Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Copper-Catalyzed Enantioselective Alkene Carboetherification for the Synthesis of Saturated Six-Membered Cyclic Ethers

Ilyas A. Berhane, Ameya S. Burde, Jonathan Kennedy-Ellis, Eva Zurek and Sherry R. Chemler*

Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, United States

schemler@buffalo.edu

Supporting Information

Table of Contents

General Information	S-2
Synthesis of substrates	5-3
Carboetherification reactions	5-12
Formal synthesis of the σ_1 receptor antagonist	S-28
Chiral HPLC traces	5-32
Computational methods	5-57
Computational results	3-58
Cartesian coordinates of optimized geometries	5-70
References	S-85
NMR spectra of new compounds	

General information: ¹H NMR spectra were recorded on 300, 400, or 500 MHz Varian spectrometers. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃: δ 7.26 ppm). Data are reported as: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), coupling constants (Hz), and integration. ¹³C NMR spectra were recorded on Varian 300 (75 MHz) or 400 (100 MHz) spectrometers with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent as the internal standard (CDCl₃: δ 77.0 ppm). Infrared spectra were recorded neat on a Nicolet-Impact 420 FT-IR spectrometer. Wave numbers in cm⁻¹ are reported for characteristic peaks. High resolution mass spectra were obtained on a ThermoFinnigan MAT XL spectrometer at the University at Buffalo Mass Spectrometry Facility. Melting points were obtained on an electrothermal melting point apparatus and are reported uncorrected. Optical rotations were measured on a Rudolph Autopol I digital polarimeter fitted with a micro cell with a 1 dm path length and are reported as: $[\alpha]_{\lambda}^{T^{\circ}C}$ (c = g/100 mL, solvent). Enantiomeric excess was determined by gas chromatography (GC) using CP-Chirasil-DEX CB 25 X 0.25 column, or high performance liquid chromatography (HPLC) using Chiralpak AD-RH or Regis (S, S)-Whelk chiral columns with UV detection.

All experiments were carried out under an argon atmosphere. Unless otherwise noted, all reagents were purchased from Aldrich, Acros, or Strem, and used without further purification. The bisoxazoline ligand, 2,2'-(propane-2,2-diyl)bis(4,5-dihydrooxazole), (achiral box) used to generate racemic samples for GC and HPLC traces, was synthesized as previously described.^[1] Manganese (IV) oxide was purchased from Aldrich as an activated, <5 µm powder of 85% purity. Solvents were purified using a solvent filtration system purchased from Contour Glass Co. (Irvine,

California). Trifluorotoluene (PhCF₃) was purchased from Acros, 99+ % purity, and distilled over calcium hydride prior to use. All reactions were sensitive to moisture.

Synthesis of Substrates

2-Allylbenzyl alcohols 1a-1c and 1f were synthesized as previously reported.^[2]

3,3-Diphenylhex-5-en-1-ol (**1j**) was synthesized from 2,2-diphenyl-4-pentenal, **S-1**, as described in the literature.^[3] The synthesis of **S-1** from diphenylacetaldehyde also followed a literature procedure.^[4]

N-Allyl-*N*-(2-hydroxyethyl)-4-methylbenzenesulfonamide (**1k**) was synthesized as previously reported.^[5] *N*-allyl-N-(1-hydroxy-2-methylpropan-2-yl)benzenesulfonamide (**1l**) and *N*-allyl-*N*-

(1-hydroxy-2-methylpropan-2-yl)-4-nitrobenzenesulfonamide (1m) were synthesized as previously described.^[2]

The alcohols 1d and 1e were synthesized as follows:

Methyl 2-allyl-4-methoxybenzoate (S-7d):

Ester **S-7d** was synthesized following a literature procedure.^[6] A 10 mL reaction tube was flame dried, equipped with a stirrer bar, and placed under argon. Lithium chloride (170 mg, 2 equiv.), and tetrakis(triphenylphosphine) palladium (116 mg, 5 mol%) were added to the reaction tube followed by THF (4 mL), allyltributyltin (0.68 mL, 1.1 equiv.), and methyl 2-bromo-4-methoxy benzoate (490 mg, 2 mmol). The reaction tube was sealed, stirred, and heated to 100 °C for 12 h. The reaction was then diluted with EtOAc and filtered through a short pad of silica gel mixed with potassium fluoride (10 % by weight) and washed with EtOAc (3 x 20 mL). The organic washings were combined and concentrated *in vacuo*. The crude residue was then purified by flash chromatography (silica gel, 10-20 % EtOAc in hexanes) to give 311.1 mg of **S-7d** as a colorless oil (74 % yield). The ¹H NMR of **S-7d** matched the previously reported.^[6] ¹H NMR (300 MHz, Chloroform-*d*) δ 7.93 (d, *J* = 9.4 Hz, 1H), 6.77 (d, *J* = 7.2 Hz, 3H), 6.11 – 5.91 (m, 1H), 5.01 (dd, *J* = 7.0, 1.7 Hz, 1H), 3.88 – 3.73 (m, 12H).

2-(2-allyl-4-methoxyphenyl)propan-2-ol (1d):

A 50 mL round bottomed flask was equipped with a magnetic stirrer bar, flame dried and placed under argon. The flask was then charged with a methyl magnesium bromide solution in THF (1M, 3.2 mL, 2.5 equiv.) and placed at 0 °C under argon. A solution of ester **S-7d** (311 mg, 1.27 mmol) in THF (4 mL) was then added dropwise and the flask was warmed to rt over two h while being stirred. The reaction was quenched with aqueous NH₄Cl and extracted with EtOAc (3 x 30 mL). The organic extracts were combined and dried over magnesium sulfate, then concentrated *in vacuo*. The crude residue was then purified by flash chromatography (silica gel, 10-30 % EtOAc in hexanes) to give 155.3 mg of **1d** as a colorless oil (50% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 8.7 Hz, 1H), 6.80 (d, J = 2.8 Hz, 1H), 6.72 (dd, J = 8.7, 2.9 Hz, 1H), 6.06 (dd, J = 16.9, 10.4 Hz, 1H), 5.15 – 4.97 (m, 2H), 3.81 (s, 3H), 3.80 (t, J = 1.5 Hz, 1H), 1.66 (s, 6H).; ¹³C NMR (101 MHz, CDCl₃) δ 158.4, 139.7, 139.1, 138.0, 126.7, 117.7, 115.5, 110.7, 73.5, 55.2, 38.3, 31.9.; IR (neat): cm-1 3386.2, 3077.6, 2974.6, 2934.8, 2835.3, 1606.1, 1573.7, 1497.3, 1240.1, 1037.9, 908.8, 810.1, 602.7, 577.9.; HRMS (ESI) calc'd for [M+Na]⁺ C₁₃H₁₉O₂Na: 229.1199, found: 229.1197.

Methyl 2-allyl-4-(trifluoromethyl)benzoate (S-7e):

A 10 mL reaction tube was flame dried, equipped with a stirrer bar, and placed under argon. Lithium chloride (170 mg, 2 equiv.), and tetrakis(triphenylphosphine) palladium (116 mg, 5 mol%) were added to the reaction tube followed by THF (4 mL), allyltributyltin (0.68 mL, 1.1 equiv.), and methyl 2-bromo-4(trifluoromethyl) benzoate (566 mg, 2 mmol). The reaction tube was sealed, stirred, and heated to 100 °C for 12 h. The reaction was then diluted with EtOAc and filtered through a short pad of silica gel mixed with potassium fluoride (10 % by weight) and washed with EtOAc (3 x 20 mL). The organic washings were combined and concentrated *in vacuo*. The crude residue was then purified by flash chromatography (silica gel, 10-20 % EtOAc in hexanes) to give 364.4 mg of **S-7e** as a colorless oil (75 % yield).

¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.1 Hz, 1H), 7.55 (d, *J* = 7.4 Hz, 2H), 6.07 – 5.90 (m, 1H), 5.16 – 5.01 (m, 2H), 3.94 (s, 3H), 3.81 (d, *J* = 6.5 Hz, 2H).; ¹³C NMR (101 MHz, CDCl₃) δ 167.1, 142.3, 136.2, 133.5 (q, ²*J*_{CF} = 32.5 Hz), 133.1, 130.9, 127.6 (q, ³*J*_{CF} = 3.8 Hz), 125.0, 123.6 (q, ¹*J*_{CF} = 270 Hz), 123.02 (q, ³*J*_{CF} = 3.8 Hz), 122.2, 116.6, 52.3, 38.1.; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.17.; IR (neat): 3083.3, 2955.8, 1728.0, 1689.6, 1436.2, 1332.6, 1266.4, 1167.7, 1126.2,

1091.1, 922.3, 813.7, 713.1, 627.1 cm⁻¹; HRMS (ESI) calc'd for $[M+Na]^+ C_{12}H_{11}F_3O_2Na$: 267.0603, found: 267.0602.

2-(2-allyl-4-(trifluoromethyl)phenyl)propan-2-ol (1e):

A flame dried round bottomed flask was charged with a 1 M methyl magnesium bromide solution in THF (3.7 mL, 2.5 equiv) and placed at 0 °C under argon. A solution of ester S-7e (364 mg, 1.5 mmol) in THF (4 mL) was then added dropwise and the flask was warmed to rt over 2 h while being stirred. The reaction was quenched with aqueous NH₄Cl and extracted with EtOAc (3 x 30 mL). The organic extracts were combined, dried over magnesium sulfate, and then concentrated *in vacuo*. The crude residue was then purified by flash chromatography (silica gel, 10-30 % EtOAc in hexanes) to give 214 mg of **1e** as a colorless oil (59 % yield).

¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.80 (m, 1H), 7.62 – 7.39 (m, 3H), 6.06 (ddt, J = 16.5, 10.1, 6.1 Hz, 1H), 5.23 – 4.89 (m, 2H), 3.86 (d, J = 6.1 Hz, 2H), 1.69 (s, 6H).; ¹³C NMR (101 MHz, CDCl₃) δ 150.3, 149.5, 138.8, 138.3, 129.3 (q, ² $J_{CF} = 32$ Hz), 129.1, 129.0, 128.91 (q, ³ $J_{CF} = 3.7$ Hz), 127.8, 126.1, 125.5, 123.1 (q, ¹ $J_{CF} = 271$ Hz) 122.77 (q, ³ $J_{CF} = 3.7$ Hz), 120.4, 116.2, 73.7, 38.2, 31.7, 29.2.; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.61.; IR (neat): 3370.3, 3082.4, 2979.9, 2935.6, 1638.6, 1618.0, 1407.4, 1324.0, 1162.7, 1121.6, 1100.4, 829.8 cm⁻¹; HRMS (ESI) calc'd for [M+Na]⁺ C₁₃H₁₅F₃ONa: 267.0967, found: 267.0966.

The dienyl alcohol 1g was synthesized via S-8 from a previously reported procedure.^[7]

(Z)-hexa-2,5-dien-1-ol (1g)

The ¹H NMR spectrum for **S-8** matched the previously reported.^[7] ¹H NMR (300 MHz, CDCl₃) δ 5.90 – 5.72 (m, 1H), 5.35 – 5.25 (m, 1H), 5.17 – 5.07 (m, 1H), 4.33 – 4.24 (m, 2H), 3.06 – 2.96 (m, 2H), 1.70 (s, 1H).

Compound **1g** was synthesized using a modified protocol of a previously reported procedure.^[7] An oven-dried Schlenk flask equipped with a stir bar was connected to a Schlenk line equipped with a hydrogen tank and vacuum pump. The flask was evacuated and back-filled with hydrogen twice. A continuous flow of hydrogen gas through the flask was then maintained. Nickel acetate tetrahydrate (1.3 g, 5.2 mmol) was placed in the flask and then suspended in 100% EtOH (50 mL). Sodium borohydride (197 mg, 5.2 mmol) was then added at rt, which turned the bright green suspension black. The black suspension was stirred for 20 min under hydrogen. Ethylenediamine (1.4 mL, 20.8 mmol) was then added to the solution and the reaction further stirred for 10 min. The intermediate **S-8** (500 mg, 5.2 mmol, diluted in 10 mL EtOH) was then added. After 20 min the reaction was deemed complete (TLC monitoring) and was quenched with Et₂O (50 mL) and filtered through a pad of Celite. The filtrate was washed with brine, dried over Na₂SO₄, and concentrated by short path distillation of solvent at ambient pressure. The crude was purified by flash chromatography (silica gel, 20-25% Et₂O in pentanes) followed by short path distillation of

solvent at ambient pressure to give alcohol **1g** as a colorless oil (298 mg, 58%). ¹H NMR matched the previously reported.^[8] (**Note :** The dienol **1g** is volatile and was stored at -18 °C.)

¹H NMR (400 MHz, CDCl₃) δ 5.88 – 5.75 (m, 1H), 5.73 – 5.65 (m, 1H), 5.63 – 5.53 (m, 1H), 5.09 – 4.97 (m, 2H), 4.24 – 4.16 (m, 2H), 2.88 – 2.80 (m, 2H), 1.45 – 1.34 (m, 1H).

(Z)-2-methylhepta-3,6-dien-2-ol (1h)

Propargyl alcohol **S-9** was synthesized as previously reported.^[9] Its ¹H NMR matched the previously reported spectrum.^[9] ¹H NMR (300 MHz, CDCl₃) δ 5.89 – 5.71 (m, 1H), 5.35 – 5.23 (m, 1H), 5.15 – 5.05 (m, 1H), 3.01 – 2.92 (m, 2H), 1.87 – 1.80 (m, 1H), 1.51 (d, *J* = 1.9 Hz, 6H).

Nickel acetate tetrahydrate (547 mg, 2.2 mmol) was dissolved in 100% EtOH (25 mL) and placed under H₂ filled balloon. A solution of sodium borohydride (83 mg, 2.2 mmol) in EtOH (2.2 mL) was then added at room temperature, turning the bright green solution black. After 30 min, ethylenediamine (0.6 mL, 8.8 mmol) and the resulting solution was stirred for a further 10 min. The intermediate **S-9** (273 mg, 2.2 mmol, diluted in 4 mL 100% EtOH) was then added. After 20 min of monitoring by TLC, the reaction was quenched with Et₂O (25 mL) and filtered through a pad of Celite, washed with brine, dried over MgSO₄, and concentrated in vacuo. The crude was purified by flash chromatography (silica gel, 20% Et₂O in pentanes) to give alcohol **1h** as a colorless oil (110 mg, 40%). (**Note :** Despite our best efforts it was not possible to completely eliminate over-reduced product in the NMR samples. The impurities have been clearly identified in the NMR spectrum.)

¹H NMR (400 MHz, CDCl₃) δ 5.92 – 5.78 (m, 1H), 5.58 – 5.44 (m, 1H), 5.41 – 5.25 (m, 1H), 5.09 – 4.95 (m, 2H), 3.14 – 3.07 (m, 2H), 1.35 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 137.8, 137.4, 127.6, 114.7, 77.3, 76.9, 76.7, 71.7, 32.2, 31.1, 31.1; IR (neat): 3387, 2971, 2930, 1712, 1637, 1463, 1363, 1143, 992, 957 cm⁻¹; HRMS (ESI) calc'd for [M+Ag]⁺ C₈H₁₄AgO: 233.0090, found: 233.0090.

3,3-Dimethylhex-5-en-1-ol (1i)

3,3-Dimethylhex-5-en-1-ol (1i) was synthesized according to a literature procedure.^[10] ¹H NMR matched previously reported literature data.^[10] ¹H NMR (300 MHz, CDCl₃) δ 5.91 – 5.73 (m, 1H), 5.09 – 4.94 (m, 2H), 3.71 (t, J = 7.6 Hz, 2H), 2.00 – 1.94 (m, 2H), 1.57 – 1.47 (m, 2H), 1.21 (s, 1H), 0.91 (s, 7H).

