Supporting Information

Enantioselective Vinylogous-Mukaiyama-Dearomatisation by Anion-Binding Catalysis

Table of Contents

1. General Information and Materials	S1
2. Synthesis and Analytical Data of S-Methyl (E)-But-2-enethioate	S2
3. General Procedure for the Synthesis and Analytical Data of 3c and 3d	S2
4. Reaction Conditions Screening for the Different N- and O-heteroarenes	. S3
5. General Procedures for the Anion-Binding Catalysed Vinylogous-Mukaiyama Dearomatisation Reaction	S5
6. Analytical Data for 4a–4s and 5-7	S5
7. Derivatisation of 4a : Synthesis of 8	S29
8. Kinetic Study	S30
9. X-Ray Crystal Structure Analysis of 4k	S30
10. References	S31
11. NMR Collection	.S32

1. General Information and Materials

¹H- and ¹³C-NMR spectra were recorded in CDCl₃ or DMSO- d_6 (reference signal:^[1] ¹H = 7.26 ppm, ¹³C = 77.16 ppm for CDCl₃; ¹H = 2.50 ppm, ¹³C = 39.52 ppm for DMSO- d_6) on a Bruker Advance 300, 400, 500 or 600 MHz. Chemical shifts (δ) are given in ppm and spin-spin coupling constants (J) are given in Hz. X-Ray diffraction data sets for compound 4 were collected with a Bruker D8 Venture PHOTON III diffractometer. Programs used: data collection: APEX3 V2016.1-0^[2] (Bruker AXS Inc., 2016); cell refinement: SAINT V8.37A (Bruker AXS Inc., 2015); data reduction: SAINT V8.37A (Bruker AXS Inc., 2015); absorption correction, SADABS V2014/7 (Bruker AXS Inc., 2014); structure solution SHELXT-2015^[3] (Sheldrick, G. M. Acta Cryst., 2015, A71, 3-8); structure refinement SHELXL-2015^[4] (Sheldrick, G. M. Acta Cryst., 2015, C71, 3-8) and graphics, XP^[5] (Version 5.1, Bruker AXS Inc., Madison, Wisconsin, USA, 1998). R-values are given for observed reflections, and wR² values are given for all reflections. Analytical thin layer chromatography was performed using silica gel 60 F254 and a solution of KMnO₄ or phosphomolybdic acid served as staining agent. Column chromatography was performed on silica gel 60 (0.040-0.063 mm). Preparative TLC plates were performed using silica gel 60PF254 containing gypsum. Exact masses (HRMS) were performed using electrospray ionization techniques (ESI+) and recorded on an Agilent Q-TOF 6540 UHD or a Bruker Daltonics MicroTof spectrometer. The enantiomeric ratios were determined by supercritical fluid chromatography (SFC) analysis on an Agilent SFC-LC 1260 series using a chiral chiralpack Daicel IG, IC, IA, OD-H or OJ-H column. TetrakisTriazoles 1a-d were synthetised according to procedures already described by our research group.^[6] The quinazoline derivatives 2h-2l,^[7] 2n-2q^[8] and 2r^[9] were synthetised following described procedures reported in the literature. The silvl vinylketene acetals 3a, 3b, 3e, 3f and 3g were synthesised following described procedures reported in the literature,^[10] while the synthesis of 3c and 3d is described in the following document. The employed solvents such as methyl-tert-butylether (MTBE), diethyl ether (Et2O), and toluene were distilled in a solvent purification system (SPS) and dried over 3 or 4 Å molecular sieve (MS).

2. Synthesis and Analytical Data of S-Methyl (E)-But-2-enethioate

In a round-bottom flask, crotonyl chloride (3.19 mL, 30 mmol, 1.5 equiv.) was dissolved in dry MeCN. The solution was cooled to 0 °C in an ice-bath and sodium methylthiolate (1.557 g, 20 mmol, 1 equiv.) was added portion-wise. The reaction was then warmed up to room temperature and stirred overnight. The acetonitrile was removed under reduce pressure and the crude was dissolved in diethyl ether. The organic phase was washed with water, NaHCO₃ (sat) and brine. The organic phase was dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by vacuum distillation using a Kugelrohr apparatus. Observed boiling point: 42-45 °C (2.3 mbar). The product was obtained as a colourless oil (yield 61%). ¹H NMR (300 MHz, CDCl₃) δ 6.91 (dq, *J* = 15.5, 6.9 Hz, 1H), 6.16 (dd, *J* = 15.5, 1.7 Hz, 1H), 2.34 (s, 3H), 1.88 (dd, *J* = 6.9, 1.7 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 190.4, 140.6, 130.2, 18.0, 11.4. ESI-HRMS: *m/z* calculated for [C₅H₉OS]⁺: 117.0374; found 117.0372.

3. General Procedure for the Synthesis and Analytical Data of 3c and 3d

In a flame-dry Schlenk flask, diisopropylamine (1.1 equiv., 11 mmol, 1.5 mL) was dissolved in dry THF (2 mL/ mmol of ester, 20 mL) under Ar atmosphere. The reaction was cooled to -78 °C. Then, *n*BuLi 2.5 M (1.1 equiv., 11 mmol, 4.4 mL) was added dropwise at -78 °C. The reaction was stirred for 30 min. Subsequently, DMPU (1.2 equiv., 12 mmol, 1.45 mL) was added and some turbidity was appreciated. The reaction was stirred for another 30 min at -78 °C. After this time, the corresponding ester (or thioester) (1 equiv., 10 mmol) was added dropwise, and the reaction was stirred for 30 min observing loss of the turbidity. Then, TBSCI (1.1 equiv., 11 mmol, 1.658 g) was added in one portion. The reaction was then stirred for 2-3 h while reaching room temperature. After this time, pentane was added to the reaction and the organic phase was washed three times with cold water to remove the insoluble salts. The organic phase was dried over MgSO₄ and filtered through a pad of Celite. The filtrate was concentrated under reduced pressure and the residue is purified by vacuum distillation using a Kugelrohr apparatus.

tert-Butyldimethyl((1-phenoxybuta-1,3-dien-1-yl)oxy)silane (3c)

OPh Following the general procedure, the phenyl (*E*)-but-2-enoate (10 mmol, 1.62 g) gave the corresponding dienolate as a colourless oil. Observed boiling point: 106 °C (1.7 mbar). Yield 34%. *E/Z* ratio: 4:1. ¹H NMR (500 MHz, CDCl₃) δ 7.34 (app. t, J = 8.0 Hz, 2H major), 7.31 – 7.27 (app t, J = 7.9 Hz, 2H minor), 7.23 (app t, J = 7.9 Hz, 1H minor), 7.14 (app. d, J = 8.0 Hz, 1H major), 7.05 (app d, J = 7.5, 1.0 Hz, 2H major), 7.00 (app. d, J = 7.7 Hz, 2H minor), 6.56 – 6.41 (m, 1H major + 1H minor), 5.03 (d, J = 10.6 Hz, 1H minor), 4.98 (dd, J = 17.1, 2.1 Hz, 1H minor), 4.81 (dd, J = 17.2, 1.9 Hz, 1H major), 4.74 (dd, J = 10.5, 2.2 Hz, 1H minor), 4.69 (dd, J = 10.5, 1.7 Hz, 1H major), 4.54 (d, J = 10.4 Hz, 1H major), 0.98 (s, 9H major), 0.81 (s, 9H minor), 0.23 (s, 6H major), 0.12 (s, 6H minor); ¹³C NMR (125 MHz, CDCl₃) δ 156.2, 154.5, 131.7, 131.5, 129.7, 129.5, 129.5, 124.3, 122.9, 121.8, 119.8, 117.3, 110.8, 109.5, 95.0, 88.7, 25.8, 25.4, 18.3, -4.1, -4.8; ESI-HRMS: *m/z* calculated for [C₁₆H₂₅O₂Si]⁺: 231.1624; found 231.1623.

tert-Butyldimethyl((1-(methylthio)buta-1,3-dien-1-yl)oxy)silane (3d)

SMe Following the general procedure, the S-methyl (*E*)-but-2-enethioate (10 mmol, 1.16 g) gave the corresponding dienolate as a yellowish oil. Observed boiling point: 88-93 °C (2.4 mbar). Yield 50%. *E/Z* ratio: 3:1.¹**H NMR** (300 MHz, CDCl₃) δ 6.71 – 6.50 (m, 1H major + 1H minor), 5.63 minor (d, *J* = 10.7 Hz, 1H minor), 5.43 (d, *J* = 10.6, 1H major), 5.01 (ddd, *J* = 16.9, 2.0, 0.8 Hz, 1H minor), 4.99 (ddd, *J* = 17.2, 2.0, 0.7 Hz, 1H major), 4.87 (ddd, *J* = 10.4, 2.0, 0.8 Hz, 1H minor), 0.24 (s, 6H major + 6H minor); ¹³**C NMR** (75 MHz, CDCl₃) δ 150.0, 150.0, 133.4, 131.0, 114.0, 112.8, 111.7, 111.1, 77.6, 77.2, 76.7, 25.9, 25.8, 18.4, 15.8, 14.1, -4.1, -4.5; **ESI-HRMS:** *m/z* calculated for [C₁₁H₂₃OSSi]⁺: 231.1239; found 231.1240.

4. Reaction conditions screening for the different N- and O-heteroarenes

Employed H-donor catalysts:

Table S1: Screening of the vinylogous addition reaction with quinazoline

		i) TrocCl (solvent,	1 equiv.), 0 °C 30 min		<	
		N ii) 1 (x mol	►), temperature	N N N Troc	`CO₂Me	
		2a OT	BS 3a (2 equiv.) OMe	4a		
Entry	Catalyst (mol%)	Solvent	Conc.	T (°C)	Yield (%) ^[a]	e.r. ^[b]
1	1a (10)	MTBE	0.1 M	-78	69	84:16
2	1b (10)	MTBE	0.1 M	-78	69	82:18
3	1c (10)	MTBE	0.1 M	-78	46	77:23
4	1d (10)	MTBE	0.1 M	-78	58	75:25
5	1e (10)	MTBE	0.1 M	-78	48	52:48
6	1f (10)	MTBE	0.1 M	-78	50	51:49
7	1a (15)	MTBE	0.1 M	-78	75	82:18
8	1a (5)	MTBE	0.1 M	-78	70	86:14
9	1a (3)	MTBE	0.1 M	-78	73	90:10
10	1a (1)	MTBE	0.1 M	-78	63	88:12
11	1a (3)	Et ₂ O	0.1 M	-78	54	87:13
12	1a (3)	C ₆ F ₆	0.1 M	6	35	54:46
13	1a (3)	Et ₂ O:C ₆ F ₆ (3:1)	0.1 M	-30	66	69:31
14	1d (3)	Et ₂ O:C ₆ F ₆ (3:1)	0.1 M	-30	70	70:30
15	1a (3)	Toluene	0.1 M	-78	57	95.5:4.5
16	1a (1)	Toluene	0.1 M	-78	71	93:7
17	1a (3)	Toluene	0.1 M	-78	35 ^[c]	97.5:3.5
18	1a (3)	Toluene	0.2 M	-78	81 ^[c]	96:4
19	1a (3)	Toluene	0.2 M	-78	83 ^[d]	96:4

Conditions: i) Quinazoline (0.1 mmol, 1 equiv.) and TrocCl (1 equiv.) in the appropriate solvent at 0 °C, 30 min; ii) at the corresponding temperature, catalyst **1** (10 mol%) and **3a** (2 equiv.) were added and the reaction stirred for 18 h. [a] Isolated yield after column chromatography. [b] E.r. determined by chiral SFC. [c] 0.5 mmol scale reaction. [d] 1.0 mmol scale reaction.

