Supporting Information

(118 pages including the cover page)

Hydrosilylative Reduction of Primary Amides to Primary Amines Catalyzed by a Terminal [Ni-OH] Complex

Pragati Pandey and Jitendra K. Bera*

Department of Chemistry and Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.

E-mail: jbera@iitk.ac.in

Contents

	Page No.
1. Experiment Section	S3-S24
1.1. General procedures	S3
1.2. Synthesis and characterization	S4-S20
1.3. FT-IR for complexes 1–2 (Figure S22–S23)	S21
1.4. ESI-MS of complexes 1–6 (Figure S24–S29)	S22-S24
2. X–Ray Data Collection and Refinements	S25-S31
2.1. Molecular structure of 1–5 (Figure S30–S33)	S26-S30
2.2. Table S1. Crystallographic data and pertinent refinement parameters for complexes 1–5	S31
3. Catalysis Studies	S32-S37
3.1. General procedure for amide synthesis	S32-S33
3.2. General procedure for direct hydrosilylative reduction of amides	S33
3.3. Optimization Tables S2–S3	S34-S35
3.4. Dehydration of primary amides to nitriles in CH ₃ CN (Table S4)	S35
3.5. Hydrosilylative reduction of tertiary and secondary amides (Table S5. S6 and S7)	S36-S37
4. Mechanistic Studies	S38-S39
4.1. ¹ H NMR of [Ni-H] species (Figure S35)	S38
4.2. Attempted reduction of nitrile to primary amine (Scheme S8)	S38
4.3. Reaction profile studies (Figure S36)	S39-S40
4.4. Proposed reaction mechanism (Scheme S9 and S10)	S40-S41
5. Spectroscopic Characterization Data for Amides	S43-S52
6. Spectra for Isolated Primary Tertiary and Secondary Amines	S53-S116
7. References	S118

1. Experimental Section

1.1. General procedures

All reactions with metal complexes were carried out under an atmosphere of purified nitrogen using standard Schlenk–vessel and vacuum line techniques. NMR spectra were obtained on JEOL JNM–LA 400MHz and 500MHz spectrometer. ¹H NMR chemical shifts were referenced to the residual hydrogen signal of the deuterated solvents. The chemical shift is given as dimensionless δ values and is frequency referenced relative to TMS for ¹H and ¹³C NMR spectroscopy. Elemental analyses were performed on a Thermoquest EA1110 CHNS/O analyzer. The crystallized compounds were powdered, washed several times with petroleum ether, and dried in vacuum for at least 48 h prior to elemental analyses. Infrared spectra were recorded in the range 4000–400 cm⁻¹ on a Vertex 70 Bruker spectrophotometer on nujol mull. ESI–MS were recorded on a Waters Micromass Quattro Micro triple–quadrupole mass spectrometer. The GC-MS experiments were performed by using an Agilent 7890 A GC and 5975C MS system.

Materials

Solvents were distilled under nitrogen and deoxygenated prior to use. The nickel salts (Ni(acac)₂, Ni(COD)₂, Ni(Cp)₂), NiCl₂, Ni(OAc)₂.4H₂O, NiCl₂(dme), primary amides and chemicals were purchased from Sigma-Aldrich. The LiAlD₄ was purchased from BOC Sciences USA. The ligand **LH-NTf**¹, primary amides (in Table 1: **5**, **10**, **11**, **12**, **13**, **22**)², secondary and tertiary amides³ and PhSiD₃⁴ were prepared following the literature procedures. NMR spectra for synthesized compounds are consistent with literature reports.

1.2. Synthesis and characterization

Scheme S1. Synthesis of LH-NTf.

Synthesis of LH-NTf

¹H NMR (400 MHz, CDCl₃, 292 K): δ 8.89 (s, 1H, Im), 7.53 (s, 1H, Ph), 7.11 (s, 1H, Ph), 6.97 (s, 2H, Im), 4.36 (dd, *J* = 12.0 Hz, 1H, CH₂), 4.01 (dd, *J* = 12.0 Hz, 1H, CH₂), 3.35 (br t, 1H, CH), 2.33 (s, 3H, CH₃), 2.14 (s, 3H, CH₃) 2.01 (s, 3H, CH₃), 1.67 (m, 1H, CH), 0.95 (d, 6H, ⁱpr). ¹³C NMR (100 MHz, CDCl₃, 292 K): δ 141.2, 136.8, 135.3, 134.5, 130.9, 129.9, 129.6, 124.1, 122.9, 61.5, 55.5, 32.9, 21.2, 19.6, 18.7, 17.9, 17.5. (The CF₃ signal was not observed due to the low intensity). ¹⁹F NMR (470 MHz, CDCl₃, 292 K): -76.8 (NSO₂CF₃). ESI–MS, *m/z*: 404.1623, (*z*=1), [M+H]⁺.

Synthesis of 1

A suspension of 0.100 g (0.25 mmol) of LH, and 0.034 g (0.3 mmol) of KO⁴Bu in 15 mL of THF was stirred for 1h at -78°C. Ni(acac)₂ 0.033 g (0.125 mmol) was added to the cooled reaction mixture and was allowed to attain room temperature then yellow colored solution was refluxed for 24 h. The volatiles were evaporated and crude solid was redissolved in 15 mL dichloromethane, and the yellow mixture was filtered through a small pad of celite. The yellow colored filtrate was evaporated to dryness and dissolved in minimum amount of dichloromethane. 15 mL of petroleum ether was added with stirring to induce precipitation. The obtained yellow solid was washed with petroleum ether and dried under vacuum. X-ray quality crystals were grown by layering petroleum ether over a saturated dichloromethane solution of 1 inside an 8 mm o.d. vacuumsealed glass tube. Yield: 0.090 g (82%). ¹H NMR (400 MHz, CDCl₃, 292 K): δ 7.26 (s, 1H, Ph), 7.25 (s, 1H, Ph), 7.09 (d, J = 1.5 Hz, 1H, Im), 7.04 (d, J = 1.4 Hz, 1H, Im), 7.00 (s,1H, Ph), 6.94 (s, 1H, Ph), 6.88 (d, J = 1.4 Hz, 1H, Im), 6.65 (d, J = 1.4 Hz, 1H, Im), 4.94 (t, J = 10.6 Hz, 1H CH₂), 3.78 (s, 1H, CH), 3.76 (d, J = 4.7 Hz, 1H, CH₂), 3.48 (td, J = 3.2 Hz, 9.9 Hz, 1H, CH), 3.03 (m, 1H, CH), 2.98 (dd, J = 3.5 Hz, 10.9 Hz, 1H, CH), 2.45 (d, J = 17.4 Hz, 6H, ^{ipr}CH₃), 2.33 (s, 1H, CH), 2.25 (s, 3H, CH₃), 2.09 (s, 3H, CH₃),

1.40 (s, 3H, CH₃), 1.36 (s, 3H, CH₃), 1.06 (d, J = 5.6 Hz, 6H, ^{ipr}CH₃), 1.03 (s, 1H, CH), 0.87 (d, J = 5.6 Hz, 6H, ^{ipr}CH₃). ¹³C NMR (125 MHz, CDCl₃, 292 K): δ 157.9. 155.3, 140.6, 140.4, 140.1, 139.4, 134.9, 134.8, 134.3, 134.1, 133.9, 131.4, 130.5, 129.0, 128.5, 125.9, 124.9, 122.0, 121.5, 58.7, 58.3, 49.4, 48.8, 31.9, 29.8, 21.1, 20.9, 19.5, 18.9, 18.8, 18.2, 18.1, 14.9, 14.5, 14.1. (The CF₃ signal was not observed due to the low intensity). ¹⁹F NMR (470 MHz, CDCl₃, 292 K): -76.4 (NHSO₂CF₃), -77.5 (NSO₂CF₃). Anal Calcd. for Ni₁S₂F₆C₃₆N₆O₅H₄₈: C, 49.04; H, 5.49; N, 9.53. Found: C, 49.31; H, 5.53; N, 9.51. ESI–MS, *m*/*z*: 863.2352, (*z*=1), [**1**–OH]⁺. FT-IR (Nujol, cm⁻¹): v_(O-H) = 3636, v_(N-H) = 3096, 3124, 3155.

Scheme S2. Synthesis of 1.

Synthesis of 2

0.080 g (0.09 mmol) **1** was dissolved in 10 mL dichloromethane and 0.118 mL (0.9 mmol) TMSN₃ was added and stirred for 12 h. The resulting pale yellow solution was passed through the pad of celite and the filtrate was concentrated under reduced pressure and petroleum ether was added to induce precipitation. The solid obtained was washed with 10 mL of petroleum ether and dried under vacuum. X–ray quality crystals were grown by layering petroleum ether over a saturated dichloromethane solution of **2** inside an 8 mm o.d. vacuum-sealed glass tube. Yield: 0.070 g (85%). ¹H NMR (400 MHz, CDCl₃, 292 K): δ 9.52 (br, 1H, NHSO₂CF₃), 7.21 – 7.18 (d, *J* = 9.1 Hz, 1H, Im), 7.05 – 6.98 (4H, Ph), 6.88 – 6.85 (d, *J* = 16.0 Hz, 2H, Im), 6.58 (s, 1H, Im), 5.51 (t, *J* = 12.4 Hz, 1H, CH₂), 4.26 (t, *J* = 12.4 Hz, 1H, CH₂), 3.90 (d, *J* = 12.4 Hz, 1H, CH), 3.69 (br d, *J* = 9.6 Hz, 2H, CH), 3.47 (br s, 1H, CH), 3.11 (br d, *J* = 11.0 Hz, 1H, CH), 2.63 (d, *J* = 13.3, 1H, CH), 2.45 (s, 6H, 2CH₃), 2.37 (s, 3H, CH₃), 2.31 (s, 3H, CH₃), 2.02 (s, 3H, CH₃), 1.47 (s, 3H, CH₃), 0.86 (d, *J* = 5.04 Hz, 12H, \square CH₃). ¹³C NMR (100 MHz, CDCl₃, 292 K): δ 165.6. 160.3, 140.3, 140.2, 140.1, 140.0, 134.9, 134.8, 134.7, 133.9,

131.3, 130.7, 128.6, 128.5, 126.2, 124.3, 117.8, 59.3, 58.5, 49.6, 46.8, 31.7, 31.5, 22.7, 21.1, 20.3, 19.2, 18.9, 18.5, 18.2, 17.1, 15.1, 14.2. (The CF₃ signal was not observed due to the low intensity). ¹⁹F NMR (470 MHz, CDCl₃, 292 K): –75.5 (NHSO₂C*F*₃), -77.9 (NSO₂C*F*₃). Anal Calcd. for Ni₁S₂F₆N₉O₄C₃₆H₄₇: C, 47.72; H, 5.23; N, 13.92 Found: C, 47.74; H, 5.27; N, 13.95. ESI–MS *m*/*z*: 863.2736, (z=1), [**2**-N₃]⁺. FT-IR (Nujol, cm⁻¹): $v_{(N3)} = 2062$, $v_{(N-H)} = 3133$.