N-allyl-*N*-(2-hydroxy-2-methylpropyl)benzenesulfonamide (1n)

Benzenesulfonyl chloride (0.8 mL, 6.2 mmol) and triethylamine (1.6 mL, 11.2 mmol) were added to a solution of 1-amino-2-methylpropan-2-ol (500 mg, 5.6 mmol) in dichloromethane (5 mL). The reaction was stirred at rt overnight. The reaction was then quenched with water (10 mL) and extracted with CH₂Cl₂ (3 X 25 mL). The organic layers were combined, dried over MgSO₄, and concentrated in vacuo to give the crude sulfonamide **S-12**. The crude was used in the next step without further purification.

NaH (98 mg, 4.1 mmol) was added to a solution of crude sulfonamide **S-12** (3.4 mmol) in DMF (7 mL) at 0 °C under argon. After 20 min, allyl bromide (0.4 mL, 4.1 mmol) was added, and the reaction was stirred and allowed to warm to rt for 16 h. The reaction mixture was concentrated and purified by flash chromatography (silica gel, 40% EtOAc in hexanes) to give the alcohol **1n** as a clear oil (776 mg, 85%).

¹H NMR (400 MHz, CDCl₃) δ 7.81 (dd, J = 8.4, 1.4 Hz, 2H), 7.63 – 7.44 (m, 3H), 5.60 – 5.38 (m, 1H), 5.20 – 5.00 (m, 2H), 4.01 – 3.84 (m, 2H), 3.12 (s, 2H), 1.24 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 139.3, 132.9, 132.7, 129.1, 127.3, 119.6, 71.3, 57.6, 53.2, 27.6, 22.8; IR (neat): 3521, 2976, 2930, 1641, 1446, 1326, 1153, 1089, 1045, 970, 924 cm⁻¹; HRMS (ESI) calc'd for [M+Na]⁺ C₁₃H₁₉NNaO₃S: 292.0978, found: 292.0985.

N-(1-hydroxy-2-methylpropan-2-yl)-N-(2-methylallyl)benzenesulfonamide (10)

NaH (374 mg, 15.6 mmol) was added to a solution of crude sulfonamide **S-5** (13.0 mmol) in DMF (26 mL) at 0 °C under argon. After 20 min, 3-chloro-2-methylpropene (1.4 mL, 15.6 mmol) was added, and the reaction was stirred and allowed to warm to rt for 16 h. The reaction mixture was concentrated and purified by flash chromatography (silica gel, 30% EtOAc in hexanes) to give the alcohol **10** as a waxy solid (552 mg, 15% over two steps).

¹H NMR (300 MHz, CDCl₃) δ ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.75 (m, 2H), 7.61 – 7.39 (m, 3H), 5.08 (s, 1H), 4.93 (s, 1H), 3.98 (s, 2H), 3.64 (s, 2H), 1.76 (s, 3H), 1.11 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 143.2, 142.5, 132.5, 128.9, 127.0, 111.6, 69.5, 63.9, 52.4, 24.2, 20.0; FTIR (neat, thinfilm) v 3534, 3069, 2980, 1652, 1446, 1322, 1147, 1322, 1147, 1091 cm⁻¹; HRMS (ESI) calc'd for [M+Na]⁺ C₁₄H₂₁NNaO₃S: 306.1134, found: 306.1136.

Representative Procedure for Carboetherification Reactions (Conditions A)

(*R*)-3-(3,3-Diphenylallyl)-1,1-dimethylisochromane (2b)

Cu(OTf)₂ (12.9 mg, 0.036 mmol) was flame dried under vacuum in a 12 mL pressure tube until there was no visible blue in the white powder (~1-2 min). Afterwards, the pressure tube was charged with argon before adding a magnetic stir bar, (*S*, *S*)-*t*Bu-Box (13.2 mg, 0.045 mmol), and 0.9 mL of PhCF₃. The pressure tube was flushed with argon for 5 min, sealed, and stirred at 60 °C for 2h. After allowing the reaction to cool to rt, K₂CO₃ (24.7 mg, 0.18 mmol) and MnO₂ (46.7 mg, 0.54 mmol, 2.6 equiv. due to 85 % purity) were added. Alcohol **1b** (31.5 mg, 0.18 mmol) was dissolved in 0.9 mL of PhCF₃ and added the pressure tube, followed by 1,1-diphenylethylene (0.10 mL, 0.54 mmol) and flame-dried 4Å molecular sieves (~32.0 mg). The pressure tube was flushed with argon for 5 min, sealed, and stirred at 120 °C for 24 h. After allowing it to cool to rt, the reaction mixture was diluted with 10 mL EtOAc and filtered through a pad of silica gel (~5 g). The silica was then washed with EtOAc (3 x 30 mL). The filtrate was concentrated in vacuo. The crude was purified by flash chromatography (silica gel, 3% Et₂O in hexanes) to give **2b** as a colorless oil (40.9 mg, 64%). The procedure was repeated with the achiral bis(oxazoline) ligand to generate the racemic product for analytical HPLC analysis.

ee = 94%, determined by HPLC analysis [Chiralpak AD-RH, 100% hexanes, 0.1 mL/min, λ = 254 nm, tmin = 38.86 min, tmaj = 33.55 min]; [α]_D²¹ = -54.5 (c 0.22, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.45 – 6.99 (m, 14H), 6.28 (t, *J* = 7.3 Hz, 1H), 3.97 – 3.82 (m, 1H), 2.75 – 2.57 (m, 2H), 2.56 – 2.34 (m, 2H), 1.54 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 143.2, 143.0, 142.7, 140.1, 133.1, 130.0, 128.8, 128.2, 128.1, 127.3, 126.9, 126.1, 125.9, 125.4, 125.2, 75.4, 68.9, 36.4, 35.2, 31.5, 28.7.; IR (neat): 3022, 2973, 2924, 1598, 1491, 1445, 1378, 1363, 1271, 1169, 1109, 1062, 1036, 758, 733, 699 cm⁻¹; HRMS (EI) calc'd for [M]⁺ C₂₆H₂₆O₁: 354.1978, found: 354.1990.

Conditions B for 2b

Reaction was run under similar conditions as the representative procedure except that DCE was used as the solvent and temperature was set at 105 °C. The crude was purified by flash chromatography (silica gel, 3% Et₂O in hexanes) to give **2b** as a colorless oil (78%)

ee > 95%, determined by HPLC analysis [Chiralpak AD-RH, 100% hexanes, 0.1 mL/min, $\lambda = 254$ nm, tmin = 38.86 min, tmaj = 33.55 min]; [α]_D²⁷ = -40.4 (c 0.1, CHCl₃).

(R)-3-(3,3-Diphenylallyl)isochromane (2a) (Conditions C)

The isochroman **2a** was synthesized following the representative procedure, using alcohol **1a** except that 1 equiv. of Ag₂CO₃ instead of MnO₂, and the reaction was run in 1, 2-dichloroethane (DCE) at 105 °C for 24 h. The crude was purified by flash chromatography (silica gel, 3% Et₂O in hexanes) to give 33 mg of the desired product as a colorless oil (50% yield). *ee* = 89 ± 3%, determined by HPLC analysis [Chiralpak AD-RH, 70:30 CH₃CN:H₂O, 0.5 mL/min, λ = 254 nm, tmin = 19.74 min, tmaj = 18.05 min]; [α]_D²³ = -18.8 (c 0.79, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.19 (m, 10H), 7.18 – 7.12 (m, 2H), 7.11 – 7.04 (m, 1H), 6.99 (dd, *J* = 5.1, 3.6 Hz, 1H), 6.28 (t, *J* = 7.4 Hz, 1H), 4.84 (ABq, *J*_{ABq} = 15Hz, v_{ABq} = 9.94 Hz, 2H), 3.83 – 3.73 (m, 1H), 2.79 – 2.64 (m, 2H), 2.57 – 2.40 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 143.5, 142.5, 140.0, 134.7, 133.2, 129.9, 128.8, 128.2, 128.1, 127.2, 127.0, 126.3, 126.0, 125.0, 124.1, 74.9, 68.3, 36.1, 33.8; IR (neat): 3022, 2839, 1598, 1493, 1444, 1373, 1204, 1095, 1035, 907, 871, 744, 700 cm⁻¹; HRMS (EI) calc'd for [M]⁺ C₂₄H₂₂O₁: 326.1665, found: 326.1673.

(*R*)-3-(3,3-Diphenylallyl)-1,1-diethylisochromane (2c)

The isochroman **2c** was made from the alcohol **1c** (100 mg, 0.5 mmol) with (*S*, *S*)-*t*Bu-Box, and 1,1-diphenylethylene in PhCF₃ at 120 °C for 24 h (conditions A). The crude was purified by flash chromatography (silica gel, 1% Et₂O in hexanes) to give 120 mg of the desired product as a colorless oil (63% yield).

ee = 87%, determined by HPLC analysis [Chiralpak AD-RH, 0.5% *i*-PrOH in hexanes, 1.0 mL/min, $\lambda = 254$ nm, tmin = 19.62 min, tmaj = 13.97 min]; [α]_D²⁷ = -18.5 (c 0.1, CHCl₃) ¹H NMR (500 MHz, CDCl₃) δ 7.44 – 6.97 (m, 14H), 6.32 (t, *J* = 7.4 Hz, 1H), 3.90 – 3.80 (m, 1H), 2.69 – 2.34 (m, 4H), 2.10 – 1.93 (m, 2H), 1.74 – 1.59 (m, 2H), 0.98 (t, *J* = 7.4 Hz, 3H), 0.60 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.1, 142.7, 141.4, 140.1, 134.6, 130.0, 128.5, 128.2, 128.1, 127.2, 126.9, 126.8, 126.1, 125.7, 125.6, 125.1, 79.8, 68.6, 36.5, 35.2, 33.0, 32.2, 8.0, 7.8.; IR (neat): 2966, 2927, 1598, 1491, 1444, 1373, 1260, 1072, 1031, 916, 873, 801, 755, 699 cm⁻¹; HRMS (EI) calc'd for [M]⁺ C₂₈H₃₀O₁: 382.2291, found: 382.2292.

(R)-3-(3,3-diphenylallyl)-6-methoxy-1,1-dimethylisochromane (2d)

The isochroman **2d** was made from the alcohol **1d** (20.6 mg, 0.1 mmol) with (*S*, *S*)-*t*Bu-Box, and 1,1-diphenylethylene in DCE at 105 °C for 24 h (conditions B). The crude was purified by flash chromatography (silica gel, 3 % EtOAc in hexanes) to give 25.7 mg of the desired product as a colorless oil (67% yield). *ee* >95 %, determined by HPLC analysis [Chiralpak AD-RH, 75:25 *i*-PrOH : H₂O, 0.50 mL/min, column temperature 35 °C, λ = 254 nm, tmin = 11.19 min, tmaj = 12.95 min]; [α]_D²² = -48.6 (c 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.37 (m, 2H), 7.37 –

7.20 (m, 9H), 7.04 (d, J = 8.6 Hz, 1H), 6.77 (dd, J = 8.6, 2.7 Hz, 1H), 6.59 (d, J = 2.7 Hz, 1H), 6.29 (dd, J = 8.0, 6.6 Hz, 1H), 3.96 – 3.83 (m, 1H), 3.80 (s, 3H), 2.75 – 2.57 (m, 2H), 2.57 – 2.37 (m, 2H), 1.53 (d, J = 2.0 Hz, 6H).; ¹³C NMR (101 MHz, CDCl₃) δ 157.6, 143.3, 142.7, 140.1, 135.4, 134.5, 130.0, 128.2, 128.1, 127.3, 127.0, 126.9, 126.3, 125.5, 113.1, 112.6, 75.2, 68.9, 55.2, 36.4, 35.6, 31.6, 28.7.; IR (neat): 2973.4, 2929.5, 1609.9, 1501.1, 1243.1, 1035.0, 700.9, 626.2, 593.9 cm⁻¹; HRMS (ESI) calc'd for [M+Na]⁺ C₂₇H₂₈O₂Na: 407.1982, found: 407.1982.

(R)-3-(3,3-diphenylallyl)-1,1-dimethyl-6-(trifluoromethyl)isochromane (2e)

The isochroman **2e** was made from the alcohol **1e** (24.4 mg, 0.1 mmol) with (*S*, *S*)-*t*Bu-Box, and 1,1-diphenylethylene in DCE at 105 °C for 24 h (conditions B). The crude was purified by flash chromatography (silica gel, 3 % EtOAc in hexanes) to give 28.3 mg of the desired product as a colorless oil (67% yield). *ee* >95%, determined by HPLC analysis [Chiralpak AD-RH, 75:25 IPA:H₂O, 0.40 mL/min, column temperature 30°C, $\lambda = 254$ nm, tmin = 9.08 min, tmaj = 7.86 min]; [α] $_{D}^{22}$ = -42.6 (c 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.08 (m, 14H), 6.18 (dd, *J* = 7.9, 6.7 Hz, 1H), 3.82 (dq, *J* = 8.0, 5.8 Hz, 1H), 2.65 – 2.58 (m, 2H), 2.47 – 2.31 (m, 2H), 1.46 (d, *J* = 2.4 Hz, 7H).; ¹³C NMR (101 MHz, CDCl₃) δ 147.0, 143.6, 142.6, 140.0, 134.0, 129.9, 128.4, 128.3, 128.1, 127.3, 127.0, 125.8, 125.7 (q, *J*_{CF} = 3.8 Hz), 125.0, 122.9 (q, *J*_{CF} = 3.7 Hz), 75.3, 68.7, 36.2, 35.1, 31.3, 28.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.50.; IR (neat): 3026.9, 2977.6, 2930.4, 1425.4, 1335.0, 1169.0, 1124.4, 762.1, 700.8, 628.9 cm⁻¹; HRMS (ESI) calc'd for [M+Na]⁺ C₂₇H₂₅F₃ONa: 445.1750, found: 445.1750.

(R)-3'-(3,3-Diphenylallyl)spiro[cyclohexane-1,1'-isochromane (2f)

The isochroman **2f** was made from the alcohol **1f** (43 mg, 0.2 mmol) with (*S*, *S*)-*i*Pr-Box, and 1,1diphenylethylene in PhCF₃ at 120 °C for 24 h (Conditions A with Ligand **3b**). The crude was purified by flash chromatography (silica gel, 3% Et₂O in hexanes) to give 66 mg of the desired product as a colorless oil (84% yield). *ee* > 95%, determined by HPLC analysis [Chiralpak AD-RH, 80:20 EtOH:H₂O, 0.5 mL/min, λ = 254 nm, tmin = 13.42 min, tmaj = 11.76 min]; [α]p²³ = -38.7 (*c* 1.48, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.34 (m, 2H), 7.33 – 7.19 (m, 8H), 7.18 – 7.07 (m, 3H), 7.02 (d, *J* = 7.2 Hz, 1H), 6.35 (t, *J* = 7.4 Hz, 1H), 3.87 – 3.77 (m, 1H), 2.74 – 2.56 (m, 2H), 2.55 – 2.38 (m, 2H), 2.12 (d, J = 13.9 Hz, 1H), 1.93 – 1.67 (m, 3H), 1.63 – 1.41 (m, 5H), 1.36 – 1.19 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 143.3, 143.0, 142.8, 140.1, 133.6, 130.0, 128.7, 128.2, 128.1, 127.2, 126.9, 126.8, 126.1, 126.0, 125.8, 125.1, 75.8, 68.0, 39.4, 36.5, 35.4, 35.1, 25.7, 21.8, 21.7; IR (neat): 2966, 2927, 1598, 1491, 1444, 1373, 1260, 1072, 1031, 916, 873, 801, 755, 699 cm⁻¹; HRMS (EI) calc'd for [M]⁺ C₂₉H₃₀O₁: 394.2291, found: 394.2295.