Table S2: Screening of the reaction with quinoline

			1) TrocCl, solvent 0 °C, 30 min			
			2) 1 (10 mol%)	0		
			OSiR ₃	××××		
			X 3 (2 eq) Troc			
			temp., 18 h 5			
Entry	Catalyst	Dienolate 3	Solvent	T (°C)	Yield (%) ^[a]	e.r. ^[b]
1	1a	OMe	Et ₂ O	-78	56	76:24
		OTBS 3a				
2	1b	3a	Et ₂ O	-78	49	77:23
3	1c	3a	Et ₂ O	-78	47	80:20
4	1d	3a	Et ₂ O	-78	53	80:20
5	1e	3a	Et ₂ O	-78	16	45:55
6	1f	3a	Et ₂ O	-78	76	54:46
7	1g	3a	Et ₂ O	-78	11	46:54
8	1d	3a	toluene	-78	53	65:35
9	1d	3a	C ₆ F ₆	6	n.d.	75:25
10	1d	3a	$Et_2O:C_6F_6(3:1)$	-30	81	82:18
11	1d	3a	Et ₂ O:C ₆ F ₆ (3:1) ^[c]	-30	86	76:24
12	1d ^[d]	3a	$Et_2O:C_6F_6(3:1)$	-30	65	78:22
13	1d	3a	Et ₂ O:C ₆ F ₆ (3:1) + 5 mol% H ₂ O	-30	58	82:18
14	1d	OMe OTIPS 3a '	$Et_2O:C_6F_6$ (3:1)	-30	86	75:25
15	1d	OPh OTBS 3c	$Et_2O:C_6F_6(3:1)$	-30	n.d.	78:22
16	1d	SMe OTBS 3d	Et ₂ O:C ₆ F ₆ (3:1)	-30	80	84:16
17	1d	StBu OTBS 3d'	$Et_2O:C_6F_6(3:1)$	-30	32	50:50

Conditions: i) Quinoline (0.1 mmol, 1 equiv.) and TrocCl (1 equiv.) in the appropriate solvent (0.1 M) at 0 $^{\circ}$ C, 30 min; ii) at the corresponding temperature, catalyst **1** (10 mol%) and **3** (2 equiv.) were added and the reaction stirred for 18 h. [a] Isolated yield after column chromatography. [b] E.r. determined by chiral SFC. [c] 0.3 M concentration. [d] 5 mol% of **1d** was used.

Table S3: Screening of the reaction with picoline

Entry	Catalyst (mol%)	Solvent	T (°C)	Yield (%) ^[a]	e.r. ^[b]
1	OMe-TetraTri	Et ₂ O	-78	39	55:45
2	CF₃-TetraTri isomer	Et ₂ O	-78	47	56:44
3	CF₃-TetraTri isomer	toluene	-78	30	56:44
4	CF ₃ -TetraTri isomer	Et ₂ O/C ₆ F ₆ 2:1	-30	41	68:32
5	CF ₃ -TetraTri isomer	C ₆ F ₆	6	46	70:30
6	_	C ₆ F ₆	6	_	_

Conditions: i) Picoline (0.1 mmol, 1 equiv.) and TrocCl (1 equiv.) in the appropriate solvent (0.1 M) at 0 $^{\circ}$ C, 30 min; ii) at the corresponding temperature, catalyst **1** (10 mol%) and **3a** (2 equiv.) were added and the reaction stirred for 18 h. [a] Isolated yield after column chromatography. [b] E.r. determined by chiral SFC.

Table S4: Screening of the reaction with 4-chromenone

Entry	Catalyst (mol%)	Solvent	T (°C)	Yield (%) ^[a]	e.r. ^[b]
1	-	Et ₂ O/C ₆ F ₆ (2:1) ^[c]	-30	69	50:50
2	1d (10)	Et ₂ O/C ₆ F ₆ (2:1) ^[c]	-30	65	68:32
3	1d (10)	C ₆ F ₆	6	58	54:46
4	1a (10)	toluene	-78	70	79:21
5	1a (5)	toluene	-78	66	79:21
6	1a (2)	toluene	-78	46	78:22
7	1a (5)	toluene ^[d]	-78	n.d.	76:24
8	1a (5)	Et ₂ O	-78	61	65:35
9	1c (5)	toluene	-78	77	61:39

Conditions: i) Chromenone (0.1 mmol, 1 equiv.), TBSOTf (1.1 equiv.), collidine (0.3 equiv.) and catalyst **1** in the appropriate solvent (0.25 M) at 60 °C, 1 h; ii) at the corresponding temperature, **3a** (2 equiv.) was added and the reaction stirred for 18 h. [a] Isolated yield after column chromatography. [b] E.r. determined by chiral SFC. [c] 0.1 M solution. [d] 0.5 M solution.

5. General Procedures for the Anion-Binding Catalysed Vinylogous-Mukaiyama Dearomatisation Reaction

General procedure A: Reaction with quinazoline derivatives

In a flame-dried 5 mL Schlenk pressure tube, the quinazoline derivative **2** (0.10 mmol, 1.0 equiv.) was dissolved in anhydrous toluene (1 mL) and cooled to 0 °C. 2,2,2-Trichloroethoxycarbonyl chloride (14 μ L, 0.10 mmol, 1.0 equiv.) was added and the reaction was stirred at 0 °C for 30 min. Subsequently, catalyst **1a** (3.36 mg, 3.00 μ mol, 3 mol%) was added and the reaction was cooled to -78 °C. Dienolate **3** (0.20 mmol, 2.0 equiv.) was added and the reaction was stirred at -78 °C overnight. The solvent was then removed under reduced pressure and the desired product was obtained after purification by flash column chromatography on silica gel using *n*-pentane/EtOAc.

The racemic versions were prepared without catalyst, following the general procedure described above. Both possible regioisomers (C-2 and C-4 substitution) were formed in the racemic reactions. In some cases, the C-2 regioisomer could not be completely separated from the C-4 isomer and appear in the SFC chromatograms.

General procedure B: Reaction with quinoline derivatives

In a flame-dry Schlenk flask, the quinoline derivative (0.10 mmol, 1.0 equiv.) was dissolved in a 3:1 mixture of anhydrous Et_2O/C_6F_6 (1 mL) and cooled to 0 °C. TrocCl (14 µL, 0.10 mmol, 1.0 equiv.) was added and the reaction was stirred at 0 °C for 30 min. Subsequently, catalyst **1d** (10.6 mg, 0.10 mmol, 10 mol%) was added and the reaction cooled to –30 °C. Then, dienolate **3** (0.2 mmol, 2 equiv.) was added and the reaction was stirred at the reaction was then removed under reduced pressure and the crude was purified by flash column chromatography on silica gel using *n*-pentane or cyclohexane/EtOAc.

6. Analytical Data for 4a-4s

(R,E)-2,2,2-Trichloroethyl 4-(4-methoxy-4-oxobut-2-en-1-yl)quinazoline-3(4H)-carboxylate (4a)

According to the general procedure A, the reaction of quinazoline (2a) (13.0 mg, 0.100 mmol, 1.0 equiv.) with dienolate 3a (47.1 µL, 0.200 mmol, 2.0 equiv.) afforded after flash column chromatography (*n*-pent/EtOAc 10:1) the desired product 4a (23.1 mg, 0.057 mmol, 57%) as a white solid. The enantiomeric ratio was determined as 95.5:4.5 e.r. by chiral SFC (Chiralcel IG, CO₂/MeOH (98:2 \rightarrow 65:35), 2.0 ml/min, (λ = 290 nm): *t*r (major): 14.1 min, *t*r (minor): 15.1 min). ¹H NMR (500 MHz, 90 °C, DMSO-*d*₆): δ = 7.96

(s, 1H), 7.36–7.32 (m, 1H), 7.30–7.26 (m, 2H), 7.25 (d, ${}^{3}J$ = 7.1 Hz, 1H), 6.70 (dt, ${}^{3}J_{trans}$ = 15.3 Hz, ${}^{3}J$ = 7.6 Hz, 1H), 5.78 (dt, ${}^{3}J_{trans}$ = 15.5, ${}^{4}J$ = 1.3 Hz, 1H), 5.48 (t, ${}^{3}J$ = 5.7 Hz, 1H), 5.08 (d, ${}^{3}J$ = 12.2 Hz, 1H), 5.04 (d, ${}^{3}J$ = 12.2 Hz, 1H), 3.63 (s, 3H), 2.74–2.67 (m, 1H), 2.63–2.57 (m, 1H) ppm; 13 **C NMR** (125 MHz, 90 °C, DMSO-*d*₆): δ = 164.9, 150.4, 141.9, 140.0, 138.5, 128.3, 126.9, 125.9, 125.1, 124.9, 124.0, 94.5, 74.8, 54.2, 52.1, 50.6 ppm; **ESI-HRMS**: *m*/*z* calculated for [C₁₆H₁₅Cl₃N₂O₄]⁺: 405.0170; found 405.0169.

The same reaction with the TIPS-dienolate **3a'** provided the product **4a** in 96:4 e.r. (26.5 mg, 0.065 mmol, 65%).

2,2,2-Trichloroethyl (E)-2-(4-methoxy-4-oxobut-2-en-1-yl)quinazoline-1(2H)-carboxylate (rac-4a')

According to the general procedure A without catalyst for the preparation of the racemic sample, the reaction of quinazoline (**2a**) (26.0 mg, 0.200 mmol, 1.0 equiv.) with dienolate **3a** (94.2 μ L, 0.400 mmol, 2.0 equiv.) afforded after flash column chromatography (*n*-pent/EtOAc 10:1) the desired product **rac-4a** (25.3 mg, 0.062 mmol, 31%) and its regioisomer **rac-4a**' (14.5 mg, 0.036 mmol, 18%)

as white solids. The separation of the enantiomers was conducted by chiral SFC (Chiralcel IG, CO₂/MeOH (98:2 \rightarrow 65:35), 2.0 ml/min, (λ = 290 nm): **4a'** tr (1): 12.4 min, tr (2): 14.2 min; **4a** tr (1): 17.7 min, tr (2): 18.2 min).

rac-4a': ¹H NMR (500 MHz, 90 °C, DMSO-*d*₆): δ = 7.95 (s, 1H), 7.36 (td, *J* = 7.6, 1.4 Hz, 1H), 7.25 (t, *J* = 7.5 Hz, 2H), 7.10 (d, *J* = 7.5 Hz, 1H), 5.76 (d, *J* = 5.0 Hz, 1H), 5.59 (dt, *J* = 17.6, 9.9 Hz, 1H), 5.14 – 5.04 (m, 4H), 3.67 (s, 3H), 3.50 (dd, *J* = 9.7, 5.0 Hz, 1H) ppm; ¹³C NMR (125 MHz, 90 °C, DMSO-*d*₆): δ = 169.4, 150.2, 140.4, 139.0, 130.0, 128.8, 126.8, 126.4, 125.1, 121.8, 120.7, 94.5, 74.9, 55.1, 54.4, 51.5 ppm; **ESI-HRMS**: *m/z* calculated for [C₁₆H₁₄Cl₃N₂O₄Na]⁺: 426.9990; found 426.9988.

Chiral-phase SFC: Chiralcel IG, CO₂/MeOH 98:2 \rightarrow 65:35, 2.0 ml/min, (λ = 290 nm) *Racemic:*

Mixture of regioisomers rac-4a and rac-4a':

Signal:	al: DAD1H,Sig=290,4 Ref=360,100							
RT [min]	Туре	Width [min]	Area	Height	Area%			
13.895	MM m	0.1621	1005.7256	97.6678	49.8058			
14.832	MM m	0.1774	1013.5683	88.6748	50.1942			
		Sum	2019.2939					

Signal:	DAD1	H,Sig=290,4 Re			
RT [min]	Туре	Width [min]	Area	Height	Area%
14.083	MM m	0.1754	4172.7217	370.5436	95.5376
15.081	MM m	0.1791	194.8990	17.3482	4.4624
		Sum	4367.6207		

1D-NOESY-spectrum of 4a: saturation of peak @ 5.48 ppm (H^b)

COSY-spectrum of 4a: measurement in MeCN-d3 @ 25 °C (instead of DMSO-d6 @ 90 °C)

10 11 Time [min]

12 13 14

DAD1H,Sig=290,4 Ref=360,100

2

3

5

With OTIPS-dienolate 3a'

1050-10

ć

16 17 18 19 20

15

Signal:	DAD1	H,Sig=290,4 R	ef=360,100	
RT [min]	Туре	Width [min]	Area	Height
15.468	MM m	0.1768	11170.2253	981.6381
16.555	MM m	0.1800	469.0905	40.8489
	Signal: RT [min] 15.468 16.555	Signal: DAD1 RT [min] Type 15.468 MM m 16.555 MM m	Signal: DAD1H,Sig=290,4 Rd RT [min] Type Width [min] 15.468 MM m 0.1768 16.555 MM m 0.1800	Signal: DAD1H,Sig=290,4 Ref=360,100 RT [min] Type Width [min] Area 15.468 MM m 0.1768 11170.2253 16.555 MM m 0.1800 469.0905

Area% 95.9698 4.0302

(R,E)-2,2,2-Trichloroethyl 4-(4-(tert-butoxy)-4-oxobut-2-en-1-yl)quinazoline-3(4H)-carboxylate (4b)

