Enantioselective synthesis of 1-aminoindene derivatives via asymmetric Brønsted acid catalysis

Xiang Wu,*,a,c Du Ding,§,b Ying Zhang,§,b Hua-Jie Jiang,b Tao Wang,a and Li-Ping Zhaoa

- a. Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China.
- b. Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China c. Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.

1. General information	S2
2. Procedure for the synthesis of substrates 1 and 3	S2
3. In situ imine formation/cyclisation	S7
4. Characterizations for the substrates 1 and 3	S7
5. General procedure for the synthesis of 2 and 4.	S14
6. Characterizations for the products 2 and 4	S14
7. Procedure for the synthesis of 7.	S23
8. Characterizations for the products 5, 6 and 7	S23
9. X-ray Single Crystal Data for 2e	S25
10. X-ray Single Crystal Data for 4e	S26
11. NMR spectra for substrates, products, 5, 6 and 7.	S27
12 HPLC spectra for products 5, 6 and 7	982

1. General information

General data: NMR spectra were recorded on Bruker-400 MHz spectrometer or Bruker-500 MHz spectrometer. Chemical shifts (δ) are given in ppm relative to TMS. The residual solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl3: δ H = 7.26 ppm, δ C = 77.16 ppm). The high resolution mass spectra were recorded on a Thermo LTQ Orbitrap XL (ESI+). Enantiomeric excesses were measured on Waters-Breeze (2487 Dual λ Absorbance Detector and 1525 Binary HPLC Pump, UV detection monitored at 254 nm or 230nm). Chiralpak AD-H and IE columns were purchased from Daicel Chemical Industries, LTD. Optical rotations were measured at 589 nm (sodium D line) by using a Perkin-Elmer 343 polarimeter.

Materials: Analytical grade solvents for the column chromatography were used as received. Starting materials were purchased from commercial suppliers (Aldrich, Alfa, TCI, Adamas-beta, Energychemical, and Accela) and used as supplied unless otherwise stated. All solvents were purified and dried according to standard methods prior to use, unless stated otherwise.

2. Procedure for the synthesis of substrates 1 and 3.

General procedure for the synthesis of substrates 1a, 1q-w.

The mixture of ethyltriphenylphosphonium bromide (5.569 g, 15 mmol), *t*-BuOK (1.683 g, 15 mmol), THF (50 mL) was added to a 100 mL flask under nitrogen atmosphere and stirred at 0 °C for 30 minutes. Then the reaction mixture was warmed to room temperature and stirred for 1.5 hours. Subsequently, 2-bromobenzaldehydes **S1** (5 mmol) was added dropwise to the reaction mixture and stirred for additional 6 hours. Then the reaction was quenched by water (50 mL) and THF was removed under reduced pressure. The residue was filtered and extracted with Ethyl acetate (50 mL × 3). The combined organic layer was washed with brine (50 mL × 2) and dried over anhydrous Na₂SO₄. After the solvent was removed under reduced pressure, the crude product was purified by flash column chromatography on silica gel and eluted with petroleum ether to afford **S2**.

To a solution of S2 (4 mmol) in chloroform (20 mL) was added bis(acetonitrile)-dichloropalladium (0.041 g, 0.16 mmol). The solution was stirred at 50 °C for 3 days. The reaction mixture was passed through a plug of silica gel (Et₂O as eluent) and concentrated to give S3.

n-BuLi (1.6 M solution in hexanes, 4.4 mmol) was added slowly to a solution of **S3** (4 mmol) in THF (20 mL) at -78 °C, then stirred for 30 min at this temperature. DMF (4.8 mmol) was then added dropwise to the mixture and stirred for a further 5 h. Saturated aqueous NH₄Cl (25 mL) was added and the mixture was extracted with Et₂O (30 mL × 3). The combined organic phase was washed with saturated aqueous NaCl and dried over MgSO₄, then concentrated in vacuo. The crude residue

was purified by silica chromatography (EtOAc: Petroleum ether = 1: 25 - 1: 10) to give the aldehydes \$4.

A 50 mL vial equipped with a stirrer was charged with aldehyde **S4** (5 mmol), sulfonamide (6 mmol), dry THF (20 mL), and $Ti(OEt)_4$ (5 mL). The vial was closed and heated at 80 °C for 24 h. After completion, the mixture was cooled to room temperature and quenched with water (50 mL). The mixture was extracted with CH_2Cl_2 (50 mL × 3). The combined organic layer was dried over Na_2SO_4 and concentrated in vacuo. The crude product was purified by flash column chromatography (EtOAc: Petroleum ether = 1: 10 - 1: 4) on silica gel to afford **1a**, **1q-w**.

General procedure for the synthesis of substrates 1b, 1i-k.

Br MePPh₃Br
$$t$$
-BuOK t -Bu

The mixture of methyltriphenylphosphonium bromide (5.344 g, 15 mmol), *t*-BuOK (1.683 g, 15 mmol), THF (50 mL) was added to a 100 mL flask under nitrogen atmosphere and stirred at 0 °C for 30 minutes. Then the reaction mixture was warmed to room temperature and stirred for 1.5 hours. Subsequently, **S5** (5 mmol) was added dropwise to the reaction mixture and stirred for additional 6 hours. Then the reaction was quenched by water (50 mL) and THF was removed under reduced pressure. The residue was filtered and extracted with Ethyl acetate (50 mL × 3). The combined organic layer was washed with brine (50 mL × 2) and dried over anhydrous Na₂SO₄. After the solvent was removed under reduced pressure, the crude product was purified by flash column chromatography on silica gel and eluted with petroleum ether to afford **S6**.

n-BuLi (1.6 M solution in hexanes, 4.4 mmol) was added slowly to a solution of **S6** (4 mmol) in THF (20 mL) at -78 °C, then stirred for 30 min at this temperature. DMF (4.8 mmol) was then added dropwise to the mixture and stirred for a further 5 h. Saturated aqueous NH₄Cl (25 mL) was added and the mixture was extracted with Et₂O (30 mL × 3). The combined organic phase was washed with saturated aqueous NaCl and dried over MgSO₄, then concentrated in vacuo. The crude residue was purified by silica chromatography (EtOAc: Petroleum ether = 1: 25 - 1: 10) to give the aldehydes **S7**.

A 50 mL vial equipped with a stirrer was charged with aldehyde **S7** (5 mmol), sulfonamide (6 mmol), dry THF (20 mL), and $Ti(OEt)_4$ (5 mL). The vial was closed and heated at 80 °C for 24 h. After completion, the mixture was cooled to room temperature and quenched with water (50 mL). The mixture was extracted with CH_2Cl_2 (50 mL × 3). The combined organic layer was dried over Na_2SO_4 and concentrated in vacuo. The crude product was purified by flash column chromatography (EtOAc: Petroleum ether = 1: 10 - 1: 4) on silica gel to afford **1b**, **1i-k**.