(S)-2-(3,3-diphenylallyl)-3,6-dihydro-2H-pyran (4a)

The dihydropyran **4a** was made from the alcohol **1g** (20 mg, 0.2 mmol) with (*S*, *S*)-*t*Bu-Box, Ag_2CO_3 and 1,1-diphenylethylene in DCE at 105 °C for 48 h (Conditions C). 2,6-Di-*tert*-butyl-4-methylpyridine was used as the base. Dihydropyran **4a** was isolated by flash chromatography (silica gel, hexanes:Et₂O 99:1) as a colourless oil (24 mg, 44%).

ee = 74 ± 4%, determined by GC analysis [CP-Chirasil-Dex CB column, $T_{inj} = 200$ °C, $T_{det} = 220$ °C, flow = 2 mL/min, $t_i = 110$ °C, $t_f = 190$ °C, rate = 1 °C/min from 110 °C to 140 °C, 0.5 °C/min thereafter, FID detection, tmin = 187.4 min, tmaj = 186.4 min]; $[\alpha]_D^{23} = -32.7$ (*c* 0.56, CH₂Cl₂), ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.14 (m, 10H), 6.21 (t, *J* = 7.4 Hz, 1H), 5.84 – 5.66 (m, 2H), 4.25 – 4.14 (m, 2H), 3.61 (p, *J* = 5.8 Hz, 1H), 2.46 – 2.27 (m, 2H), 2.07 – 1.93 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 129.9, 128.2, 128.0, 127.2, 126.9, 126.3, 125.3, 124.1, 73.7, 66.0, 36.1, 30.7. IR (neat): 2970, 2923, 1660, 1598, 1493, 1445, 1388, 1259, 1180, 1088, 1014 cm⁻¹; HRMS (EI) calcd for C₂₀H₂₀NaO [M+Na]⁺ : 299.1406, found 299.1406.

(S)-2-(3,3-diphenylallyl)-6,6-dimethyl-3,6-dihydro-2H-pyran (4b)

The dihydropyran **4b** was made from the alcohol **1h** (25 mg, 0.2 mmol) with (*S*, *S*)-*i*Pr-Box, and 1,1-diphenylethylene in PhCF₃ at 120 °C for 24 h (Conditions A with Ligand **3b**). The crude was purified by flash chromatography (silica gel, 1% Et₂O in hexanes) to give 35 mg of the desired product as a colorless oil (58% yield). *ee* = 82%, determined by HPLC analysis [Chiralpak AD-RH, 65:35 iPrOH:H₂O, 0.3 mL/min, λ = 254 nm, tmin = 18.15 min, tmaj = 16.23 min];

 $[\alpha]_D^{22} = -18.3 (c \ 0.1, CH_2Cl_2)^1H NMR (300 MHz, CDCl_3) \delta 7.45 - 7.07 (m, 10H), 6.20 (t, <math>J = 7.3 \text{ Hz}, 1\text{H}), 5.72 - 5.55 (m, 2H), 3.75 (q, <math>J = 6.5 \text{ Hz}, 1\text{H}), 2.34 (ddp, <math>J = 20.8, 14.7, 7.0 \text{ Hz}, 2\text{H}), 1.88 (d, J = 7.4 \text{ Hz}, 2\text{H}), 1.25 (d, J = 3.6 \text{ Hz}, 6\text{H}); {}^{13}C NMR (75 \text{ MHz}, CDCl_3) \delta 135.1, 129.9, 128.1, 128.0, 127.2, 126.9, 125.7, 122.3, 72.8, 68.6, 36.3, 30.5, 29.5, 25.8; FTIR (neat, thinfilm) v 2972, 1598, 1493, 1440, 1384, 1250, 1058, 759, 700 cm^{-1}; HRMS (EI) calcd for <math>C_{22}H_{25}O [M+H]^+$: 305.1899, found 305.1899.

(S)-2-(3,3-diphenylallyl)-4,4-dimethyltetrahydro-2H-pyran (5b) (Conditions D)

The isochroman **5b** was synthesized following the representative procedure, using alcohol **1i** (26 mg, 0.2 mmol), (*4R*, *5S*)-Bis-Ph-Box, and xylenes at 140 °C for 48 h. The crude was purified by flash chromatography (silica gel, 5% Et₂O in hexanes) to give 16 mg of the desired product as a colorless oil (26% yield). *ee* = 13 ± 1%, determined by HPLC analysis [Chiralpak AD-RH, 60:10:30 EtOH:iPrOH:H₂O, 0.5 mL/min, λ = 254 nm, tmin = 16.19 min, tmaj = 17.71 min]; [α]_D²³ = +1.73 (*c* 0.1, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 7.41 – 7.12 (m, 10H), 6.19 (dd, *J* = 7.8, 6.9 Hz, 1H), 3.83 (ddd, *J* = 11.7, 5.1, 1.6 Hz, 1H), 3.66 – 3.44 (m, 2H), 2.38 – 2.12 (m, 2H), 1.46 (td, *J* = 13.1, 5.0 Hz, 1H), 1.34 – 1.02 (m, 3H), 1.00 (s, 3H), 0.93 (s, 3H).; ¹³C NMR (101 MHz, cdcl₃) δ 129.92, 128.15, 128.02, 127.22, 126.87, 125.74, 77.31, 76.99, 76.67, 73.38, 64.39, 44.74, 38.77, 36.81, 33.20, 28.85, 24.07; IR (neat): 3060, 2960, 2917, 2849, 1657, 1598, 1578, 1447, 1317, 1276, 1260, 1074, 1014, 941 cm⁻¹, HRMS (EI) calcd for C₂₂H₂₆NaO [M+Na]⁺ : 329.1875, found 329.1874.

(R)-2-(3,3-diphenylallyl)-4,4-diphenyltetrahydro-2H-pyran (5c) (Conditions E)

The isochroman **5c** was synthesized following the representative procedure, using alcohol **1j** (25 mg, 0.1 mmol). (*4S*, *5R*)-Bis-Ph-Box was used as the ligand and 2,6-di-tert-butyl-4-methylpyridine was used as the base. Reaction was run in DCE at 105 °C for 48 h. The crude was purified by flash chromatography (silica gel, 5% Et₂O in hexanes) to give 17 mg of the desired product as a waxy solid (41% yield). *ee* = 20%, determined by HPLC analysis [Chiralpak AD-RH, 60:40 ACN:H₂O, 1 mL/min, λ = 254 nm, tmin = 17.5 min, tmaj = 14.5 min].

 $[\alpha]_D^{23} = +4.42 (c \ 0.1, CHCl_3)$ ¹H NMR (500 MHz, CDCl₃) δ 7.44 – 7.05 (m, 20H), 6.21 (t, *J* = 7.3 Hz, 1H), 3.97 (dd, *J* = 11.9, 4.3 Hz, 1H), 3.71 – 3.53 (m, 2H), 2.60 (t, *J* = 11.4 Hz, 2H), 2.47 – 2.32 (m, 2H), 2.26-2.21 (m, 1H), 1.86 (dd, *J* = 14.0, 11.2 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 150.1, 144.3, 143.3, 142.4, 140.0, 129.9, 128.6, 128.3, 128.2, 128.0, 127.9, 127.2, 127.0, 126.9, 125.9, 125.8, 125.7, 125.2, 73.7, 64.7, 44.8, 42.0, 36.6, 36.4; FTIR (neat, thin film) v 3056, 2950, 1597, 1494, 1445, 1099, 761, 699 cm⁻¹; HRMS (EI) calcd for C₃₂H₃₁O [M+H]⁺: 431.2369, found 431.2368.

(S)-2-(3,3-diphenylallyl)-4-tosylmorpholine (7a)

The morpholine **7a** was made from the alcohol **1k** (51 mg, 0.2 mmol) with (4*R*, 5*S*)-Bis-Ph-Box, and 1,1-diphenylethylene in xylenes at 140 °C for 48 h (Conditions D). The crude was purified by flash chromatography (silica gel, 30% EtOAc in hexanes) to give 26 mg of the desired product as a colorless oil (30% yield). *ee* = 55%, determined by HPLC analysis [(*S*, *S*)-Whelk, 1% iPrOH in hexanes, 1.0 mL/min, λ = 254 nm, tmin = 38.88 min, tmaj = 52.31 min]; [α]_D²⁶ = -16.1 (c 0.28, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.60 (d, J = 7.8 Hz, 2H), 7.42 – 7.08 (m, 14H), 6.09 (t, J = 7.4 Hz, 1H), 3.95 – 3.82 (m, 1H), 3.74 – 3.43 (m, 5H), 2.49 – 2.14 (m, 7H), 2.07 – 1.91 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 144.1, 143.9, 142.1, 139.6, 132.1, 129.74, 129.7, 128.3, 128.1, 127.8, 127.2, 127.1, 123.5, 75.2, 66.0, 50.1, 45.5, 33.6, 29.7, 21.6; IR (neat): 3000, 2921, 1729, 1658, 1598, 1493, 1448, 1344, 1277, 1165, 1102, 981 cm⁻¹; HRMS (ESI) calc'd for [M+Na]⁺ C₂₆H₂₇NNaO₃S: 456.1604, found: 456.1611.

(*R*)-2-(3,3-diphenylallyl)-5,5-dimethyl-4-(phenylsulfonyl)morpholine (7b)

The morpholine **7b** was made from the alcohol **1l** (54 mg, 0.2 mmol) with (*S*, *S*)-tBu-Box, and 1,1diphenylethylene in DCE at 105 °C for 24 h. The crude was purified by flash chromatography (silica gel, 20% EtOAc in hexanes) to give 66 mg of the desired product as a colorless oil (74% yield). *ee* > 95%, determined by HPLC analysis [Chiralpak AD-RH, 50:15:35 *i*-PrOH:EtOH:H₂O, 0.5 mL/min, λ = 254 nm, tmin = 25.40 min, tmaj = 22.25 min]; [α]_D²⁵ = -47.6 (c 1.51, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.76 (m, 2H), 7.52 (dt, *J* = 15.1, 7.4 Hz, 3H), 7.44 – 7.14 (m, 11H), 6.15 (t, *J* = 7.3 Hz, 1H), 3.69 (dd, *J* = 12.7, 2.7 Hz, 1H), 3.62 – 3.54 (m, 1H) 3.34 (s, 2H), 2.89 (dd, J = 12.8, 10.6 Hz, 1H), 2.37 (td, J = 13.0, 11.0, 7.6 Hz, 2H), 1.32 (s, 3H), 1.13 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.2, 142.2, 139.7, 132.4, 129.8, 129.0, 128.3, 128.1, 127.3, 127.2, 127.1, 123.5, 78.0, 76.6, 56.8, 47.2, 33.4, 24.5, 20.0; IR (neat): 2972, 1717, 1659, 1598, 1493, 1446, 1324, 1153, 1091, 1026, 959 cm⁻¹; HRMS (ESI) calc'd for [M+Na]⁺ C₂₇H₂₉NNaO₃S: 470.1760, found: 470.1768.

(*R*)-2-(3,3-diphenylallyl)-5,5-dimethyl-4-((4-nitrophenyl)sulfonyl)morpholine (7c)

The morpholine **7c** was made from the alcohol **1m** (63 mg, 0.2 mmol) with (*S*, *S*)-*t*Bu-Box, and 1,1-diphenylethylene in PhCF₃ at 120 °C for 48 h (Conditions A). The crude was purified by flash chromatography (silica gel, 30% EtOAc in hexanes) to give 64 mg of the desired product as a colorless oil (65% yield). *ee* = 89 ± 2%, determined by HPLC analysis [Chiralpak AD-RH, 40:20:40 ACN:iPrOH:H₂O, 0.5 mL/min, λ = 254 nm, tmin = 26.78 min, tmaj = 30.22 min]; [α]p²⁶ = -34.6 (c 0.35, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.34 (dd, *J* = 8.8, 1.7 Hz, 2H), 7.97 (dd, *J* = 8.9, 1.8 Hz, 2H), 7.45 – 7.14 (m, 14H), 6.15 (t, *J* = 7.4 Hz, 1H), 3.69 (d, *J* = 13.0 Hz, 1H), 3.62 – 3.51 (m, 1H), 3.43 – 3.27 (m, 2H), 2.95 (t, *J* = 11.9 Hz, 1H), 2.38 (q, *J* = 6.6, 6.2 Hz, 2H), 1.31 (s, 3H), 1.22 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 149.8, 148.1, 144.4, 142.1, 139.6, 129.8, 128.4, 128.3, 128.2, 128.16, 127.3, 127.28, 127.2, 124.3, 123.1, 77.7, 76.5, 57.4, 47.3, 33.3, 24.4, 20.7; IR (neat): 2926, 1728, 1658, 1600, 1529, 1446, 1349, 1308, 1278, 1157, 1091, 961 cm⁻¹; HRMS (ESI) calc'd for [M+Na]⁺ C₂₇H₂₈N₂NaO₅S: 515.1611, found: 515.1623.

(S)-6-(3,3-diphenylallyl)-2,2-dimethyl-4-(phenylsulfonyl)morpholine (7d)

The morpholine **7d** was made from the alcohol **1n** (54 mg, 0.2 mmol) with (4*R*, 5*S*)-Bis-Ph-Box, and 1,1-diphenylethylene in xylenes at 140 °C for 48 h (Conditions D). The crude was purified by flash chromatography (silica gel, 20% EtOAc in hexanes) to give 33 mg of the desired product as a colorless oil (36% yield). *ee* = 26%, determined by HPLC analysis [Chiralpak AD-RH, 40:20:40 ACN:iPrOH:H₂O, 0.3 mL/min, λ = 254 nm, tmin = 22.50 min, tmaj = 25.96 min]; [α]_D²⁶ = +43.1 (c 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.67 (m, 2H), 7.65 – 7.49 (m, 4H), 7.39 – 7.10 (m, 11H), 6.08 (t, J = 7.4 Hz, 1H), 3.96 – 3.86 (m, 1H), 3.57 (d, J = 11.4 Hz, 1H), 3.41 – 3.34 (m, 1H), 2.29 – 2.10 (m, 2H), 2.06 – 1.97 (m, 1H), 1.80 (t, J = 10.9 Hz, 1H), 1.38 (s, 3H), 1.16 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.0, 142.2, 139.8, 135.5, 132.9, 129.8, 129.1, 128.3, 128.1, 127.8, 127.6, 127.2, 127.18, 127.1, 123.7, 71.5, 68.7, 54.2, 49.9, 33.9, 27.8, 21.7; IR (neat): 3059, 2978, 1721, 1658, 1598, 1493, 1446, 1347, 1318, 1277, 1166, 1093, 1030, 999, 972 cm⁻¹; HRMS (ESI) calc'd for [M+H]⁺ C₂₇H₃₀NO₃S: 448.1941, found: 448.1946.