According to the general procedure A, the reaction of quinazoline (**2a**) (13.0 mg, 0.100 mmol, 1.0 equiv.) with dienolate **3b** (60.3 μ L, 0.200 mmol, 2.0 equiv.) afforded after flash column chromatography (*n*-pent/EtOAc 5:1) the desired product **4b** (36.6 mg, 0.082 mmol, 82%) as a colourless viscous liquid. The enantiomeric ratio was determined as 96:4 e.r. by chiral SFC (Daicel IC, CO₂/MeOH (90:10), 2.0 mL/min, (λ = 290 nm): *tr* (major): 7.5 min, *tr* (minor): 9.8 min). ¹H NMR (500 MHz, 363 K, DMSO-*d*₆): δ = 7.95 (s,

1H), 7.38–7.30 (m, 1H), 7.30–7.23 (m, 3H), 6.60 (dt, ${}^{3}J_{trans} = 15.4$ Hz, ${}^{3}J = 7.2$ Hz, 1H), 5.67 (t, ${}^{3}J_{trans} = 15.4$ Hz, 1H), 5.46 (t, ${}^{3}J = 5.7$ Hz, 1H), 5.09 (d, ${}^{2}J = 12.2$ Hz, 1H), 5.02 (d, ${}^{2}J = 12.2$ Hz, 1H), 2.66 (dt, ${}^{2}J = 13.9$ Hz, ${}^{3}J = 7.2$ Hz, 1H), 2.55 (dt, ${}^{2}J = 13.9$ Hz, ${}^{3}J = 7.2$ Hz, 1H), 1.41 (s, 9H) ppm; 13 **C NMR** (125 MHz, 90 °C, DMSO-*d*₆): $\delta = 163.9$, 150.4, 140.7, 139.9, 138.5, 128.3, 126.9, 126.1, 125.9, 125.1, 125.0, 94.5, 79.3, 74.8, 52.2, 38.8, 27.4 ppm; **ESI-HRMS**: m/z calculated for [C₂₁H₁₇Cl₃N₂O₄Na]⁺: 469.0465; found 469.0463.

Chriral-phase SFC: Daicel IC, CO₂/MeOH (90:10) 2.0 mL/min, (λ = 290 nm) *Racemic:*

(R,E)-2,2,2-Trichloroethyl 4-(4-oxo-4-phenoxybut-2-en-1-yl)guinazoline-3(4H)-carboxylate (4c)

According to the general procedure A, the reaction of quinazoline (2a) (13.0 mg, 0.100 mmol, 1.0 equiv.) with dienolate 3c (57.0 µL, 0.200 mmol, 2.0 equiv.) afforded after flash column chromatography (npent/EtOAc 5:1) the desired product 4c (30.3 mg, 0.065 mmol, 65%) as a colourless viscous liquid. The enantiomeric ratio was determined as 94:6 e.r. by chiral SFC (Chiralcel OJ-H, CO₂/MeOH (80:20), 2.0 mL/min, (λ = 290 nm): tr (major): 10.1 min, tr (minor): 10.9 min). ¹H NMR (500 MHz, 90 °C, DMSOd₆): δ = 8.00 (s, 1H), 7.41 (t, ³J = 7.8 Hz, 3H), 7.36 (td, J = 7.2 Hz, 2.4 Hz, 1H), 7.32 (d, J = 2.4 Hz, 1H), 7.27 (dt, J = 14.2 Hz, ${}^{3}J$ = 7.5 Hz, 2H), 7.10 (d, ${}^{3}J$ = 7.8 Hz, 2H), 6.93 (dt, ${}^{3}J$ trans = 15.5 Hz, ${}^{3}J$ = 7.0 Hz, 1H), 6.01 (d, ${}^{3}J$ trans = 15.5 Hz, 1H), 5.54 (t, ${}^{3}J$ = 5.8 Hz, 1H), 5.11 (d, ${}^{3}J$ = 12.2 Hz, 1H), 5.06 (d, ${}^{3}J$ = 12.1 Hz, 1H), 2.79 (dt, ${}^{2}J$ = 13.9 Hz, ${}^{3}J$ = 7.0 Hz, 1H), 2.70 (dt, ^{2}J = 13.9 Hz, ^{3}J = 7.0 Hz, 1H) ppm; ^{13}C NMR (125 MHz, 90 °C, DMSO-*d*₆): δ = 163.0, 150.4, 150.1, 144.4, 140.0, 138.5, 128.9, 128.4, 127.0, 126.0, 125.2, 125.1, 124.9, 123.4, 121.0, 94.6, 74.8, 52.1, 40.1 ppm; ESI-HRMS: m/z calculated for $[C_{21}H_{17}CI_3N_2O_4Na]^+$: 489.0152; found 489.0145.

Chiral-phase SFC: Chiralcel OJ-H, CO₂/MeOH (80:20) 2.0 mL/min, (λ= 290 nm) Racemic:

(R.E)-2.2,2-trichloroethyl 4-(4-(methylthio)-4-oxobut-2-en-1-yl)quinazoline-3(4H)-carboxylate (4d)

10-0-

0.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

According to the general procedure A, the reaction of quinazoline (2a) (13.0 mg, 0.100 mmol, 1.0 equiv.) with thioester dienolate 3d (54.2 µL, 0.200 mmol, 2.0 equiv.) afforded after flash column chromatography (n-pent/EtOAc 5:1) the desired product 4d (27.0 mg, 0.064 mmol, 64%) as a colourless oil. The enantiomeric ratio was determined as 82:18 e.r. by chiral SFC (Chiralcel IC, CO₂/MeOH (90:10), 2.0 ml/min, (λ = 290 nm): tr (minor): 8.0 min, tr (major): 8.8 min). ¹H NMR (500 MHz, CD₃CN): δ = 7.98 (s, 1H), 7.34 (td, ³J = 7.5 Hz, ⁴J = 1.6 Hz, 1H), 7.30–7.24 (m, 2H), 7.19 (d, ³J = 7.1 Hz, 1H), 6.67 (dt,

³J_{trans} = 15.5 Hz, ³J = 7.8 Hz, 1H), 6.06 (dt, ³J_{trans} = 15.4 Hz, ⁴J = 1.3 Hz, 1H), 5.49 (t, ³J = 5.6 Hz, 1H), 5.00 (s, 2H), 2.68 (brs, 1H), 2.57 (brs, 1H), 2.28 (brs, 2H) ppm; ¹³C NMR (125 MHz, 90 °C, DMSO-d₆): δ = 189.4, 151.3, 140.9, 139.0, 132.1, 129.3, 127.9, 126.9, 126.1, 125.7, 95.5, 75.7, 53.0, 39.8, 11.2 ppm; ESI-HRMS: m/z calculated for [C21H17Cl3N2O3NaS]*: 422.9912; found 422.9903.

Chiral-phase SFC: Chiralcel IC, CO₂/MeOH 90:10, 2.0 ml/min, (λ = 290 nm) Racemic:

6.017

7 7.5 8 8.5 Time [min]

9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15

2342.0471

Sum

(R,E)-2,2,2-Trichloroethyl 4-(4-methoxy-2-methyl-4-oxobut-2-en-1-yl)quinazoline-3(4H)-carboxylate (4e)

600

500

400

05

1.5

2 25

According to the general procedure A, the reaction of quinazoline (2a) (13.0 mg, 0.100 mmol, 1.0 equiv.) with dienolate 3e (51.9 µL, 0.200 mmol, 2.0 equiv.) afforded after flash column chromatography (npent/EtOAc 5:1) the desired product 4e (24.7 mg, 0.059 mmol, 59%) as a colourless viscous liquid. The enantiomeric ratio was determined as 90:10 e.r. by chiral SFC (Chiralcel OD-H, CO₂/MeOH (90:10), 2.0 mL/min, (λ = 290 nm): tr (minor): 5.0 min, tr (major): 5.8 min). ¹H NMR (500 MHz, 90 °C, DMSO-d₆): 7.97 (s, 1H), 7.34 (t, ³*J* = 7.4 Hz, 1H), 7.26 (t, ³*J* = 7.4 Hz, 2H), 7.21 (d, ³*J* = 7.4 Hz, 1H), 5.49–5.44 (m,

2H), 5.08 (d, ²J = 12.2 Hz, 1H), 5.01 (d, ²J = 12.2 Hz, 1H), 3.59 (s, 3H), 2.55–2.50 (m, 1H), 2.46 (dd, ²J = 12.9 Hz, ³J = 6.5 Hz, 1H), 2.09 (s, 3H) ppm; ¹³C NMR (125 MHz, 90 °C, DMSO-*d*₆): δ = 165.1, 152.8, 150.3, 139.9, 138.4, 128.3, 126.75, 125.9, 125.2, 125.0, 118.6, 94.5, 74.8, 51.7, 50.0, 46.5, 18.5 ppm; ESI-HRMS: m/z calculated for [C17H17Cl3N2O4Na]*: 441.0146; found 441.0142.

Chriral-phase SFC: Chiralcel OD-H, CO₂/MeOH (90:10) 2.0 mL/min, (λ= 290 nm) Racemic:

4.5

5

3.5

5.5 6 6.5

75 Å 5.027 MM m

5.785 MM m

0.2454

0.1493

Sum

1298.3457

11650.1195

12948.4652

88.3666

1221.0578

10.0270

89.9730

(R,E)-2,2,2-Trichloroethyl 4-(4-methoxy-3-methyl-4-oxobut-2-en-1-yl)quinazoline-3(4H)-carboxylate (4f)

According to the general procedure A, the reaction of quinazoline (**2a**) (13.0 mg, 0.100 mmol, 1.0 equiv.) with dienolate **3f** (53.1 μ L, 0.200 mmol, 2.0 equiv.) afforded after flash column chromatography (*n*-pent/EtOAc 5:1) the desired product **4f** (16.2 mg, 0.039 mmol, 39%) as a colourless viscous liquid. The enantiomeric ratio was determined as 78:22 e.r. by chiral SFC (Chiralcel OD-H, CO₂/MeOH (92:8), 2.0 mL/min, (λ = 290 nm): *tr* (minor): 7.1 min, *tr* (major): 8.1 min). ¹H NMR (500 MHz, 90 °C, DMSO-*d*₆):

δ = 7.96 (s, 1H), 7.36–7.32 (m, 1H), 7.28–7.23 (m, 3H), 6.57 (t, ³*J* = 7.6 Hz, 1H), 5.45 (t, ³*J* = 6.2 Hz, 1H), 5.08 (d, ²*J* = 12.2 Hz, 1H), 5.05 (d, ²*J* = 12.2 Hz, 1H), 3.65 (s, 3H), 2.69 (dt, ²*J* = 14.3 Hz, ³*J* = 7.6 Hz, 1H), 2.59 (dt, ²*J* = 14.3 Hz, ³*J* = 6.2 Hz, 1H), 1.59 (s, 3H) ppm; ¹³**C NMR** (125 MHz, 90 °C, DMSO-*d*₆): δ = 166.6, 150.4, 139.9, 138.5, 134.3, 130.2, 128.2, 126.8, 125.9, 125.0, 124.9, 94.5, 74.8, 52.0, 51.0, 35.2, 11.5 ppm; **ESI-HRMS**: m/z calculated for [C₁₇H₁₇Cl₃N₂O₄Na]⁺: 441.0146; found 441.0146.

Chriral-phase SFC: Chiralcel OD-H, CO₂/MeOH (92:8) 2.0 mL/min, (λ= 290 nm)

(R,E)-2,2,2-Trichloroethyl 4-(5-methoxy-5-oxopent-3-en-2-yl)quinazoline-3(4H)-carboxylate (4g)

According to the general procedure A, the reaction of quinazoline (**2a**) (13.0 mg, 0.100 mmol, 1.0 equiv.) with dienolate **3g** (49.7 µL, 0.200 mmol, 2.0 equiv.) led to the desired product **4g** as a mixture of two diastereomers (d.r.: 6/1, 77% combined NMR yield). The major isomer (26.8 mg, 0.064 mmol, 64%) was isolated after flash column chromatography (*n*-pent/EtOAc 10:1) as a colourless viscous liquid. The enantiomeric ratio of the major product **4g** was determined as 97.5:2.5 e.r. by chiral SFC (Chiralcel OD-

H, CO₂/MeOH (92:8), 2.0 mL/min, (λ = 290 nm): *tr* (minor): 12.1 min, *tr* (major): 15.2 min). ¹H NMR (500 MHz, 90 °C, DMSO-*d*₆): δ =7.98 (s, 1H), 7.39 – 7.35 (m, 1H), 7.30 – 7.23 (m, 3H), 6.61 (dd, ³*J*_{trans} = 15.6 Hz, ³*J* = 8.5 Hz, 1H), 5.72 (d, ³*J*_{trans} = 15.6 Hz, z1H), 5.33 (d, ³*J* = 4.6 Hz, 1H), 5.09 (d, ²*J* = 12.2 Hz, 2H), 5.05 (d, ²*J* = 12.2 Hz, 2H), 3.62 (s, 3H), 2.86 – 2.77 (m, 1H), 1.04 (d, ³*J* = 7.0 Hz, 3H). ppm; ¹³C NMR (125 MHz, 90 °C, DMSO-*d*₆): δ = 165.1, 150.5, 147.5, 140.5, 139.2, 128.5, 126.9, 126.6, 125.0, 122.6, 121.7, 94.6, 74.8, 56.6, 50.6, 42.6, 14.5 ppm; ESI-HRMS: m/z calculated for $[C_{17}H_{17}Cl_3N_2O_4Na]^+$: 441.0146; found 441.0146.