Scheme S3. Synthesis of 2.

Synthesis of 3

0.080 g (0.09 mmol) **1** was dissolved in 10 mL acetonitrile and 0.114 mL (0.9 mmol) (CH₃)₃SiCl (TMSCl) was added and stirred for 12 h. The resulting pale yellow solution was passed through the pad of celite and the filtrate was concentrated under reduced pressure and petroleum ether was added to induce precipitation. The solid obtained was washed with 10 mL of petroleum ether and dried under vacuum. X–ray quality crystals were grown by layering petroleum ether over a saturated dichloromethane solution of **3** inside an 8 mm o.d. vacuum-sealed glass tube. Yield: 0.059 g (70%).¹H NMR (400 MHz, CD₃CN, 292 K): δ 8.31 (br, 2H, NHSO₂CF₃), 7.35 – 7.16 (br, m, 8H Ph, Im), 6.94 (s, 2H), 5.40 (t, *J* = 10.9 Hz, 2H, CH), 3.89 (br, s, 2H, CH), 3.12 (d, *J* = 12.8 Hz, 2H, CH₂), 2.44 – 2.40 (br d, 12H, 2^{ipr}CH₃), 1.41 (s, 6H, 2CH₃), 0.97 (br, s, 12H, 4CH₃). ¹³C NMR (100 MHz, CD₃CN, 292 K): δ 156.3,140.2, 138.5, 135.2, 135.1, 13.7, 130.4, 126.9, 123.0, 58.4, 46.5, 32.2, 21..0, 19.3, 18.2, 18.1, 15.6. (The CF₃ signal was not observed due to the low intensity).¹⁹F NMR (470 MHz, CD₃CN, 292 K): –78.59 (NHSO₂CF₃). Anal Calcd. for Ni₁S₂F₆N₆O₄C₃₆H₄₈Cl₂: C, 46.24; H, 5.18; N, 8.99. Found: C, 46.19; H, 5 22; N, 9.04. ESI–MS, *m*/*z*: 899.2114, (*z*=1), [**3**+CI]⁺.

Synthesis of 4

A suspension of 0.100 g (0.25 mmol) of LH-NTf, and 0.069 g (0.25 mmol) of Ni(COD)₂ in 15 mL of THF was stirred for 1h at -78°C. The mixture was allowed to attain room temperature and then stirred for 24h. Slowly the color of the solution changed to dark red. The red mixture was filtered through a small pad of celite. The filtrate was evaporated to dryness and dissolved in minimum amount of dichloromethane. 10 mL of petroleum ether was added with stirring to induce precipitation. The obtained red solid was washed with petroleum ether and dried under vacuum. Red colored crystals suitable for X-ray diffraction were grown by slow diffusion of petroleum ether into a saturated dichloromethane solution of 4. Yield: 0.161 g (68%). ¹H NMR (400 MHz, CD₃CN, 292 K): δ 7.59 (br, s, 1H, Im), 7.31 (br, s, 1H, Im), 7.05 (br, s, 4H, Ph), 6.63 (br, s, 2H, Im), 4.41 (br, s, 1H), 4.25 (br, s, 2H), 3.95 (br, s, 1H), 3.71 (br, s, 1H), 3.34 (br, s, 2H), 2.55 (s, 1H), 2.44 - 2.01 (m, 1H, 6CH₃), 1.25 (br, d, J = 21.9 Hz, 6H, 2CH₃), 0.97 (s, 6H, 2CH₃), -6.13 (s, OH). ¹³C NMR (100 MHz, CD₃CN, 292 K): δ 162.3, 136.5, 129.8, 129.4, 129.2, 124.5, 124.2, 124.1, 122.9, 61.1, 54.6, 32.7, 20.2, 18.5, 17.8, 16.9, 16.6. (The CF₃ signal was not observed due to the low intensity). ¹⁹F NMR (470 MHz, CD₃CN, 292 K): -77.49 (NSO₂CF₃). Anal Calcd. for Ni₂S₂F₆C₃₆N₆O₆H₄₈: C, 45.28; H, 5.07; N, 8.80. Found: C, 45.31; H, 5.10; N, 8.83. ESI-MS, m/z: = 519.1158, (z=1) for [LNTfNiOH+CH₃CN+H]⁺.

Scheme S5. Synthesis of 4.

Synthesis of 5

A suspension of 0.100 g (0.25 mmol) of LH-NTf, and 0.048 g (0.25 mmol) of Ni(CP)₂ in 15 mL of THF was dissolved. The green colored reaction mixture was refluxed for 48 h. Slowly the color of the solution changed to dark red. The red mixture was filtered through a small pad of celite. The filtrate was evaporated to dryness and dissolved in minimum amount of dichloromethane. 10 mL of petroleum ether was added with stirring to induce precipitation. The obtained red solid was washed with petroleum ether and dried under vacuum. Red colored crystals suitable for X-ray diffraction were grown by slow diffusion of petroleum ether into a saturated dichloromethane solution of 3. Yield: 0.102 g (78%). ¹H NMR (500 MHz, CDCl₃, 292 K): δ 7.09 (s, 1H, Ph), 7.03 (s, 1H, Ph), 6.91 (s, 1H, Im), 6.66 (s, 1H, Im), 4.82 (s, 5H, Cp), 4.36 (d, J = 13.2 Hz, 1H, CH₂), 4.13 $(d, J = 13.1 Hz, 1H, CH_2), 3.44 - 3.40 (q, J = 6.3, 1H, CH), 2.95 (br s, 1H, CH), 2.33 (s, 1H, CH), 2.34 (s, 1H, CH),$ 3H, CH₃), 2.24 (s, 3H, CH₃), 1.89 (s, 3H, CH₃), 1.06 (s, 6H, ⁱpr). ¹³C NMR (100 MHz, CDCl₃, 292 K): δ 159.3, 139.8, 136.7, 136.3, 134.6, 129.5, 129.0, 124.4, 122.9, 92.4, 59.2, 52.4, 32.8, 21.2, 20.6, 19.2, 18.2, 17.7. (The CF₃ signal was not observed due to the low intensity). ¹⁹F NMR (470 MHz, CDCl₃, 292 K): -75.06 (NSO₂CF₃). Anal Calcd. for Ni₁S₁F₃C₂₃N₃O₂H₂₈: C, 52.56; H, 5.37; N, 7.99. Found: C, 52.52; H, 5.39; N, 8.12. ESI–MS, *m/z*: 526.1287, (z=1), [5+H]⁺.

Scheme S6. Synthesis of 5.

Synthesis of 6

 $Ni(COD)_2 0.068$ g (0.25 mmol) was suspended in 0.5 mL of 1, 5-cyclooctadiene. 0.019 g (0.25 mmol) of allyl chloride was then added dropwise. The resulting slurry was stirred for 5 minutes, resulted into the formation of a blood red allylnickel(II) chloride dimer. In another Schlenk flask suspension of 0.1 g (0.25 mmol) of **LH-NTf**, and 0.043 g (0.38 mmol) of KO^tBu in 15 mL of THF was stirred for 3 h at -20°C. The light yellow colored

solution was slowly added to the a blood red allyl nickel(II) chloride dimer and stirred for 9 h at room temperature Slowly the color of the solution changed from dark red to yellow. The volatiles were evaporated and crude solid was redissolved in 15 mL acetonitrile, and the yellow mixture was filtered through a small pad of celite. The yellow colored filtrate was evaporated to dryness and dissolved in minimum amount of acetonitrile. 15 mL of petroleum ether was added with stirring to induce precipitation. The obtained light-yellow solid was washed with petroleum ether and dried under vacuum. Yield: 0.103 g (88%). ¹H NMR (500 MHz, CD₃CN, 292 K): δ 7.57 (d, J = 1.7 Hz, 1H, Im), 7.47 (d, J = 1.8 Hz, 1H, Im), 7.07 (s, 1H, Ph), 7.03 (s, 1H, Ph), 7.00 (s, 1H, Ph), 6.97 (s, 1H, Ph), 6.81 (d, J = 1.8 Hz, 1H, Im), 6.74 (d, J = 1.7 Hz, 1H, Im), 4.91 (m, 1H, allyl-CH), 3.66 - 3.63 (br, m, 4H, CH₂), 3.46 (dd, J = 2.1 Hz, 13.3 Hz, 1H, CH), 3.38 (br, d, J = 7.7 Hz, 1H, CH), 3.22 (dd, J = 2.1 Hz, 11.2 Hz, 1H, CH), 3.13 (br, d, J = 10.7 Hz, 1H, CH), 2.98 (dd, J = 2.4 Hz, 12.3 Hz, 2H, CH), 2.82 (dd, J = 2.4 Hz, 11.4 Hz, 1H, CH), 2.33 - 2.29 (d, 6H 2^{ipr} CH₃), 2.01 (d, J = 12.6 Hz, 1H, CH), 1.96 (br, s, 6H, 2CH₃), 1.54 (s, 3H, CH₃), 1.43 (s, 3H, CH₃), 0.78 (d, J = 7.0 Hz, 3H, CH₃), 0.74 (d, J = 7.0 Hz, 3H, CH₃), 0.68 (d, J = 7.0 Hz, 3H, CH₃), 0.62 (d, J = 7.0 Hz, 3H, CH₃). ¹³C NMR (100 MHz, CD₃CN, 292 K): δ 178.4, 178.1, 139.1, 138.9, 136.9, 136.9, 136.3, 136.1, 135.8, 135.6, 135.4, 129.7, 129.6, 129.5, 60.9, 60.7, 60.4, 59.1, 53.1, 52.3, 34.1, 33.7, 20.4, 18.7, 18.6, 17.0, 19.98, 16.96, 16.6, 16.5. (The CF₃ signal was not observed due to the low intensity). ¹⁹F NMR (470 MHz, CD₃CN, 292 K): –69.30, -70.81 (NHSO₂CF₃). Anal Calcd. for Ni₁S₂F₆C₃₉N₆O₄H₅₃Cl: C, 49.77; H, 5.68; N, 8.93 Found: C, 49.74; H, 5.67; N, 8.90. ESI-MS, m/z: 905.2853, (z=1), [6]+.