General procedure for the synthesis of substrates 1c-h, 1o-p.

R³
$$\stackrel{\text{[I]}}{\underset{\text{|I|}}{\text{|I|}}}$$
 CHO R² S9 R¹ R³ $\stackrel{\text{|I|}}{\underset{\text{|I|}}{\text{|I|}}}$ CHO R³ $\stackrel{\text{|I|}}{\underset{\text{|I|}}{\text{|I|}}}$ R¹ $\stackrel{\text{|I|}}{\underset{\text{|I|}}{\text{|I|}}}$ R² R² R² 1c-h. 10-p

Under N₂ gas, 2-bromobenzaldehydes S8 was added to the solution of boronic acids S9 (10

mmol), $Pd(PPh_3)_4$ (0.25 mmol) and $Ba(OH)_2 \cdot 8H_2O$ (10 mmol) in dioxane (30 mL) and H_2O (10 mL). The mixture was refluxed for 40 h. After completion, the mixture was cooled to room temperature and quenched with HCl (1M, 40 mL). The mixture was extracted with CH_2Cl_2 (50 mL \times 3). The combined organic layer was dried over Na_2SO_4 and concentrated in vacuo. The crude product was purified by flash column chromatography (EtOAc: Petroleum ether = 1: 25) on silica gel to afford **S10**.

A 50 mL vial equipped with a stirrer was charged with aldehyde **S10** (5 mmol), sulfonamide (6 mmol), dry THF (20 mL), and $Ti(OEt)_4$ (5 mL). The vial was closed and heated at 80 °C for 24 h. After completion, the mixture was cooled to room temperature and quenched with water (50 mL). The mixture was extracted with CH_2Cl_2 (50 mL × 3). The combined organic layer was dried over Na_2SO_4 and concentrated in vacuo. The crude product was purified by flash column chromatography (EtOAc: Petroleum ether = 1: 10 - 1: 4) on silica gel to afford **1c-h**, **10-p**.

Procedure for the synthesis of substrate 11.

A mixture of 1,2-dichlorobenzene (5 mL, 6.53 g, 44.4 mmol), 3-chlorobenzoyl chloride (4.358 g, 20 mmol) and anhydrous aluminium chloride (5.334 g, 40 mmol) was stirred at 120 °C for 3 h. The reaction mixture was poured onto crushed ice (50 g). The mixture was extracted with CH_2Cl_2 (50 mL × 3). The combined organic layer was dried over Na_2SO_4 and concentrated in vacuo. The crude product was purified by flash column chromatography (EtOAc: Petroleum ether = 1: 50) on silica gel to afford S12.

The mixture of methyltriphenylphosphonium bromide (5.344 g, 15 mmol), *t*-BuOK (1.683 g, 15 mmol), THF (50 mL) was added to a 100 mL flask under nitrogen atmosphere and stirred at 0 °C for 30 minutes. Then the reaction mixture was warmed to room temperature and stirred for 1.5 hours. Subsequently, **S12** (5 mmol) was added dropwise to the reaction mixture and stirred for additional 6 hours. Then the reaction was quenched by water (50 mL) and THF was removed under reduced pressure. The residue was filtered and extracted with Ethyl acetate (50 mL × 3). The combined organic layer was washed with brine (50 mL × 2) and dried over anhydrous Na₂SO₄. After the solvent was removed under reduced pressure, the crude product was purified by flash column chromatography on silica gel and eluted with petroleum ether to afford **S13**.

n-BuLi (1.6 M solution in hexanes, 4.4 mmol) was added slowly to a solution of S13 (4 mmol)

in THF (20 mL) at -78 °C, then stirred for 30 min at this temperature. DMF (4.8 mmol) was then added dropwise to the mixture and stirred for a further 5 h. Saturated aqueous NH₄Cl (25 mL) was added and the mixture was extracted with Et₂O (30 mL \times 3). The combined organic phase was washed with saturated aqueous NaCl and dried over MgSO₄, then concentrated in vacuo. The crude residue was purified by silica chromatography (EtOAc: Petroleum ether = 1: 25 - 1: 10) to give the aldehydes **S14**.

A 50 mL vial equipped with a stirrer was charged with aldehyde S14 (5 mmol), sulfonamide (6 mmol), dry THF (20 mL), and $Ti(OEt)_4$ (5 mL). The vial was closed and heated at 80 °C for 24 h. After completion, the mixture was cooled to room temperature and quenched with water (50 mL). The mixture was extracted with CH_2Cl_2 (50 mL × 3). The combined organic layer was dried over Na_2SO_4 and concentrated in vacuo. The crude product was purified by flash column chromatography (EtOAc: Petroleum ether = 1: 10) on silica gel to afford 11.

Procedure for the synthesis of substrate 1m.

The mixture of acetylnaphthalene S15 (1.70 g, 10 mmol) and tosylhydrazide (2.326g, 12.5 mmol) in 50 mL of toluene was stirred at 80 °C for 2 h. Lithium tert-butoxide (2.0 g, 25 mmol), 1,2-dibromobenzene (20 mmol) and Pd(PPh₃)₄ (0.577 g, 0.5 mmol) were added to the reaction mixture. The system was heated under reflux at 90 °C for 6 h. After the completion of the reaction, the reaction mixture was allowed to cool to room temperature. Saturated aqueous NaHCO₃ (50 mL) was added and the mixture was extracted with Et₂O (50 mL \times 3). The combined organic phase was washed with saturated aqueous NaCl and dried over MgSO₄, then concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel and eluted with petroleum ether to afford S16.

 $n ext{-BuLi}$ (1.6 M solution in hexanes, 4.4 mmol) was added slowly to a solution of **S16** (4 mmol) in THF (20 mL) at -78 °C, then stirred for 30 min at this temperature. DMF (4.8 mmol) was then added dropwise to the mixture and stirred for a further 5 h. Saturated aqueous NH₄Cl (25 mL) was added and the mixture was extracted with Et₂O (30 mL × 3). The combined organic phase was washed with saturated aqueous NaCl and dried over MgSO₄, then concentrated in vacuo. The crude residue was purified by silica chromatography (EtOAc: Petroleum ether = 1: 25) to give the aldehydes **S17**.

A 50 mL vial equipped with a stirrer was charged with aldehyde S17 (5 mmol), sulfonamide (6 mmol), dry THF (20 mL), and Ti(OEt)₄ (5 mL). The vial was closed and heated at 80 °C for 24 h. After completion, the mixture was cooled to room temperature and quenched with water (50 mL).