Chriral-phase SFC: Chiralcel OD-H, CO₂/MeOH (92:8) 2.0 mL/min, (λ= 290 nm)

Signal:	DAD1	H,Sig=290,4 Re			
RT [min]	Туре	Width [min]	Area	Height	Area%
12.408	MM m	0.4625	9384.2481	327.2875	51.2410
15.442	MM m	0.5430	8929.7055	258.4865	48.7590
		Sum	18313.9536		

Signal:	DAD1H,Sig=290,4 Ref=360,100						
RT [min]	Туре	Width [min]	Area	Height	Area%		
12.106	MM m	0.3894	481.4279	15.0412	2.5424		
15.243	MM m	0.5805	18454.7822	497.8417	97.4576		
		Sum	18936,2101				

(R,E)-2,2,2-Trichloroethyl 4-(4-methoxy-4-oxobut-2-en-1-yl)-7-methylquinazoline-3(4H)-carboxylate (4h)

According to the general procedure A, the reaction of 7-methylquinazoline (**2h**) (14.4 mg, 0.100 mmol, 1.0 equiv.) with dienolate **3a** (47.1 µL, 0.200 mmol, 2.0 equiv.) afforded after flash column chromatography (*n*-pent/EtOAc 4:1) the desired product **4h** (27.2 mg, 0.065 mmol, 65%) as a white solid. The enantiomeric ratio was determined as 95.5:4.5 e.r. by chiral SFC (Chiralcel IG, CO₂/MeOH (98:2 \rightarrow 65:35), 2.0 ml/min, (λ = 290 nm): *tr* (major): 14.2 min, *tr* (minor): 16.4 min.). ¹H NMR (500 MHz, 90 °C, DMSO-*d*₆): δ = 7.94 (s, 1H), 7.14 (d, ³*J* = 7.5 Hz, 1H), 7.09 (d, ³*J* = 8.8 Hz, 2H), 6.69 (dt,

 ${}^{3}J_{\text{trans}}$ = 15.4 Hz, ${}^{3}J$ = 7.6 Hz, 1H), 5.79 (d, ${}^{3}J_{\text{trans}}$ = 15.6 Hz, 1H), 5.43 (t, ${}^{3}J$ = 5.6 Hz, 1H), 5.08 (d, ${}^{2}J$ = 12.2 Hz, 1H), 5.04 (d, ${}^{2}J$ = 12.2 Hz, 1H), 3.63 (s, 3H), 2.68 (dt, ${}^{2}J$ = 13.8 Hz, ${}^{3}J$ = 7.0 Hz, 1H), 2.58 (dt, ${}^{2}J$ = 14.1 Hz, ${}^{3}J$ = 6.5 Hz, 1H), 2.32 (s, 3H) ppm; 1³C NMR (125 MHz, 90 °C, DMSO-*d*₆): δ = 164.9, 150.4, 142.0, 139.9, 138.3, 137.8, 127.6, 125.7, 125.6, 123.9, 121.9, 94.5, 74.8, 52.0, 50.6, 39.0, 20.0 ppm; ESI-HRMS: *m/z* calculated for [C₁₇H₁₇N₂O₄Cl₃Na]⁺: 441.0146; found 441.0144.

Chiral-phase SFC: Chiralcel IG, CO₂/MeOH 98:2 \rightarrow 65:35, 2.0 ml/min, (λ = 290 nm) *Racemic:*

Signal:	DAD1	H,Sig=290,4 Re	ef=360,100		
RT [min]	Туре	Width [min]	Area	Height	Area%
14.187	MM m	0.1619	940.8143	91.5548	49.2648
16.315	MM m	0.2017	968.8957	75.5144	50.7352
		Sum	1909.7100		

Signal: DAD1H,Sig=290,4 Ref=360,100							
RT [min]	Туре	Width [min]	Area	Height	Area%		
14.238	MM m	0.1708	7120.5043	645.0129	95.5052		
16.410	MM m	0.1853	335.1150	28.8979	4.4948		
		Sum	7455.6193				

(R,E)-2,2,2-Trichloroethyl 4-(4-methoxy-4-oxobut-2-en-1-yl)-7-phenylquinazoline-3(4H)-carboxylate (4i)

According to the general procedure A, the reaction of 7-phenylquinazoline (**2i**) (20.6 mg, 0.100 mmol, 1.0 equiv.) with dienolate **3a** (47.1 µL, 0.200 mmol, 2.0 equiv.) afforded after flash column chromatography (*n*-pent/EtOAc 4:1) the desired product **4i** (46.3 mg, 0.096 mmol, 96%) as a slightly yellow solid. The enantiomeric ratio was determined as 94:6 e.r. by chiral SFC (Chiralcel IG, CO₂/MeOH (98:2 \rightarrow 65:35), 2.0 ml/min, (λ = 280 nm): *tr* (major): 13.6 min, *tr* (minor): 15.3 min). ¹H NMR (500 MHz, 90 °C, DMSO-*d*₆): δ = 8.02 (s, 1H), 7.68 (d, ³*J* = 7.7 Hz, 2H), 7.58 (dd, ³*J* = 7.9 Hz, ⁴*J* = 2.0 Hz, 1H),

7.52 (d, ${}^{4}J$ = 1.9 Hz, 1H), 7.47 (t, ${}^{3}J$ = 7.6 Hz, 2H), 7.38 (td, ${}^{3}J$ = 7.8 Hz, ${}^{4}J$ = 1.9 Hz, 2H), 6.75 (dt, ${}^{3}J_{trans}$ = 15.4 Hz, ${}^{3}J$ = 7.6 Hz, 1H), 5.83 (d, ${}^{3}J_{trans}$ = 15.5 Hz, 1H), 5.53 (t, ${}^{3}J$ = 5.7 Hz, 1H), 5.10 (d, ${}^{2}J$ = 12.2 Hz, 1H), 5.06 (d, ${}^{2}J$ = 12.1 Hz, 1H), 3.63 (s, 3H), 2.75 (dt, ${}^{2}J$ = 13.8 Hz, ${}^{3}J$ = 6.7 Hz, 1H), 2.65 (dt, ${}^{2}J$ = 14.0 Hz, ${}^{3}J$ = 6.5 Hz, 1H) ppm; ¹³C NMR (125 MHz, 90 °C, DMSO-*d*₆): δ = 165.0, 150.4, 142.0, 140.6, 140.4, 139.0, 138.8, 128.4, 127.2, 126.5, 126.1, 125.2, 124.0, 123.1, 94.5, 74.8, 52.0, 50.6, 38.9 ppm; ESI-HRMS: *m/z* calculated for [C₂₂H₁₉N₂O₄Cl₃Na]⁺: 503.0303; found 503.0302.

Chiral-phase SFC: Chiralcel IG, CO_2/MeOH 98:2 \rightarrow 65:35, 2.0 ml/min, (λ = 280 nm)

(R,E)-2,2,2-Trichloroethyl 4-(4-methoxy-4-oxobut-2-en-1-yl)-7-(4-methoxyphenyl)-quinazoline-3(4H)-carboxylate (4j)

2

According to the general procedure A, the reaction of 7-(4-methoxyphenyl)quinazoline (**2j**) (23.6 mg, 0.100 mmol, 1.0 equiv.) with dienolate **3a** (47.1 µL, 0.200 mmol, 2.0 equiv.) afforded after flash column chromatography (*n*-pent/EtOAc 2:1) the desired product **4j** (54.1 mg, 0.99 mmol, 99%) as a slightly yellow solid. The enantiomeric ratio was determined as 95:5 e.r. by chiral SFC (Chiralcel IC, CO₂/MeOH (98:2 \rightarrow 65:35), 2.0 ml/min, (λ = 254 nm): *tr* (major): 16.7 min, *tr* (minor): 19.5 min). ¹H NMR (500 MHz, 90 °C, DMSO-*d*₆): δ = 8.01 (s, 1H), 7.64–7.60 (m, 2H), 7.52 (dd, ³*J* = 7.9 Hz, ⁴*J* = 1.9 Hz, 1H), 7.47 (d, ⁴*J* = 1.7 Hz, 1H), 7.32 (d,

 ${}^{3}J$ = 7.9 Hz, 1H), 7.03 (d, ${}^{3}J$ = 8.7 Hz, 2H), 6.74 (dt, ${}^{3}J_{trans}$ = 15.4 Hz, ${}^{3}J$ = 7.6 Hz, 1H), 5.83 (d, ${}^{3}J_{trans}$ = 15.6 Hz, 1H), 5.51 (t, ${}^{3}J$ = 5.7 Hz, 1H), 5.09 (d, ${}^{2}J$ = 12.2 Hz, 1H), 5.05 (d, ${}^{2}J$ = 12.1 Hz, 1H), 3.82 (s, 3H), 3.63 (s, 3H), 2.74 (dt, ${}^{2}J$ = 13.8 Hz, ${}^{3}J$ = 6.8 Hz, 1H), 2.64 (dt, ${}^{2}J$ = 13.8 Hz, ${}^{3}J$ = 6.5 Hz, 1H) ppm; 1³**C** NMR (125 MHz, 90 °C, DMSO-*d*₆): δ = 165.0, 158.9, 150.4, 142.0, 140.3, 138.9, 131.3, 127.2, 126.4, 124.7, 124.0, 123.2, 122.7, 114.1, 94.5, 74.8, 54.9, 52.0, 50.6, 39.0 ppm; ESI-HRMS: *m/z* calculated for [C₂₃H₂₁N₂O₅Cl₃Na]⁺: 533.0408; found 533.0411.

Chiral-phase SFC: Chiralcel IC, CO_2/MeOH 98:2 \rightarrow 65:35, 2.0 ml/min, (λ = 254 nm)

15 16

12 13 14 Time [min]

17 18 19 20 21 22 23 24

25

(R,E)-2,2,2-Trichloroethyl 7-(4-fluorophenyl)-4-(4-methoxy-4-oxobut-2-en-1-yl)-quinazoline-3(4H)-carboxylate (4k)

According to the general procedure A, the reaction of 7-(4-fluorophenyl)quinazoline (**2k**) (22.4 mg, 0.100 mmol, 1.0 equiv.) with dienolate **3a** (47.1 µL, 0.200 mmol, 2.0 equiv.) afforded after flash column chromatography (*n*-pent/EtOAc 3:1) the desired product **4k** (22.1 mg, 0.044 mmol, 44%) as a white solid. The enantiomeric ratio was determined as 96:4 e.r. by chiral SFC (Chiralcel IC, CO₂/MeOH (98:2 \rightarrow 65:35), 2.0 ml/min, (λ = 254 nm): *t*r (major): 12.9 min, *t*r (minor): 14.1 min). ¹H **NMR** (500 MHz, 90 °C, DMSO-*d*₆): δ = 8.01 (s, 1H), 7.74–7.70 (m, 2H), 7.55 (dd, ³*J* = 7.9 Hz,

⁴*J* = 1.9 Hz, 1H), 7.50 (d, ⁴*J* = 1.7 Hz, 1H), 7.36 (d, ³*J* = 7.9 Hz, 1H), 7.29–7.23 (m, 2H), 6.74 (dt, ³*J*trans = 15.3 Hz, ³*J* = 7.7 Hz, 1H), 5.83 (d, ³*J*trans = 15.6 Hz, 1H), 5.52 (t, ³*J* = 5.7 Hz, 1H), 5.10 (d, ²*J* = 12.2 Hz, 1H), 5.06 (d, ²*J* = 12.1 Hz, 1H), 3.63 (s, 3H), 2.75 (dt, ²*J* = 13.7 Hz, ³*J* = 6.8 Hz, 1H), 2.64 (dt, ²*J* = 14.2 Hz, ³*J* = 6.6 Hz, 1H) ppm; ¹³C NMR (125 MHz, 90 °C, DMSO-*d*₆): δ = 164.9, 161.7 (d, ¹*J*_{C,F} = 245.1 Hz), 150.4, 141.9, 140.5, 139.5, 139.0, 135.3 (d, ⁴*J*_{C,F} = 3.0 Hz), 128.2 (d, ³*J*_{C,F} = 8.2 Hz), 126.6, 125.1, 124.0, 123.1, 115.2 (d, ³*J*_{C,F} = 21.5 Hz), 94.5, 74.8, 52.0, 50.6, 38.9 ppm; ¹⁹F NMR (600 MHz, 25 °C, DMSO-*d*₆): - 113.79, -114.89 ppm; **ESI-HRMS**: *m/z* calculated for [C₂₂H₁₈N₂O₄Cl₃Na]⁺: 521.0208; found 521.0214.