Scheme S7. Synthesis of 6.

Figure S2. ¹³C NMR spectrum of LH-NTf in CDCl₃.

Figure S3. ¹⁹F NMR spectrum of LH-NTf in CDCl₃.

Figure S4. ¹H NMR spectrum of 1 in CDCl₃.

Figure S6. ¹⁹F NMR spectrum of 1 in CDCl₃.

Figure S8. ¹³C NMR spectrum of 2 in CDCl₃.

Figure S10. ¹H NMR spectrum of **3** in CD_3CN .

Figure S12. ¹⁹F NMR spectrum of **3** in CD₃CN.

Figure S14. ¹³C NMR spectrum of 4 in CD₃CN.

Figure S16. ¹H NMR spectrum of 5 in CDCl₃.

Figure S18. ¹⁹F NMR spectrum of 5 in CDCl₃.

Figure S20. ¹³C NMR spectrum of 6 in CD₃CN.

Figure S21. ¹⁹F NMR spectrum of **6** in CD₃CN.

Figure S22. FT-IR spectrum of complex 1 in Nujol.

Figure S23. FT-IR spectrum of complex 2 in Nujol.

Figure S24. Experimental (black) and simulated (red) ESI-MS for $[1-OH]^+$ at m/z = 863.2352 (z=1).

Figure S25. Experimental (black) and simulated (red) ESI-MS for $[2-N_3]^+$ at m/z = 863.2736 (z=1).

Figure S26. Experimental (black) and simulated (red) ESI-MS for $[3-CI]^+$ at m/z = 899.2114 (z=1).

Figure S27. Experimental (black) and simulated (red) ESI-MS for $[(LNTf)Ni(OH)+CH_3CN+H]^+$ at m/z = 519.1158 (z=1).

Figure S28. Experimental (black) and simulated (red) ESI-MS for $[5+H]^+$ at m/z = 526.1287 (z=1).

Figure S29. Experimental (black) and simulated (red) ESI-MS for $[6-H]^+$ at m/z = 905.2853 (z=1).

2. X–Ray Data Collection and Refinements

Single-crystal X-ray studies were performed on a CCD Bruker SMART APEX diffractometer equipped with an Oxford Instruments low-temperature attachment. All data were collected at 100(2) K using graphite–monochromated Mo–K α radiation ($\lambda \alpha$ = 0.71073 Å). The frames were indexed, integrated, and scaled using the SMART and SAINT software packages,⁵ and the data were corrected for absorption using the SADABS program.⁶ The structures were solved and refined with the SHELX suite of programs.⁷ All non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms of ligands were included into geometrically calculated positions in the final stages of the refinement and were refined according to 'riding model'. The hydrogen atoms of OH and NHTf groups of **1** - **4** were located from difference Fourier map and the bond lengths and bond angles were constrained geometrically. SQUEEZE option in PLATON program was used to remove the disordered water and solvent molecules from the overall intensity data of compounds wherever necessary.⁸ Diamond 3.1e software was used to produce the diagrams.⁹ CCDC numbers **1952208**, **1952209**, 1952210, 1952211, 1952212 contain the supplementary crystallographic data for compounds, 1 - 5. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif

Figure S30. Molecular structure of **1** with important atoms labeled. All hydrogens are omitted for the sake of clarity. Thermal ellipsoids are drawn at the 40% probability level. Selected bond lengths (Å) and angles (°): Ni1–C1 1.865(4), Ni1–C1A 1.851(4), Ni1–N6 1.976(3), Ni1–O5 1.931(3), N3–S1 1.533(4), N6–S2 1.558(3), O5...(H)–N3 2.627, O3...(H)–O5 2.902. C1–Ni1–O5 89.37(14), C1A–Ni1–C1 89.53(16), C1A–Ni1–O5 175.28(16), C1A–Ni1–N6 88.64(15), N6–Ni1–O5 93.50(13), N6–Ni1–C1 166.35(16), N3–H...O5 170.84, O5–H...O3 138.72.

Figure S31. Molecular structure of **2** with important atoms labeled. Except for N– H, all other hydrogens and mesityl groups are omitted for the sake of clarity. Thermal ellipsoids are drawn at the 40% probability level. Selected bond lengths (Å) and angles (°): Ni1–C1 1.87(5), Ni1–C19 1.873(5), Ni1–N7 1.920(5), Ni1–N3 1.973(4), N7–N8 1.190(6), N8–N9 1.155(7), C5–N3 1.483(7), S1–N3 1.563(4). C1–Ni1–C19 93.4(2), C1–Ni–N7 176.9(2), C19–Ni1–N7 86.4(2), C1–Ni1 N3 86.9(2), N7–Ni1–N3 93.7(2), N3–Ni1–C19 172.(2), N7–N8–N9 176.6(6).

Figure S32. Molecular structure of **3** with important atoms labeled. Except for N– H, all other hydrogens are omitted for the sake of clarity. Thermal ellipsoids are drawn at the 40% probability level. Selected bond lengths (Å) and angles (°): Ni1–C1 1.880(6), Ni1–C19 1.878(6), Ni1–Cl1 2.221(19), Ni1–Cl2 2.224(19), N3–S1 1.571(6). C1–Ni1–C19 90.6(2), C19–Ni1–Cl1 174.29(19), C1–Ni1–Cl1 91.39(19), Cl1–Ni1–Cl2 87.88(7), C1–Ni1–Cl2 176.24(19), C19–Ni1–Cl2 90.48(18).

Figure S33. Molecular structure of **4** with important atoms labeled. Except for O– H, all other hydrogens are omitted for the sake of clarity. Thermal ellipsoids are drawn at the 40% probability level. Selected bond lengths (Å) and angles (°): Ni1–C1 1.890(5), Ni1–N3 1.907(4), Ni1–O1 1.852(4), Ni1–O1' 1.902(4), Ni1–Ni1' 2.8301(13). C1–Ni1–N3 89.95(19), N3–Ni1–O1 93.49(17), O1–Ni1–C1 167.4(2), O1–Ni1'–C1' 99.30(19), Ni1–O1–Ni1' 41.78(11), O1–Ni1-O1' 77.62(19).

Figure S34. Molecular structure of **5** with important atoms labeled. All hydrogens are omitted for the sake of clarity. Thermal ellipsoids are drawn at the 40% probability level. Selected bond lengths (Å) and angles (°): Ni1–C1 1.900(4), Ni1–N3 1.944(4), Ni1–C19 2.135(4), Ni1–C20 2.156(4), Ni1–C21 2.136(5), Ni1–C22 2.100(5), Ni1–C23 2.196(4), S1–C18 1.841(5). C1–Ni1–N3 93.62(17), C22–Ni1–N3 157.32(16), C1–Ni1–C22 102.50(18), C1–Ni1–C19 97.01(16), C1–Ni1–N3 112.12(18).

	1	2 Solvent	3-CH ₂ Cl ₂	4•2CH2Cl2	5	
Empirical formula	$C_{36}H_{48}F_6N_6NiO_5S_2$	$C_{36}H_{47}F_6N_9NiO_4S_2$	C ₃₆ H ₄₈ Cl ₂ F ₆ N ₆ NiO 4 S ₂	$C_{38}H_{52}Cl_4F_6N_6Ni_2$ O_6S_2	$C_{23}H_{28}F_3N_3NiO_2S$	
Formula Weight	881.63	905.64	1021.44	1126.16	526.23	
Crystal System	Orthorhombic	Hexagonal	Monoclinic	Orthorhombic	Triclinic	
Space Group	P212121	P65	<i>P</i> 21	C 2 2 21	P1	
a (Å)	11.9598(7)	23.6705(11)	11.504(5)	16.6591(10)	8.7211(9)	
b (Å)	12.3574(7)	23.6705(11)	15.705(6)	16.9699(10)	10.2273(11)	
c (Å)	28.0107(15)	16.1646(8)	13.626(5)	17.4164(9)	13.1114(15)	
α (deg)	90	90	90	90	86.861(3)	
β (deg)	90	90	101.704(7)	90	89.208(3)	
γ (deg)	90	120	90	90	88.693(3)	
V (Å ³)	4139.8(4)	7843.5(8)	2410.7(17)	4923.7(5)	1167.3(2)	
Z	4	6	2	8	1	
ρ calcd (g cm⁻³)	1.415	1.172	1.407	1.519	1.497	
μ (mm ⁻¹)	0.644	1.711	0.776	0.644	0.970	
F(000)	1840.0	2880	1056.0	2320	548	
Reflections Collected	50886	95940	20779	21315	14603	
Independent	10258	9299	11011	4823	8814	
Observed [I >2σ (I)]	8063	7523	6711	3865	8469	
No. of variables	524	562	559	299	606	
GooF	1.042	1.028	1.035	1.004	1.027	
Rint	0.0709	0.0867	0.0384	0.0711	0.0326	
Flack	0.016(15)	0.015(6)	0.019(9)	0.016(10)	0.023(12)	
Final R indices	R1 = 0.0456	R1 = 0.0449	R1 = 0.0498	R1 = 0.0453	R1 = 0.0311	
$[I > 2\sigma(I)]^a$	wR2 = 0.0890	wR2 = 0.1031	wR2 = 0.0962	wR2 = 0.0864	wR2 = 0.0785	
R indices (all	R1 = 0.0708	R1 = 0.0652	R1 = 0.0968	R1 = 0.0676	R1 = 0.0329	
data) ^a	wR2 = 0.0964	wR2 = 0.1117	wR2 = 0.1235	wR2 = 0.0932	wR2 = 0.0808	

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}||/\Sigma|F_{o}| \text{ with } F_{o}{}^{2} \ge 2\sigma(F_{o}{}^{2}). \text{ w}R_{2} = [\Sigma w(|F_{o}{}^{2}| - |F_{c}{}^{2}|)^{2}/\Sigma|F_{o}{}^{2}|^{2}]^{1/2}$

Catalytic Studies 1.1. Synthesis of primary amides Method A (For entries 5, 22 in Table 1)

 $\begin{array}{rrr} \mathsf{RCOOH} & + & \mathsf{SOCI}_2 & \xrightarrow{\mathsf{Toluene}} & \mathsf{RCOCI} & \xrightarrow{\mathsf{aq. NH}_3} & \mathsf{RCONH}_2 \\ \hline & \mathsf{CH}_2\mathsf{CI}_2 & \mathsf{rt}, 1 & \mathsf{h} \end{array} \xrightarrow{} & \mathsf{RCONH}_2 \end{array}$

In a two necked round bottom flask carboxylic acid (5.0 mmol) was added to the 15 mL of toluene. To that reaction mixture, dropwise thionyl chloride (10 mmol) was added together with cat. amount of DMF and the reaction mixture was refluxed for 3 h. The excess of thionyl chloride was evaporated and the crude acid chloride was redissolved in dichloromethane. After that aq. ammonia was added below 10 °C and the reaction mixture was stirred at room temperature for 1 h. The reaction mixture was extracted with 1N HCl and saturated NaHCO₃ solution. The organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure to get white solid in 90-95% yield.