The mixture was extracted with CH_2Cl_2 (50 mL × 3). The combined organic layer was dried over Na_2SO_4 and concentrated in vacuo. The crude product was purified by flash column chromatography (EtOAc: Petroleum ether = 1: 10) on silica gel to afford **1m**.

Procedure for the synthesis of substrate 1n.

The mixture of ethyltriphenylphosphonium bromide (5.569 g, 15 mmol), t-BuOK (1.683 g, 15 mmol), THF (50 mL) was added to a 100 mL flask under nitrogen atmosphere and stirred at 0 °C for 30 minutes. Then the reaction mixture was warmed to room temperature and stirred for 1.5 hours. Subsequently, 1-(2-bromophenyl)ethan-1-one **S18** (5 mmol) was added dropwise to the reaction mixture and stirred for additional 6 hours. Then the reaction was quenched by water (50 mL) and THF was removed under reduced pressure. The residue was filtered and extracted with Ethyl acetate (50 mL \times 3). The combined organic layer was washed with brine (50 mL \times 2) and dried over anhydrous Na₂SO₄. After the solvent was removed under reduced pressure, the crude product was purified by flash column chromatography on silica gel and eluted with petroleum ether to afford **S19**.

To a solution of **S19** (4 mmol) in chloroform (20 mL) was added bis(acetonitrile)-dichloropalladium (0.041 g, 0.16 mmol). The solution was stirred at 50 $^{\circ}$ C for 3 days. The reaction mixture was passed through a plug of silica gel (Et₂O as eluent) and concentrated to give **S20**.

n-BuLi (1.6 M solution in hexanes, 4.4 mmol) was added slowly to a solution of **S20** (4 mmol) in THF (20 mL) at -78 °C, then stirred for 30 min at this temperature. DMF (4.8 mmol) was then added dropwise to the mixture and stirred for a further 5 h. Saturated aqueous NH₄Cl (25 mL) was added and the mixture was extracted with Et₂O (30 mL × 3). The combined organic phase was washed with saturated aqueous NaCl and dried over MgSO₄, then concentrated in vacuo. The crude residue was purified by silica chromatography (EtOAc: Petroleum ether = 1: 25) to give the aldehydes **S21**.

A 50 mL vial equipped with a stirrer was charged with aldehyde S21 (5 mmol), sulfonamide (6 mmol), dry THF (20 mL), and $Ti(OEt)_4$ (5 mL). The vial was closed and heated at 80 °C for 24 h. After completion, the mixture was cooled to room temperature and quenched with water (50 mL). The mixture was extracted with CH_2Cl_2 (50 mL × 3). The combined organic layer was dried over Na_2SO_4 and concentrated in vacuo. The crude product was purified by flash column chromatography (EtOAc: Petroleum ether = 1: 10) on silica gel to afford 1n.

General procedure for the synthesis of substrate 3a-e.

R H Br
$$\frac{K_2CO_3}{acetone}$$
 R $\frac{B(OH)_2}{B(OH)_2}$ R $\frac{B(OH)_2}{B(OAc)_2$, Cu(OAc)_2 LiOAc, DMF,100 °C NTs THF, 80 °C R $\frac{TsNH_2, Ti(OEt)_4}{THF, 80 °C}$ R $\frac{TsNH_2, Ti(OEt)_4}{THF, 80 °C}$ $\frac{Acetone}{B(OH)_2}$ R $\frac{TsNH_2, Ti(OEt)_4}{THF, 80 °C}$ $\frac{TsNH_2, Ti(OEt)_4}{THF, 80 °C}$ $\frac{TsNH_2, Ti(OEt)_4}{THF, 80 °C}$ $\frac{TsNH_2, Ti(OEt)_4}{THF, 80 °C}$ $\frac{TsNH_2, Ti(OEt)_4}{THF, 80 °C}$

Potassium carbonate (20 mmol) was added to the solution of phenols (10 mmol) and allyl bromide (20 mmol) in acetone. The solution was stirred at 60 °C for 12 h. After reaction completion volatiles evaporated and the crude was partitioned between water and ethyl acetate (80 mL \times 3). The combined organic layer was dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by flash column chromatography (Petroleum ether) on silica gel to afford S22.

Under N_2 gas, to the solution of 2-formylphenylboronic acid (12 mmol), $Pd(OAc)_2$ (1 mmol), $Cu(OAc)_2$ (20 mmol) and LiOAc (30 mmol) in DMF (30 mL) was added **S22** (10 mmol). The mixture was heated to 100 °C and stirred for a further 12 h. The mixture was cooled to room temperature. Et_2O (80 mL) and water (80 mL) were added. The aqueous phase was extracted with Et_2O (50 mL \times 3). The combined organic layer was washed with water (80 mL), dried over Na_2SO_4 and concentrated in vacuo. The crude product was purified by flash column chromatography (EtOAc: Petroleum ether = 1: 10) on silica gel to afford **S23**.

A 50 mL vial equipped with a stirrer was charged with aldehyde **S23** (5 mmol), sulfonamide (6 mmol), dry THF (20 mL), and $Ti(OEt)_4$ (5 mL). The vial was closed and heated at 80 °C for 24 h. After completion, the mixture was cooled to room temperature and quenched with water (50 mL). The mixture was extracted with CH_2Cl_2 (50 mL × 3). The combined organic layer was dried over Na_2SO_4 and concentrated in vacuo. The crude product was purified by flash column chromatography (EtOAc: Petroleum ether = 1: 10) on silica gel to afford **3a-e**.

3. In situ imine formation/cyclisation

4. Characterizations for the substrates 1 and 3.

4-methyl-N-((E)-2-((E)-prop-1-en-1-yl)benzylidene)benzenesulfonamide (1a)

NTs
1
H NMR (500 MHz, CDCl₃) δ 9.39 (s, 1H), 8.05 (dd, J = 7.9, 0.8 Hz, 1H), 7.89 (d, J = 8.3 Hz, 2H), 7.55 – 7.48 (m, 1H), 7.44 (d, J = 7.5 Hz, 1H), 7.35 (d, J = 8.2 Hz, 2H), 7.31 – 7.24 (m, 1H), 6.89 (dd, J = 15.5, 1.5 Hz, 1H), 6.08 (dq, J = 15.4, 6.7 Hz, 1H), 2.44 (s, 3H), 1.96 (dd, J = 6.7, 1.7 Hz, 3H). 13 C NMR (126

MHz, CDCl₃) δ 168.61, 144.61, 142.90, 135.39, 134.61, 133.66, 129.89, 129.46, 128.83, 128.12, 127.81, 127.29, 126.60, 21.77, 19.17. **HRMS** (ESI) m/z (M+H)⁺: calculated for C₁₇H₁₈NO₂S: 300.1058, found: 300.1056.

