.2 Hz, 6H), 2.22 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 152.4, 152.0, 138.7, 138.5, 138.3, 136.9, 134.3, 133.1, 129.7, 129.2, 128.2, 124.9, 124.1, 123.4, 63.6, 61.3, 53.9, 21.1, 20.3, 15.3, 14.0. HRMS(ESI) m/z: [M + H]⁺ calcd for C₂₄H₂₇N₂O₅⁺ 423.1915; Found: 423.1920.

6.2. Products of derivatization

ethyl 2-(2-oxo-3-(p-tolyl)-1,2,3,4-tetrahydroquinazolin-4-yl)acrylate (4a)

The reaction was conducted on a 0.1 mmol scale according to the corresponding procedure in section 5.2 and afforded **4a** as colorless viscous oil (24.9 mg, 74% yield). $R_f = 0.4$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 (s, 1H), 7.25 – 7.13 (m, 6H), 6.94 (t, J = 7.5 Hz, 1H), 6.76 (d, J = 7.9 Hz, 1H), 6.27 (s, 1H), 5.86 (s, 1H), 5.82 (s, 1H), 4.23 – 4.09 (m, 2H), 2.34 (s, 3H), 1.23 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ

165.4, 153.8, 140.0, 138.6, 136.4, 136.1, 129.6, 128.6, 126.4, 126.3, 125.6, 122.2, 120.0, 114.2, 62.8, 61.1, 21.0, 14.0. **HRMS(ESI)** m/z: $[M + H]^+$ calcd for $C_{20}H_{21}N_2O_3^+$ 337.1547; Found: 337.1544.

6-bromo-4-(prop-1-en-2-yl)-3-(p-tolyl)-3,4-dihydroquinazolin-2(1H)-one (4b)

The reaction was conducted on a 0.1 mmol scale according to the corresponding procedure in section 5.2 and afforded **4b** as white solid (36 mg, 87% yield, mp: 210-212 °C). $R_f = 0.4$ (petroleum ether/ethyl acetate = 3:1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.16 (s, 1H), 7.35 (s, 1H), 7.23 (d, J = 8.5 Hz, 1H), 7.18 (s, 4H), 6.64 (d, J = 8.4 Hz, 1H), 6.31 (s, 1H), 5.86 (s, 1H), 5.75 (s, 1H), 4.18 (tdt, J = 14.4, 11.0, 5.4 Hz, 2H), 2.35 (s, 3H), 1.26 (t, J = 8.4 Hz, 1H), 5.86 (s, 1H), 5.86 (s, 200 Hz), 5.86 (s, 200

7.1 Hz, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 165.1, 154.0, 139.4, 138.3, 136.7, 135.4, 131.5, 129.8, 129.1, 126.4, 121.7, 116.2, 114.1, 62.4, 61.3, 21.1, 14.0. **HRMS(ESI)** m/z: [M + H]⁺ calcd for C₂₀H₂₀BrN₂O₃⁺ 415.0652; Found: 415.0646.

ethyl (R)-5-((R)-1-(tert-butoxycarbonyl)-2-oxo-3-(p-tolyl)-1,2,3,4-tetrahydroquinazolin-4-yl)-3-methyl-4,5dihydroisoxazole-5-carboxylate (4c-major)

The reaction was conducted on a 0.2 mmol scale according to the corresponding procedure in section 5.2 and afforded **4c-major** as pale-yellow solid (70.0 mg, 63% yield, mp: 112-114 °C). $R_f = 0.5$ (petroleum ether/ethyl acetate = 4:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 (d, *J* = 8.2 Hz, 1H), 7.48 (d, *J* = 6.9 Hz, 2H), 7.36 (dq, *J* = 19.8, 7.0 Hz, 5H), 7.17 (d, *J* = 6.7 Hz, 5H), 5.52 (s, 1H), 4.01 – 3.87 (m, 2H), 3.65 (dq, *J* = 10.6, 7.1 Hz, 1H), 3.49 (d, *J* = 17.4 Hz, 1H), 2.33 (s, 3H), 1.62 (s, 9H), 0.97 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.7, 156.8, 151.1,

