Controllable synthesis of urchin-like hierarchical superstructure MOFs with high catalytic activity and stability

Zhanke Wang, a Lei Ge, *a,b Guangxu Zhang,*c Yao Chen, c Rongrong Gao, c Hao Wangb and Zhonghua Zhu a

a. School of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia
b. Centre for Future Material, University of Southern Queensland, Springfield Central, Queensland 4300, Australia
c. School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Hubei 430070, China

* Email: lei.ge@usq.edu.au (L. Ge); zhanggx2002@whut.edu.cn (G. Zhang)
1. Experimental section

Materials
All chemicals, copper (II) nitrate trihydrate (Cu(NO\textsubscript{3})\textsubscript{2}·3H\textsubscript{2}O, 99%), cobaltous nitrate hexahydrate (Co(NO\textsubscript{3})\textsubscript{3}·6H\textsubscript{2}O), manganese(II) nitrate tetrahydrate (Mn(NO\textsubscript{3})\textsubscript{2}·4H\textsubscript{2}O), nano copper oxide (99.9%), micro cuprous oxide (99.9%), nano basic cupric carbonate (99.9%), N,N-dimethylformamide (DMF, 99.5%), ethanol(99.9%), 2-propanol (99.9%) and methanol (99.9%) was purchased from Sinopharm without further purification. 2,5-dihydroxyterephthalic acid (H\textsubscript{2}DHTP, 98%), sodium borohydride (NaBH\textsubscript{4}, 99.5%) was purchased from Aladdin without further purification.

Synthesis of nanosized metal oxide
Cu\textsubscript{2}O nanocube was prepared by adding 60 mL aqueous solution containing 1.2 g NaBH\textsubscript{4} dropwise into a 0.08 M Cu(NO\textsubscript{3})\textsubscript{2} solution under vigorous stirring for 10 min. The black precipitate was washed with water four times and ethanol twice, followed by being dried in a vacuum oven at 50 °C. The nanosize cobalt oxide and manganese oxide were prepared by changing the Cu(NO\textsubscript{3})\textsubscript{2} with relevant nitrite salt.

Nano cobalt oxide and manganese oxide were synthesized by replacing the Cu(NO\textsubscript{3})\textsubscript{2} solution with Co(NO\textsubscript{3})\textsubscript{3} and Mn(NO\textsubscript{3})\textsubscript{2} solution.

Conventional synthesis of MOFs using metal salts
Bulk Cu-MOF-74 was synthesized according to literature with some modification1. 360.9 mg Cu(NO\textsubscript{3})\textsubscript{2}·3H\textsubscript{2}O and 148.6 mg H\textsubscript{2}DHTP was dissolved in 15 mL DMF. After stirring for 15min, the mixture was transferred into an autoclave and heated for 18h at 85 °C. Dark brown solid powders were collected from the bottom of the Teflon-lined autoclave and were washed with methanol six times. The final products were dried in a vacuum oven at 80 °C for 8h.

Bulk CoBTC was synthesized according to literature with some modification2. 727.5 mg Co(NO\textsubscript{3})\textsubscript{3}·6H\textsubscript{2}O and 265.5 mg H\textsubscript{3}BTC was dissolved in a mixture of 5 mL DMF, 5 mL ethanol and 5 mL H\textsubscript{2}O. After stirring for 15min, the mixture was transferred into an autoclave and heated for 20h at 80 °C. The final product was washed with methanol six times and dried in a vacuum oven at 80 °C for 8h.

Bulk MnBTC was synthesized by dissolving 251 mg Mn(NO\textsubscript{3})\textsubscript{2}·6H\textsubscript{2}O and 210 mg H\textsubscript{3}BTC in a mixture of 3 mL DMF, 3 mL ethanol and 3 mL H\textsubscript{2}O. After stirring for 15min, the mixture was transferred into an autoclave and heated for 24h at 120 °C. The final product was washed with methanol six times and dried in a vacuum oven at 80 °C for 8h.

Synthesis of MOFs using metal oxides
The general procedure to prepare Cu-MOF-74 with copper oxide consisted of adding a specific amount of copper complex depending on the selected molar ratio R (R = [H\textsubscript{2}DHTP]/[2Cu\textsubscript{2}O], 0.75 , 1.25 and 2) dissolved in 10 mL H\textsubscript{2}DHTP (0.1M) solution containing 8 mL DMF and 2mL 2-propanol. After stirring for 30min, the mixture was transferred into a stainless-steel autoclave and was heated at 85 °C for 18h. Dark brown solid powders were collected from the bottom of the
Teflon-lined autoclave and were washed with methanol six times. The final products were dried in a vacuum oven at 80 °C for 8h.

The general procedure to prepare Co-BTC with cobalt oxide consisted of mixing 31.3 mg as-prepared cobalt oxide with a specific amount of H$_3$BTC (32.8mg, 43.9mg and 65.6mg) in a mixed solution of 5 mL DMF, 5 mL ethanol and 5 mL H$_2$O. After stirring for 30min, the mixture was transferred into a stainless-steel autoclave and was heated at 85°C for 20h. The final product was washed with methanol six times and dried in a vacuum oven at 80 °C for 8h.

The general procedure to prepare Mn-BTC with manganese oxide consisted of mixing 88 mg as-prepared cobalt oxide with a specific amount of H$_3$BTC (210 mg, 280 mg and 350 mg) in a mixed solution of 3 mL DMF, 3 mL ethanol and 3 mL H$_2$O. After stirring for 30min, the mixture was transferred into a stainless-steel autoclave and was heated at 120°C for 24h. The final product was washed with methanol six times and dried in a vacuum oven at 80 °C for 8h.