(E)-4-methyl-N-(2-vinylbenzylidene)benzenesulfonamide (1b)

NTs H ¹**H NMR** (400 MHz, CDCl₃) δ 9.41 (s, 1H), 8.07 (dd, J = 7.9, 1.3 Hz, 1H), 7.92 – 7.86 (m, 2H), 7.54 (ddd, J = 9.6, 7.3, 1.3 Hz, 2H), 7.39 – 7.32 (m, 3H), 7.31 – 7.22 (m, 1H), 5.63 (dd, J = 17.3, 1.0 Hz, 1H), 5.56 (dd, J = 11.0, 1.0 Hz, 1H), 2.44 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 168.53, 144.70, 142.52, 135.42, 134.66, 132.94, 129.95, 129.36, 128.21, 127.82, 121.07, 21.81. **HRMS** (ESI) m/z (M+H)⁺:

calculated for $C_{16}H_{16}NO_2S$: 286.0902, found: 286.0901.

4-methyl-N-((E)-2-((E)-styryl)benzylidene)benzenesulfonamide (1c)

NTs H 1c ¹**H NMR** (500 MHz, CDCl₃) δ 9.38 (s, 1H), 8.04 (dd, J = 7.9, 1.1 Hz, 1H), 7.90 (d, J = 8.3 Hz, 2H), 7.68 (d, J = 10.1 Hz, 1H), 7.65 (s, 1H), 7.58 (dt, J = 7.9, 1.2 Hz, 1H), 7.50 (d, J = 7.3 Hz, 2H), 7.41 – 7.38 (m, 2H), 7.37 – 7.35 (m, 1H), 7.34 – 7.32 (m, 3H), 6.93 (d, J = 16.1 Hz, 1H), 2.42 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 168.48, 144.71, 141.89, 136.60, 135.21, 135.16, 134.56, 130.96, 28.92, 128.71, 128.21, 127.88, 127.70, 127.10, 124.21, 21.77, **HRMS** (ESI) m/z

129.93, 129.36, 128.92, 128.71, 128.21, 127.88, 127.70, 127.10, 124.21, 21.77. **HRMS** (ESI) m/z $(M+H)^+$: calculated for $C_{22}H_{20}NO_2S$: 362.1215, found: 362.1211.

4-methyl-N-((E)-2-((E)-3-phenylprop-1-en-1-yl)benzylidene)benzenesulfonamide (1d)

NTs H H 1d ¹**H NMR** (400 MHz, CDCl₃) δ 9.39 (s, 1H), 8.05 – 8.00 (m, 1H), 7.86 (d, J = 8.3 Hz, 2H), 7.52 – 7.45 (m, 2H), 7.39 – 7.28 (m, 5H), 7.28 – 7.22 (m, 3H), 6.98 (d, J = 15.5 Hz, 1H), 6.19 (dt, J = 15.5, 6.9 Hz, 1H), 3.62 (d, J = 6.9 Hz, 2H), 2.42 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 168.70, 144.61, 142.33, 139.36, 136.83, 135.41, 134.54, 130.00, 129.90, 129.12, 128.80, 128.79, 128.14, 127.97,

127.60, 126.78, 126.58, 39.80, 21.77. **HRMS** (ESI) m/z (M+H)⁺: calculated for $C_{23}H_{22}NO_2S$: 376.1371, found: 376.1364.

4-methyl-N-((E)-2-((E)-pent-1-en-1-yl)benzylidene)benzenesulfonamide (1e)

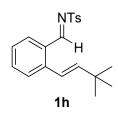
NTs H C₃H₇ ¹**H NMR** (500 MHz, CDCl₃) δ 9.38 (s, 1H), 8.04 (dd, J = 7.9, 0.9 Hz, 1H), 7.89 (d, J = 8.3 Hz, 2H), 7.54 – 7.48 (m, 1H), 7.45 (d, J = 7.6 Hz, 1H), 7.34 (d, J = 8.1 Hz, 2H), 7.31 – 7.24 (m, 1H), 6.87 (d, J = 15.6 Hz, 1H), 6.05 (dt, J = 15.5, 7.0 Hz, 1H), 2.44 (s, 3H), 2.29 – 2.20 (m, 2H), 1.59 – 1.46 (m, 2H), 0.99 (t, J = 7.4 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 168.69, 144.59, 142.95, 139.01, 135.41, 134.53, 129.88, 129.62, 128.95, 128.13, 127.91,

127.28, 125.54, 35.59, 22.41, 21.76, 13.87. **HRMS** (ESI) m/z (M+H) $^+$: calculated for $C_{19}H_{22}NO_2S$: 328.1371, found: 328.1371.

N-((E)-2-((E)-2-cyclopropylvinyl)benzylidene)-4-methylbenzenesulfonamide (1f)

NTs H ¹**H NMR** (400 MHz, CDCl₃) δ 9.42 (s, 1H), 8.02 (dd, J = 7.9, 1.1 Hz, 1H), 7.89 (d, J = 8.3 Hz, 2H), 7.52 – 7.45 (m, 1H), 7.41 (d, J = 7.3 Hz, 1H), 7.34 (d, J = 8.1 Hz, 2H), 7.26 – 7.20 (m, 1H), 6.97 (d, J = 15.5 Hz, 1H), 5.54 (dd, J = 15.5 Hz, 1H), 5.54 (dd,

S8


15.5, 9.3 Hz, 1H), 2.43 (s, 3H), 1.67 (qt, J = 9.1, 4.7 Hz, 1H), 0.95 – 0.86 (m, 2H), 0.61 – 0.53 (m, 2H). ¹³C **NMR** (101 MHz, CDCl₃) δ 168.71, 144.56, 143.08, 142.75, 135.52, 134.54, 129.88, 129.63, 128.59, 128.08, 127.44, 127.01, 122.59, 21.76, 15.41, 7.98. **HRMS** (ESI) m/z (M+H)⁺: calculated for C₁₉H₂₀NO₂S: 326.1215, found: 326.1211.