Chiral-phase SFC: Chiralcel IC, CO_2/MeOH 98:2 \rightarrow 65:35, 2.0 ml/min, (λ = 254 nm)

Racemic:

0-

10 11 Time [min] 12 13

Signal:	DAD1	B,Sig=254,4 Re	ef=360,100		
RT [min]	Туре	Width [min]	Area	Height	Area%
13.224	MM m	0.1267	8905.2204	1096.9883	51.0111
14.380	MM m	0.1314	8552.1962	1024.7603	48.9889
		Sum	17457.4165		

Signal:	DAD1	B,Sig=254,4 Re	f=360,100		
RT [min]	Туре	Width [min]	Area	Height	Area%
12.918	MM m	0.1281	10651.2852	1293.0522	96.3346
14.093	MM m	0.1275	405.2672	51.6692	3.6654
		Sum	11056.5523		

17 18 19 20

14 15 16

(R)-2,2,2-Trichloroethyl 4-((E)-4-methoxy-4-oxobut-2-en-1-yl)-7-((E)-styryl)quinazoline-3(4H)-carboxylate (4I)

According to the general procedure A, the reaction of 7-((*E*)-styryl)quinazoline (**2I**) (23.2 mg, 0.100 mmol, 1.0 equiv.) with dienolate **3a** (47.1 µL, 0.200 mmol, 2.0 equiv.) afforded after flash column chromatography (*n*-pent/EtOAc 3:1) the desired product **4I** (37.8 mg, 0.074 mmol, 74%) as a slightly yellow solid. The enantiomeric ratio was determined as 92:8 e.r. by chiral SFC (Chiralcel IC, CO₂/MeOH (98:2 \rightarrow 65:35), 2.0 ml/min, (λ = 290 nm): *t*r (major): 17.4 min, *t*r (minor): 18.8 min). ¹H NMR (500 MHz, 90 °C, DMSO-*d*₆): δ = 8.00 (s, 1H), 7.60 (d, ³*J* = 8.1 Hz, 2H), 7.50 (dd,

 ${}^{3}J$ = 7.9 Hz, ${}^{4}J$ = 1.8 Hz, 1H), 7.47 (d, ${}^{4}J$ = 1.7 Hz, 1H), 7.38 (t, ${}^{3}J$ = 7.7 Hz, 2H), 7.27 (dd, ${}^{3}J_{trans}$ = 12.2 Hz, ${}^{3}J$ = 4.5 Hz, 3H), 7.21 (d, ${}^{3}J_{trans}$ = 16.4 Hz, 1H), 6.72 (dt, ${}^{3}J_{trans}$ = 15.3 H, ${}^{3}J$ = 7.6 Hz, 1H), 5.81 (d, ${}^{3}J_{trans}$ = 15.6 Hz, 1H), 5.48 (t, ${}^{3}J$ = 5.6 Hz, 1H), 5.09 (d, ${}^{2}J$ = 12.2 Hz, 1H), 5.05 (d, ${}^{2}J$ = 12.0 Hz, 1H), 3.63 (s, 3H), 2.73 (dt, ${}^{2}J$ = 13.8 Hz, ${}^{3}J$ = 6.7 Hz, 1H), 2.62 (dt, ${}^{2}J$ = 14.2 Hz, ${}^{3}J$ = 6.8 Hz 1H) ppm; 1³**C NMR** (125 MHz, 90 °C, DMSO-*d*₆): δ = 165.3, 150.4, 141.9, 140.3, 138.8, 137.6, 136.5, 129.0, 128.1, 127.3, 127.2, 126.3, 126.1, 125.0, 124.0, 124.0, 123.0, 94.5, 73.6, 52.1, 50.6, 38.9 ppm; **ESI-HRMS**: *m/z* calculated for [C₂₄H₂₁N₂O₄Cl₃Na]⁺: 529.0459; found 529.0465.

Chiral-phase SFC: Chiralcel IC, CO₂/MeOH 98:2 \rightarrow 65:35, 2.0 ml/min, (λ = 290 nm)

Signal:	DAD1	H,Sig=290,4 Ref	f=360,100		
RT [min]	Туре	Width [min]	Area	Height	Area%
16.569	MM m	0.1567	3583.1632	358.2538	50.0575
17.850	MM m	0.1790	3574.9374	313.5922	49.9425
		Sum	7158.1007		

Signal:	DAD1	H,Sig=290,4 Re	ef=360,100		
RT [min]	Туре	Width [min]	Area	Height	Area%
17.427	MM m	0.1732	17965.8228	1622.5569	91.8335
18.830	MM m	0.1930	1597.6471	130.3562	8.1665
		Sum	19563,4699		

(*R*,*E*)-2,2,2-Trichloroethyl 4-(4-methoxy-4-oxobut-2-en-1-yl)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinazoline-3(4*H*)-carboxylate (4m)

According to the general procedure A, the reaction of benzo[*f*]quinazoline (**2m**) (25.6 mg, 0.100 mmol, 1.0 equiv.) with dienolate **3a** (47.1 µL, 0.200 mmol, 2.0 equiv.) afforded after flash column chromatography (*n*-pent/EtOAc 3:1) the desired product **4m** (32.3 mg, 0.061 mmol, 61%) as a slightly yellow solid. The enantiomeric ratio was determined as 96:4 e.r. by chiral SFC (Chiralcel IC, CO₂/MeOH (98:2 \rightarrow 65:35), 2.0 ml/min, (λ = 230 nm): *t*r (major): 11.0 min, *t*r (minor): 12.6 min). ¹H NMR (500 MHz, 90 °C, DMSO-*d*₆): δ = 7.97 (s, 1H), 7.56 (d, ³*J* = 7.5 Hz, 1H), 7.51 (s, 1H), 7.28 (d, ³*J* = 7.5 Hz, 1H), 6.69 (dt, ³*J*trans = 15.3 Hz, ³*J* = 7.6 Hz, 1H), 5.79 (d,

 ${}^{3}J_{\text{trans}}$ = 15.5 Hz, 1H), 5.49 (t, ${}^{3}J$ = 5.6 Hz, 1H), 5.08 (d, ${}^{2}J$ = 12.1 Hz, 1H), 5.04 (d, ${}^{2}J$ = 12.1 Hz, 1H), 3.63 (s, 2H), 2.71 (dt, ${}^{2}J$ = 13.9 Hz, ${}^{3}J$ = 6.7 Hz,1H), 2.60 (dt, ${}^{2}J$ = 14.1 Hz, ${}^{3}J$ = 6.5 Hz, 1H) ppm; 13 **C NMR** (125 MHz, 90 °C, DMSO-*d*₆): δ = 164.9, 150.4, 141.8, 140.2, 138.0, 132.8, 130.9, 127.9, 125.6, 124.0, 94.5, 83.4, 74.8, 52.2, 50.6, 38.8, 24.2 ppm; **ESI-HRMS**: *m/z* calculated for [C₂₂H₂₆N₂O₆BCl₃Na]⁺: 533.0846; found 553.0850.

Chiral-phase SFC: Chiralcel IC, CO₂/MeOH 98:2 \rightarrow 65:35, 2.0 ml/min, (λ = 230 nm) *Racemic:*

 Signal:
 DAD1D,Sig=230,4
 Ref=360,100

 RT [min]
 Type
 Width [min]
 Area
 Height
 Area%

 10.505
 MM m
 0.1072
 3760.2351
 553.7421
 49.4994

 11.957
 MM m
 0.1194
 3836.2972
 500.6729
 50.5006

 Sum
 7596.5323
 7592.323
 7596.5323
 7592.323
 7596.5323

Signal:	DAD1	D,Sig=230,4 Re	ef=360,100		
RT [min]	Туре	Width [min]	Area	Height	Area%
11.041	MM m	0.1133	6895.9789	965.4881	96.1119
12.593	MM m	0.1162	278.9724	38.6424	3.8881
		Sum	7174 9513		

(R,E)-2,2,2-Trichloroethyl 7-bromo-4-(4-methoxy-4-oxobut-2-en-1-yl)quinazoline-3(4H)-carboxylate (4o)

According to the general procedure A, the reaction of 7-bromoquinazoline (**2o**) (20.9 mg, 0.100 mmol, 1.0 equiv.) with dienolate **3a** (47.1 µL, 0.200 mmol, 2.0 equiv.) afforded after flash column chromatography (*n*-pent/EtOAc 5:1) the desired product **4o** (38.2 mg, 0.079 mmol, 79%) as a white solid. The enantiomeric ratio was determined as 94:6 e.r. by chiral SFC (Chiralcel IG, CO₂/MeOH (98:2 \rightarrow 65:35), 2.0 ml/min, (λ = 290 nm): *t*r (major): 10.8 min, *t*r (minor): 11.8 min). ¹H NMR (500 MHz, 90 °C, DMSO-*d*₆): δ = 8.00 (s, 1H), 7.45 (dd, ³*J* = 8.1 Hz, ⁴*J* = 1.9 Hz, 1H), 7.41 (d, ⁴*J* = 2.1 Hz, 1H), 7.26 (d,

 ${}^{3}J$ = 8.1 Hz, 1H), 6.70 (dt, ${}^{3}J_{trans}$ = 15.3 Hz, ${}^{3}J$ = 7.6 Hz, 1H), 5.80 (d, ${}^{3}J_{trans}$ = 15.6 Hz, 1H), 5.49 (t, ${}^{3}J$ = 5.7 Hz, 1H), 5.08 (d, ${}^{2}J$ = 12.2 Hz, 1H), 5.05 (d, ${}^{2}J$ = 12.2 Hz, 1H), 3.63 (s, 3H), 2.70 (dt, ${}^{2}J$ = 13.8 Hz, ${}^{3}J$ = 6.7 Hz, 1H), 2.60 (dt, ${}^{2}J$ = 14.3 Hz, ${}^{3}J$ = 6.6 Hz, 1H) ppm; 13 **C NMR** (125 MHz, 90 °C, DMSO-*d*₆): δ = 164.9, 150.2, 141.6, 141.5, 140.2, 129.5, 127.9, 127.5, 124.2, 120.7, 94.4, 74.9, 51.8, 50.6, 38.7 ppm; **ESI-HRMS**: *m/z* calculated for [C₁₆H₁₄BrCl₃N₂O₄Na]⁺: 506.9072; found 506.9071.

The same reaction with the TIPS-dienolate 3a' led to the product 4o in a 97:3 e.r. (27.9 mg, 0.058 mmol, 58%).