(R)-2-(3,3-diphenylallyl)-2,5,5-trimethyl-4-(phenylsulfonyl)morpholine (7e)

The morpholine **7e** was made from the alcohol **1o** (28 mg, 0.1 mmol) with (*S*, *S*)-*t*Bu-Box, and 1,1-diphenylethylene in DCE at 105 °C for 24 h. The crude was purified by flash chromatography (silica gel, 20% EtOAc in hexanes) to give 33 mg of the desired product as a colorless oil (72% yield). *ee* = 93%, determined by HPLC analysis [Chiralpak AD-RH, 50:15:35 iPrOH:EtOH:H₂O, 0.6 mL/min, λ = 254 nm, tmin = 13.1 min, tmaj = 18.0 min]; [α]_D²⁷ = +11.1 (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.73 (m, 2H), 7.59 – 7.50 (m, 1H), 7.48 (d, *J* = 7.9 Hz, 1H), 7.47 – 7.17 (m, 9H), 7.17 – 7.11 (m, 2H), 6.13 (t, *J* = 7.3 Hz, 1H), 3.28 (q, *J* = 11.9 Hz, 2H), 3.23 (s, 2H), 2.59 (dd, *J* = 15.1, 7.1 Hz, 1H), 2.18 (dd, *J* = 15.1, 7.5 Hz, 1H), 1.28 (s, 3H), 1.20 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 144.2, 142.4, 141.8, 139.8, 132.4, 129.8, 128.9, 128.3, 128.1, 127.2, 127.1, 123.1, 77.3, 76.9, 76.7, 74.1, 71.7, 56.9, 50.2, 36.4, 22.6, 22.3; IR (neat, thin film) v 3058, 2981, 1726, 1659, 1598, 1493, 1446, 1318, 1277, 1153, 1090, 923 cm⁻¹; HRMS (ESI) calc'd for [M+Na]⁺ C₂₈H₃1NNaO₃S: 484.1917, found: 484.1927.

(*R*,*E*)-3-(3-(4-methoxyphenyl)allyl)-1,1-dimethylisochromane (8a)

The isochroman **8a** was made from the alcohol **1b** (35 mg, 0.2 mmol) with (*S*, *S*)-*t*Bu-Box, 2,6-di*t*Bu-4-methylpyridine, and 4-methoxystyrene in DCE at 105 °C for 24 h (Conditions B but with 2,6-di-t-Bu-4-methylpyridine). The crude was purified by flash chromatography (silica gel, 5% EtOAc in hexanes) to give 33.4 mg of the desired product as a colorless oil (54% yield). *ee* > 95%, determined by HPLC analysis [Chiralpak AD-RH, 60:20:20 iPrOH:EtOH:H₂O, 0.5 mL/min, λ = 254 nm, tmin = 9.44 min, tmaj = 8.54 min]; $[\alpha]_D^{25}$ = -128.6 (c 0.2, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.35 – 7.28 (m, 2H), 7.21 – 7.02 (m, 4H), 6.89 – 6.80 (m, 2H), 6.46 (d, *J* = 15.9 Hz, 1H), 6.19 (ddd, *J* = 15.8, 7.7, 6.5 Hz, 1H), 3.97 – 3.86 (m, 1H), 3.81 (s, 3H), 2.76 – 2.68 (m, 2H), 2.67 – 2.54 (m, 1H), 2.50 – 2.39 (m, 1H), 1.55 (s, 3H), 1.53 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 133.1, 131.4, 130.5, 128.8, 127.6, 127.2, 126.1, 125.9, 125.2, 124.3, 113.9, 113.7, 75.4, 68.7, 55.3, 39.8, 35.1, 31.5, 28.7; IR (neat): 2973, 2834, 1607, 1577, 1509, 1448, 1378, 1246, 1173, 1111, 1036, 966 cm⁻¹; HRMS (ESI) calc'd for [M+Na]⁺ C₂₁H₂₄NaO₂: 331.1669, found: 331.1671.

(*R*,*E*)-3-(3-(p-tolyl)allyl)isochromane (8b)

The isochroman **8b** was made from the alcohol **1a** (30 mg, 0.2 mmol) with (*S*, *S*)-*t*Bu-Box, 2,6-di*t*Bu-4-methylpyridine, Ag₂CO₃, and 4-methylstyrene (1.15mL, 1 mmol, 5 equiv) in DCE at 105 °C for 24 h (Conditions C with 5 eq styrene). The desired product was isolated by flash column chromatography (silica gel, hexanes:Et₂O 95:5) as a colourless oil (30 mg, 57%).

ee = 76%, determined by HPLC analysis [Chiralpak AD-RH, 77:23 ACN:H₂O, 1 mL/min, $\lambda = 254$ nm, tmin = 7.8 min, tmaj = 6.40 min].

[α]_D²¹ = -24.4 (c 0.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.26 (dt, J = 8.2, 2.9 Hz, 2H), 7.19 – 7.05 (m, 5H), 6.99 (d, J = 6.9 Hz, 1H), 6.47 (d, J = 15.5 Hζ, 1H), 6.27 (dt, J = 14.1, 7.1 Hz, 1H), 4.91 – 4.77 (m, 2H), 3.79 (dt, J = 10.7, 5.5 Hz, 1H), 2.85 – 2.70 (m, 2H), 2.61 (dt, J = 13.4, 6.5 Hz, 1H), 2.56 – 2.44 (m, 1H), 2.32 (d, J = 2.6 Hz, 4H), 2.19 – 2.11 (m, 5H), 1.25 (s, 0H);¹³C NMR (101 MHz, CDCl₃) δ 136.8, 134.6, 133.2, 132.1, 129.1, 128.8, 126.3, 126.0, 125.9, 124.9, 124.1,

113.7, 77.3, 74.6, 68.2, 39.5, 33.6, 30.9, 21.1; FTIR (neat, thinfilm) v 3022, 2923, 2844,1607, 1584, 1512, 1448, 1373, 1204, 1098, 968, 744 cm⁻¹; HRMS (EI) calcd. for [M+Na]⁺ C₁₉H₂₀NaO: 287.1406, found 287.1403.

(*R*,*E*)-1,1-dimethyl-3-(3-(p-tolyl)allyl)isochromane (8c)

The isochroman **8c** was made from the alcohol **1b** (35 mg, 0.2 mmol) with (*S*, *S*)-*t*Bu-Box, 2,6-di*t*Bu-4-methylpyridine, and 4-methylstyrene in DCE at 105 °C for 24 h (Conditions B but with 2,6di-t-Bu-4-methylpyridine). The crude was purified by flash chromatography (silica gel, 3% Et₂O in hexanes) to give 40.8 mg of the desired product as a colorless oil (70% yield). *ee* > 99%, determined by HPLC analysis [Chiralpak AD-RH, 75:25 iPrOH:H₂O, 0.5 mL/min, λ = 254 nm, tmin = 11.00 min, tmaj = 8.40 min]; [α]_D²⁷ = -45.9 (c 0.84, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 6.99 (m, 11H), 6.47 (d, *J* = 15.8 Hz, 1H), 6.27 (dt, *J* = 16.4, 7.1 Hz, 1H), 3.95 – 3.87 (m, 1H), 2.79 – 2.53 (m, 3H), 2.45 (dt, *J* = 14.1, 7.0 Hz, 1H), 2.32 (s, 3H), 1.54 (s, 3H), 1.52 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.0, 136.8, 134.9, 133.1, 131.8, 129.2, 128.8, 126.1, 126.0, 125.9, 125.4, 125.2, 76.7, 75.4, 68.7, 39.8, 35.1, 31.53, 31.5, 28.7, 21.2; IR (neat): 2973, 2923, 1512, 1490, 1448, 1379, 1271, 1169, 1104, 1061, 1037, 967 cm⁻¹; HRMS (ESI) calc'd for [M+Na]⁺ C₂₁H₂₄NaO: 315.1719, found: 315.1727.

(*R*,*E*)-3-(3-(4-(tert-butyl)phenyl)allyl)-1,1-dimethylisochromane (8d)

The isochroman **8d** was made from the alcohol **1b** (35 mg, 0.2 mmol) with (*S*, *S*)-*t*Bu-Box, 2,6-di*t*Bu-4-methylpyridine, and 4-*tert*butylstyrene in DCE at 105 °C for 24 h (Conditions B but with 2,6-di-t-Bu-4-methylpyridine). The crude was purified by flash chromatography (silica gel, 3% Et₂O in hexanes) to give 44 mg of the desired product as a colorless oil (65% yield). *ee* > 95%, determined by HPLC analysis [Chiralpak AD-RH, 75:25 *i*-PrOH:H₂O, 0.5 mL/min, λ = 254 nm, tmin = 11.01 min, tmaj = 9.52 min]; [α]_D²⁶ = -38.4 (c 0.74, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.33 (s, 4H), 7.14 (dt, *J* = 21.8, 7.2 Hz, 3H), 7.04 (d, *J* = 7.5 Hz, 1H), 6.50 (d, *J* = 15.8 Hz, 1H), 6.29 (dt, *J* = 16.5, 7.2 Hz, 1H), 3.92 (d, *J* = 8.9 Hz, 1H), 2.82 – 2.53 (m, 3H), 2.46 (m, 1H), 1.54 (s, 3H), 1.52 (s, 3H), 1.34 – 1.28 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 143.0, 134.9, 133.1, 131.7, 128.8, 126.1, 125.9, 125.8, 125.7, 125.4, 125.2, 75.4, 68.7, 39.8, 35.1, 34.5, 31.5, 31.3, 28.7; IR (neat): 2965, 2928, 1606, 1513, 1490, 1448, 1379, 1363, 1270, 1169, 1105, 1061, 1037, 967 cm-1; HRMS (ESI) calc'd for [M+H]⁺ C₂₄H₃₁O: 335.2369, found: 335.2373.

(*R*,*E*)-5,5-dimethyl-4-(phenylsulfonyl)-2-(3-(p-tolyl)allyl)morpholine (9)

The morpholine **9** was made from the alcohol **1k** (54 mg, 0.2 mmol) with (*S*, *S*)-*t*Bu-Box, 2,6-di*t*Bu-4-methylpyridine, and 4-methylstyrene (0.13 mL, 1 mmol, 5 equiv) in DCE at 105 °C for 24 h (Conditions B but with 2,6-di-t-Bu-4-methylpyridine). The crude was purified by flash chromatography (silica gel, 20% EtOAc in hexanes) to give 36 mg of the desired product as a colorless oil (54% yield).

ee > 95%, determined by HPLC analysis [Chiralpak AD-RH, 50:15:35 *i*-PrOH:EtOH:H₂O, 0.6 mL/min, $\lambda = 254$ nm, tmin = 15.1 min, tmaj = 13.0 min]; [α]_D²⁶ = -1.07 (c 0.3, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.76 (m, 2H), 7.59 – 7.43 (m, 3H), 7.29 – 7.20 (m, 2H), 7.10 (dd, *J* = 8.2, 2.1 Hz, 2H), 6.43 (d, *J* = 15.6 Hz, 1H), 6.15 (dtd, *J* = 15.9, 7.2, 2.2 Hz, 1H), 3.77 (dt, *J* = 12.8, 2.6 Hz, 1H), 3.60 (t, *J* = 8.3 Hz, 1H), 3.35 (m, 2H), 3.00 (ddd, *J* = 12.8, 10.5, 2.2 Hz, 1H), 2.53 – 2.29 (m, 2H), 2.31 (s, 3H), 1.30 (s, *J* = 2.2 Hz, 3H), 1.17 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 142.3, 137.0, 134.4, 132.7, 132.4, 129.2, 128.9, 126.9, 126.0, 123.6, 77.9, 76.4, 56.8, 47.1, 36.7, 24.4, 21.1, 20.1; IR (neat): 2980, 2922, 1720, 1607, 1514, 1447, 1324, 1154, 1091, 958 cm⁻¹; HRMS (ESI) calc'd for [M+Na]⁺ C₂₂H₂₇NNaO₃S: 408.1604, found: 408.1608.

Formal Synthesis of σ_1 Receptor Antagonist

1-(4-(2-Allylphenyl)-4-hydroxypiperidin-1-yl)ethan-1-one (10):

Acid washed magnesium turnings (481 mg, 13 equiv.) were flame dried in a round-bottomed flask under vacuum before being placed under an argon atmosphere. The round bottomed flask was equipped with a reflux condenser and several crystals of iodine were added, followed by anhydrous THF (1.5 mL). The mixture was refluxed for approximately 10 min. until the brown color had faded after which the flask was removed from the heat. A solution of 1-allyl-2-bromobenzene (393 mg, 1.3 equiv.) in THF (5 mL) was added dropwise to the reaction flask and then heated to reflux for 1 h before being allowed to cool to rt. A flame-dried round-bottomed flask was charged with a solution of 1-acetyl-4-piperidone (215 mg, 1.53 mmol) in THF (10 mL), and cooled to 0 °C under argon. The Grignard solution was cannulated into the piperidone solution, stirred and allowed to warm to rt overnight. The reaction was quenched with 2,2,2-trifluoroethanol (0.7 mL) and filtered through a pad of Celite. The Celite was washed with CH₂Cl₂ and the washings were concentrated in vacuo. The crude residue was purified by flash chromatography (silica gel, 0-6% MeOH in DCM) to give alcohol 10 as white crystals (176.3 mg, 44%). Mp = 135 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 7.8 Hz, 1H), 7.28 – 7.17 (m, 3H), 6.08 (ddt, J = 16.2, 10.1, 5.9 Hz, 1H), 5.10 (dq, J = 10.2, 1.8 Hz, 1H), 4.97 (dq, J = 17.2, 2.0 Hz, 1H), 4.49 (d, J = 13.1 Hz, 1H), 3.85 (dt, J = 6.1, 2.0 Hz, 2H, 3.71 - 3.61 (m, 2H), 3.19 - 3.08 (m, 1H), 2.79 (s, 1H), 2.02 (d, J = 36.0 Hz, 8H). ¹³C NMR (75 MHz, CDCl₃) δ 168.8, 144.3, 139.3, 138.2, 132.6, 127.3, 126.0, 125.1, 115.4, 72.0, 42.4, 38.0, 37.9, 37.4, 37.2, 21.1; IR (neat): 3332, 3072, 3006, 2917, 2850, 2241, 1720, 1615, 1482, 1444, 1426, 1361, 1247, 1130, 1026, 995, 910 cm⁻¹; HRMS (ESI) calc'd for [M+H]⁺ C₁₆H₂₂NO₂: 260.1645, found: 260.1644.

The isochroman **11** was made from the alcohol **10** (30.2 mg, 0.12 mmol) with (*S*, *S*)-*i*Pr-Box, 2,6di-*t*Bu-4-methylpyridine, and 4-methylstyrene in DCE at 105 °C for 24 h (Conditions D). The crude was purified by flash chromatography (silica gel, 3% Et₂O in hexanes) to give 43.2 mg of the isochroman **11** as a colorless oil (58% yield). *ee* = 96%, determined by HPLC analysis [Chiralpak AD-RH, 80:20 CH₃CN:H₂O, 0.7 mL/min, λ = 254 nm, tmin = 6.77 min, tmaj = 4.94 min].

(Note: The extra signals in the ¹H and ¹³C spectra arise out of the presence of rotomers.)

[α]_D²⁶ = -36.9 (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 6.92 (m, 8H), 6.48 (d, J = 15.8 Hz, 1H), 6.28 (dt, J = 15.7, 7.1 Hz, 1H), 4.73 – 4.37 (m, 1H), 3.83 (d, J = 9.4 Hz, 1H), 3.74 – 3.42 (m, 2H), 3.01 (dt, J = 60.5, 13.3 Hz, 1H), 2.83 – 2.65 (m, 2H), 2.54 (dq, J = 22.6, 8.1, 7.7 Hz, 2H), 2.33 (s, 3H), 2.07 (dd, J = 37.7, 17.7 Hz, 5H), 1.73 (dt, J = 17.2, 12.3 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 140.8, 137.0, 133.7, 132.4, 132.3, 129.3, 129.2, 128.9, 126.5, 126.4, 125.9, 125.3, 125.2, 125.0, 74.0, 73.9, 68.6, 68.4, 42.6, 42.5, 39.8, 39.7, 39.6, 38.8, 37.6, 35.2, 34.4, 21.5, 21.1; IR (neat): 2924, 1735, 1621, 1513, 1425, 1371, 1278, 1237, 1117, 1090, 1043, 994, 966 cm⁻¹; HRMS (ESI) calc'd for [M+Na]⁺ C₂₅H₂₉NNaO₂: 398.2091, found: 398.2096.