N-((E)-2-((E)-2-cyclohexylvinyl)benzylidene)-4-methylbenzenesulfonamide (1g)

NTs H ¹**H NMR** (400 MHz, CDCl₃) δ 9.36 (s, 1H), 8.07 – 7.97 (m, 1H), 7.89 (d, J = 8.3 Hz, 2H), 7.53 – 7.47 (m, 1H), 7.44 (d, J = 7.2 Hz, 1H), 7.34 (d, J = 8.2 Hz, 2H), 7.27 – 7.26 (m, 1H), 6.81 (d, J = 15.7 Hz, 1H), 5.97 (dd, J = 15.7, 7.0 Hz, 1H), 2.44 (s, 3H), 2.26 – 2.14 (m, 1H), 1.90 – 1.75 (m, 4H), 1.75 – 1.67 (m, 1H), 1.42 – 1.28 (m, 2H), 1.28 – 1.11 (m, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 168.75, 144.90, 144.58, 143.16, 135.41, 134.44,

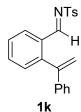
129.87, 129.77, 129.05, 128.16, 127.95, 127.22, 123.03, 41.72, 32.77, 26.14, 21.76. **HRMS** (ESI) m/z (M+H)⁺: calculated for C₂₂H₂₆NO₂S: 368.1684, found: 368.1682.

N-((E)-2-((E)-3,3-dimethylbut-1-en-1-yl)benzylidene)-4-methylbenzenesulfonamide (1h)

¹**H NMR** (400 MHz, CDCl₃) δ 9.30 (s, 1H), 8.02 (dd, J = 7.9, 1.2 Hz, 1H), 7.89 (d, J = 8.3 Hz, 2H), 7.51 (dt, J = 7.8, 1.3 Hz, 1H), 7.47 – 7.41 (m, 1H), 7.35 (d, J = 8.0 Hz, 2H), 7.29 (t, J = 7.5 Hz, 1H), 6.75 (d, J = 15.9 Hz, 1H), 6.01 (d, J = 15.9 Hz, 1H), 2.44 (s, 3H), 1.14 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 168.82, 150.10, 144.61, 143.29, 135.30, 134.37, 130.09, 129.90, 129.21, 128.22, 128.18, 127.23, 120.74, 34.32, 29.47, 21.76. **HRMS** (ESI)

m/z (M+H)⁺: calculated for $C_{20}H_{24}NO_2S$: 342.1528, found: 342.1524.

(E)-4-methyl-N-(2-(prop-1-en-2-yl)benzylidene)benzenesulfonamide (1i)


NTs H Me ¹**H NMR** (400 MHz, CDCl₃) δ 9.27 (s, 1H), 8.12 (d, J = 7.9 Hz, 1H), 7.87 (d, J = 7.7 Hz, 2H), 7.53 (t, J = 7.4 Hz, 1H), 7.34 (d, J = 7.5 Hz, 4H), 5.43 (s, 1H), 4.78 (s, 1H), 2.42 (s, 3H), 2.13 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 169.66, 148.94, 144.57, 141.89, 135.39, 134.14, 129.87, 129.53, 128.89, 128.26, 128.07, 127.65, 120.13, 24.93, 21.73. **HRMS** (ESI) m/z (M+H)⁺: calculated for C₁₇H₁₈NO₂S: 300.1058, found: 300.1052.

(E)-N-(2-(3,3-dimethylbut-1-en-2-yl)benzylidene)-4-methylbenzenesulfonamide (1j)

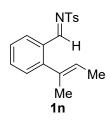
NTs H ¹**H NMR** (500 MHz, CDCl₃) δ 9.11 (s, 1H), 8.18 (dd, J = 8.0, 1.2 Hz, 1H), 7.84 (d, J = 8.3 Hz, 2H), 7.51 (dt, J = 7.6, 1.4 Hz, 1H), 7.36 – 7.33 (m, 3H), 7.21 (dd, J = 7.7, 0.7 Hz, 1H), 5.44 (d, J = 1.0 Hz, 1H), 4.81 (d, J = 0.9 Hz, 1H), 2.44 (s, 3H), 1.06 (s, 9H). ¹³**C NMR** (126 MHz, CDCl₃) δ 170.05, 154.50, 148.04, 144.63, 134.97, 133.44, 130.60, 130.52, 129.92, 128.31, 128.20, 127.45, 115.76, 36.65, 29.60, 21.75, **HRMS** (ESI) m/z (M+Na)^{+;} calculated for Carlar NNaOaS; 364.1347

1j 29.60, 21.75. **HRMS** (ESI) m/z (M+Na) $^+$: calculated for $C_{20}H_{23}NNaO_2S$: 364.1347, found: 364.1344.

(E)-4-methyl-N-(2-(1-phenylvinyl)benzylidene)benzenesulfonamide (1k)

¹**H NMR** (500 MHz, DMSO) δ 8.75 (s, 1H), 7.93 (d, J = 7.9 Hz, 1H), 7.55 (t, J = 7.6 Hz, 1H), 7.39 – 7.35 (m, 3H), 7.26 – 7.15 (m, 6H), 7.03 (d, J = 7.4 Hz, 2H), 5.87

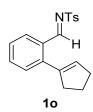
(s, 1H), 5.10 (s, 1H), 2.21 (s, 3H). 13 C NMR (126 MHz, DMSO) δ 168.77, 146.30, 145.38, 144.53, 140.21, 134.86, 133.93, 130.71, 129.94, 129.77, 128.71, 128.59, 128.26, 128.03, 127.56, 126.55, 118.56, 21.01. HRMS (ESI) m/z (M+H)+: calculated for $C_{22}H_{20}NO_2S$: 362.1215, found: 362.1213.


(E)-N-(2-(1-(3,4-dichlorophenyl)vinyl)benzylidene)-4-methylbenzenesulfonamide (11)

NTs H CI CI ¹**H NMR** (500 MHz, CDCl₃) δ 8.97 (s, 1H), 8.17 (d, J = 7.8 Hz, 1H), 7.63 – 7.60 (m, 3H), 7.47 (t, J = 7.6 Hz, 1H), 7.36 (d, J = 8.4 Hz, 1H), 7.33 (d, J = 7.6 Hz, 1H), 7.29 (d, J = 8.1 Hz, 2H), 7.23 (d, J = 2.1 Hz, 1H), 7.05 (dd, J = 8.4, 2.1 Hz, 1H), 5.96 (s, 1H), 5.31 (s, 1H), 2.43 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 168.99, 145.27, 144.75, 144.25, 140.76, 134.71, 134.63, 133.05, 132.52, 130.88, 130.76, 130.69, 129.93, 129.47, 128.93, 128.79, 128.07, 126.28, 119.94, 21.82. **HRMS** (ESI) m/z (M+H)⁺: calculated for C₂₂H₁₈Cl₂NO₂S: 430.0435, found: 430.0428.