Chiral-phase SFC: Chiralcel IC, CO₂/MeOH 98:2 \rightarrow 65:35, 2.0 ml/min, (λ = 290 nm) *Racemic:*

DAD1H,Sig=290,4 Ref=360,100 320-300 280 260 240 Signal: DAD1H,Sig=290,4 Ref=360,100 220 200-180-RT [min] Type Width [min] Area Height Area% Pe 160 140 10.655 MM m 0.1067 2153.4663 311.4700 50 1555 11 709 MM m 0.1201 2140.1139 277 1224 49 8445 120 100 Sum 4293,5803 80-60-40 20-0 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 Time [min] 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 Enantioselective: DAD1H,Sig=290,4 Ref=360,100 1050 1000-950-900-850-800-750-700-700-650-650-650-650-450-450-450-450-250-150-150-150-150-100-0 -0 -0 -With OTBS-dienolate 3a DAD1H,Sig=290,4 Ref=360,100 Signal: RT [min] Type Width [min] Area Height Area% 10.779 MM m 0.1125 6951.7443 959.3486 93.8276 11.874 MM m 0.1110 457,3156 65.8975 6.1724 7409.0599 Sum 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 Time (min) 1900 1800-1700-1600-With OTIPS-dienolate 3a' 1500-1400-1300-1200-1100-Signal: DAD1H,Sig=290,4 Ref=360,100 Area% RT [min] Type Width [min] Area Height 1000 900-800-700-600-500-400-300-200-100-11.357 MM m 0.1182 13604.0003 1760.4501 97.0698 12.535 MM m 0.1229 410.6589 51.5707 2.9302

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15

(R,E)-2,2,2-Trichloroethyl 6-bromo-4-(4-methoxy-4-oxobut-2-en-1-yl)quinazoline-3(4H)-carboxylate (4p)

According to the general procedure A, the reaction of 6-bromoquinazoline (**2p**) (20.9 mg, 0.100 mmol, 1.0 equiv.) with dienolate **3a** (47.1 µL, 0.200 mmol, 2.0 equiv.) afforded after flash column chromatography (*n*-pent/EtOAc 5:1) the desired product **4p** (36.5 mg, 0.075 mmol, 75%) as a white solid. The enantiomeric ratio was determined as 80:20 e.r. by chiral SFC (Chiralcel IG, CO₂/MeOH (70:30), 2.0 ml/min, (λ = 290 nm): *t*r (major): 8.6 min, *t*r (minor): 10.6 min). ¹H NMR (500 MHz, 90 °C, DMSO-*d*₆): δ = 7.98 (s, 1H), 7.55 (d, ⁴*J* = 2.2 Hz, 1H), 7.50 (dd, ³*J* = 8.4 Hz, ⁴*J* = 2.1 Hz, 1H), 7.18 (d,

 ${}^{3}J$ = 8.3 Hz, 1H), 6.70 (dt, ${}^{3}J_{trans}$ = 15.4 Hz, ${}^{3}J$ = 7.6 Hz, 1H), 5.80 (d, ${}^{3}J_{trans}$ = 15.5 Hz, 1H), 5.52 (t, ${}^{3}J$ = 5.7 Hz, 1H), 5.08 (d, ${}^{2}J$ = 12.2 Hz, 1H), 5.04 (d, ${}^{2}J$ = 12.1 Hz, 1H), 3.63 (s, 3H), 2.74–2.66 (m, 1H), 2.70 (dt, ${}^{2}J$ = 12.8 Hz, ${}^{3}J$ = 6.4 Hz, 1H), 2.61 (dt, ${}^{2}J$ = 14.0 Hz, ${}^{3}J$ = 6.4 Hz, 1H) ppm; 1³C NMR (125 MHz, 90 °C, DMSO-*d*₆): δ = 164.9, 150.3, 141.7, 140.7, 137.8, 131.3, 128.8, 127.2, 127.0, 124.2, 119.1, 94.4, 74.9, 51.5, 50.6, 38.8 ppm; ESI-HRMS: *m/z* calculated for [C₁₆H₁₄BrCl₃N₂O₄Na]⁺: 506.9072; found 506.9071.

Chiral-phase SFC: Chiralcel IC, CO₂/MeOH 70:30, 2.0 ml/min, (λ = 290 nm) *Racemic:*

Signal:	DAD1	H,Sig=290,4 Re	f=360,100		
RT [min]	Туре	Width [min]	Area	Height	Area%
8.734	MM m	0.2092	2192.9035	162.7958	49.1694
10.763	MM m	0.2679	2266.9880	130.9887	50.8306
		Sum	4459.8915		

Signal:	DAD1	H,Sig=290,4 Ref	=360,100		
RT [min]	Туре	Width [min]	Area	Height	Area%
8.606	MM m	0.2133	4962.8559	363.4314	80.1297
10.620	MM m	0.2984	1230.6740	64.5591	19.8703
		Sum	6193.5298		

(R,E)-2,2,2-Trichloroethyl 7-fluoro-4-(4-methoxy-4-oxobut-2-en-1-yl)quinazoline-3(4H)-carboxylate (4q)

According to the general procedure A, the reaction of 7-fluoroquinazoline (**2q**) (14.8 mg, 0.100 mmol, 1.0 equiv.) with dienolate **3a** (47.1 µL, 0.200 mmol, 2.0 equiv.) afforded after flash column chromatography (*n*-pent/EtOAc 4:1) the desired product **4q** (30.1 mg, 0.071 mmol, 71%) as a white solid. The enantiomeric ratio was determined as 94:6 e.r. by chiral SFC (Chiralcel IC, CO₂/MeOH (98:2 \rightarrow 65:35), 2.0 ml/min, (λ = 280 nm): *t*r (major): 8.6 min, *t*r (minor): 9.3 min). ¹H NMR (500 MHz, 90 °C, DMSO-*d*₆): δ = 8.01 (s, 1H), 7.33 (dd, ³*J* = 8.4 Hz, ⁴*J* = 6.0 Hz, 1H), 7.10 (td, ³*J* = 8.6 Hz, ⁴*J* = 2.7 Hz,

1H), 7.03 (dd, ${}^{3}J$ = 9.8 Hz, ${}^{4}J$ = 2.7 Hz, 1H), 6.70 (dt, ${}^{3}J_{trans}$ = 15.4 Hz, ${}^{3}J$ = 7.6 Hz, 1H), 5.78 (d, ${}^{3}J_{trans}$ = 15.6 Hz, 1H), 5.50 (t, ${}^{3}J$ = 5.6 Hz, 1H), 5.08 (d, ${}^{2}J$ = 12.1 Hz, 1H), 5.05 (d, ${}^{2}J$ = 12.2 Hz, 1H), 3.63 (s, 3H), 2.69 (dt, ${}^{2}J$ = 14.2 Hz, ${}^{3}J$ = 6.9 Hz, 1H), 2.59 (dt, ${}^{2}J$ = 14.1 Hz, ${}^{3}J$ = 6.9 Hz, 1H) ppm; 13 **C NMR** (125 MHz, 90 °C, DMSO-*d*₆): δ = 164.9, 161.7 (d, ${}^{1}J_{C,F}$ = 243.9 Hz), 149.4, 141.7, 141.3, 140.2 (d, ${}^{3}J_{C,F}$ = 11.2 Hz), 127.7 (d, ${}^{3}J_{C,F}$ = 9.3 Hz), 124.1, 121.1 (d, ${}^{4}J_{C,F}$ = 3.3 Hz), 113.6 (d, ${}^{2}J_{C,F}$ = 21.9 Hz), 111.5 (d, ${}^{2}J_{C,F}$ = 22.4 Hz), 94.5, 74.9, 51.7, 50.6, 38.9 ppm; ¹⁹**F NMR** (600 MHz, 25 °C, DMSO-*d*₆): -112.50, -112.93 ppm; **ESI-HRMS**: *m/z* calculated for [C₁₆H₁₄N₂O₄Cl₃FNa]⁺: 444.9895; found 444.9893.

Chiral-phase SFC: Chiralcel IC, CO_2/MeOH 98:2 \rightarrow 65:35, 2.0 ml/min, (λ = 280 nm)

(R,E)-2,2,2-Trichloroethyl 4-(4-methoxy-4-oxobut-2-en-1-yl)-7-nitroquinazoline-3(4H)-carboxylate (4r)

According to the general procedure A, the reaction of 7-nitroquinazoline (**2r**) (17.5 mg, 0.100 mmol, 1.0 equiv.) with dienolate **3a** (47.1 μ L, 0.200 mmol, 2.0 equiv.) afforded after flash column chromatography (*n*-pent/EtOAc 3:1) the desired product **4r** (26.3 mg, 0.058 mmol, 58%) as a yellow solid. The enantiomeric ratio was determined as 77:23 e.r. by chiral SFC (Chiralcel IA, CO₂/MeOH (98:2 \rightarrow 65:35), 2.0 ml/min, (λ = 290 nm): *t*r (major): 17.5 min, *t*r (minor): 19.4 min). ¹H NMR (500 MHz,

90 °C, DMSO-*d*₆): δ = 8.12–8.09 (m, 2H), 7.95 (d, ⁴*J* = 2.4 Hz, 1H), 7.60 (d, ³*J* = 8.4 Hz, 1H), 6.71 (dt, ³*J*trans = 15.4 Hz, ³*J* = 7.6 Hz, 1H), 5.81 (d, ³*J*trans = 15.5 Hz, 1H), 5.68–5.64 (m, 1H), 5.49 (t, ³*J* = 5.7 Hz, 1H), 5.10 (d, ²*J* = 12.1 Hz, 1H) 5.07 (d, ²*J* = 12.3 Hz, 1H), 3.63 (s, 3H), 2.76 (dt, ²*J* = 13.6 Hz, ³*J* = 6.7 Hz, 1H), 2.65 (dt, ²*J* = 14.5 Hz, ³*J* = 7.1 Hz, 1H) ppm; ¹³C NMR (125 MHz, 90 °C, DMSO-*d*₆): δ = 164.8, 150.1, 147.8, 142.5, 141.2, 139.6, 131.9, 127.6, 124.5, 121.3, 119.2, 94.4, 75.0, 51.9, 50.7, 38.6 ppm; ESI-HRMS: *m/z* calculated for [C₁₆H₁₄N₃O₆Cl₃Na]⁺: 471.9840; found 471.9842.

Chiral-phase SFC: Chiralcel IA, CO₂/MeOH 98:2 \rightarrow 65:35, 2.0 ml/min, (λ = 290 nm) *Racemic:*

Signal:	DAD1	H,Sig=290,4 Re	ef=360,100		
RT [min]	Туре	Width [min]	Area	Height	Area%
17.539	MM m	0.2286	1301.9116	86.0154	49.7931
19.391	MM m	0.3858	1312.7314	52.1198	50.2069
		Sum	2614.6430		

Signal:	DAD1	G,Sig=270,4 R	ef=360,100		
RT [min]	Туре	Width [min]	Area	Height	Area%
14.311	MM m	0.1845	9026.6008	728.9978	76.6839
15.689	MM m	0.2357	2744.5745	178.2053	23.3161
		Sum	11771.1753		

(R,E)-2,2,2-Trichloroethyl 1-(4-methoxy-4-oxobut-2-en-1-yl)benzo[f]quinazoline-2(1H)-carboxylate (4s)

According to the general procedure A, the reaction of benzo[f]quinazoline (2s) (18.0 mg, 0.100 mmol, 1.0 equiv.) with dienolate 3a (47.1 µL, 0.200 mmol, 2.0 equiv.) afforded after flash column chromatography (*n*-pent/EtOAc 3:1) the desired product 4s (38.5 mg, 0.084 mmol, 84%) as a brown solid. The enantiomeric ratio was determined as 84:16 e.r. by chiral SFC (Chiralcel IC, CO₂/MeOH (98:2 \rightarrow 65:35), 2.0 ml/min, (λ = 260 nm): *t*r (major): 12.2 min, *t*r (minor): 13.1 min). ¹H NMR (500 MHz, 90 °C,

DMSO-*d*₆): δ = 8.09 (s, 1H), 8.04 (d, ³*J* = 8.5 Hz, 1H), 7.95 (d, ³*J* = 8.1 Hz, 1H), 7.92 (d, ³*J* = 8.6 Hz, 1H), 7.63 (t, ³*J* = 7.7 Hz, 1H), 7.54 (t, ³*J* = 7.5 Hz, 1H), 7.45 (d, ³*J* = 8.6 Hz, 1H), 6.79 (dt, ³*J*_{trans} = 15.5 Hz, ³*J* = 7.7 Hz, 1H), 6.18 (t, ³*J* = 5.6 Hz, 1H), 5.78 (d, ³*J*_{trans} = 15.5 Hz, 1H), 5.13 (d, ²*J* = 12.2 Hz, 1H), 5.05 (d, ²*J* = 12.1 Hz, 1H), 3.61 (s, 2H), 2.76 (dt, ²*J* = 14.5 Hz, ³*J* = 6.6 Hz, 1H), 2.69 (dt, ²*J* = 14.6 Hz, ³*J* = 7.4 Hz, 1H) ppm; ¹³**C NMR** (125 MHz, 90 °C, DMSO-*d*₆): δ = 164.9, 150.4, 142.2, 140.6, 136.8, 132.3, 128.6, 128.2, 128.1, 126.8, 125.3, 124.2, 123.9, 121.8, 118.4, 94.5, 74.9, 50.6, 49.2, 37.1 ppm; **ESI-HRMS**: *m/z* calculated for [C₂₀H₁₇N₂O₄Cl₃Na]⁺: 477.0146; found 477.0145.