139.2, 137.2, 136.6, 130.5, 129.6, 129.2, 128.7, 128.4, 128.0, 127.0, 126.7, 124.8, 122.8, 120.9, 91.1, 84.0, 65.0, 62.5, 38.7, 28.0, 21.0, 13.5. **HRMS(ESI)** m/z: $[M + Na]^+$ calcd for $C_{32}H_{33}N_3NaO_3^+$ 578.2261; Found: 578.2257.

ethyl (S)-5-((R)-1-(tert-butoxycarbonyl)-2-oxo-3-(p-tolyl)-1,2,3,4-tetrahydroquinazolin-4-yl)-3-phenyl-4,5-dihydroisoxazole-5-carboxylate (4c-minor)

The reaction was conducted on a 0.2 mmol scale according to the corresponding procedure in section 5.2 and afforded **4c-minor** as pale yellow solid (17.8 mg, 16% yield, mp: 167-169 °C). R_f = 0.4 (petroleum ether/ethyl acetate = 4:1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.83 (d, *J* = 8.2 Hz, 1H), 7.61 (d, *J* = 6.6 Hz, 2H), 7.48 – 7.36 (m, 4H), 7.30 – 7.16 (m, 6H), 5.46 (s, 1H), 4.20 – 4.00 (m, 2H), 3.83 (d, *J* = 17.4 Hz, 1H), 3.71 (d, *J* = 17.4 Hz, 1H), 2.37 (s, 3H), 1.58 (s, 9H), 1.21

(t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 169.6, 157.0, 151.8, 151.1, 139.7, 137.4, 136.7, 130.6, 129.8, 129.3, 128.7, 128.5, 127.3, 126.8, 126.8, 124.6, 122.8, 121.4, 91.9, 84.0, 65.8, 62.6, 39.5, 27.9, 21.1, 13.8. **HRMS(ESI)** m/z: [M + Na]⁺ calcd for C₃₂H₃₃N₃NaO₃⁺ 578.2261; Found: 578.2257.

7. X-ray Crystallographic Analysis

DABCO catalyzed [4+2] cycloadduct - 3ha

Crystallographic data for **3ha** has been deposited with the Cambridge Crystallographic Data Centre as deposition number CCDC 2034954 (Experimental Crystal Structure Determination, 2020, DOI: 10.5517/ccdc.csd.cc25y2v2). These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

ORTEP diagram of **3ha**. Thermal ellipsoids are shown at the 50% probability level. A colorless stick-shaped crystal of **3ha** for X-ray diffraction was obtained by slowly volatilizing a saturated solution of 3fa in hexane/chloroform (5:1). The X-ray intensity data was measured on a Rigaku 007 Saturn 70 single crystal diffractometer.

,				
CCDC number	2023954			
Identification code	3ha			
Empirical formula	$C_{25}H_{28}N_2O_5$			
Formula weight	436.49			
Temperature/K	113(2)			
Crystal system	monoclinic			
Space group	$P2_1/n$			
a/Å	8.2030(16)			
b/Å	35.274(7)			
c/Å	8.3403(17)			
$\alpha/^{\circ}$	90			
β/°	102.52(3)			
$\gamma/^{\circ}$	90			
Volume/Å ³	2355.9(9)			
Ζ	4			
$\rho_{calc}g/cm^3$	1.231			
µ/mm ⁻¹	0.086			
F(000)	928.0			
Crystal size/mm ³	$0.200\times0.180\times0.120$			
Radiation	MoK α ($\lambda = 0.71073$)			
20 range for data collection/°	5.134 to 55.808			
Index ranges	$-10 \le h \le 10, -46 \le k \le 46, -10 \le l \le 10$			
Reflections collected	26220			
Independent reflections	5622 [$R_{int} = 0.0594$, $R_{sigma} = 0.0528$]			
Data/restraints/parameters	5622/0/295			
Goodness-of-fit on F ²	1.024			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0551, wR_2 = 0.1329$			
Final R indexes [all data]	$R_1 = 0.0812, wR_2 = 0.1476$			
Largest diff. peak/hole / e Å ⁻³	0.22/-0.21			

8. NMR Spectra

o-Amino-acylation aryl MBH carbonates

8.2. DABCO catalyzed [4+2] cycloadducts 3

-260

-240

-220

-200

-180

-160

-1:10

-120

-100

-80

8.3. Products of Derivatization