(E)-4-methyl-N-(2-(1-(naphthalen-1-yl)vinyl)benzylidene)benzenesulfonamide (1m)

NTs H ¹**H NMR** (500 MHz, CDCl₃) δ 9.40 (s, 1H), 7.93 (s, 1H), 7.92 – 7.86 (m, 3H), 7.79 (d, J = 8.4 Hz, 1H), 7.52 – 7.46 (m, 2H), 7.43 – 7.40 (m, 1H), 7.39 – 7.32 (m, 4H), 7.23 – 7.14 (m, 2H), 6.94 – 6.93 (m, 1H), 6.16 (d, J = 2.0 Hz, 1H), 5.20 (d, J = 9.5 Hz, 1H), 4.89 (d, J = 9.5 Hz, 1H), 2.44 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 169.08, 145.45, 143.88, 143.68, 143.55, 138.06, 133.76, 133.38, 132.37, 131.43, 130.06, 128.71, 128.54, 128.48, 127.38, 126.61, 126.41, 126.17, 126.15, 125.89, 125.48, 124.06, 121.52, 21.71. **HRMS** (ESI) m/z (M+H)⁺: calculated for C₂₆H₂₂NO₂S: 412.1371, found: 412.1372.


N-((E)-2-((E)-but-2-en-2-yl)benzylidene)-4-methylbenzenesulfonamide (1n)

¹**H NMR** (400 MHz, CDCl₃) δ 9.05 (s, 1H), 8.14 (t, J = 11.5 Hz, 1H), 7.87 (d, J = 7.6 Hz, 2H), 7.57 (t, J = 7.5 Hz, 1H), 7.35–7.32 (m, 3H), 7.21 (d, J = 7.7 Hz, 1H), 5.78 (q, J = 6.7 Hz, 1H), 2.44 (s, 3H), 2.02 (s, 3H), 1.30 (d, J = 6.8 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 169.60, 147.85, 144.59, 135.41, 134.84, 133.49, 129.89, 129.52, 129.23, 128.41, 128.17, 127.48, 125.97, 26.61, 21.77, 14.96. **HRMS** (ESI) m/z (M+H)⁺: calculated for C₁₈H₂₀NO₂S: 314.1215,

found: 314.1210.

(E)-N-(2-(cyclopent-1-en-1-yl)benzylidene)-4-methylbenzenesulfonamide (10)

¹**H NMR** (500 MHz, CDCl₃) δ 9.20 (s, 1H), 8.09 (dd, J = 7.9, 1.0 Hz, 1H), 7.87 (d, J = 8.3 Hz, 2H), 7.53 (dt, J = 7.7, 1.4 Hz, 1H), 7.35 (d, J = 8.0 Hz, 3H), 7.31 (t, J = 7.6 Hz, 1H), 5.60 – 5.51 (m, 1H), 2.72 (tt, J = 9.8, 2.1 Hz, 2H), 2.62 – 2.55 (m, 2H), 2.44 (s, 3H), 2.11 – 2.01 (m, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 169.69, 144.59, 143.63, 140.27, 136.26, 135.17, 134.04, 130.05, 129.90, 129.00, 128.19, 128.04, 127.30, 36.79, 34.27, 23.85, 21.76. **HRMS** (ESI) m/z (M+H)⁺: calculated

for C₁₉H₂₀NO₂S: 326.1215 found: 326.1211.

(E)-4-methyl-N-((2',3',4',5'-tetrahydro-[1,1'-biphenyl]-2-yl)methylene)benzenesulfonamide (1p)

¹H NMR (400 MHz, CDCl₃) δ 9.07 (s, 1H), 8.09 (d, J = 8.2 Hz, 1H), 7.86 (d, J = 8.3 Hz, 2H), 7.51 (dt, J = 7.6, 1.4 Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H), 7.30 (t, J =8.1 Hz, 2H), 5.51 - 5.39 (m, 1H), 2.44 (s, 3H), 2.30 - 2.23 (m, 2H), 2.23 - 2.15 (m, 2H)(m, 2H), 1.82 – 1.72 (m, 2H), 1.72 – 1.64 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 169.67, 149.90, 144.58, 135.43, 135.01, 134.04, 132.37, 129.90, 129.77, 128.84, 128.45, 128.29, 127.17, 30.75, 25.75, 22.82, 21.80, 21.75. **HRMS** (ESI) m/z

 $(M+H)^+$: calculated for $C_{20}H_{22}NO_2S$: 340.1371, found: 340.1367.

4-methyl-N-((E)-2-methyl-6-((E)-prop-1-en-1-yl)benzylidene)benzenesulfonamide (1q)

NTs Ме 1q

¹**H NMR** (500 MHz, CDCl₃) δ 9.40 (s, 1H), 7.89 (d, J = 8.2 Hz, 2H), 7.36 – 7.33 (m, 3H), 7.25 (d, J = 8.6 Hz, 1H), 7.12 (d, J = 7.5 Hz, 1H), 6.78 (d, J =15.5 Hz, 1H), 5.92 (dq, J = 13.3, 6.6 Hz, 1H), 2.53 (s, 3H), 2.44 (s, 3H), 1.89 (dd, J = 6.6, 1.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 170.08, 144.53, 143.35, 141.54, 135.73, 133.12, 132.81, 130.47, 129.88, 128.74, 128.07, 127.71, 126.24, 22.25, 21.77, 19.06. **HRMS** (ESI) m/z (M+H)⁺: calculated for C₁₈H₂₀NO₂S: 314.1215, found: 314.1215.

4-methyl-N-((E)-4-methyl-2-((E)-prop-1-en-1-yl)benzylidene)benzenesulfonamide (1r)

NTs Me 1r

¹**H NMR** (400 MHz, CDCl₃) δ 9.35 (s, 1H), 7.96 (d, J = 8.1 Hz, 1H), 7.90 -7.86 (m, 2H), 7.34 (dd, J = 8.6, 0.6 Hz, 2H), 7.26 - 7.24 (m, 1H), 7.09(d, J = 8.1 Hz, 1H), 6.88 (dd, J = 15.5, 1.7 Hz, 1H), 6.08 (dq, J = 15.5, 6.7)Hz, 1H), 2.43 (s, 3H), 2.39 (s, 3H), 1.95 (dd, J = 6.7, 1.8 Hz, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 168.47, 145.86, 144.43, 143.03, 135.79, 133.27, 129.87, 129.73, 128.43, 128.36, 128.10, 126.75, 126.51, 22.08, 21.78, 19.15. **HRMS** (ESI) m/z (M+H)⁺: calculated for $C_{18}H_{20}NO_2S$: 314.1215, found: 314.1211.