Chiral-phase SFC: Chiralcel IC, CO₂/MeOH 98:2 \rightarrow 65:35, 2.0 ml/min, (λ = 260 nm) *Racemic:*

Signal:	DAD1	F,Sig=260,4 Re	ef=360,100		
RT [min]	Туре	Width [min]	Area	Height	Area%
12.240	MM m	0.1231	11124.5350	1394.7752	84.0257
13.108	MM m	0.1318	2114.9148	252.1910	15.9743
		Sum	13239.4498		

(R,E)-2,2,2-Trichloroethyl 2-(4-methoxy-4-oxobut-2-en-1-yl)quinoline-1(2H)-carboxylate (5a)

According to the general procedure B, the reaction of quinoline (12.3 μ L, 0.10 mmol, 1.0 equiv.) with dienolate **3a** (47.1 μ L, 0.20 mmol, 2.0 equiv.) gave after flash column chromatography (*n*-pent/EtOAc 20:1) the desired product **5a** as a colourless oil (32.8 mg, 0.081 mmol, 81%). The enantiomeric ratio was found to be 82:18 by chiral SFC (Daicel IG, CO₂/MeOH (gradient 98:2 \rightarrow 65:35) 2.0 mL/min, λ =

290 nm, *tr* (major): 8.1 min, *tr* (minor): 8.5 min). ¹**H NMR** (400 MHz, CDCl₃): δ 7.66 (bs, 1H), 7.30 – 7.22 (m, 1H), 7.15 – 7.09 (m, 2H), 6.88 (dt, *J* = 15.4, 7.6 Hz, 1H), 6.55 (d, *J* = 9.6 Hz, 1H), 6.06 (dd, *J* = 8.9, 6.0 Hz, 1H), 5.76 (dt, *J* = 15.4, 1.3 Hz, 1H), 5.27 – 5.14 (m, 1H), 4.82 (bs, 1H), 4.49 (bs, 1H), 3.69 (s, 3H), 2.52 – 2.15 (m, 2H); ¹³**C NMR** (100 MHz, CDCl₃): δ 166.4, 152.5, 143.4, 133.0, 128.1, 128.0, 127.1, 126.5, 125.8, 125.2, 124.0, 95.2, 75.4, 52.0, 51.5, 35.8 ppm; **ESI-HRMS**: *m/z* calculated for [C₁₇H₁₆Cl₃NO₄Na]⁺: 426.0037; found 426.0035.

Chiral-phase SFC: Chiralpak IG, CO₂/MeOH 95:5 \rightarrow 65:35, 2.0 ml/min, (λ = 254 nm) *Racemic:*

Enantioselective:

(R,E)-2,2,2-Trichloroethyl 2-(4-(methylthio)-4-oxobut-2-en-1-yl)quinoline-1(2H)-carboxylate (5b)

According to the general procedure B, the reaction of quinoline (12.3 μ L, 0.10 mmol, 1.0 equiv.) with dienolate **3d** (54.2 μ L, 0.20 mmol, 2.0 equiv.) gave after flash column chromatography (cyclohexane/EtOAc 20:1) the desired product **5b** as a white oil (33.6 mg, 0.08 mmol, 80% yield). The enantiomeric ratio was determined as 84:16 e.r. by chiral SFC (Chiralpak IG, CO₂/MeOH (95:5 \rightarrow 65:35),

2.0 ml/min in 15 min, (λ = 254 nm): tr (major): 11.8 min, tr (minor): 12.6 min). ¹H NMR (300 MHz, CDCl₃) δ 7.66 (bs, 1H), 7.32 – 7.20 (m, 1H), 7.12 (m, 2H), 6.80 (dt, *J* = 15.4, 8.3 Hz 1H), 6.55 (d, *J* = 10.2 Hz, 1H), 6.14 – 5.95 (m, 2H), 5.22 (app. q, *J* = 6.7 Hz, 1H), 4.67 (bs, 2H), 2.47 – 2.23 (m, 5H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 190.0, 152.6, 139.2, 133.4, 131.4 (2C), 128.2, 127.2, 126.6 (2C), 126.0, 125.3, 95.3, 75.6, 52.2, 35.9, 11.5 ppm; **ESI-HRMS**: *m/z* calculated for [C₁₇H₂₀Cl₃N₂O₃S NH₄]⁺: 437.0255; found 437.0256.

Chiral-phase SFC: Chiralpak IG, CO₂/MeOH 95:5 \rightarrow 65:35, 2.0 ml/min, (λ = 254 nm)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	11.794	BB	5178.5	697.5	0.1166	84.104	0.811
2	12.637	BB	978.7	126.3	0.1184	15.896	0.877

(R,E)--2,2,2-Trichloroethyl 6-fluoro-2-(4-(methylthio)-4-oxobut-2-en-1-yl)quinoline-1(2H)-carboxylate (5c)

According to the general procedure B, the reaction of 6-fluoroquinoline (12.2 μ L, 0.10 mmol, 1.0 equiv.) with dienolate **3d** (54.2 μ L, 0.20 mmol, 2.0 equiv.) gave after flash column chromatography (cyclohexane/EtOAc 20:1) the desired product **5b** as a yellowish oil (25.1 mg, 0.057 mmol, 57% yield). The enantiomeric ratio was determined as 91:9 e.r. by chiral SFC (Chiralpak IA, CO₂/MeOH (95:5 \rightarrow

60:40), 3.0 ml/min in 15 min, (λ = 254 nm): tr (major): 5.7 min, tr (minor): 6.0 min). ¹H NMR (300 MHz, CDCl₃): δ 7.61 (bs, 1H), 6.96 (td, *J* = 8.6, 3.1 Hz, 1H), 6.84 (dd, *J* = 8.4, 3.1 Hz, 1H), 6.81 – 6.69 (m, 1H), 6.51 (d, *J* = 9.6 Hz, 1H), 6.12 (dd, *J* = 9.6, 5.9 Hz, 1H), 6.04 (d, *J* = 15.5 Hz, 1H), 5.30 – 5.18 (m, 1H), 4.84 (bs, 1H), 4.49 (bs, 1H), 2.53 – 2.16 (m, 2H), 2.33 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 190.0, 160.0 (d, ¹*J*_{C,F} = 242.3 Hz), 152.6, 138.9, 131.5, 130.0, 128.9 (d, ³*J*_{C,F} = 7.5 Hz), 127.3, 125.4, 125.3, 114.8 (d, ²*J*_{C,F} = 23.3 Hz), 112.9 (d, ²*J*_{C,F} = 23.2 Hz), 95.2, 75.6, 52.2, 35.5, 11.5 ppm; ¹⁹F NMR (282 MHz, CDCl₃): -116.88, -117.34; ESI-HRMS: *m/z* calculated for [C₁₇H₁₉Cl₃FN₂O₃S NH₄]⁺: 455.0161; found 455.0106.

Chiral-phase SFC: Chiralpak IA, CO₂/MeOH 95:5 \rightarrow 60:40, 3.0 ml/min, (λ = 254 nm)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	5.6	BB	13471.8	2466.6	0.0877	48.390	0.655
2	5.893	BB	14368.4	2371.3	0.0947	51.610	0.563

mAU-		15				
1750		1				
1500						
1250						
1000						
750						
500		8				
250		Ň				
0		1 ph				
	2	4 6	8	10	12 14	ŧ min

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	5.715	BB	9031.9	1952.7	0.072	91.044	0.727
2	6.039	BB	888.5	213.3	0.0666	8.956	0.96

(R,E)--2,2,2-Trichloroethyl 2-(4-methoxy-4-oxobut-2-en-1-yl)-6-methylpyridine-1(2H)-carboxylate (6)

In a flame-dried 5 mL Schlenk pressure tube, 2-picoline (9.88 μ L, 0.10 mmol, 1.0 equiv.) was dissolved in hexafluorobenzene (1 mL) and cooled to 6 °C. 2,2,2-Trichloroethoxycarbonyl chloride (14 μ L, 0.10 mmol, 1.0 equiv.) was added and the reaction was stirred at 6 °C for 30 min. Subsequently, catalyst **1d** (10.6 mg, 0.01 mmol, 10 mol%) and dienolate **3a** (47.1 μ L, 0.20 mmol, 2.0 equiv.) were added and the reaction was

stirred at 6 °C overnight. The solvent was then removed under reduced pressure and the desired product was obtained as a colourless oil (17.0 mg, 0.046 mmol, 46%) after purification by column chromatography (*n*-pent/EtOAc 10:1). The enantiomeric ratio was determined as 70:30 *e.r.* by chiral SFC (Chiralcel IG, CO₂/MeOH (98:2 \rightarrow 65:35), 2.0 ml/min, (λ = 290 nm): *tr* (minor): 6.5 min, *tr* (major): 7.7 min). ¹H NMR (400 MHz, CDCl₃) δ 6.89 (dt, ³*J*trans = 15.5 Hz, ³*J* = 7.7 Hz, 1H), 5.95 (dd, ³*J* = 9.3 Hz, ³*J* = 5.3 Hz, 1H), 5.81 (dt, ³*J*trans = 15.6 Hz, ³*J* = 1.4 Hz, 1H), 5.68 (dd, ³*J* = 9.4 Hz, ³*J* = 5.9 Hz, 1H), 5.50 (dp, ³*J* = 5.2 Hz, ³*J* = 1.2 Hz, 1H), 5.04 - 4.96 (m, 1H), 4.94 (bs, 1H), 4.68 (bs, 1H), 3.70 (s, 3H), 2.44 - 2.33 (m, 2H), 2.19 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 152.6, 144.0, 133.8, 123.7, 123.13, 123.0, 112.6, 93.0, 75.5, 52.3, 51.6, 35.3, 21.7 ppm; ESI-HRMS: *m/z* calculated for [C₁₄H₁₆NO₄Cl₃Na]⁺: 390.0037; found 390.0054.

Chiral-phase SFC: Chiralcel IC, CO₂/MeOH 98:2 \rightarrow 65:35, 2.0 ml/min, (λ = 290 nm) *Racemic:*

Signal:	DAD1H,Sig=290,4 Ref=360,100							
RT [min]	Туре	Width [min]	Area	Height	Area%			
6.572	MM m	0.0922	583.0129	99.6783	47.9993			
7.766	MM m	0.0968	631.6147	101.2784	52.0007			
		Sum	1214.6276					

Signal:	DAD1H,Sig=290,4 Ref=360,100								
RT [min]	Туре	Width [min]	Area	Height	Area%				
6.542	MM m	0.0923	1445.9645	247.0109	29.8968				
7.718	MM m	0.1030	3390.5540	513.9692	70.1032				
		Sum	4836.5185						

(R,E)-Methyl 4-(4-oxochroman-2-yl)but-2-enoate (7)

In a flame-dried 5 mL Schlenk pressure tube, 4*H*-chromenone (15 mg, 0.10 mmol, 1.0 equiv.) and catalyst **1a** (5.6 mg, 0.005 mmol, 5.0 mol%) were dissolved in anhydrous toluene (0.4 mL). 2,4,6-Collidine (4.0 μ L, 0.03 mmol, 0.30 equiv.) and TBSOTf (25 μ L, 0.11 mmol, 1.1 equiv.) were added and the mixture was stirred at 60 °C for 1 h. Subsequently, the reaction was cooled to -78 °C and dienolate **3a** (47.1 μ L,

0.20 mmol, 2.0 equiv.) was added. After stirring for 18 h at -78 °C, the reaction was quenched with aq. HCl (6.0 equiv., 3 M) and was allowed to warm to room temperature for 1 h. The solution was diluted with water (5 mL), the aq. phase extracted with EtOAc (3 x 3 mL) and the combined organic phases dried over MgSO₄. After removing the solvent under reduced pressure, the residue was purified *via* column chromatography (SiO₂, *n*-pent/EtOAc 5:1) to give the desired product as a white solid (16 mg, 0.066 mmol, 66%). The enantiomeric ratio was determined as 79:21 *e.r.* by chiral SFC (Chiralcel IG, CO₂/MeOH (98:2 \rightarrow 65:35), 2.0 ml/min, (λ = 250 nm): *t*r (minor): 10.4 min, *t*r (major): 12.6 min). ¹H NMR (400 MHz, CDCl₃): δ = 7.87 (dd, ³*J* = 7.9 Hz, ⁴*J* = 1.7 Hz, 1H), 7.48 (ddd, ³*J* = 8.3 Hz, ³*J* = 7.2 Hz, ⁴*J* = 1.8 Hz, 1H), 7.08–6.96 (m, 3H), 5.99 (dt, ³*J*trans = 15.7 Hz, ⁴*J* = 1.5 Hz, 1H), 4.63–4.55 (m, 1H), 3.75 (s, 3H), 2.80–2.63 (m, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 190.7, 166.5, 161.3, 143.2, 135.6, 127.1, 124.6, 121.8, 121.0, 116.7, 73.8, 50.7, 41.8, 38.5 pm; ESI-HRMS: calculated for [C₁₄H₁₄O₄Na]⁺: 269.0795; found 269.0784.