(Note: This reaction was also demonstrated at a 0.8 mmol of alkenol 10. 149 mg (50%) yield of isochroman 11 was obtained with 92% ee)

(S)-1-(3-(2-hydroxyethyl)spiro[isochromane-1,4'-piperidin]-1'-yl)ethan-1-one (12):

Isochroman **11** (21 mg, 0.06 mmol) was dissolved in 3mL of CH₂Cl₂ and cooled to -78 °C. The solution was then stirred and treated with O₃ until it appeared blue ca. 5 min. The solution was then purged with O₂ until the solution appeared clear. Dimethylsulfide (37 mg, 0.6 mmol) was then added dropwise. The reaction was stirred and allowed to warm to rt overnight. The reaction was concentrated in vacuo to give a crude residue that was used in the next step without further purification. The crude was dissolved in 2 mL of EtOH and treated with sodium borohydride (11 mg, 0.3 mmol). The reaction was stirred at 50 °C for 2h. After cooling to 0 °C, the reaction was quenched with H₂O (5 mL) and extracted with CH₂Cl₂ (3 X 20 mL). The combined organic layers were washed with brine, dried over MgSO₄, and concentrated in vacuo. The crude was purified by flash chromatography (silica gel, 50% acetone in hexanes) to give 12.2 mg of the alcohol **12** as a colorless oil (70%, over two steps). $[\alpha]_{D}^{23} = -44.8$ (*c* 0.1, MeOH) (lit: $[\alpha]_{D}^{20} = -46$ (*c* 0.7, MeOH)^[11]; ¹H NMR matched the previously reported.^[11] ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.01 (m, 4H), 4.67 – 4.52 (m, 1H), 4.10 – 3.98 (m, 1H), 3.97 – 3.84 (m, 2H), 3.77 – 3.62 (m, 1H), 3.57 – 3.33 (m, 1H), 2.20 – 1.87 (m, 4H), 1.83 – 1.44 (m, 18H).

HPLC traces of chiral products

Chiral trace – split peak integration

#	Time	Area %
1	18.0	92.0
2	19.8	8.0

Chiral trace - Valley-to-valley integration

#	Time	Area %
1	18.0	96.2
2	19.8	3.8

Note : Since the chiral HPLC trace for compound **2a** is not baseline resolved we provide an error value with this ee measurement. The chromatogram obtained was integrated in two ways: (1) valley to valley integration which represents the minimum possible areas of the peaks – this gave an ee value of 92%, and (2) split peak integration, which gave an ee of 86%. The mean ee value is 89% with a std deviation of 3%.

#	Time	Area %
1	33.1	49.2
2	38.0	50.7

#	Time	Area %
1	33.5	99.2
2	38.8	0.8

Ò

Ph

#	Time	Area %
1	14.0	93.7
2	19.6	6.3

#	Time	Area %
1	11.1	1.8
2	12.9	98.2

2

9.1

1.5

#	Time [min]	Area [%]
1	11.76	98.3
2	13.42	1.7

#	Time	Area %
1	186.4	85.3
2	187.4	14.7

Chiral trace - Split peak integration

Chiral trace- valley to valley integration

#	Time	Area %
1	186.4	89.1
2	187.4	10.8

Note : Since the chiral HPLC trace for compound **4a** is not baseline resolved we provide an error value with this ee measurement. Error value was calculated as per the procedure described for compound **2a**.

Valley to valley integration yields an ee of 78% while split peak integration yields an ee value of 70%. This gives us a mean ee value of 74% with a standard deviation of 4%. This is reported as the ee of this compound.

#	Time [min]	Area [%]
1	16.23	91.8
2	18.15	8.2

5b

Chiral trace - Split peak integration

#	Time	Area %
1	16.2	56.4
2	17.8	43.6

Chiral trace – Valley-to-valley integration

#	# Time A	
1	16.2	57.4
2	17.8	42.6

Note : Since the chiral HPLC trace for compound **5b** is not baseline resolved we provide an error value with this ee measurement. Error value was calculated as per the procedure described for compound **2a**

(1) Valley-to-valley integration gives an ee value of 14% and (2) split peak integration gives an ee value of 12%. This is a mean value of 13% with a standard deviation of 1%. This is reported as the ee of this compound.

#	Time	Area %
1	14.1	60.2
2	17.5	39.8

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	38.88	77.47	69.3	155.0	77.465
2	UNKNOWN	52.31	22.53	13.5	45.1	22.535
Total			100.00	82.8	200.1	100.000

7c

Ò

Chiral trace -	split peak	integration
----------------	------------	-------------

#	Time	Area %
1	26.1	93.5
2	31.5	6.5

Chiral trace – valley-to-valley integration

#	Time	Area %
1	26.1	95.1
2	31.5	4.8

Note: Since the chiral HPLC trace is not baseline resolved we provide an error value with this ee measurement. Error value was calculated as per the procedure described for compound **2a**-

% ee by valley-to-valley integration is 90% and (2) % ee by split peak integration is 87%. Mean % ee (rounded up) is calculated to be 89% with a standard deviation (rounded up) of \pm 2%. This is reported as the ee of this compound.

Ph

Ph

7e

·.,

Ò

#	Time	Area %
1	13.1	3.6
2	18.0	96.4

#	Time [min]	Area [%]
1	8.54	98.5
2	9.44	1.5

8b

#	Time	Area %
1	6.3	86.4
2	7.8	13.6

#	Time [min]	Area [%]
1	8.41	100.0
2	11.00	0.0

#	Time [min]	Area [%]
1	9.52	99.2
2	11.01	0.8

S-55

9

#	Time	Area %
1	13.0	97.6
2	15.1	2.4

#		Alca [70]
1	4.94	97.9
2	6.77	2.1

Computational Methods

The Density Functional Theory (DFT) calculations (geometry optimizations, vibrational frequencies and potential energy scans) were performed using the Gaussian $16^{[12]}$ software package. Geometries of all species involved were optimized using the unrestricted B3LYP^[13,14] functional with a def2-SVP^[15] basis set on all atoms (i.e. H, C, N, O, Cu). The SMD version of the Integrated Electron Formalism Polarization Continuum Model (IEFPCM)^[16] was employed to account for solvation. The calculations were carried out in 1,2-Dichloroethane ($\varepsilon = 10.13$) solvent and the vibrational contributions to the free energy were obtained at 378.15 K (105 °C), to mimic the experimental conditions. Unrestricted single point energies were then performed to obtain the relative energies of the two transition states at the M06^[17,18]/def2-TZVP^[15] level of theory and test their sensitivity to the functional and basis set employed.

Geometry optimizations of the 3-coordinate starting material (SM), the major (pro-S) and minor (pro-R) products of the *cis*-oxycupration step were performed. This was followed by a vibrational frequency calculation to ensure the absence of imaginary vibrational frequencies and confirm that the calculated structures were indeed minima. The initial guesses for the transition states (TS) were found by a relaxed potential energy surface scan between the starting material and products by scanning the bond between the oxygen and internal carbon of the terminal alkene. The structure with the highest energy was chosen as the initial guess for the TS optimization. Vibrational frequency calculations were then carried out to confirm both the major and minor TS possessed one imaginary frequency each along the reaction coordinate.

The electronic structure analysis was carried out on calculations performed using the M06/def2-TZVP level of theory. This included natural bond order (NBO) calculations, performed using NBO version 3.1^[19] as implemented within Gaussian 16, spin density calculations, electrostatic potential and frontier density surfaces (EDS/ FDS), and Mulliken charges.

The 'tetrahedral twist angle', defined in our previous study^[20] as the angle between a plane passing through the copper atom and the two nitrogen atoms of the bis(oxazoline) ligand, and a plane passing through the copper atom and the carbon and oxygen directly attached to the copper atom were calculated using Mercury v 4.1.3.^[21].

Spin density plots were prepared from Gaussian cube files using Chemcraft v1.8.^[22] WebMO^[23] was employed to visualize EPS, FDS and select vibrational normal modes.

Computational Results

Geometric Parameters

(A)

(B)

Figure 1. (A) Major (pro-*S*) and (B) minor (pro-*R*) transition states. Color code for atoms is yellow – copper, red – oxygen, blue – nitrogen, gray – carbon, white – hydrogen.

Optimized geometries of the major and minor TS using [Cu(S,S)-t-Bu-Box] as the catalyst are illustrated in Fig 1. At 105 °C and in the solvent 1,2-dichlorethane the pro-*S* TS was preferred by 2.06 kcal/mol and 2.15 kcal/mol at the M06/def2-TZVP and B3LYP/def2-SVP level of theory, respectively, yielding ee values of 88% and 89% respectively. The small difference between the values obtained with the two levels of theory supports the choice of the computational method employed. The computed ee is in excellent agreement with the experimentally obtained ee of 86% (Table 1, Entry 4 in manuscript). As illustrated in Fig 1, an analysis of the TS geometries revealed that the minor TS had two close interatomic H--H distances that measured less than 2.3 Å.

Bond Lengths

(A)	(B)
Cu - N ₂	2.046 Å	Cu - N ₂	2.042 Å
Cu - N ₁	2.095 Å	Cu - N ₁	2.220 Å
O ₁ - Cu	1.977 Å	O ₁ - Cu	1.986 Å
C ₄ - O ₁	1.411 Å	C ₄ - O ₁	1.410 Å
C ₃ - C ₄	1.511 Å	C ₃ - C ₄	1.512 Å
C ₂ - C ₃	1.411 Å	C ₂ - C ₃	1.411 Å
C ₁ - C ₂	1.513 Å	C ₁ - C ₂	1.513 Å
C _i - C ₁	1.506 Å	C _i - C ₁	1.503 Å
Ct - C _i	1.401 Å	Ct - C _i	1.393 Å
Cu - C _t	2.153 Å	Cu - C _t	2.176 Å

Figure 2. Zoomed in picture of the first co-ordination sphere around the Cu (II) atom along with bond distances of illustrated atoms in the (A) major and (B) minor TS.

(Note -The atomic notations used within this document correspond to the annotations in Figure 2)

Spin Analysis

Atom	major TS	minor TS (%)
Cu	49.3%	48.7%
01	20.5%	20.8%
Ct	14.8%	10.0%
C _i	5.8%	9.7%
N ₁ +N ₂	2.6+4.5 = 7.1%	5.3+4.4 = 9.7%

Table 1. Spin densities on the important atoms in the TS. O_1 denotes the oxygen bonded to Cu, C_t and C_i are the terminal and internal carbons of the former alkene, N_1 is the nitrogen atom trans to C_t and N_2 isthe nitrogen atom trans to O_1 , as illustrated in Fig 2.

Isosurface plots of the spin density, and the major contributions to the spin of the SOMO (singly occupied molecular orbital) for the major and minor TS are provided in Fig 3 and Table 1, respectively. In both TS around 98% of the spin is localized on the copper atom, nitrogen, oxygen and carbon atoms bonded to copper, and the internal carbon of the former alkene. In both TS a majority of the spin, ~50%, lies on the copper atom, while around ~20% of the spin lies on the oxygen atom.

Figure 3. Spin density plots for the (a) major, and (b) minor TS. Isovalue = 0.0008 au

NBO Analysis

An NBO analysis was carried out to determine the main contributions to the stabilization of the major and minor TS in terms of bonding (BD), lone pair (LP) and unoccupied lone pair (LP*) orbitals (Table 2). The N₂-Cu bond distance and N₂(LP) \rightarrow Cu(LP*) donor-acceptor stabilization energies are essentially the same for the major and minor TS. Both the C_i-Cu and O₁-Cu distances are somewhat shorter and the magnitude of the stabilization energies are slightly larger for the major TS. However, the most striking difference between the two TS is the enhanced stabilization due to the N₁(LP) \rightarrow Cu(LP*) interaction in the major TS that is coupled with a significantly shorter N₁-Cu bond distance.

Donor	Acceptor	eptor Major		Minor		ΔE _{stab}	Δd
Orbital	Orbital	E _{stab}	d	E _{stab}	d	(kcal/mol)	(Å)
		(kcal/mol)	(Å)	(kcal/mol)	(Å)		
C _i -O ₁ (BD)	Cu (LP*)	26.36	2.153	25.35	2.176	1.01	-0.023
O ₁ (LP)	Cu (LP*)	33.22	1.977	29.92	1.986	3.30	-0.009
N ₁ (LP)	Cu (LP*)	29.50	2.095	22.98	2.220	6.52	-0.125
N ₂ (LP)	Cu (LP*)	45.27	2.046	45.47	2.042	-0.20	0.004

 Table 2. Stabilization Energy (Estab) for the most important NBO donor-acceptor contributions to the

 major and minor TS along with the corresponding bond distances (d). BD - bonding orbital, LP - lone pair

 orbital, LP*-unoccupied lone pair

The transition states were further characterized by analyzing the Wiberg bond indices^[24–26] (WBI). The change in the WBI for a bond between atoms A and B is calculated as^[27–29]

$$\Delta BO_{A-B} = (W_{A-B}^{TS} - W_{A-B}^{R}) / (W_{A-B}^{P} - W_{A-B}^{R})$$
 (Eq 1)

where W_{A-B}^{TS} is the WBI for the A-B bond in the TS, W_{A-B}^{R} is the WBI for the same bond in the reactant and W_{A-B}^{P} is the WBI in the intermediate product. Since the C_t-C_u and the Ci-O₁ bond do not exist in the Starting material W_{A-B}^{R} is taken to be 0 for these bonds. For the O₁-Cu bond W_{A-B}^{R} is assumed to be 1.

The percent evolution (% EV) for the bond order between atoms A and B is calculated as:^[30]

$$\text{\%EV} = 100 \text{ } \Delta \text{BO}_{\text{A-B}} \tag{Eq2}$$

	Major TS		Minor TS			
Bond	W_{A-B}^{TS}	W^P_{A-B}	%EV	W_{A-B}^{TS}	W^P_{A-B}	%EV
C _t -Cu	0.3069	0.4572	67.1	0.2796	0.4547	61.4
Ci-O1	0.2962	0.8318	35.6	0.2572	0.8439	30.5
O1-Cu	0.2931	0.1518	83.3	0.2892	0.1229	81.0

Table 3. Percent evolution (% EV) for the major bonds involved in the TS.

As Table 3 illustrates, in the major TS about 67% of the Cu-Ct and 36% of the Ci-O₁ bond are formed. For the minor TS these values are somewhat lower: 61% and 30%, respectively.

Tetrahedral Twist Angle

The tetrahedral twist angle was calculated by determining the angle between the planes illustrated in Figure 4, as described above in the computational details. This angle was determined to be 37.9° for the major TS, which is about 22° less than the twist angle for a perfect tetrahedron. Therefore, the geometry of this TS can be described as a distorted tetrahedron. For the minor TS the tetrahedral twist angle drops to 6.3° , which is very close to the angle made by a square planar center (0°). Hence, the geometry of the minor TS at the Cu atom may be described as distorted square planar.

Figure 4. Tetrahedral twist angle measurements for the (a) major and (b) minor TS.

Electronic Structure :

<u>(a)</u>

Figure 5. Mulliken charge distribution on the (a) starting material, (b) major TS, (c) minor TS.