4-methyl-N-((E)-3-methyl-2-((E)-prop-1-en-1-yl)benzylidene)benzenesulfonamide (1s)

NTs Ме 1s

¹**H NMR** (400 MHz, CDCl₃) δ 9.22 (s, 1H), 7.97 – 7.92 (m, 1H), 7.90 – 7.83 (m, 2H), 7.38 - 7.31 (m, 3H), 7.22 (dd, J = 14.9, 7.2 Hz, 1H), 6.53 (dd, J = 14.9), 7.38 - 7.31 (m, 3H), 7.22 (dd, J = 14.9), 7.2 Hz, 1H), 1H 15.7, 1.6 Hz, 1H), 5.48 (dq, J = 15.7, 6.5 Hz, 1H), 2.44 (s, 3H), 2.30 (s, 3H), 1.98 (dd, J = 6.5, 1.8 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 170.72, 144.48, 143.35, 137.22, 137.15, 135.48, 135.41, 130.60, 129.87, 128.14, 127.06, 126.83, 126.14, 21.74, 20.09, 19.17. **HRMS** (ESI) m/z (M+H)+: calculated for C₁₈H₂₀NO₂S: 314.1215, found: 314.1210.

N-((E)-4-fluoro-2-((E)-prop-1-en-1-yl)benzylidene)-4-methylbenzenesulfonamide (1t)

NTs 1t

¹**H NMR** (400 MHz, CDCl₃) δ 9.32 (s, 1H), 8.07 (dd, J = 8.8, 6.1 Hz, 1H), 7.88 (d, J = 8.1 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), 7.12 (dd, J = 9.9, 2.4 Hz, 1H), 7.00 - 6.92 (m, 1H), 6.87 (d, J = 15.5 Hz, 1H), 6.14 (dq, J = 13.4, 6.7Hz, 1H), 2.42 (s, 3H), 1.96 (d, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.02, 166.62 (d, J = 257.1 Hz), 145.70 (d, J = 9.5 Hz), 144.64, 135.35, 134.65, 132.46 (d, J = 10.0 Hz), 129.88, 128.08, 125.61 (d, J = 2.0 Hz), 125.24 (d, J = 2.5 Hz),

115.07 (d, J = 22.4 Hz), 114.11 (d, J = 22.3 Hz), 21.73, 19.08. **HRMS** (ESI) m/z (M+H)⁺: calculated for C₁₇H₁₇FNO₂S: 318.0964, found: 318.0962.

N-((E)-4-methoxy-2-((E)-prop-1-en-1-yl)benzylidene)-4-methylbenzenesulfonamide (1u)

¹**H NMR** (400 MHz, CDCl₃) δ 9.28 (s, 1H), 8.04 (d, J = 8.9 Hz, 1H), 7.90 – 7.83 (m, 2H), 7.32 (dd, J = 8.5, 0.6 Hz, 2H), 6.93 – 6.86 (m, 2H), 6.80 (dd, J = 8.8, 2.5 Hz, 1H), 6.11 (dq, J = 15.5, 6.7 Hz, 1H), 3.86 (s, 3H), 2.42 (s, 3H), 1.95 (dd, J = 6.7, 1.7 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 167.55, 164.89, 145.50, 144.21, 136.05, 133.44, 132.12,

129.77, 127.90, 126.62, 122.08, 114.02, 111.96, 55.66, 21.71, 19.05. **HRMS** (ESI) m/z (M+H)⁺: calculated for $C_{18}H_{20}NO_3S$: 330.1164, found: 330.1161.

N-((E)-4-chloro-2-((E)-prop-1-en-1-yl)benzylidene)-4-methylbenzenesulfonamide (1v)

¹**H NMR** (500 MHz, CDCl₃) δ 9.32 (s, 1H), 7.98 (d, J = 8.5 Hz, 1H), 7.88 (d, J = 8.3 Hz, 2H), 7.43 (d, J = 2.0 Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H), 7.23 (dd, J = 8.5, 2.0 Hz, 1H), 6.84 (dd, J = 15.5, 1.6 Hz, 1H), 6.14 (dq, J = 15.4, 6.7 Hz, 1H), 2.43 (s, 3H), 1.96 (dd, J = 6.7, 1.7 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 167.26, 144.77, 144.17, 141.08, 135.23, 134.85, 130.88,

129.94, 128.17, 127.69, 127.65, 127.27, 125.48, 21.78, 19.15. **HRMS** (ESI) m/z (M+H)⁺: calculated for $C_{17}H_{17}CINO_2S$: 334.0669, found: 334.0665.

 $\label{eq:continuous} 4-methyl-N-((E)-(6-((E)-prop-1-en-1-yl)benzo[d][1,3]dioxol-5-yl)methylene) benzenesul fon a mide (1w)$

¹**H NMR** (400 MHz, CDCl₃) δ 9.29 (s, 1H), 7.87 (d, J = 8.2 Hz, 2H), 7.51 (s, 1H), 7.33 (d, J = 8.1 Hz, 2H), 6.81 (d, J = 15.4 Hz, 1H), 6.10 – 5.95 (m, 3H), 2.43 (s, 3H), 1.94 (dd, J = 6.6, 0.9 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 166.98, 153.79, 147.57, 144.33, 141.14, 135.95, 132.98, 129.83, 127.97, 126.00, 123.43, 107.19, 106.94, 102.25, 21.77, 19.06. **HRMS**

(ESI) m/z $(M+H)^+$: calculated for $C_{18}H_{18}NO_4S$: 344.0957, found: 344.0954.

4-methyl-N-((E)-2-((E)-3-phenoxyprop-1-en-1-yl)benzylidene)benzenesulfonamide (3a)

¹**H NMR** (500 MHz, CDCl₃) δ 9.37 (s, 1H), 8.04 (d, J = 7.7 Hz, 1H), 7.88 (d, J = 8.3 Hz, 2H), 7.59 – 7.49 (m, 2H), 7.41 – 7.28 (m, 6H), 7.03 – 6.95 (m, 3H), 6.27 (dt, J = 15.8, 5.4 Hz, 1H), 4.76 (dd, J = 5.4, 1.5 Hz, 2H), 2.42 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 168.41, 158.44, 144.71, 141.25, 135.27, 134.62, 131.76, 130.31, 129.93, 129.72, 129.40, 128.25, 128.21, 128.18, 128.11, 121.27, 114.87, 68.13, 21.76. **HRMS** (ESI) m/z (M+H)⁺: calculated for C₂₃H₂₂NO₃S:

392.1320, found: 392.1321.

4-methyl-N-((E)-2-((E)-3-(p-tolyloxy)prop-1-en-1-yl)benzylidene)benzenesulfonamide (3b)

¹**H NMR** (500 MHz, CDCl₃) δ 9.29 (s, 1H), 7.97 (d, J = 7.8 Hz, 1H), 7.81 (d, J = 8.2 Hz, 2H), 7.46 (q, J = 7.9 Hz, 2H), 7.33 – 7.15 (m, 5H), 7.05 (d, J = 8.4 Hz, 2H), 6.80 (d, J = 8.5 Hz, 2H), 6.18 (dt, J = 15.8, 5.4 Hz, 1H), 4.65 (dd, J = 5.3, 1.2 Hz, 2H), 2.34 (s, 3H), 2.23 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ

168.45, 156.34, 144.71, 141.33, 135.30, 134.62, 132.02, 130.53, 130.28, 130.16, 129.94, 129.83, 129.41, 128.20, 128.12, 126.58, 114.76, 68.33, 21.78, 20.64. **HRMS** (ESI) m/z (M+H) $^+$: calculated for $C_{24}H_{24}NO_3S$: 406.1477, found: 406.1473.