Characterization

The X-ray diffraction spectra (XRD) were conducted on an Empyrean X-ray Diffractometer (60 kV, 4 kW) under Cu Kα radiation (λ=0.15406 nm) with a scanning rate of 1 °/min. Scanning electron microscope images were obtained by a Zeiss Ultra Plus scanning electron microscopy. Thermogravimetric analysis (TGA) was conducted on a Perkin Elmer Instruments STA 6000 Thermo Gravimetric Analyser with a heating rate of 5 °C from 30 to 800 °C under Air. The ICP-OES analysis was carried out on a Prodigy7 of LEEMAN LABS. Gas sorption isotherms were carried out on a Micromeritics TriStar II 3020. The N$_2$ sorption measurement was maintained at 77 K after degassing at 150 °C for 12 h. Total specific surface areas were calculated by the BET method. X-ray photoelectron spectra (XPS) were obtained by a Kratos Axis Ultra X-ray Photoelectron spectrometer with a monochromatic Al Kα (1486.6 eV) radiation at 150 W (15 kV, 10 mA). The binding energies were calibrated by the C 1s peak of adventitious carbon at 284.8 eV as a reference.

Catalyst activity evaluation

The prepared catalysts were evaluated in a fixed-bed quartz reactor (inner diameter: 9mm) equipped with a temperature-programming controller. In a typical run, 0.5g catalysts mixed with quartz sand (6g coarse SiO$_2$ particles and around 12g fine SiO$_2$ particle) were placed in the quartz reactor (bed height is 195mm) between two asbestos plugs and pretreated with N$_2$ at a flow rate of 400ml/min for 30 min at 150 °C to remove the moisture in the sample. After colling down to room temperature, mixed flue gas was injected from the top of the reactor at a flow rate of 1250 mL/min (the gas hourly spece velocity is 6045 h$^{-1}$), including 0.1% NO, 0.1% NH$_3$, 5% O$_2$ and N$_2$ as the balance gas. The temperature increased from 100 to 260 °C to measure the concentration of NO and NO$_x$, which was recorded with a portable Gas Analyzer (PG-300). In order to test the stability of the catalyst at operating temperature, the catalysts were reused for 5 times at 220°C for 30min during each run.

NO conversion was calculated by the following equation:

$$C_{NO\%} = \frac{[NOx]_{\text{inlet}} - [NOx]_{\text{outlet}}}{[NOx]_{\text{inlet}}} \times 100$$
2. Figures and Tables

Figure S1. (a) SEM image and (b) XRD pattern (bottom column is peaks of simulated Cu$_2$O) of nanocube Cu$_2$O which was used for the synthesis of CuMOF-74-M, CuMOF-74-N and CuMOF-74-U.

Figure S2. (a) SEM image of Cu$_2$O-M and (b) XRD patterns of Cu$_2$O-M and MOFs samples synthesis by Cu$_2$O-M with different reaction time.

Figure S3. (a) SEM image of nanosized Cu$_2$CO$_3$(OH)$_2$ and (b) XRD patterns of Cu$_2$CO$_3$(OH)$_2$ and MOFs samples synthesis by Cu$_2$CO$_3$(OH)$_2$ with different reaction time.
Figure S4. SEM image of MOF-Cu$_2$CO$_3$(OH)$_2$$_{18}$ h shows that the Cu$_2$CO$_3$(OH)$_2$ is not fully converted to CuMOF-74.

Figure S5. (a) SEM image of nanosized CuO (CuO-N) and (b) XRD patterns of CuO-N and MOFs samples synthesis by CuO-N after reaction for 48 h.
Figure S6. ICP results shown the solubility of Cu$_2$O-N, Cu$_2$O-M, Cu$_2$CO$_3$(OH)$_2$-N and CuO-N.

Figure S7. XRD patterns of CuMOF-74 after reaction for different time.
Figure S8. SEM image of Co-ONS

Figure S9. The SEM images of (a) microrod CoBTC (CoBTC-M), (b) nanorod CoBTC (CoBTC-N), and (c) urchin-shaped CoBTC (CoBTC-U). (d) The XRD patterns of the as-prepared CoBTC samples.
Figure S10. SEM image of bulk CoBTC (CoBTC-B) synthesized by using cobalt nitrate as metal source.

Figure S11. SEM images of (a) micro rod MnBTC (MnBTC-M), (b) nanorod MnBTC (MnBTC-N) and urchin-like MnBTC (MnBTC-U) and (d) the XRD patterns of as-prepared MnBTC.
Figure S12. Pore size distribution of CuMOF-74-U calculated by N$_2$-DFT model.

Figure S13. Survey XPS of CuMOF-74-B and CuMOF-74-U.
Figure S14. High-resolution XPS of CuMOF-74-B and CuMOF-74-U;

Figure S15. XRD patterns of CuMOF-74-U after catalytic activity test.
Figure S16. N\textsubscript{2} sorption of fresh CuMOF-74 and CuMOF-74 after 5 cycles SCR test

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Volume in pores <1.269nm (cm3/g)</th>
<th>Total volume in pores <172nm (cm3/g)</th>
<th>Proportion of micropore volume (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuMOF-74-M</td>
<td>0.406</td>
<td>0.406</td>
<td>100</td>
</tr>
<tr>
<td>CuMOF-74-N</td>
<td>0.337</td>
<td>0.339</td>
<td>99.3</td>
</tr>
<tr>
<td>CuMOF-74-U</td>
<td>0.222</td>
<td>0.335</td>
<td>66.2</td>
</tr>
</tbody>
</table>

3. References