Method B (For entries 11, 12, 13 in Table 1)

RCOCI + aq. NH₃
$$\xrightarrow{\text{CH}_2\text{Cl}_2, \text{ r.t}}$$
 RCOCI + aq. NH₃ $\xrightarrow{\text{CH}_2\text{Cl}_2, \text{ r.t}}$ RCOCI + Aq. NH₃

In a two necked round bottom flask acyl chloride (5.0 mmol) was added in 20 mL of dichloromethane solution. In the reaction mixture aq. ammonia (10.0 mmol) was added in one portion at room temperature, and stirred for 3 h. The reaction mixture was then diluted with dichloromethane (30 mL) and was transferred to a separating funnel, washed with 1N HCl (50 mL), and saturated solution of NaHCO₃ (50 mL). The organic layer was dried over brine solution and anhydrous Na₂SO₄. The combined fractions were concentrated under reduced pressure to get the desired compound in high yeilds.

3.1.2. Synthesis of tertiary and secondary amides

$$\frac{Et_{3}N}{CH_{2}CI_{2}, r.t} \rightarrow RCONR^{1}R^{2}$$

S33

In a two necked round bottom flask amine (5.5 mmol) and Et₃N (6.25 mmol) was added in 20 mL of dichloromethane solution. In the reaction mixture acyl chloride (5.0 mmol) was added in one portion at room temperature, and stirred for 2 h. The reaction mixture was then diluted with dichloromethane (30 mL) and was transferred to a separating funnel, washed with 1N HCl (50 mL), and saturated solution of NaHCO₃ (50 mL). The organic layer was dried over brine solution and anhydrous Na₂SO₄ and filtered on a short silica gel column and washed with ethyl acetate/hexane (1:1). The combined fractions were concentrated under reduced pressure.

3.2.1. General procedure for hydrosilylative reduction of primary amides to primary amines

Amide (0.5 mmol) and PhSiH₃ (184 μ L, 1.5 mmol) was sequentially added to a 3 mL dry toluene solution of the catalyst **1** (2 mol%, 0.025 mmol) and the closed reaction vessel was heated at 110 °C for given the reaction time. After completion of reaction, the solution was cooled, diluted with 3 mL of EtOAc and was subjected to GC-MS analysis using mesitylene as internal standard to determine the conversion. Then 2 mL of 1M HCl solution in ether was added to isolate the corresponding amine salt. Precipitate was filtered and washed with ether to get pure amine salt. The isolated product was characterized by NMR spectroscopy.

3.2.2. General procedure for hydrosilylative reduction of tertiary and secondary amides to corresponding amines

Amide (0.5 mmol) and PhSiH₃ (184 μ L, 1.5 mmol) was sequentially added to a 3 mL dry toluene solution of the catalyst **1** (2 mol%, 0.025 mmol) and the closed reaction vessel was heated at 110 °C for given reaction time. After completion of reaction, the solution was cooled, diluted with 3 mL of EtOAc and washed with 0.1M methanolic NaOH

solution (0.1 M, 2×10 mL). The organic phase was subjected to GC-MS analysis using mesitylene as internal standard to determine the conversion. The solvent was evaporated under reduced pressure and the residue was purified by column chromatography using silica/neutral alumina (hexane/EtOAc). The isolated product was characterized by NMR spectroscopy. For entries 2 and 6 in Table S5 and for all entries except 2, 3, 8, 9, and 12 in Table S7, products were isolated as hydrochloride salts.

3.3. Optimization Table

Table S2. Screening of silane and catalyst loading for reduction of primary amide catalyzed by1 ^a								
Q								
NH ₂ Cat. 1 Silane			$Ph \land NH_2 + Ph - CN + Ph \land N \land Ph + Ph \land N \land Ph$					
	Toluer	ne,110 °C ,12 h	(a)	(b)	(c)	(d)		
					,	. ,		
Entry	Catalyst	Silane	Conversion	Product Distribution Ratio				
	loading	(x equiv.)	(%)	(-)	(1-)	(-)	(-1)	
	(mol%)			(a)	(0)	(C)	(a)	
1.	5	PhSiH ₃ (4)	100	81	-	13	6	
2.	5	$Ph_2SiH_2(4)$	15	100	-	-	-	
3.	5	Ph₃SiH (4)	0	-	-	-	-	
4.	5	Et ₃ SiH (4)	0	-	-	-	-	
5.	5	EtO ₃ SiH (4)	0	-	-	-	-	
6.	5	Ph(Me) ₂ SiH (4)	0	-	-	-	-	
7.	5	TMDS (4)	7	100	-	-	-	
8.	5	PMHS (4)	4	100	-	-	-	
9.	5	PhSiH ₃ (3)	100	50	-	50	-	
10.	5	PhSiH ₃ (2)	31	45	55	-	-	
11.	5	PhSiH ₃ (1)	3	100	-	-	-	
12.	3	PhSiH ₃ (4)	100	98	-	2	-	
13.	3	PhSiH ₃ (3)	100	46	7	44	3	
14.	2	PhSiH ₃ (4)	100	99	1	-	-	
15.	2	PhSiH ₃ (3)	100	98	1	1	-	
16.	2	PhSiH ₃ (2)	85	51	3	38	8	
17.	0(Blank)	PhSiH ₃ (4)	n.r	-	-	-	-	
^a Conversions are determined by GC–MS with mesitylene as internal standard.								

Table S3. Solvent screening for reduction of primary amide catalyzed by1 ^a								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
Entry	Solvent	Temperature	Conversion	Product Distribution Ratio				
		(°C) (%)		(a)	(b)	(c)	(d)	
1.	DCM	40	0	-	-	-	-	
2.	THF	70	40	50	50	-	-	
3.	Acetonitrile	80	100	-	100	-	-	
4.	1, 4 dioxane	110	89	64	-	1	35	
5.	DMSO	110	0	-	-	-	-	
6.	DMF	70	0	-	-	-	-	
7.	Dimethyl carbonate(DMC)	90	14	86	14	-	-	
8.	1,1,2,2,Tetrachloroethane	110	23	39	31	30	-	
9.	Benzene	90	90	94	-	6	-	
10.	Toluene	110	100	98	1	1	-	
^a Conversions are determined by GC–MS with mesitylene as internal standard.								

3.4. Dehydration of primary amides to nitriles in CH₃CN

Amide (0.5 mmol) and PhSiH₃ (184 μ L, 1.5 mmol) was sequentially added to a 3 mL dry acetonitrile solution of the catalyst **1** (2 mol%, 0.025 mmol) and the closed reaction vessel was heated at 80 °C for given the reaction time. After completion of the reaction, the solution was cooled, diluted with 3 mL of EtOAc and subjected to GC-MS analysis using mesitylene as internal standard to determine the conversion.

3.5.1 Hydrosilylative reduction of tertiary amide

^aConversions are determined by GC–MS using mesitylene as internal standard. ^bIsolated yields are given in parenthesis. ^cIsolated as hydrochloride salts.

Table S6. Competitive reaction between primary amide and tertiary amide catalyzed by 1. ^a								
$ \begin{array}{c} O \\ \hline \\$								
Entry	Time	Primary	Tertiary	Product Distribution (%)				
	(n)	Amiae (%)	Amide (%)	(0)	(h)	(a)	(4)	(a)
				(a)	(0)	(0)	(u)	(e)
1.	0	100	100	0	0	0	0	0
2.	1	49.0	88.0	48.0	2.0	1	0	12.0
3.	3	0	82.0	96.0	0.4	3.0	0.6	18.0
4.	6	0	76.0	94.0	0	1	5.0	24.0
^a Conversions are determined by GC–MS with mesitylene as internal standard. Data								
are averaged from three reactions.								

3.5.2 Hydrosilylative reduction of secondary amide

^aConversions are determined by GC–MS using mesitylene as internal standard. ^bIsolated yields are given in parenthesis. ^cIsolated as free amine after chromatography on neutral alumina. ^d36 h.

4. Mechanistic Studies

4.1. ¹H NMR of [Ni-H] species

In a screw cap NMR tube a 1:2 mixture of **1** and $PhSiH_3$ in CDCl₃ was heated for 2 h and then subjected to ¹H NMR analysis to observed the [Ni-H] species.

Figure S35. ¹H NMR for [Ni-H] species observed after reaction of 1 with PhSiH₃.

4.2. Attempted reduction of nitrile to primary amine

Scheme S8. Reduction of nitrile to primary amine under the catalytic condition.

4.3. Reaction profile studies

4.3.1. Primary amide reduction

Benzamide (0.5 mmol) and PhSiH₃ (184 uL, 1.5 mmol) was sequentially added to a 3 mL dry toluene solution of the catalyst **1** (2 mol%, 0.025 mmol) and the closed reaction vessel was placed on preheated (110 °C) oil bath with stirring. After stipulated time intervals, 200 uL of aliquots were taken out with hypodermic needle and quenched with 800 uL of EtOAc. Samples were subjected to GC-MS analysis using mesitylene as internal standard to determine the conversion. Data are averaged from three reactions.