To further interrogate the electronic structure of the transition states, we calculated the Mulliken charges (Figure 5, Table 4). The most striking difference in the charge distribution between the starting material and the TS is that the internal carbon atom of the alkene is negatively charged in the former, and positively charged in the latter. This is consistent with the fact that the end product

of this reaction step is the formation of the C-O bond, in which the carbon would have a partially negative character.

Atom	SM	major TS	minor TS
Cu	+0.204	+0.150	+0.154
O ₁	-0.458	-0.452	-0.488
Ct	-0.324	-0.417	-0.271
Ci	-0.180	+0.124	+0.119

Table 4. Summary of Mulliken charges on the important atoms in the starting material (SM) andtransition state (TS).

Isosurfaces of the electrostatic potential, electrophilic, nucleophilic, and radical frontier density surfaces (FDS) for the major and minor TS are illustrated in Figs 6-9.

Figure 6. Electrostatic potential for the (a) major TS and (b) minor TS painted onto an electron density surface (isovalue = 0.003 au) with red indicating negative regions and blue positive regions.

(A)

(B)

Figure 7. Electrophilic FDS for (A) major and (B) minor TS. Isovalue = 0.003 au. Blue section shows the atoms most susceptible to nucleophilic attack

Figure 8. Nucleophilic FDS for (A) major and (B) minor TS. Isovalue = 0.003 au. Blue section shows the atoms most susceptible to electrophilic attack

Figure 9. Radical FDS for (A) major and (B) minor TS. Isovalue = 0.003 au. Blue section shows the atoms most susceptible to radical attack

Cartesian Coordinates of Optimized Geometries

SM (3-coordinate) $[C_{27}H_{41}CuN_2O_3]^+$

С	-2.169223000000	1.558329000000	2.516521000000
С	-2.248205000000	0.180414000000	2.733821000000
С	-1.251826000000	2.060980000000	1.588498000000
С	-0.402698000000	1.210677000000	0.861761000000
С	-0.488508000000	-0.185067000000	1.077735000000
С	-1.406031000000	-0.676724000000	2.018998000000
С	0.556561000000	1.806435000000	-0.158885000000
С	-0.037187000000	1.911328000000	-1.543581000000
С	0.499392000000	1.400680000000	-2.657233000000
С	0.429458000000	-1.155845000000	0.347034000000
0	1.709319000000	-1.122193000000	0.906729000000
Cu	3.342795000000	-1.589026000000	0.216584000000
Ν	3.429191000000	-3.589253000000	0.004542000000
Ν	5.331148000000	-1.470781000000	-0.011635000000
С	4.407696000000	-4.259354000000	0.501804000000
С	6.098851000000	-2.444558000000	0.332553000000
С	2.421865000000	-4.534363000000	-0.527525000000
С	2.914126000000	-5.872770000000	0.070419000000
0	4.266775000000	-5.577919000000	0.529178000000
С	6.143086000000	-0.423556000000	-0.672847000000
С	7.546333000000	-1.080871000000	-0.712156000000
0	7.382165000000	-2.325438000000	0.026305000000
С	5.685167000000	-3.692330000000	1.102907000000
С	6.805967000000	-4.746902000000	1.080039000000
С	5.375035000000	-3.274759000000	2.569193000000
Н	-2.816971000000	2.243517000000	3.070184000000

Н	-2.958739000000	-0.226396000000	3.458416000000
н	-1.187296000000	3.141099000000	1.425038000000
Н	-1.461660000000	-1.756250000000	2.189206000000
Н	1.486805000000	1.222595000000	-0.194757000000
Н	0.824247000000	2.823450000000	0.178335000000
Н	-0.983846000000	2.463663000000	-1.611537000000
Н	1.442158000000	0.841776000000	-2.637558000000
Н	0.019378000000	1.527676000000	-3.632973000000
Н	0.436488000000	-0.906768000000	-0.731038000000
Н	-0.010044000000	-2.170715000000	0.436848000000
С	2.318238000000	-4.483815000000	-2.085516000000
Н	1.437122000000	-4.269195000000	-0.115950000000
Н	2.978627000000	-6.703722000000	-0.641395000000
Н	2.332302000000	-6.187543000000	0.948654000000
С	6.063370000000	0.964982000000	0.029221000000
Н	5.757369000000	-0.292630000000	-1.695966000000
Н	8.336508000000	-0.505113000000	-0.214701000000
Н	7.873115000000	-1.342392000000	-1.727722000000
Н	7.041714000000	-5.069011000000	0.055647000000
Н	6.499557000000	-5.626076000000	1.661040000000
Н	7.715379000000	-4.330459000000	1.532218000000
Н	4.572104000000	-2.524258000000	2.606315000000
Н	6.279496000000	-2.853715000000	3.032460000000
Н	5.064015000000	-4.157795000000	3.146600000000
С	3.660293000000	-4.834562000000	-2.751734000000
С	1.236755000000	-5.489253000000	-2.523780000000
С	1.884511000000	-3.073468000000	-2.522682000000
С	6.560599000000	0.896749000000	1.483107000000
С	4.605257000000	1.456655000000	0.012825000000

С	6.928171000000	1.948911000000	-0.781509000000
Н	4.448006000000	-4.111771000000	-2.485016000000
Н	3.552844000000	-4.812733000000	-3.848092000000
Н	4.012691000000	-5.842682000000	-2.48028000000
Н	1.507167000000	-6.527975000000	-2.27524000000
Н	1.092862000000	-5.440239000000	-3.614990000000
Н	0.267566000000	-5.267405000000	-2.047037000000
Н	2.613597000000	-2.303889000000	-2.220082000000
Н	0.906813000000	-2.805361000000	-2.093463000000
Н	1.791880000000	-3.028083000000	-3.619756000000
Н	6.473193000000	1.886907000000	1.958581000000
Н	5.963712000000	0.189281000000	2.080899000000
Н	7.618322000000	0.595622000000	1.551556000000
Н	4.551696000000	2.502094000000	0.357361000000
Н	4.176489000000	1.416639000000	-1.001862000000
Н	3.964351000000	0.865980000000	0.685645000000
Н	7.988116000000	1.648664000000	-0.807026000000
Н	6.882268000000	2.954131000000	-0.333067000000
Н	6.573363000000	2.028860000000	-1.822557000000
Major Product (proS) (4-coordinate) [C₂₇H₄₁CuN₂O₃]⁺

Cu	-0.102305000000	0.132610000000	-0.64305000000
Ν	-1.461065000000	1.671750000000	-0.601059000000
Ν	1.216125000000	1.257543000000	0.477645000000
С	-1.145581000000	2.906392000000	-0.427383000000
С	1.038742000000	2.490843000000	0.795263000000
С	0.120872000000	3.514170000000	0.147268000000
С	-0.275862000000	4.596952000000	1.179100000000
С	0.910481000000	4.169689000000	-1.022765000000
0	-2.051249000000	3.809423000000	-0.808932000000
0	1.831694000000	2.977897000000	1.751241000000
С	2.585937000000	1.856913000000	2.286206000000
С	-3.119835000000	3.084978000000	-1.474445000000
С	-2.870517000000	1.619119000000	-1.067106000000
С	2.401528000000	0.757757000000	1.221291000000
С	-3.840267000000	1.050859000000	0.020869000000
С	-5.258903000000	1.006720000000	-0.578520000000
С	-3.837691000000	1.918905000000	1.291919000000
С	-3.419756000000	-0.382668000000	0.389426000000
С	3.643051000000	0.513636000000	0.300329000000
С	3.280747000000	-0.477726000000	-0.818365000000
С	4.149626000000	1.820874000000	-0.335453000000
С	4.753729000000	-0.106359000000	1.169693000000
Н	-2.928814000000	0.960338000000	-1.944445000000
Н	2.144269000000	-0.201279000000	1.693357000000
С	-0.729585000000	-1.110089000000	-2.115583000000
0	0.424540000000	-1.935284000000	-0.206554000000
С	-0.080134000000	-2.349459000000	-1.547435000000
С	-0.974971000000	-3.588857000000	-1.434336000000

С	0.156258000000	-4.174051000000	0.687043000000
С	-0.363404000000	-4.634968000000	-0.538081000000
С	0.743511000000	-5.070673000000	1.586406000000
С	-0.279992000000	-5.996746000000	-0.851459000000
С	0.806968000000	-6.433515000000	1.273535000000
С	0.297139000000	-6.894603000000	0.054674000000
Н	-0.819744000000	4.159789000000	2.029981000000
Н	-0.916260000000	5.349341000000	0.702356000000
Н	0.624943000000	5.094169000000	1.560074000000
Н	1.163892000000	3.426498000000	-1.792642000000
Н	1.838303000000	4.619341000000	-0.641405000000
Н	0.300332000000	4.961527000000	-1.479946000000
Н	2.137205000000	1.590643000000	3.255112000000
Н	3.618433000000	2.188707000000	2.443357000000
Н	-3.008961000000	3.250533000000	-2.556726000000
Н	-4.072892000000	3.508643000000	-1.138083000000
Н	-5.644588000000	2.010157000000	-0.819643000000
Н	-5.959617000000	0.551195000000	0.139565000000
Н	-5.284833000000	0.402966000000	-1.500928000000
Н	-4.144923000000	2.957966000000	1.092683000000
Н	-2.844166000000	1.938575000000	1.767697000000
Н	-4.545221000000	1.507098000000	2.029486000000
Н	-3.472415000000	-1.052359000000	-0.483202000000
Н	-4.092167000000	-0.787788000000	1.162869000000
Н	-2.392083000000	-0.417916000000	0.783139000000
Н	2.502387000000	-0.071458000000	-1.484335000000
Н	2.906210000000	-1.428172000000	-0.411099000000
Н	4.169582000000	-0.691688000000	-1.433984000000
н	3.380979000000	2.289682000000	-0.969663000000

Н	5.019082000000	1.610498000000	-0.978960000000
н	4.474188000000	2.558594000000	0.415334000000
н	4.424375000000	-1.057637000000	1.619702000000
н	5.068218000000	0.563006000000	1.986570000000
н	5.644597000000	-0.316407000000	0.556236000000
Н	-0.299882000000	-0.759028000000	-3.065809000000
Н	-1.825868000000	-1.155087000000	-2.165380000000
н	0.831308000000	-2.619226000000	-2.104531000000
н	-1.954643000000	-3.278141000000	-1.026792000000
Н	-1.160102000000	-3.980541000000	-2.445827000000
н	1.150904000000	-4.703445000000	2.532914000000
н	-0.672789000000	-6.357738000000	-1.806441000000
н	1.261790000000	-7.134576000000	1.978314000000
н	0.353322000000	-7.957739000000	-0.194223000000
С	0.025901000000	-2.698450000000	0.947234000000
н	0.673084000000	-2.371938000000	1.773866000000
Н	-1.017331000000	-2.446165000000	1.215978000000

С	-0.293132000000	-0.187938000000	-0.074866000000
0	-0.295490000000	0.008472000000	1.349443000000
Cu	1.379313000000	0.096303000000	2.869242000000
Ν	3.263014000000	0.863915000000	3.335161000000
С	4.283435000000	0.419920000000	2.693957000000
0	5.394059000000	1.151318000000	2.747717000000
С	5.065186000000	2.367083000000	3.478279000000
Н	5.859380000000	2.537313000000	4.214636000000
С	3.667314000000	2.078051000000	4.077064000000
С	3.623265000000	1.879299000000	5.626162000000
С	4.038626000000	3.205300000000	6.290695000000
Н	5.077371000000	3.485237000000	6.052625000000
Н	3.965494000000	3.120577000000	7.386909000000
Н	3.383314000000	4.033780000000	5.974004000000
С	2.184573000000	1.541318000000	6.054917000000
Н	1.485110000000	2.347335000000	5.780693000000
Н	2.133862000000	1.412283000000	7.148219000000
Н	1.828543000000	0.609182000000	5.588827000000
С	4.566221000000	0.750224000000	6.077620000000
Н	5.616690000000	0.949456000000	5.811099000000
Н	4.279070000000	-0.218621000000	5.638500000000
Н	4.525186000000	0.639648000000	7.173238000000
Н	2.969924000000	2.891807000000	3.829168000000
Н	5.057809000000	3.194988000000	2.754381000000
С	4.335086000000	-0.842745000000	1.840541000000
С	3.481859000000	-1.909286000000	2.517579000000
Ν	2.247926000000	-1.788973000000	2.855210000000

С	1.855257000000	-3.011297000000	3.602275000000
С	3.072767000000	-3.938451000000	3.380034000000
0	4.080010000000	-3.062979000000	2.804473000000
Н	3.482337000000	-4.362956000000	4.304870000000
Н	2.890559000000	-4.746732000000	2.657516000000
Н	1.797196000000	-2.727293000000	4.667406000000
С	0.474056000000	-3.612324000000	3.224035000000
С	0.288396000000	-4.910949000000	4.033413000000
Н	0.365191000000	-4.722367000000	5.117367000000
Н	1.034028000000	-5.677922000000	3.768165000000
Н	-0.707264000000	-5.340826000000	3.838719000000
С	0.380504000000	-3.914495000000	1.719469000000
Н	1.119349000000	-4.665772000000	1.397296000000
Н	0.537844000000	-3.005883000000	1.118218000000
Н	-0.617399000000	-4.312004000000	1.473548000000
С	-0.632728000000	-2.619453000000	3.622419000000
Н	-0.569071000000	-2.359208000000	4.692194000000
Н	-1.625795000000	-3.064392000000	3.446009000000
Н	-0.579038000000	-1.691600000000	3.033321000000
С	3.725595000000	-0.508596000000	0.453005000000
Н	2.687390000000	-0.160580000000	0.547773000000
Н	3.742538000000	-1.404239000000	-0.185688000000
Н	4.319543000000	0.279740000000	-0.032752000000
С	5.787038000000	-1.323363000000	1.671450000000
Н	6.260482000000	-1.545827000000	2.637856000000
Н	6.376865000000	-0.548928000000	1.164328000000
Н	5.806801000000	-2.234032000000	1.057870000000
С	-1.569438000000	0.302331000000	-0.703538000000
С	-2.022728000000	1.567813000000	-0.284104000000

С	-1.187234000000	2.252928000000	0.765910000000
С	-0.815346000000	1.284650000000	1.895112000000
С	0.250902000000	1.760156000000	2.852417000000
н	0.864595000000	2.584331000000	2.456943000000
н	-0.113298000000	1.990015000000	3.863921000000
Н	-1.736283000000	1.006215000000	2.434189000000
Н	-1.711304000000	3.117494000000	1.200427000000
Н	-0.254244000000	2.637086000000	0.312571000000
С	-3.197958000000	2.094808000000	-0.832526000000
С	-3.905429000000	1.377501000000	-1.804666000000
С	-3.449178000000	0.122429000000	-2.22292000000
С	-2.284355000000	-0.418661000000	-1.666433000000
Н	-1.930032000000	-1.404180000000	-1.982630000000
Н	-4.005176000000	-0.439624000000	-2.977952000000
Н	-4.819359000000	1.797772000000	-2.233015000000
Н	-3.559456000000	3.072554000000	-0.500823000000
н	0.573432000000	0.339171000000	-0.518091000000
н	-0.147659000000	-1.264625000000	-0.241566000000