Chiral-phase SFC: Chiralcel IC, CO₂/MeOH 98:2 \rightarrow 65:35, 2.0 ml/min, (λ = 250 nm)

Racemic:

Signal:	DAD1A,Sig=250,4 Ref=360,100								
RT [min]	Туре	Width [min]	Area	Height	Area%				
10.112	MM m	0.1056	3701.2253	542.7728	49.8457				
12.279	MM m	0.1328	3724.1396	439.9180	50.1543				
		Sum	7425.3650						

Signal:	DAD1A,Sig=250,4 Ref=360,100								
RT [min]	Туре	Width [min]	Area	Height	Area%				
10.430	MM m	0.1047	1267.3173	187.8117	21.2211				
12.616	MM m	0.1361	4704.6529	537.4452	78.7789				
		Sum	5971.9702						

7. Derivatization of 4a: Synthesis of 8

In a vial, **4a** (202.8 mg, 0.5 mmol, 1 equiv.), activated Zn powder (326.9 mg, 5.0 mmol, 10 equiv.) and NH₄OAc (385.4 mg, 5.0 mmol, 10 equiv.) were dissolved in 1.5 mL of a mixture 3:1 of THF:H₂O and stirred overnight at r.t. Then, a 5 mL of a saturated aqueous solution of Na₂CO₃ was added, followed by an extraction with CHCl₃ (4x3 mL). The organic phases were combined, dried over MgSO₄, filtered and concentrated under reduced pressure. The crude was used in the next step without further purifications.

In a flame-dry sealed vial, Pd/C (5.4 mg, 0,05 mmol, 0.1 equiv.) was suspended in 0.5 mL of dry toluene and the suspension was purged with a H₂ balloon for 15 min. Subsequently, a solution of the previous crude mixture (0.5 mmol, 1 equiv.) in 0.5 mL of dry toluene was added to the suspension and the reaction was stirred overnight. Then, EtOAc was added and the crude was filtered through a pad of Celite. The filtrate was concentrated under reduced pressure and purified by flash chromatography using silica gel (cyclohexane/EtOAc, 1:3), affording the tricyclic product **8** as a white solid (470.6 mg, 2.35 mmol, 47% overall yield). $[\alpha]^{20}_{D} = 59.1$ (c 6.9, CHCl₃). The enantiomeric ratio was determined as 94:6 *e.r.* by chiral SFC (Chiralcel IA, CO₂/MeOH (95:5 \rightarrow 60:40), 3.0 ml/min, ($\lambda = 280$ nm): *t*r (minor): 5.4 min, *t*r (major): 5.8 min). ¹H NMR (300 MHz, CDCl₃): δ 8.41 (s, 1H), 7.35 (d, *J* = 7.6 Hz, 1H), 7.32 (t, *J* = 7.5 Hz, 1H), 7.25 – 7.19 (m, 1H), 7.16 (d, *J* = 7.8 Hz, 1H), 4.94 (dd, *J* = 10.6, 4.1 Hz, 1H), 2.84 – 2.50 (m, 3H), 2.28 – 1.82 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 170.2, 142.2, 140.1, 129.0, 127.6, 126.6, 126.2, 123.4, 53.9, 32.2, 27.3, 18.9; **ESI-HRMS:** *m/z* calculated for [C₁₂H₁₃N₂O]⁺: 201.1022; found: 201.1020.

Chiral-phase SFC: Chiralcel IA, CO₂/MeOH 95:5 \rightarrow 60:40, 3.0 ml/min, (λ = 280 nm) *Racemic:*

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	5.416	BB	1916.9	397.3	0.0743	49.781	0.816
2	5.854	BB	1933.7	317.7	0.093	50.219	0.71

m4U 1200 - 800 - 400 - 200 -				Λ		57F 0	201-9		
	1		2	3	4	5	6	7	min
#	Time	Туре	Area	Height	Width	Area%	Symmetry		
1	5.423	BB	634.1	132.8	0.0737	6.081	0.875		
2	5.782	BB	9793.4	1343.7	0.109	93.919	0.479		

8. Kinetic Study

The kinetic study was carried out for the model reaction between quinazoline (**2a**) (130.0 mg, 1.00 mmol, 1.0 equiv.) and dienolate **3a** (471.0 μ L, 2.00 mmol, 2.0 equiv.) in presence and absence of catalyst **1a** (33.6 mg, 0.03 mmol, 3 mol%). The aliquots were quenched by addition of aq. HCI (1 M), extracted with EtOAc and dried over MgSO4. After removal of the solvent under reduced pressure, the yield was determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as internal standard, and the enantiomeric excess was determined by chiral SFC using Chiralcel IG, CO₂/MeOH (98:2 \rightarrow 65:35), 2.0 ml/min.

9. X-Ray Crystal Structure Analysis of 4k

CCDC Nr.: 2069596

A colourless plate-like specimen of C₂₂H₁₈Cl₃FN₂O₄, approximate dimensions 0.053 mm x 0.102 mm x 0.192 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured on a Bruker D8 Venture Bruker D8 Venture Photon III Diffractometer system equipped with a micro focus tube MoK α (MoK α , λ = 0.71073 Å) and a MX mirror monochromator.

A total of 510 frames were collected. The total exposure time was 3.54 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 20681 reflections to a maximum θ angle of 26.78° (0.79 Å resolution), of which 4559 were independent (average redundancy 4.536,

completeness = 99.6%, R_{int} = 3.92%, R_{sig} = 2.97%) and 4388 (96.25%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 6.0314(3) Å, <u>b</u> = 7.4369(3) Å, <u>c</u> = 23.9241(10) Å, β = 92.818(2)°, volume = 1071.82(8) Å³, are based upon the refinement of the XYZ-centroids of 9738 reflections above 20 $\sigma(I)$ with 5.114° < 20 < 53.52°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.939. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9150 and 0.9760.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P_{2_1} , with Z = 2 for the formula unit, $C_{22}H_{18}CI_3FN_2O_4$. The final anisotropic full-matrix least-squares refinement on F² with 290 variables converged at R1 = 2.44%, for the observed data and wR^2 = 5.67% for all data. The goodness-of-fit was 1.031. The largest peak in the final difference electron density synthesis was 0.207 e⁻/Å³ and the largest hole was -0.195 e⁻/Å³ with an RMS deviation of 0.039 e⁻/Å³. On the basis of the final model, the calculated density was 1.548 g/cm³ and F(000), 512 e⁻.

Flack parameter was refined to -0.026(19).

10. References

- [1] H. E. Gottlieb, V. Kotlyar and A. Nudelman, J. Org. Chem. 1997, 62, 7512-7515
- [2] Bruker AXS, APEX3 (2016), SAINT (2015) and SADABS (2015), Bruker AXS Inc., Madison, Wisconsin, USA.
- [3] G. M. Sheldrick, SHELXT Integrated space-group and crystal-structure determination, Acta Cryst. 2015, A71, 3-8.
- [4] G. M. Sheldrick, Crystal structure refinement with SHELXL, Acta Cryst. 2015, C71, 3-8.
- [5] Bruker AXS, XP Interactive molecular graphics, Version 5.1, Bruker AXS Inc., Madison, Wisconsin, USA, 1998.
- [6] M. Zurro, S. Asmus, S. Beckendorf, C. Mück-Lichtenfeld and O. García Mancheño, J. Am. Chem. Soc. 2014, 136, 13999-14002.
- [7] J. Preindl, S. Chakrabarty and J. Waser, Chem. Sci. 2017, 8, 7112.
- C. J. Helal, Z. Kang, X. Hou, J. Pandit, T. A. Chappie, J. M. Humphrey, E. S. Marr, K. F. Fennell, L. K. Chenard, C. Fox, C. J. Schmidt, R. D. Williams, D. S. Chapin, J. Siuciak, L. Lebel, F. Menniti, J. Cianfrogna, K. R. Fonseca, F. R. Nelson, R. O'Connor, M. MacDougall and L. McDowell, S. Liras, *J. Med. Chem.* 2011, **54**, 4536–4547.
- [9] G. Marzaro, A. Chilin, G. Pastorini and A. Guiotto, Org. Lett. 2006, 2, 255–256.
- [10] a) L. Ratjen, P. García García, F. Lay, M. E. Beck and B. List, *Angew. Chem. Int. Ed.* 2011, **50**, 754 –758. b) H. Li, J. Wu, *Org. Lett.* 2015, **17**, 5424-5427. c) S. E. Denmark, G. L. Beuter, T. Wynn and M. D. Eastgate, *J. Am. Chem. Soc.* 2005, **127**, 3774-3789.

Due to the presence of Troc-rotamers, broad signals in ¹H NMR and ¹³C NMR were observed, which hampered the characterization of the products. In order to get more defined signals, most of the NMRs were later on measured and given in DMSO-d₆ at 90 °C (¹H NMR residual solvent peaks DMSO ~ 2.50 ppm, H₂O ~ 3.00 ppm), unless a strong and/or fast decomposition of the products takes place at this temperature during the NMR measurements. However, in some cases rotamer species are still present at 90 °C, leading to low intensity signals, in particular in ¹³C NMR for the Troc C=O group at ~ 150-152 ppm, and the side chain and Ar_{C-H} bonds close to this group.

210

200

190

180

170

160

150

140

130

120

MeO 0 II .CI 4a ÅÅ 0.95J 1.07 [⊥] 1.07 [⊥] 1.05 2.10 1.06 $1.00 \pm$ $1.05 \pm$ 3.15--1.04⊸ $1.04_{
m in}$ $1.05_{
m k}$ 5.0 δ in ppm 8.0 5.5 7.5 3.0 2.5 10.0 9.5 9.0 8.5 7.0 6.5 6.0 4.5 4.0 3.5 2.0 1.5 1.0 0.5 0.0 141.93 139.97 138.48 128.34 128.34 126.94 125.94 125.11 125.34 123.96 --94.53 ~54.20 ~52.09 ~50.62

110 100 δ in ppm

90

80

70

60

50

40

30

20

10

ò

4a' (DMSO-d₆, 90 °C):

4d (MeCN-d₃, 25 °C): broad signals due Troc-rotamers

4g (DMSO-d₆, 90 °C):

4h (DMSO-d₆, 90 °C):

 7.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5

 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801
 801</th

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1</t

 7.7.7.
 7.7.7.

 7.7.7.
 7.7.7.

 7.7.7.7.
 7.7.7.

 7.7.7.7.
 7.7.7.

 7.7.7.7.
 7.7.7.

 7.7.7.7.
 7.7.7.

 7.7.7.7.
 7.7.7.

 7.7.7.7.
 7.7.7.

 7.7.7.7.
 7.7.7.

 7.7.7.7.
 7.7.7.

 7.7.7.7.
 7.7.7.

 7.7.7.7.
 7.7.7.

 7.7.7.7.
 7.7.7.

 7.7.7.7.
 7.7.7.

 7.7.7.7.
 7.7.7.

 7.7.7.7.
 7.7.7.

 7.7.7.7.
 7.7.7.

 7.7.7.7.
 7.7.7.

 7.7.7.7.
 7.7.7.

 7.7.7.7.
 7.7.7.

 7.7.7.7.
 7.7.7.

 7.7.7.7.
 7.7.7.

 7.7.7.7.
 7.7.7.

 7.7.7.7.7.
 7.7.7.

 7.7.7.7.7.
 7.7.7.7.

 7.7.7.7.7.7.
 7.7.7.7.

 7.7.7.7.7.7.7.
 7.7.7.7.7.

 7.7.7.7.7.7.7.
 7.7.7.7.7.

 7.7.7.7.7.7.7.7.
 7.7.7.7.7.7.

110 100 δ (ppm) ó

5b (CDCl₃, 25 °C): broad signals due Troc-rotamers

110 100 f1 (ppm)

Sc (CDCl₃, 25 °C): broad signals due Troc-rotamers

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

6 (CDCl₃, 25 °C): broad signals due Troc-rotamers (compound instable in solution; it decomposes partially in the NMR tube within the time)

 $\delta_{(}ppm_{)}$