4.3.2. Reduction of 1:1 mixture of benzamide and benzonitrile

Benzamide (0.25 mmol), benzonitrile (0.25 mmol and PhSiH₃ (184 uL, 1.5 mmol) was sequentially added to a 3 mL dry toluene solution of the catalyst **1** (2 mol%, 0.025 mmol) and the closed reaction vessel was placed on preheated (110 °C) oil bath with stirring. After stipulated time intervals, 200 uL of aliquots were taken out with hypodermic needle and quenched with 800 uL of EtOAc. Samples were subjected to GC-MS analysis using mesitylene as internal standard to determine the conversion. Data are averaged from three reactions.

4.3.3. Competitive reaction between 1:1 mixture of benzamide and N,Ndimethylbenzamide

Benzamide (0.5 mmol), N,N–dimethylbenzamide (0.5 mmol) and PhSiH₃ (369 uL, 3 mmol) was sequentially added to a 5 mL dry toluene solution of the catalyst **1** (4 mol%, 0.050 mmol) and the closed reaction vessel was placed on preheated (110 °C) oil bath with stirring. After stipulated time intervals (1 h, 3 h and 6 h) 200 uL of aliquots were taken out with hypodermic needle and quenched with 800 uL of EtOAc. Samples were subjected to GC-MS analysis using mesitylene as internal standard to determine the conversions (Table S6).

Figure S36. Reaction profiles for benzamide reduction in the absence (a), and in the presence of equimolar benzonitrile (b). Data are averaged from three reactions.

Scheme S9. Proposed reaction pathway.

4.4. Silylative dehydration mechanism for primary amide

Scheme S10. Proposed reaction pathway for silylative dehydration.

4.5. Identification of side product (siloxanes)

To identify the side product siloxane, ESI-MS analysis of the reaction mixture obtained after the catalytic primary amide reduction was performed. In the ESI-MS spectrum, different mass distribution for polysiloxanes was observed instead of disiloxane. To confirm that polysiloxanes were obtained from the polymerization of disiloxane, a control experiment was performed (scheme 10). At first, the disiloxane (PhH₂SiOSiH₂Ph) was synthesized according to a literature procedure,¹⁰ and then reacted with catalyst **1** under the standard catalytic conditions. The reaction mixture obtained after 12 h was subjected to ESI-MS analysis (Figure S36). The same mass distribution pattern was observed as that with primary amide reduction. This experiment suggests that the disiloxane was converted to polysiloxane.

Scheme S11. Control experiment to show the formation of polysiloxanes.

Figure S37. ESI-MS spectra of reaction mixture of (**a**) catalytic primary amide reduction (**b**) control experiment.

5. Spectral data of the primary amides

(q, J = 270.5 Hz).

5.66 (s, 1H)), 5.31 (s, 1H), 4.03 (s, 2H).

¹H (CDCl₃, 500 MHz): δ 7.77 (br, s, 1H), 7.68 (d, *J* = 2.9 Hz, 1H), 6.95 (dd, *J* = 2.8 Hz, 8.9 Hz, 1H), 6.85 (d, *J* = 8.6 Hz, 1H), 6.11 (br, s, 1H), 3.85 (s, 3H), 3.74 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 166.8, 153.8, 152.1, 121.3, 120.0, 115.6, 113.0, 56.4, 55.8.

¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.0 Hz, 1H), 7.89 (d, *J* = 8.0 Hz, 1H), 7.83 (d, *J* = 7.6 Hz, 1H), 7.58 – 7.51 (m, 2H), 7.47 – 7.41 (m, 2H),

¹H (CDCl₃, 500 MHz): δ 7.91 (d, *J* = 9.9 Hz, 2H), 7.71 (d, *J* = 12.9 Hz, 2H), 6.11 (br, s, 1H), 5.82 (br, s, 1H); ¹³C NMR DMSO-D₆, 100 MHz): δ 169.3, 140.7, 133.7 (q, *J* = 31.6 Hz), 130.9, 127.8 (q, *J* = 3.74 Hz), 126.5

S43

NH₂

P NH₂

MeOCO

¹H-NMR (400 MHz, DMSO-d₆): δ 8.51 (s. 2H), 8.47 (br. s. 1H), 8.21 (s, 1H) 7.86 (br. s. 1H). ¹³C NMR (100 MHz, CD₃OD): δ 168.62, 137.63, 133.13 (q. *J* =33.75 Hz), 129.36, 126.16 (q. *J* =3.73 Hz), 124.59 (q. *J* = 272.01 Hz).

¹H (CDCl₃, 500 MHz): δ 7.97 (s, 2H), 7.79 (s, 2H), 3.83 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 169.48, 166.4, 137.3, 132.77, 129.5, 127.3, 52.2.

Spectral data of the tertiary amides

NH₂

¹H NMR (400 MHz, CDCl₃): δ 7.34 (s, 5H), 3.05 (s, 3H), 2.92 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 136.2, 129.4, 128.2, 126.9, 39.5, 35.2.

¹H NMR (CDCl₃, 500 MHz): δ 7.37-7.32 (m, 5H), 3.50 (br, s, 2H), 3.25 (br, s, 2H), 1.24 (br, s, 3H), 1.09 (br, s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 171.4, 137.3, 129.1, 128.5, 128.4, 126.3, 43.3, 39.3, 14.2, 12.9.

¹H NMR (CDCl₃, 500 MHz): δ 7.51-7.49 (m, 2H), 7.40-7.34 (m, 7H), 7.30 (t, *J* = 7.1 Hz, 4H), 7.15 (br, d, *J* = 6.0 Hz, 2H), 4.71 (s, 2H), 4.40 (s, 2H); ¹³C NMR (CDCl₃, 125 MHz): δ 172.2, 136.2, 129.60, 128.5, 128.4, 127.5, 127.0, 126.6, 51.4, 46.8.

S44

¹H NMR (CDCl₃, 500 MHz): δ 7.50-7.48 (m, 2H), 7.44-7.36 (m, 6H), 7.32 (d, *J* = 5.7 Hz, 1H), 7.20 (m, 1H), 4.76 (s, 1H), 4.51 (s, 1H), 2.89 th (d, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.3, 171.6, 137.1, 136.7, 136.3, 131.5, 129.6, 129.0, 128.9, 128.8, 128.5, 128.2, 127.6, 127.0, 126.8, 55.1, 50.8, 37.0, 33.2.

¹H NMR (400 MHz, CDCl₃): δ 7.32-7.13 (m, 8H), 7.07-7.10 (m, 2H), 4.58 (s, 2H), 4.42 (s, 2H), 2.20 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.2, 137.3, 136.4, 128.8, 128.6, 128.3, 127.7, 127.6, 126.4, 50.8, 48.0, 21.7.

¹H NMR (CDCl₃, 400 MHz): δ 7.30-7.14 (m, 8H), 6.95-6.93 (m, 2H), 4.84 (s, 2H), 2.13 (t, *J* = 11.5 Hz, 1H), 1.72-1.51 (m, 7H), 1.24-1.13 (m, 1H), 0.98-0.88 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 176.3, 142.6, 137.9, 129.5, 128.7, 128.4, 128.3, 127.9, 127.2, 52.9, 41.7, 29.5, 25.7, 25.5.

¹H NMR (CDCl₃, 400 MHz): δ 7.36 (s, 5H), 3.69 (br, s, 2H), 3.31 (s, 2H), 1.65 (s, 4H), 1.49 (br, s, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 170.4, 136.5, 129.4, 128.3, 48.8, 43.2, 26.6, 25.7, 24.6.

¹H NMR (CDCl₃, 400 MHz): δ 7.46-7.44 (m, 2H), 7.33-7.32 (m, 3H), 3.46 (br, s, 4H), 1.84 (s, 4H); ¹³C NMR (CDCl₃, 125 MHz): δ 169.4, 136.9, 129.5, 127.9, 126.8, 49.1, 46.2, 25.2.

¹H NMR (CDCl₃, 500 MHz): δ 7.41-7.37 (m, 5H), 3.70 (br, s, 6H), 3.45 (s, 2H); ¹³C NMR (CDCl₃, 125 MHz): δ 170.5, 135.4, 129.9, 128.6, 127.1, 66.9, 48.4, 42.6.

¹H NMR (CDCl₃, 400 MHz): δ 7.39 (s, 10H), 3.72 (br, s, 4H), 3.51 (br, s, 4H); ¹³C NMR (CDCl₃, 100 MHz): δ 170.8, 135.1, 130.2, 128.7, 127.1, 47.9, 42.5.

¹H NMR (CDCl₃, 400 MHz): δ 7.59-7.37 (m, 5H), 3.93 (t, *J* = 6.7 Hz, 2H), 2.58 (t, *J* = 7.9 Hz, 2H), 2.12 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 174.6, 170.8, 134.6, 132.0, 129.0, 127.8, 46.6, 33.4, 17.7.

S45

275.4 Hz), 121.8 (q, J = 275.4 Hz), 113.6, 48.8, 43.5, 26.5, 25.5, 24.3.

MeOOC

128.1, 126.6, 26.2, 24.7.

¹H NMR (CDCl₃, 500 MHz): δ 7.38 (dd, J= 1.2, 4.7 Hz, 1H), 7.22 (dd, J = 1.2, 3.6 Hz, 1H), 6.99 (dd, J = 3.6, 4.7 Hz, 1H), 3.62 (t, J = 5.5 Hz, 4H), 1.66-1.58 (m, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 163.5, 137.7, 128.3,

¹H NMR (CDCl₃, 400 MHz): δ 7.36-7.21 (m, 4H), 3.09 (s, 3H), 2.81 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 168.6, 135.1, 134.3, 128.6, 127.2, 38.1, 34.7.

¹H NMR (CDCl₃, 400 MHz): δ 8.40 (d, J = 7.3 Hz, 1H), 7.74-7.72 (m, 2H), 7.62-7.57 (m, 2H), 7.54-7.50 (m, 2H), 7.38 (tt, J = 7.3 Hz, J = 1.2 Hz, 1H), 7.33-7.28 (m, 2H), 6.60 (d, J = 3.7 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 168.8, 136.1, 134.6, 131.9, 130.8, 129.2, 128.6, 127.7, 125.0, 124.0, 116.4, 108.6.