Major TS (proS) $[C_{27}H_{41}CuN_2O_3]^+$

С	0.084647000000	-0.065673000000	0.037392000000
0	-0.041178000000	0.148114000000	1.426450000000
Cu	1.534787000000	-0.156790000000	2.58087000000
Ν	1.993952000000	1.865549000000	2.876323000000
С	3.154359000000	2.339322000000	3.153867000000
0	3.350393000000	3.634298000000	2.889461000000
С	2.174846000000	4.092987000000	2.166364000000
Н	1.917248000000	5.090860000000	2.538634000000
С	1.131215000000	2.994980000000	2.446907000000
С	0.045504000000	3.373654000000	3.509759000000
С	-0.856000000000	4.455995000000	2.885416000000
Н	-0.293984000000	5.366634000000	2.621803000000
Н	-1.645209000000	4.751425000000	3.595450000000
Н	-1.348505000000	4.086317000000	1.970759000000
С	-0.817827000000	2.144445000000	3.841571000000
Н	-1.245848000000	1.700325000000	2.931772000000
Н	-1.641349000000	2.433637000000	4.514819000000
Н	-0.229871000000	1.364064000000	4.349827000000
С	0.673185000000	3.908381000000	4.809724000000
Н	1.252842000000	4.831827000000	4.652638000000
Н	1.333634000000	3.162685000000	5.279932000000
Н	-0.120059000000	4.144702000000	5.537437000000
Н	0.605239000000	2.700253000000	1.528989000000
Н	2.447776000000	4.160089000000	1.102079000000
С	4.319426000000	1.657335000000	3.840843000000
С	4.263384000000	0.142710000000	3.785024000000
Ν	3.414299000000	-0.646435000000	3.222919000000

С	3.957639000000	-2.031119000000	3.300721000000
С	5.061888000000	-1.872203000000	4.362073000000
0	5.296972000000	-0.440745000000	4.392810000000
Н	4.733306000000	-2.176542000000	5.367277000000
Н	6.011836000000	-2.364521000000	4.125583000000
Н	3.169570000000	-2.703056000000	3.666207000000
С	4.440596000000	-2.569557000000	1.913097000000
С	4.961850000000	-4.005495000000	2.115039000000
Н	4.189275000000	-4.653132000000	2.561888000000
Н	5.851671000000	-4.041836000000	2.763469000000
Н	5.246281000000	-4.443975000000	1.145070000000
С	5.555549000000	-1.689533000000	1.320248000000
Н	6.438464000000	-1.630184000000	1.976377000000
Н	5.202580000000	-0.664607000000	1.124033000000
Н	5.893200000000	-2.108760000000	0.358865000000
С	3.258038000000	-2.614159000000	0.930314000000
Н	2.470413000000	-3.299123000000	1.281176000000
Н	3.597903000000	-2.973488000000	-0.054431000000
Н	2.805804000000	-1.620293000000	0.786675000000
С	5.649156000000	2.107273000000	3.181581000000
Н	5.676101000000	1.836736000000	2.115257000000
Н	6.498525000000	1.631221000000	3.688055000000
Н	5.753508000000	3.196354000000	3.268373000000
С	4.296653000000	2.096500000000	5.332618000000
Н	3.389347000000	1.732773000000	5.837047000000
Н	4.324180000000	3.192977000000	5.398761000000
Н	5.176552000000	1.691436000000	5.850759000000
С	-1.236771000000	-0.536185000000	-0.525087000000
С	-1.839739000000	-1.657542000000	0.082643000000

С	-0.710398000000	-1.530386000000	2.382519000000
С	-1.102942000000	-2.370427000000	1.195912000000
С	0.380843000000	-1.868009000000	3.194055000000
Н	0.983008000000	-2.741115000000	2.928925000000
н	0.358036000000	-1.586325000000	4.252957000000
н	-1.509081000000	-0.921759000000	2.813194000000
н	-0.196817000000	-2.858752000000	0.795564000000
Н	-1.736403000000	-3.183028000000	1.594561000000
С	-3.079251000000	-2.107579000000	-0.388937000000
С	-3.716085000000	-1.462603000000	-1.456664000000
С	-3.114274000000	-0.355234000000	-2.060303000000
С	-1.879475000000	0.107087000000	-1.588567000000
н	-1.409519000000	0.980334000000	-2.051176000000
Н	-3.607254000000	0.154058000000	-2.892746000000
Н	-4.683241000000	-1.826276000000	-1.81393000000
н	-3.549674000000	-2.976821000000	0.080294000000
н	0.403427000000	0.871518000000	-0.458812000000
н	0.86981000000	-0.816712000000	-0.193087000000

Minor TS (proS) $[C_{27}H_{41}CuN_2O_3]^+$

С	-0.395078000000	-0.380296000000	0.330901000000
0	-0.363061000000	0.015998000000	1.683597000000
Cu	1.376379000000	0.368925000000	2.533786000000
Ν	3.209399000000	0.957496000000	3.215161000000
С	4.265210000000	0.501076000000	2.638341000000
0	5.400578000000	1.149774000000	2.864929000000
С	5.063954000000	2.327416000000	3.654056000000
Н	5.802018000000	2.410155000000	4.460089000000
С	3.612550000000	2.063313000000	4.116124000000
С	3.438997000000	1.696403000000	5.625636000000
С	3.849235000000	2.921130000000	6.465104000000
Н	4.913372000000	3.177151000000	6.338629000000
Н	3.685893000000	2.719478000000	7.535945000000
Н	3.252658000000	3.808678000000	6.196176000000
С	1.959870000000	1.377838000000	5.908644000000
Н	1.315021000000	2.247291000000	5.702577000000
Η	1.825457000000	1.109716000000	6.968907000000
Н	1.599004000000	0.533351000000	5.300350000000
С	4.303963000000	0.484534000000	6.015422000000
Η	5.378575000000	0.669987000000	5.858132000000
Η	4.025258000000	-0.417120000000	5.446763000000
Η	4.167981000000	0.253266000000	7.084123000000
Η	2.985527000000	2.942278000000	3.912805000000
Н	5.148102000000	3.201083000000	2.991319000000
С	4.321712000000	-0.722927000000	1.730936000000
С	3.449512000000	-1.781194000000	2.403007000000

Ν	2.189656000000	-1.694086000000	2.638525000000
С	1.815665000000	-2.860550000000	3.491278000000
С	3.100799000000	-3.722093000000	3.463683000000
0	4.092401000000	-2.856661000000	2.858437000000
Н	3.462686000000	-4.012462000000	4.457983000000
Н	3.018906000000	-4.617568000000	2.831593000000
Н	1.658271000000	-2.465079000000	4.509778000000
С	0.520251000000	-3.631126000000	3.107250000000
С	0.424677000000	-4.873208000000	4.018461000000
Н	0.451398000000	-4.591326000000	5.084520000000
Н	1.236388000000	-5.595636000000	3.836562000000
Н	-0.526405000000	-5.399436000000	3.837614000000
С	0.543734000000	-4.071955000000	1.634571000000
Н	1.373645000000	-4.764741000000	1.420703000000
Н	0.643631000000	-3.210246000000	0.957603000000
Н	-0.391842000000	-4.595181000000	1.378831000000
С	-0.707134000000	-2.744164000000	3.377034000000
Н	-0.752686000000	-2.454136000000	4.440966000000
Н	-1.633113000000	-3.297020000000	3.146922000000
Н	-0.698025000000	-1.823348000000	2.775968000000
С	3.756199000000	-0.351456000000	0.337173000000
Н	2.714113000000	-0.005702000000	0.388387000000
Н	3.799011000000	-1.231112000000	-0.322049000000
Н	4.367028000000	0.448429000000	-0.106919000000
С	5.771865000000	-1.214719000000	1.576875000000
Н	6.231836000000	-1.453496000000	2.544802000000
Н	6.374860000000	-0.439735000000	1.085458000000
Н	5.790205000000	-2.118138000000	0.952030000000
С	-1.637679000000	0.159140000000	-0.341480000000

С	-1.884368000000	1.545758000000	-0.261232000000
С	-0.877221000000	2.431657000000	0.438827000000
С	-0.578387000000	2.085067000000	1.870933000000
С	0.629987000000	2.412188000000	2.481825000000
н	1.412639000000	2.899126000000	1.890010000000
Н	0.647552000000	2.572653000000	3.562491000000
Н	-1.448363000000	1.897774000000	2.505516000000
Н	-1.250102000000	3.471761000000	0.447139000000
Н	0.072226000000	2.452795000000	-0.125748000000
С	-3.034282000000	2.073577000000	-0.861937000000
С	-3.932061000000	1.242896000000	-1.543782000000
С	-3.684187000000	-0.129887000000	-1.625860000000
С	-2.541278000000	-0.666483000000	-1.020501000000
Н	-2.348344000000	-1.742170000000	-1.074955000000
Н	-4.381934000000	-0.785065000000	-2.154335000000
Н	-4.824785000000	1.670312000000	-2.008158000000
Н	-3.226662000000	3.148944000000	-0.800665000000
Н	0.499185000000	-0.022589000000	-0.222384000000
н	-0.376170000000	-1.483708000000	0.257646000000

References

- [1] L. Miao, I. Haque, M. R. Manzoni, W. Siong Tham, S. R. Chemler, *Org. Lett.* 2010, *12*, 4739–4741.
- [2] D. Chen, I. A. Berhane, S. R. Chemler, Org. Lett. 2020, 22, 7409–7414.
- [3] L. Hussein, N. Purkait, M. Biyikal, E. Tausch, P. W. Roesky, S. Blechert, *Chem. Commun.* 2014, *50*, 3862–3864.
- [4] E. Ciganek, J. M. Read, J. C. Calabrese, J. Org. Chem. 1995, 60, 5795–5802.
- [5] F. C. Sequeira, S. R. Chemler, Org. Lett. 2012, 14, 4482–4485.
- [6] Y. Zheng, S. G. Newman, Angew. Chemie Int. Ed. 2019, 58, 18159–18164.
- [7] P. R. Krishna, K. Lopinti, *Synlett* **2007**, *2007*, 1742–1744.
- [8] K. Purushotham Reddy, D. Vasudeva Reddy, G. Sabitha, *European J. Org. Chem.* 2018, 2018, 4389–4399.
- [9] V. A. Potapov, T. I. Yaroshenko, V. A. Panov, M. V. Musalov, A. G. Khabibulina, M. V. Musalova, S. V. Amosova, *Russ. J. Org. Chem.* 2016, *52*, 1733–1737.
- [10] R. E. Ruscoe, N. J. Fazakerley, H. Huang, S. Flitsch, D. J. Procter, *Chem. A Eur. J.* **2016**, *22*, 116–119.
- [11] I. Knappmann, K. Lehmkuhl, J. Köhler, D. Schepmann, M. Giera, F. Bracher, B. Wünsch, *Bioorganic Med. Chem.* 2017, 25, 3384–3395.
- [12] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. a. Robb, J. R. Cheeseman,G. Scalmani, V. Barone, G. a. Petersson, H. Nakatsuji, et al., 2016, Gaussian 16, Revision

C.01, Gaussian, Inc., Wallin.

- [13] A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652.
- [14] C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* 1988, 37, 785–789.
- [15] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
- [16] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378–6396.
- [17] Y. Zhao, D. G. Truhlar, *Theor. Chem. Acc.* 2008, 120, 215–241.
- [18] Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157–167.
- [19] NBO Version 3.1, E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold.
- [20] M. T. Bovino, T. W. Liwosz, N. E. Kendel, Y. Miller, N. Tyminska, E. Zurek, S. R. Chemler, *Angew. Chem. Int. Ed.*, **2014**, 53, 25, 6383-6387.
- [21] C. F. MacRae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler, et al., *J. Appl. Crystallogr.* 2020, 53, 226–235.
- [22] "Chemcraft graphical software for visualization of quantum chemistry computations. https://www.chemcraftprog.com,"
- [23] W. F. Schmidt, J.R.; Polik, WebMO Enterprise, version 20.0; WebMO LLC: Holland, MI, USA, 20; https://www.webmo.net
- [24] I. Mayer, J. Comput. Chem. 2007, 28, 204–221.
- [25] K. B. Wiberg, *Tetrahedron* **1968**, *24*, 1083–1096.

- [26] L. K. Harper, A. L. Shoaf, C. A. Bayse, *ChemPhysChem* 2015, 16, 3886–3892.
- [27] A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 1985, 83, 735-746.
- [28] A. E. Reed, F. Weinhold, J. Chem. Phys. 1983, 78, 4066–4073.
- [29] J. P. Foster, F. Weinhold, J. Am. Chem. Soc. 1980, 102, 7211-7218.
- [30] D. Josa, A. Peña-Gallego, J. Rodríguez-Otero, and E. M. Cabaleiro-Lago, The 15th International Electronic Conference on Synthetic Organic Chemistry, http://www.usc.es/congresos/ecsoc/15/

f1 (ppm)

10.10

1.66

 $6.41 \pm$

-1

-2

-3

-4

0 00

 $\circ \circ \circ \circ$

 $\infty \infty$

---63.17

(S-7e)

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Instrument	Avance
3	Solvent	CDCI3
4	Temperature	303.0
5	Pulse Sequence	zg
6	Receiver Gain	101.0
7	Relaxation Delay	1.0000
8	Pulse Width	11.7000
9	Presaturation Frequency	
10	Acquisition Time	0.7209
11	Spectrometer Frequency	376.46
12	Spectral Width	90909.1
13	Lowest Frequency	-83104.4
14	Nucleus	19F
15	Acquired Size	65536
16	Spectral Size	131072

1 -20 -55 f1 (ppm) -75 -30 -70 -25 -35 -40 -45 -60 -65 -80 -85 -90 -50

-142.30 -142.30 136.18 133.34 133.34 133.34 133.34 133.34 133.34 127.65 127.65 127.57 127.57 127.53 127.53 127.53 127.53 122.24 1122.24 116.64

52.31

(S-7e)

Value uker oSpin nbH ance OCI3 3.0 pg30 1.0 0000 0000								
uker oSpin nbH ance oCl3 3.0 pg30 1.0 0000 0000								
ance OCI3 3.0 pg30 1.0 0000 9000								
OCI3 3.0 pg30 1.0 0000 9000								
3.0 pg30 1.0 0000 9000								
pg30 1.0 0000 9000								
1.0 0000 0000								
0000								
9000								
3763								
0.62		I						
809.5								
343.5		1						
c 🛛								
768			al I.					
536	ta tanàna minina mangka dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina dia			and the set of the set	 			
0.62 809. 343. 768 536	.5 5	.5 5	.5 5					

-		
	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Instrument	Avance
3	Solvent	CDCI3
4	Temperature	303.0
5	Pulse Sequence	zg
6	Receiver Gain	101.0
7	Relaxation Delay	1.0000
8	Pulse Width	11.7000
9	Presaturation Frequency	
10	Acquisition Time	0.7209
11	Spectrometer Frequency	376.46
12	Spectral Width	90909.1
13	Lowest Frequency	-83104.4
14	Nucleus	19F
15	Acquired Size	65536
16	Spectral Size	131072

, , , , , , , , , , , , , , , , , , , 	· · · ·	· · · ·	· · · ·	· · · ·	· · ·			· · · · ·		· · · · ·		т , т
20	0	-20	-40	-60	-80	–100 f1 (ppm)	-120	-140	-160	-180	-200	-22

ရ မ	H m 0 V 0 4 0 m 0 V N 0 0 V m V 0 V H 0 0
4 10	<u>wwwwwwwwwwwwwwwwwwwwwwwww</u>
0 0	88116688887974477700'.
v 4	m I I I I I I I I I I I I I I I I I I I
$\langle \rangle$	

-10

7.25 6.90 **7.25 6.**90 **7.25 6.**90 **7.25 6.**90 **7.25 7.25 6.**90 **7.25 7.25**

-0.05

4.35

OR=Overreduced product

-1

0

- · ·	
Origin	Varian
nstrument	inova
Solvent	cdcl3
Temperature	25.0
Pulse Sequence	s2pul
Receiver Gain	32
Relaxation Delay	1.0000
Pulse Width	2.7000
Presaturation Frequency	
Acquisition Time	2.5604
Spectrometer Frequency	399.94
Spectral Width	6399.0
Lowest Frequency	-799.8
Nucleus	1H
Acquired Size	16384
Spectral Size	65536
	nstrument Solvent Femperature Pulse Sequence Receiver Gain Relaxation Delay Pulse Width Presaturation Frequency Acquisition Time Spectrometer Frequency Spectral Width Lowest Frequency Nucleus Acquired Size Spectral Size

ЪОН

13

12

11

10

9

8

7

(1g)

s | *[*

M_

6 f1 (ppm) 1.83 -

5

4

2.00-1

3

8.83⊣

1

2

		Parameter	Value
	1	Origin	Varian
	2	Instrument	inova
	3	Solvent	cdcl3
	4	Temperature	25.0
	5	Pulse Sequence	s2pul
	6	Receiver Gain	30
	7	Relaxation Delay	1.0000
	8	Pulse Width	8.5500
	9	Presaturation Frequency	
	10	Acquisition Time	1.3033
	11	Spectrometer Frequency	100.58
	12	Spectral Width	25141.4
	13	Lowest Frequency	-1508.1
	14	Nucleus	13C
	15	Acquired Size	32768
	16	Spectral Size	65536
MA	White	uning permanan ini kalang di perdakan perdakan bertakan permanan kelematakan permanan permanan permanan permana	MANANNA

230 220 210 200 0 110 ´ f1 (ppm) -10

-10 f1 (ppm)

-10 f1 (ppm)

-10 f1 (ppm)

(2a)

-10 f1 (ppm)

36	20	50	68
30	35.	<u>છ</u> .	28
Ξ.	Ż	1	2

(2b)

-10 f1 (ppm)

น แกรม เป็นแนะ เป็น แกรม เป็นไปไป เป็น เป็นไปไป เป็น เป็นไปไป เป็นไปไป เป็นไปไป เป็นไปไป เป็นไปไป เป็นไปไป เป็น

Value Parameter Varian Origin 1 Instrument 2 inova Solvent 3 cdcl3 Temperature 25.0 4 **Pulse Sequence** s2pul 5 **Receiver Gain** 30 6 **Relaxation Delay** 1.0000 7 Pulse Width 8.0500 8 **Presaturation Frequency** 9 10 Acquisition Time 1.3033 11 Spectrometer Frequency 100.58 12 Spectral Width 25141.4 **13 Lowest Frequency** -1509.6 14 Nucleus 13C 15 Acquired Size 32768 16 Spectral Size 65536

MeO

Ph

Ph

7.457.427.427.357.357.357.357.357.357.357.357.357.357.357.25

പറ

16 Spectral Size

	(2d)	
	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Instrument	Avance
3	Solvent	CDCI3
4	Temperature	303.0
5	Pulse Sequence	zgpg30
6	Receiver Gain	101.0
7	Relaxation Delay	2.0000
8	Pulse Width	7.9000
9	Presaturation Frequency	
10	Acquisition Time	1.3763
11	Spectrometer Frequency	100.62
12	Spectral Width	23809.5
13	Lowest Frequency	-1843.5
14	Nucleus	13C
15	Acquired Size	32768

65536

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

(2e)

7.327.327.327.327.327.327.327.327.25

 ~ 0

-4

100			
		Parameter	Value
	1	Origin	Bruker BioSpin GmbH
	2	Instrument	Avance
	3	Solvent	CDCI3
	4	Temperature	303.0
	5	Pulse Sequence	zg
	6	Receiver Gain	101.0
	7	Relaxation Delay	1.0000
	8	Pulse Width	11.7000
	9	Presaturation Frequency	
	10	Acquisition Time	0.7209
	11	Spectrometer Frequency	376.46
	12	Spectral Width	90909.1
	13	Lowest Frequency	-83104.4
	14	Nucleus	19F
	15	Acquired Size	65536
	16	Spectral Size	131072

28 -30 -32 -34 -36 -38 -40 -42 -44 -46 -48 -50 -52 -54 -56 -58 -60 -62 -64 -66 -68 -70 -72 -74 -76 -78 -80 -82 f1 (ppm)

--62.50

(2f)

	Parameter	Value	
1	Origin	Varian	
2	Instrument	inova	
3	Solvent	cdcl3	
4	Temperature	25.0	
5	Pulse Sequence	s2pul	
6	Receiver Gain	30	
7	Relaxation Delay	1.0000	
8	Pulse Width	8.0500	
9	Presaturation Frequency		
10	Acquisition Time	1.3033	
11	Spectrometer Frequency	100.58	
12	Spectral Width	25141.4	
13	Lowest Frequency	-1507.3	
14	Nucleus	13C	
15	Acquired Size	32768	
16	Spectral Size	65536	

AND UTWAREND WARDEN WARDEN

) 110 [^] f1 (ppm) -10

	Parameter	Value
	1 Origin	Varian
	2 Instrument	mercury
l	3 Solvent	cdcl3
l	4 Temperature	35.0
l	5 Pulse Sequence	s2pul
l	6 Receiver Gain	30
l	7 Relaxation Delay	1.0000
	8 Pulse Width	7.3500
	9 Presaturation Frequer	псу
l	10 Acquisition Time	1.0093
l	11 Spectrometer Frequer	ncy 75.46
	12 Spectral Width	16233.8
l	13 Lowest Frequency	-1137.4
	14 Nucleus	13C
	15 Acquired Size	16384
	16 Spectral Size	32768
Ņ	/www.www.www.www.www.www.ang.aug.ww.walarwijaw.whi	niyuwilayilayilayilayilayilayilayila

100 90 f1 (ppm) -10)0

77.31 cdcl3 76.99 cdcl3 76.67 cdcl3 73.38	-64.39	

74	2	δ	20	85	0
44	ĝ	30.	33.	28.	24.
Ž	5	7	7	1	5

(5b)

NW

1 (2 3 (4 ⁻ 5 6 7 8	Origin Instrument Solvent Temperature Pulse Sequence Receiver Gain Relaxation Delay	Varian inova cdcl3 25.0 s2pul 30
2 3 9 4 ⁻ 5 6 7 8	Origin Instrument Solvent Temperature Pulse Sequence Receiver Gain Relaxation Delay	varian inova cdcl3 25.0 s2pul 30
2 3 3 4 ⁻ 5 6 7 8	Instrument Solvent Temperature Pulse Sequence Receiver Gain Relaxation Delay	inova cdcl3 25.0 s2pul 30
3 9 4 ⁻ 5 1 6 1 7 1 8 1	Solvent Temperature Pulse Sequence Receiver Gain Relaxation Delay	cdcl3 25.0 s2pul 30
4 ⁻ 5 F 6 F 7 F	Temperature Pulse Sequence Receiver Gain Relaxation Delay	25.0 s2pul 30
5 F 6 F 7 F	Pulse Sequence Receiver Gain Relaxation Delay	s2pul 30
6 F 7 F 8 F	Receiver Gain Relaxation Delay	30
7 F 8 F	Relaxation Delay	h
8 6		1.0000
U .	Pulse Width	8.5000
9 F	Presaturation Frequency	
10 /	Acquisition Time	1.3033
11 3	Spectrometer Frequency	100.58
12 \$	Spectral Width	25141.4
13 I	Lowest Frequency	-1507.3
14 1	Nucleus	13C
15 /	Acquired Size	32768
16 \$	Spectral Size	65536
	<u>.</u>	
www	1 การการการการการการการการการการการการการก	NAMANANANANANANANANANANANANANANANANANAN

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

ASB-5c-PROTON

Sample Name:

Data Collected on: nmr500c.chem.buffalo.edu-inova500 Archive directory:

Sample directory:

FidFile: PROTON

Agilent Technologies

ASB-5c-PROTON

Sample Name:

Data Collected on: nmr500c.chem.buffalo.edu-inova500 Archive directory:

Sample directory:

FidFile: CARBON

Pulse Sequence: CARBON (s2pul) Solvent: cdcl3 Data collected on: May 1 2021

77.252 77.000 76.741 Agilent Technologies

f1 (ppm)

(7b)

f1 (ppm)

4 c	o '	4	Q	ი		വ	ဖ	_	ω	ო	~	~		~
ο, -	- 1		4	ω	\sim	0	2	÷	\sim	ဖ	2	1	0	\sim
က်င	Ņ,	ດ່	ம்	Q.	<u>о</u>	<u>о</u>	ω.	ς.	7	7	7	7	7	ς β
4 4	1 (∞	က	က	2	2	2	2	2	2	2	2	2	2
5.5		<u> </u>	$\sum_{i=1}^{n}$	$\overline{\Sigma}$										
								$ \leq $	1					_
					רר				111					

cdcl3 cdcl3 cdcl3 cdcl3	+ 0	
16 67 99 95	6 5	60 C C C
<u>0</u> - 0 0 - 0	4 <u>0</u>	
	64	0 0 0

100			
		Parameter	Value
	1	Origin	Varian
	2	Instrument	inova
	3	Solvent	cdcl3
	4	Temperature	25.0
	5	Pulse Sequence	s2pul
	6	Receiver Gain	30
	7	Relaxation Delay	1.0000
	8	Pulse Width	8.0500
	9	Presaturation Frequency	
	10	Acquisition Time	1.3033
	11	Spectrometer Frequency	100.58
	12	Spectral Width	25141.4
	13	Lowest Frequency	-1508.1
	14	Nucleus	13C
	15	Acquired Size	32768
	16	Spectral Size	65536

1	Origin	Varian
2	Instrument	inova
3	Solvent	cdcl3
4	Temperature	25.0
5	Pulse Sequence	s2pul
6	Receiver Gain	30
7	Relaxation Delay	1.0000
8	Pulse Width	8.0500
9	Presaturation Frequency	,
10	Acquisition Time	1.3033
11	Spectrometer Frequency	/ 100.58
12	Spectral Width	25141.4
13	B Lowest Frequency	-1508.1
14	Nucleus	13C
15	6 Acquired Size	32768
16	Spectral Size	65536
WW.WM	anyany la ang ang ang ang ang ang ang ang ang an	Mww.mnww.www.MpMuww.MM

120 110 100 f1 (ppm) 230 220 210 200 190 180 170 160 150 140 130 -10

odcl3 cdcl3 cdcl3		
	58	2 <u>5</u> 2 2 2
77.4 76.9 38.6	55.2	35.(31.5
	Ĩ	

ParameterValue1OriginVarian2Instrumentmercury3Solventcdcl34Temperature25.05Pulse Sequences2pul6Receiver Gain307Relaxation Delay1.00008Pulse Width7.35009Presaturation Frequency10Acquisition Time0.868411Spectral Width18867.913Lowest Frequency-1134.314Nucleus13C15Acquired Size1638416Spectral Size32768
1OriginVarian2Instrumentmercury3Solventcdcl34Temperature25.05Pulse Sequences2pul6Receiver Gain307Relaxation Delay1.00008Pulse Width7.35009Presaturation Frequency10Acquisition Time0.868411Spectral Width18867.913Lowest Frequency-1134.314Nucleus13C15Acquired Size1638416Spectral Size32768
2Instrumentmercury3Solventcdcl34Temperature25.05Pulse Sequences2pul6Receiver Gain307Relaxation Delay1.00008Pulse Width7.35009Presaturation Frequency10Acquisition Time0.868411Spectral Width18867.913Lowest Frequency-1134.314Nucleus13C15Acquired Size1638416Spectral Size32768
3Solventcdcl34Temperature25.05Pulse Sequences2pul6Receiver Gain307Relaxation Delay1.00008Pulse Width7.35009Presaturation Frequency10Acquisition Time0.868411Spectral Width18867.912Spectral Width18867.913Lowest Frequency-1134.314Nucleus13C15Acquired Size1638416Spectral Size32768
4Temperature25.05Pulse Sequences2pul6Receiver Gain307Relaxation Delay1.00008Pulse Width7.35009Presaturation Frequency10Acquisition Time0.868411Spectrometer Frequency75.4612Spectral Width18867.913Lowest Frequency-1134.314Nucleus13C15Acquired Size1638416Spectral Size32768
5Pulse Sequences2pul6Receiver Gain307Relaxation Delay1.00008Pulse Width7.35009Presaturation Frequency10Acquisition Time0.868411Spectrometer Frequency75.4612Spectral Width18867.913Lowest Frequency-1134.314Nucleus13C15Acquired Size1638416Spectral Size32768
6Receiver Gain307Relaxation Delay1.00008Pulse Width7.35009Presaturation Frequency10Acquisition Time0.868411Spectrometer Frequency75.4612Spectral Width18867.913Lowest Frequency-1134.314Nucleus13C15Acquired Size1638416Spectral Size32768
7Relaxation Delay1.00008Pulse Width7.35009Presaturation Frequency10Acquisition Time0.868411Spectrometer Frequency75.4612Spectral Width18867.913Lowest Frequency-1134.314Nucleus13C15Acquired Size1638416Spectral Size32768
8Pulse Width7.35009Presaturation Frequency10Acquisition Time0.868411Spectrometer Frequency75.4612Spectral Width18867.913Lowest Frequency-1134.314Nucleus13C15Acquired Size1638416Spectral Size32768
9Presaturation Frequency10Acquisition Time0.868411Spectrometer Frequency75.4612Spectral Width18867.913Lowest Frequency-1134.314Nucleus13C15Acquired Size1638416Spectral Size32768
10 Acquisition Time0.868411 Spectrometer Frequency75.4612 Spectral Width18867.913 Lowest Frequency-1134.314 Nucleus13C15 Acquired Size1638416 Spectral Size32768
11 Spectrometer Frequency 75.4612 Spectral Width13 Lowest Frequency-1134.314 Nucleus15 Acquired Size16 Spectral Size32768
12 Spectral Width18867.913 Lowest Frequency-1134.314 Nucleus13C15 Acquired Size1638416 Spectral Size32768
13 Lowest Frequency-1134.314 Nucleus13C15 Acquired Size1638416 Spectral Size32768
14 Nucleus13C15 Acquired Size1638416 Spectral Size32768
15 Acquired Size 16384 16 Spectral Size 32768
16 Spectral Size 32768
น เป็นสายแปลสายหลุดสายเป็น เป็นสายได้เห็นของเป็นแปละไปแป้น ให้เพียงเป็นเป็นไปไป เป็นไปเป็นไปไปไปเป็นไปเป็นเป็นได้เป็นได้เป็นได้เป็น
ขนไหน่องทุกสามของของอากเห็น แองสาวที่หน้าแหน่องการสาวหลือน ก็จะหมดหนี้ไหน มีไกก มีไม่ไม่อากสาวมีการสาวหลายได้แก่สาวความ
a na

120 110 100 f1 (ppm) 230 220 210 200 190 180 170 160 -10

3.12 5.21 2.62 1.00

cdcl3

ന്

-1

|--|--|

	Parameter	Value
1	Origin	Varian
2	Instrument	inova
3	Solvent	cdcl3
4	Temperature	25.0
5	Pulse Sequence	s2pul
6	Receiver Gain	30
7	Relaxation Delay	1.0000
8	Pulse Width	8.5000
9	Presaturation Frequence	cy 🛛
10	Acquisition Time	1.3033
11	Spectrometer Frequence	cy 100.58
12	Spectral Width	25141.4
13	Lowest Frequency	-1507.3
14	Nucleus	13C
15	Acquired Size	32768
16	Spectral Size	65536

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

6 f1 (ppm)

Δ

-10 f1 (ppm)