¹H NMR (CDCl₃, 500 MHz): δ 7.95 (d, J = 9.9 Hz, 2H), 7.37 (d, J = 10.7 Hz, 2H), 3.87 (s, 3H), 3.48 (s, 2H), 2.34 (br s, 4H), 1.57-1.52 (m, 4H), 1.47 (br, 2H); ¹³C NMR (CDCl₃, 125 MHz): δ 169.1, 166.3, 140.7, 130.7, 129.6, 126.6, 52.2, 48.5, 43.0, 26.4, 25.4, 24.4.

¹H NMR (CDCl₃, 400 MHz): δ 7.33 (dd, J = 1.24 Hz, 8.5 Hz, 2H), 6.87 (dd, J = 1.24 Hz, 8.5 Hz, 2H), 3.78 (d, J = 1.8 Hz, 3H), 3.50 (br s, 4H);1.64 (br s, 2H), 1.63 (br s, 4H);¹³C NMR (CDCl₃, 100 MHz): δ 170.4,

¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 8.0 Hz, 2H), 7.41 (d, J = 8.0 Hz, 2H), 3.62 (m, 2H), 3.19 (m, 2H), 1.57 (m, 4H), 1.41 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 140.1 (q, J = 1.3 Hz), 131.1 (q, J = 32.6 Hz), 127.1,

160.5, 128.9, 128.6, 113.6, 55.4, 26.1, 24.7.

6. Spectral data of the isolated primary amine salts

S47

F ₃ C NH ₂ .HCl	¹ H NMR (DMSO-D ₆ , 500 MHz): δ 8.75 (br, s, 3H), 7.77-7.73 (m, 4H), 4.10 (s, 2H); ¹³ C NMR (DMSO-D ₆ , 125 MHz): δ 138.7, 129.7, 128.8 (q, <i>J</i> = 31.0 Hz) 125.2, 123.0, 41.5; ¹⁹ F NMR (470 MHz, DMSO-D ₆ , 292 K): – 61.01 (CF ₃).
F ₃ C NH ₂ .HCl CF ₃	¹ H (DMSO-D ₆ , 500 MHz): δ 8.75 (br, s, 3H), 8.31 (s, 2H), 8.10 (s, 1H), 4.23 (s, 2H); ¹³ C NMR (DMSO-D ₆ , 125 MHz): δ 137.4, 130.3, 130.1 (q, <i>J</i> = 33.3 Hz) 124.2. (q, <i>J</i> = 270.6 Hz) 121.9, 40.9; ¹⁹ F NMR (470 MHz, DMSO-D ₆ , 292 K): -61.23 (C <i>F</i> ₃).
MeOCO NH ₂ .HCl	¹ H (DMSO-D ₆ , 500 MHz): δ 8.73 (br, s, 3H), 7.95 (d, <i>J</i> = 8.6 Hz, 2H), 7.65 (d, <i>J</i> = 8.0 Hz, 2H), 4.07 (d, <i>J</i> = 4.8 Hz, 2H), 3.83 (s, 3H); ¹³ C NMR (DMSO-D ₆ , 125 MHz): δ 165.6, 139.1, 129.1, 128.9, 51.9, 41.4
NC NH2.HCI	¹ H NMR (DMSO-D ₆ , 500 MHz): δ 8.64 (br, s, 3H), 7.85 (s, 2H), 7.67 (s, 2H), 4.07 (s, 2H); ¹³ C NMR (DMSO-D ₆ , 125 MHz): δ 140.2, 132.9, 130.4, 119.1, 111.6, 42.3.
NH ₂ .HCl	¹ H NMR (DMSO-D ₆ , 500 MHz): δ 8.13 (br, s, 3H), 7.28 (t, <i>J</i> = 7.4 Hz, 2H), 7.21-7.16 (m, 3H), 2.73 (t, <i>J</i> = 8.0 Hz, 2H), 2.63 (t, <i>J</i> = 7.4 Hz, 2H), 1.88-1.82 (m, 2H); ¹³ C NMR (DMSO-D ₆ , 125 MHz): δ 140.8, 128.2, 128.1, 125.8, 38.1, 31.7, 28.5.
NH2.HCl	¹ H NMR (CD ₃ OD, 400 MHz): δ 9.04 (s, 1H), 8.92 (d, <i>J</i> = 4.2 Hz, 1H), 8.73 (d, <i>J</i> = 7.9 Hz, 1H), (t, <i>J</i> = 6.1 Hz, 1H), 4.41 (s, 2H); ¹³ C NMR (CD ₃ OD, 100 MHz): δ 147.1, 142.9, 142.5, 133.6, 127.5, 39.6.
NH2.HCI	¹ H NMR (DMSO-D ₆ , 500 MHz): δ 9.17 (br, s, 3H), 8.98 (d, <i>J</i> = 5.1 Hz, 2H), 8.21 (d, <i>J</i> = 5.7 Hz, 2H), 4.36 (br, s, 2H); ¹³ C NMR (DMSO-D ₆ , 125 MHz): δ 151.9, 141.8, 126.3, 41.0.
NH ₂ .HCl	¹ H NMR (DMSO-D ₆ , 500 MHz): δ 8.50 (br, s, 3H), 7.67 (s, 1H), 6.48 (d, <i>J</i> = 32.0 Hz, 2H), 3.99 (s, 2H); ¹³ C NMR (DMSO-D ₆ , 125 MHz): δ 147.7, 143.5, 110.9, 110.1, 34.9.
NH ₂ .HCl	¹ H NMR (DMSO-D ₆ , 500 MHz): δ 8.55 (br, s, 3H), 7.51 (s, 1H), 7.23 (s, 1H), 7.00 (s, 1H), 4.15 (s, 2H); ¹³ C NMR (DMSO-D ₆ , 125 MHz): δ 134.8, 128.6, 126.8, 126.7, 36.2.
NH ₂ .HCl	¹ H NMR (DMSO-D ₆ , 400 MHz): δ 8.21 (br, s, 3H), 7.26 – 7.19 (m, 5H), 2.94 (s, 2H), 2.86 (s, 2H); ¹³ C NMR (DMSO-D ₆ , 100 MHz): δ 136.8, 128.0, 127.9, 126.0, 39.8, 32.3.

S48

¹H NMR (DMSO-D₆, 400 MHz): δ 7.92 (br, s, 3H), 2.45 (s, 2H), 1.89 (s, 3H), 2.55 (s, 3H), 1.62 – 1.45 (m, 12H,); ¹³C NMR (CDCl₃, 100 MHz): δ 50.4, 39.4, 36.6, 32.1, 27.8.

NH₂.HCl

NH2.HCI

¹H NMR (DMSO-D₆, 500 MHz): δ 8.30 (br, s, 3H), 8.15 (d, *J* = 9.9 Hz, 1H), 7.90 (d, *J* = 9.9 Hz, 1H), 7.79 (d, *J* = 9.9 Hz, 1H), 7.56-7.47 (m, 2H), 7.41-7.37 (m, 2H), 3.36 (d, *J* = 9.9 Hz, 2H), 3.05-3.00 (m, 2H); ¹³C NMR (DMSO-D₆, 125 MHz): δ 134.0, 131.81, 129.2, 127.9, 127.4, 126.9, 126.3, 126.2, 124.0, 30.6.

¹H NMR (DMSO-D₆, 400 MHz): δ 8.03 (br, s, 3H), 2.44 (br, d, J = 22.6 Hz, NH₂-HCI 2H), 1.60 - 1.48 (m, 6H,) 1.02 (br, s, 3H), 0.78 (br, s, 2H); ¹³C NMR (DMSO-D₆, 100 MHz): δ 44.8, 35.8, 30.3, 26.1, 25.5.

¹H NMR (DMSO-D₆, 500 MHz): δ 8.05 (br, s, 3H), 2.66 (br, s, 2H), 1.49 (s, 2H), 1.20 (s, 6H), 0.81 (s, 3H); ¹³C NMR (DMSO-D₆, 125 MHz): δ 38.3, 30.3, 26.5, 25.7, 21.5, 13.8.

¹H NMR (DMSO-D₆, 500 MHz): δ 8.00 (br, s, 3H), 2.71 (br, s, 2H), 1.08 (s, ^{NH₂-HCl} 3H); ¹³C NMR (DMSO-D₆, 125 MHz): δ 33.1, 11.6.

¹H NMR (DMSO-D₆, 500 MHz): δ 8.02 (br, s, 3H), 2.64 (s, 2H), 1.52 (s, 2H), 0.84 (s, 3H); ¹³C NMR (DMSO-D₆, 125 MHz): δ 40.9 (merged in DMSO-D₆ confirmed by DEPT (135) NMR), 19.9, 10.6.

¹H NMR (DMSO-D₆, 400 MHz): δ 8.56 (br, s, 3H), 7.47 (d, *J* = 6.7 Hz, 2H), 7.37 – 7.30 (m, 3H), 3.93 (s, 0.054H); ¹³C NMR (DMSO-D₆, 100 MHz): δ 134.5, 129.5, 129.0, 128.9, 42.5 – 41.6 (quintet for CD₂); ESI-MS calcd. for [M]⁺ M=C₇H₈D₂N: 110.09367, found: 110.0964.

Spectral data for the isolated tertiary amines

¹H NMR (CDCl₃, 400 MHz): δ 7.37 – 7.22 (m, 5H), 3.38 (s, 2H), 2.14 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ 138.2, 129.4, 128.3, 127.2, 64.2, 45.0.

¹H NMR (D₂O, 400 MHz): δ 7.41 – 7.39 (m, 5H), 4.20 (s, 2H), 3.14 – 3.05 (m, 4H), 1.19 (t, *J* = 7.32 Hz, 6H); ¹³C NMR (D₂O, 100 MHz): δ 130.8, 130.6, 130.0, 129.3, 55.9, 46.7, 8.1.

S49

¹H NMR (CDCl₃, 400 MHz): δ 7.36 – 7.25 (m, 7H), 7.23 (t, J = 7.3 Hz, 3H), 3.51 (s, 4H), 2.17 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 139.4, 129.0, 128.3, 127.0, 61.9, 42.3.

¹H NMR (CDCl₃, 400 MHz): δ 7.43 – 7.26 (m, 10H), 3.61 (s, 4H), 2.57 – 2.52 (q, 2H) 1.11 (t, J = 6.7 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 140.1, 128.9, 128.2, 126.8, 57.8, 47.2, 12.0.

¹H NMR (D₂O, 400 MHz): δ 7.38 (s, 5H), 4.24 (s, 2H), 1.32 (d, J = 6.7 Hz, 6H), 1.25 (d, J = 6.7 Hz, 6H); ¹³C NMR (D₂O, 100 MHz): δ 130.7, 130.6, 129.6, 129.1, 54.3, 50.0, 17.8, 17.1.

¹H NMR (CDCl₃, 400 MHz): δ 7.30 – 7.14 (m, 7H), 6.67 – 6.62 (m, 3H), 4.59 (s, 2H), 3.26 (d, J = 6.7 Hz, 2H), 1.83 – 1.66 (m, 6H), 1.26 – 1.17 (m, 3H), 1.00 – 0.92 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 148.8, 138.9, 129.2, 128.6, 126.7, 126.6, 115.8, 112.3, 58.5, 55.4, 37.0, 31.5, 26.7, 26.2.

¹H NMR (CDCl₃, 400 MHz): δ 7.31 – 7.22 (m, 5H), 3.46 (s, 2H), 2.37 (t, *J* = 4.9 Hz, 4H) 1.57 (m, 4H) 1.42 (m, 2H); 13 C NMR (CDCl₃, 100 MHz): δ 138.7, 129.3, 128.2, 127.0, 126.9, 64.0, 54.6, 26.1, 24.5.

¹H NMR (CDCl₃, 400 MHz): δ 7.36 – 7.28 (m, 4H), 7.25 (t, J = 3.1 Hz, 1H), 3.61 (s, 2H), 2.50 (m, 4H), 1.77 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz): δ 139.3, 129.1, 128.3, 127.0, 60.8, 54.2, 23.5.

¹H NMR (CDCl₃, 400 MHz): δ 7.41 – 7.26 (m, 5H), 3.70 (t, J = 4.3 Hz, 4H), 3.49 (s, 2H) 2.43 (t, J = 4.3 Hz, 4H); ¹³C NMR (CDCl₃, 100 MHz): δ 137.9, 129.3, 128.3, 127.2, 67.1, 63.6, 53.7.

¹H NMR (CDCl₃, 400 MHz): δ 7.31 – 7.23 (m, 10H), 3.51 (s, 4H), 2.48 (s, Ph 8H); ¹³C NMR (CDCl₃, 100 MHz): δ 138.2, 129.3, 128.3, 127.0, 63.2, 53.2.

Ph

¹H NMR (CDCl₃, 400 MHz): δ 7.38 – 7.23 (s, 5H), 7.35-7.30 (m, 5H), 3.78 (br, s, 2H), 3.52 (s, 2H), 3.40 (br, s, 2H), 2.51 (br, s, 2H), 2.37 (br, s, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 170.4, 137.6, 135.9, 129.7, 129.2, 128.5, 128.4, 127.4, 127.1, 63.0, 53.5, 52.9, 47.8, 42.2.

S50

¹H NMR (CDCl₃, 400 MHz): δ 7.22 (d, *J* = 8.5 Hz, 2H), 6.84 (d, *J* = 8.5 Hz, 2H), 3.78 (s, 3H), 3.42 (s, 2H) 2.37 (br, s, 4H), 1.58 – 1.56 (m, 4H) 1.44-1.38 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 158.7, 130.6, 130.2, 113.5, 63.2, 55.3, 54.3, 25.9, 24.4.

¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.0 Hz, 2H), 7.43 (d, *J* = 8.0 Hz, 2H), 3.49 (s, 2H), 2.36 (br, m, 4H), 1.58 – 1.54 (m, 4H), 1.44 – 1.43 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 143.1, 140.1 (q, *J* = 1.3 Hz), 131.1 (q, *J* = 32.6 Hz), 127.1, 125.4 (q, *J* = 3.8 Hz), 123.7 (q, *J* = 272.3 Hz), 63.3, 54.6, 26.0, 24.3.; ¹⁹F NMR (470 MHz, CDCl₃, 292 K): –62.45 (C*F*₃).

¹H NMR (CDCl₃, 400 MHz): δ 7.91 (s, 1H), 7.85 (s, 2H), 3.73 (br, 2H), 3.32 (br s, 2H); 1.71 (br s, 4H), 1.56 (br s, 2H);¹³C NMR (CDCl₃, 125 MHz): δ 167.0, 138.4, 132.0 (q, *J* = 35.7 Hz), 128.9, 127.2, 124.0 (q, *J* = 275.4 Hz), 121.8 (q, *J* = 275.4 Hz),113.6, 48.8, 43.5, 26.5, 25.5, 24.3; ¹⁹F NMR (470 MHz, CDCl₃, 292 K): -62.66 (C*F*₃).

¹H NMR (CDCl₃, 400 MHz): δ 7.95 (d, *J*= 7.7 Hz, 2H), 7.37 (d, *J*= 7.7 Hz, 2H), 3.87 (s, 3H), 3.48 (s, 2H), 2.34 (br s, 4H), 1.54 (m, 4H), 1.40 (m, 2H);¹³C NMR (CDCl₃, 100 MHz): δ 167.1, 144.2, 129.5, 129.0, 128.8, 63.5, 54.6, 52.0, 25.9, 24.3.

¹H NMR (CDCl₃, 400 MHz): δ 7.21-7.19 (m, 1H), 6.94-6.88 (m, 2H), 3.69 (s, 2H), 2.41 (br m, 4H), 1.61-1.55 (m, 4H), 1.44-1.41 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 142.1, 126.4, 125.9, 124.7, 57.9, 54.2, 26.0, 24.4.

MeOOC

¹H NMR (DMSO-D₆, 500 MHz): δ 11.04 (br, s, 1H), 7.76 (d, *J* = 5.7, Hz, 1H), 7.42 (d, *J* = 6.3, Hz, 1H), 7.42 (t, *J* = 8.5 Hz, 2H), 4.27 (s, 2H), 2.57 (s, 6H); ¹³C NMR (DMSO-D₆, 125 MHz): δ 135.1, 134.3, 128.6, 127.2, 38.1, 34.7.

Spectral data for the isolated secondary amines

OMe

¹H NMR (CDCl₃, 500 MHz): δ 6.91 (d, *J* = 8.6 Hz, 2H), 6.48 (d, *J* = 8.0 Hz, 2H), 3.06 (q, *J* = 6.8 Hz, 2H), 2.16 (s, 3H), 1.77 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 145.9, 129.6, 126.6, 113.1, 39.0, 20.3, 14.8.

125 MHz): δ 134.4, 130.4, 130.0, 122.6, 47.4, 10.2.

¹H NMR (D₂O, 500 MHz): δ 7.49 (d, *J* = 7.4 Hz, 3H), 7.38 (d, *J* = 7.1 Hz, 2H), 3.39 (q, *J* = 7.1 Hz, 2H), 1.21 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (CDCl₃,

¹H NMR (CDCl₃, 500 MHz): δ 6.72-6.70 (m, 2H), 6.55-6.53 (m, 2H), 3.67 (s, 3H), 3.04 (q, J= 7.4 Hz, 2H), 1.17 (t, J= 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 152.4, 142.1, 114.9, 114.5, 55.8, 39.7, 14.8.

¹H NMR (CD₃OD, 500 MHz): δ 7.57 (s, 1H), 7.54 (d, *J* = 5.7 Hz, 2H), 7.44 (d, *J* = 5.7 Hz, 1H), 3.44 (q, *J* = 6.7 Hz, 2H); ¹³C NMR (CD₃OD, 125 MHz): δ 1.34 (t, *J* = 6.8 Hz, 3H); 137.8, 136.8, 132.8, 131.0, 124.2, 122.4, 48.4, 11.4.

¹H NMR (D₂O, 500 MHz): δ 7.41 (s, 5H), 4.13 (s, 2H), 3.05 (q, *J* = 6.8 Hz, 2H), 1.21 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (D₂O, 125 MHz): δ 131.0, 129.7, 129.6, 129.3, 50.6, 42.5, 10.5.

 ¹H NMR (D₂O, 500 MHz): δ 7.25 (q, *J* = 10.3 Hz, 4H), 4.07 (s, 2H), 3.01 (q, *J* = 6.9 Hz, 2H), 2.26 (s, 3H), 1.19 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (D₂O, 125 MHz): δ 140.1, 129.8, 129.7, 127.9, 50.4, 42.4, 20.3, 10.5.

HCI CF3

¹H NMR (CD₃OD, 500 MHz): δ 7.76 (d, *J* = 8 Hz, 2H), 7.71 (d, *J* = 8.6 Hz, 2H), 4.28 (s, 2H), 3.14 (q, *J* = 6.9 Hz, 2H), 1.34 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (CD₃OD, 125 MHz): δ 137.0, 131.7, 127.0, 126.9, 51.2, 44.1, 11.4; ¹⁹F NMR (470 MHz, CD₃OD, 292 K): -64.34 (CF₃).

¹H NMR (CDCl₃, 400 MHz): δ 7.35 – 7.30 (m, 8H), 7.27 – 7.23 (m, 2H), 3.81 (s, 4H), 1.68 (br, s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 140.4, 128.5, 128.3, 127.1, 53.3.

S52

¹H NMR (D₂O, 500 MHz): δ 7.61-7.22 (m, 5H), 3.34-3.0 (m, 2H), 1.78-1.39 (m, 6H), 1.22-1.00 (m, 5H); ¹³C NMR (D₂O, 125 MHz): δ 135.0, 130.4, 129.9, 122.4, 58.0, 34.2, 29.8, 25.5, 25.0.

139.5, 129.4, 128.8, 127.6, 127.3, 117.7, 112.7, 48.4.

¹H NMR (CDCl₃, 400 MHz): δ 7.40 – 7.34 (m, 4H), 7.30 (d, *J* = 6.9 Hz, 1H), 7.19 (t, *J* = 7.6 Hz, 2H), 6.74 (t, *J* = 6.1 Hz, 1H), 6.65 (d, *J* = 8.4 Hz, 2H), 4.34 (s, 2H), 4.04 (br, s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 148.3,

¹H NMR (CD₃OD, 500 MHz): δ 7.27-7.15 (m, 5H), 3.02 (d, *J* = 5.7 Hz, 2H), 2.97 (br, s, 2H), 2.70 (br, t, *J* = 6.8 Hz, 2H), 1.98 (br, s, 2H), 1.27 (t, *J* = 5.7 Hz, 3H); ¹³C NMR (CD₃OD, 125 MHz): δ 141.5, 129.5, 129.3, 127.3, 48.1, 44.2, 33.5, 29.0, 11.0.

MeO O O

¹H NMR (D₂O, 500 MHz): δ 7.99 (d, *J* = 8.0 Hz, 2H), 7.49 (d, *J* = 8.6 Hz, 2H), 4.20 (s, 2H), 3.84 (s, 3H), 2.65 (s, 3H); ¹³C NMR (D₂O, 125 MHz): δ 169.0, 136.1, 130.7, 130.2, 129.9, 52.8, 51.9, 32.4.

¹H NMR (CDCl₃, 500 MHz): δ 7.25 (t, *J* = 6.9 Hz, 2H), 7.17 (m, 4H), 7.07 (td, *J* = 7.4, 1.1 Hz, 1H), 6.66 (dd, *J* = 8.7, 1.1 Hz, 1H), 6.57 (td, *J* = 7.4, 1.7 Hz, 1H), 3.36 (t, *J* = 7.4 Hz, 2H), 2.89 (t, *J* = 7.4 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz): δ 143.4, 138.8, 129.2, 128.7, 128.6, 127.8, 126.5, 119.5, 117.5, 111.6, 45.1, 35.3.

¹H NMR (D₂O, 500 MHz): δ 7.42-7.37 (m, 7H), 7.13 (t, *J* = 8.6 Hz, 2H), 4.18 (d, *J* = 3.4 Hz, 4H); ¹³C NMR (D₂O, 125 MHz): δ 164.2, 132.2, 132.1, 129.9, 129.7, 129.3, 116.2, 116.1, 50.6, 49.9; ¹⁹F NMR (470 MHz, D₂O, 292 K): -112.28.

¹H NMR (D₂O, 500 MHz): δ 3.18 (t. *J* = 6.8 Hz, 4H), 1.90 (m, 4H); ¹³C NH• HCl NMR (D₂O, 125 MHz): δ 45.6, 23.7.

Figure S38. ¹H (top) ¹³C (bottom) NMR spectra in DMSO-D₆.

Figure S39. ¹H (top) ¹³C (bottom) NMR spectra in DMSO-D₆.

Figure S40. ¹H (top) ¹³C (bottom) NMR spectra in DMSO-D₆.

Figure S41. ¹H (top) ¹³C (bottom) NMR spectra in D₂O.

Figure S42. ¹H (top) ¹³C (bottom) NMR spectra in DMSO-D₆.

Figure S44. ¹H (top) ¹³C (bottom) NMR spectra in DMSO-D₆.

Figure S45. ¹H (top) ¹³C (bottom) NMR spectra in DMSO-

Figure S46. ¹H (top) ¹³C (bottom) NMR spectra in DMSO-

Figure S47. ¹H (top) ¹³C (bottom) NMR spectra in DMSO-D₆.

Figure S48. ¹H (top) ¹³C (bottom) NMR spectra in DMSO-D₆.

Figure S49. ¹⁹F NMR spectrum in DMSO-D₆.

Figure S51. ¹³C (top) ¹⁹F (bottom) NMR spectra in DMSO-D₆.

Figure S52. ¹H (top) ¹³C (bottom) NMR spectra in DMSO-D₆.

Figure S53. ¹H (top) ¹³C (bottom) NMR spectra in DMSO-

Figure S54. ¹H (top) ¹³C (bottom) NMR spectra in DMSO-D₆.

Figure S55. ¹H (top) ¹³C (bottom) NMR spectra in DMSO-D₆.

Figure S56. ¹H (top) ¹³C (bottom) NMR spectra in DMSO-D₆.

Figure S57. ¹H (top) ¹³C (bottom) NMR spectra in DMSO-D₆.

Figure S58. ¹H (top) ¹³C (bottom) NMR spectra in DMSO-D₆.

Figure S59. ¹H (top) ¹³C (bottom) NMR spectra in DMSO-D₆.

Figure S63. ¹H (top) ¹³C (bottom) NMR spectra in DMSO-D₆.

Figure S64. ¹H (top) ¹³C (bottom) NMR spectra in CDCl₃.

רועווב שסט. ייט מווע שבר ו (ושט) ואואות אפטוומ ווו שואטט-ש6.

Figure S67. ¹H (top) ¹³C (bottom) NMR spectra in DMSO-D₆.

Figure S69. ¹H (top) ¹³C (bottom) NMR spectra in CDCl₃.

Figure S70. ¹H (top) ¹³C (bottom) NMR spectra in D_2O .

Figure S71. ¹H (top) ¹³C (bottom) NMR spectra in CDCl₃.

Figure S72. ¹H (top) ¹³C (bottom) NMR spectra in CDCl₃.

Figure S74. ¹H (top) ¹³C (bottom) NMR spectra in D_2O .

Figure S75. ¹H (top) ¹³C (bottom) NMR spectra in CDCl₃.

Figure S76. ¹H (top) ¹³C (bottom) NMR spectra in CDCl₃.

Figure S77. ¹H (top) ¹³C (bottom) NMR spectra in CDCl₃.

Figure S78. ¹H (top) ¹³C (bottom) NMR spectra in CDCl₃.

Figure S79. ¹H (top) ¹³C (bottom) NMR spectra in CDCl₃.

Figure S80. ¹H (top) ¹³C (bottom) NMR spectra in CDCI₃.

Figure S81. ¹H (top) ¹³C (bottom) NMR spectra in CDCl₃.

Figure S82. ¹H (top) ¹³C (bottom) NMR spectra in CDCl₃.

Figure S83. ¹H (top) ¹³C (bottom) NMR spectra in CDCl₃.

Figure S84. ¹H (top) ¹³C (bottom) NMR spectra in CDCl₃.

Figure S85. ¹H (top) ¹³C (bottom) NMR spectra in CDCl₃.

Figure S86. ¹H (top) ¹³C (bottom) NMR spectra in DMSO-D₆.

Figure S87. ¹H (top) ¹³C (bottom) NMR spectra in D₂O.

Figure S88. ¹H (top) ¹³C (bottom) NMR spectra in CDCl₃.

Figure S89. ¹H (top) ¹³C (bottom) NMR spectra in CDCl₃.

Figure S90. ¹H (top) ¹³C (bottom) NMR spectra in CD₃OD.

Figure S91. ¹H (top) ¹³C (bottom) NMR spectra in D_2O .

Figure S92. ¹H (top) ¹³C (bottom) NMR spectra in D₂O.

Figure S93. ¹H (top) ¹³C (bottom) NMR spectra in

Figure S94. ¹⁹F NMR spectrum in D_2O .

Figure S95. ¹H (top) ¹³C (bottom) NMR spectra in CDCl₃.

Figure S96. ¹H (top) ¹³C (bottom) NMR spectra in CDCl₃.

Figure S97. ¹H (top) ¹³C (bottom) NMR spectra in D_2O .

Figure S98. ¹H (top) ¹³C (bottom) NMR spectra in

Figure S99. ¹H (top) ¹³C (bottom) NMR spectra in D_2O .

Figure S100. ¹H (top) ¹³C (bottom) NMR spectra in

Figure S101. ¹H (top) ¹³C (bottom) NMR spectra in D₂O.

Figure S102. ¹⁹F NMR spectrum in D₂O.

Figure S103. ¹H (top) ¹³C (bottom) NMR spectra in

Figure S104. ¹H NMR spectrum for H₂ signal at δ 4.59 ppm in C₆D₆ after reaction of benzamide under the catalytic condition in J-Young NMR tube.

7. References

(1). A. Sarbajna, P. Pandey, S. M. W. Rahaman, K. Singh, A. Tyagi, P. H. Dixneuf and J. K. Bera, *ChemCatChem* 2017, **9**, 1397–1401.

(2). M. H. Al-Huniti, J. RiveraChavez, K. L. Colo n, J. L. Stanley, J. E. Burdette, C. J. Pearce, N. H. Oberlies and M. P. Croatt, *Org. Lett.* 2018, **20**, 6046–6050.

(3). (a) S. Zhou, K. Junge, D. Addis, S. Das and M. Beller, *Angew. Chem. Int. Ed.* 2009, **48**, 9507–9510;
(b) S. Das, D. Addis, S. Zhou, K. Junge and M. Beller, *J. Am. Chem. Soc.* 2010, **132**, 1770–1771; (c) F. Tinnis, A. Volkov, T. Slagbrand and H. Adolfsson, *Angew. Chem., Int. Ed.* 2016, **55**, 4562–4566.

(4). B. J. Simmons, M. Hoffmann, J. Hwang, M. K. Jackl and N. K. Garg, Org. Lett. 2017, 19, 1910–1913.

(5). SAINT+ Software for CCD Diffractometers; Bruker AXS, Madison, WI, 2000.

(6) G. M. Sheldrick SADABS Program for Correction of Area Detector Data, University of Göttingen, Göttingen, Germany, (1999).

(7). (a) *SHELXTL Package v. 6.10*; Bruker AXS, Madison, WI, 2000; (b) G. M. Sheldrick, *SHELXS-86 and SHELXL-97*; University of Göttingen, Göttingen, Germany, 1997.

(8). (a) J. L. Atwood and L. J. Barbour, *Cryst. Growth Des.* 2003 **3**, 3; (b) L. J. Barbour, *J. Supramol. Chem.* 2001, **1**, 189; (c) A. L. Spek, *ActaCryst.* D65 (2009) 148.

(9). K. Brandenburg and H. Putz, Diamond v3.1e; Cryst Impact GbR, Bonn, Germany, (2005).

(10). J. Buonomo, A. C. G. Eiden and C. C. Aldrich, Synthesis 2018, 50, 278–281.