N-((E)-2-((E)-3-(4-ethylphenoxy)prop-1-en-1-yl)benzylidene)-4-methylbenzenesulfonamide (3c)

¹**H NMR** (500 MHz, CDCl₃) δ 9.37 (s, 1H), 8.04 (d, J = 7.7 Hz, 1H), 7.88 (d, J = 8.3 Hz, 2H), 7.59 – 7.50 (m, 2H), 7.39 – 7.27 (m, 4H), 7.15 (d, J = 8.6 Hz, 2H), 6.97 – 6.84 (m, 2H), 6.26 (dt, J = 15.8, 5.4 Hz, 1H), 4.73 (dd, J = 5.4, 1.6 Hz, 2H), 2.61 (q, J = 7.6 Hz, 2H), 2.42 (s, 3H), 1.23 (t, J = 7.6 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 168.46, 156.52, 144.71, 141.34, 137.06, 135.30, 134.62, 132.05, 130.29, 129.94, 129.41, 128.98, 128.20,

128.12, 114.77, 68.34, 28.12, 21.77, 15.99. **HRMS** (ESI) m/z (M+H) $^+$: calculated for C₂₅H₂₆NO₃S: 420.1633, found: 420.1633.

N-((E)-2-((E)-3-(4-fluorophenoxy)prop-1-en-1-yl)benzylidene)-4-methylbenzenesulfonamide (3d)

¹**H NMR** (500 MHz, CDCl₃) δ 9.36 (s, 1H), 8.04 (d, J = 7.7 Hz, 1H), 7.88 (d, J = 8.3 Hz, 2H), 7.57 –7.52 (m, 2H), 7.38 – 7.29 (m, 4H), 7.06 – 6.97 (m, 2H), 6.95 – 6.88 (m, 2H), 6.25 (dt, J = 15.8, 5.4 Hz, 1H), 4.72 (dd, J = 5.4, 1.5 Hz, 2H), 2.42 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 168.42, 157.59 (d, J = 238.9 Hz), 154.56, 144.75, 141.16, 135.31, 134.65, 131.49, 130.43, 129.95, 129.44, 128.48, 128.29, 128.18, 128.11, 116.07 (d, J = 31.2 Hz), 116.01,

68.89, 21.78. **HRMS** (ESI) m/z (M+H)⁺: calculated for C₂₃H₂₁FNO₃S: 410.1226, found: 410.1228.

N-((E)-2-((E)-3-(4-methoxyphenoxy)prop-1-en-1-yl)benzylidene)-4-methylbenzenesulfonamide (3e)

¹**H NMR** (500 MHz, CDCl₃) δ 9.36 (s, 1H), 8.06 – 8.02 (m, 1H), 7.91 – 7.85 (m, 2H), 7.57 – 7.50 (m, 2H), 7.38 – 7.31 (m, 3H), 7.28 (d, J = 15.8 Hz, 1H), 6.97 – 6.83 (m, 4H), 6.25 (dt, J = 15.8, 5.4 Hz, 1H), 4.70 (dd, J = 5.4, 1.7 Hz, 2H), 3.79 (s, 3H), 2.42 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 168.32, 154.17, 152.51, 144.59, 141.24, 135.26, 134.50, 131.99,

130.18, 129.83, 129.35, 128.09, 128.02, 115.87, 114.79, 68.88, 55.75, 21.66. **HRMS** (ESI) m/z $(M+H)^+$: calculated for $C_{24}H_{24}NO_4S$: 422.1426, found: 422.1421.

4-methyl-N-((E)-2-((E)-3-(4-(trifluoromethyl)phenoxy)prop-1-en-1-yl)benzylidene)benzenesulfonamide (**3f**)

¹**H NMR** (500 MHz, CDCl₃) δ 9.37 (s, 1H), 8.04 (d, J = 7.8 Hz, 1H), 7.88 (d, J = 8.1 Hz, 2H), 7.63 – 7.50 (m, 4H), 7.41 – 7.28 (m, 4H), 7.04 (d, J = 8.5 Hz, 2H), 6.26 (dt, J = 15.8, 5.4 Hz, 1H), 4.80 (d, J = 4.7 Hz, 2H), 2.42 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 168.44, 160.87, 144.81, 140.92, 135.30,

134.67, 130.66, 129.96, 129.47, 129.09, 128.43, 128.17, 128.14, 127.18 (q, J = 3.5 Hz), 126.68 (q, J = 271.2 Hz), 123.40 (q, J = 32.3 Hz), 114.89, 68.37, 21.77. **HRMS** (ESI) m/z (M+H)⁺: calculated for C₂₄H₂₁F₃NO₃S: 460.1194, found: 460.1194.

5. General procedure for the synthesis of 2 and 4.

Synthesis of 2a is described as a typical procedure.

To a flame-dried and Ar-purged Schlenk tube (10 mL) were added 1a (0.1 mmol, 29.9 mg), A6 (0.003 mmol, 2.6 mg), m-xylene (1 mL) and a stirring bar. The Schlenk tube was then evacuated and filled with argon. The mixture was stirred at 35 °C for 36 h. The solution was concentrated and the residue was purified by flash column chromatography (petroleum ether/EtOAc = 4:1) on silica gel to afford the 2a.

6. Characterizations for the products 2 and 4.

(S)-4-methyl-N-(2-methyl-1H-inden-1-yl)benzenesulfonamide (2a)

H NHTs 7.3

Me (t, and the little of the lit

Yield: 91%, 27.2 mg. ¹**H NMR** (500 MHz, CDCl₃) δ 7.86 (d, J = 8.2 Hz, 2H), 7.36 (d, J = 8.1 Hz, 2H), 7.15 (t, J = 7.4 Hz, 1H), 7.06 (d, J = 7.4 Hz, 1H), 6.95 (t, J = 7.4 Hz, 1H), 6.75 (d, J = 7.4 Hz, 1H), 6.31 (s, 1H), 4.68 (d, J = 9.6 Hz, 1H), 4.60 (d, J = 9.6 Hz, 1H), 2.48 (s, 3H), 1.89 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 146.10, 143.72, 143.50, 143.28, 138.58, 129.94, 128.48, 127.87,

127.33, 124.99, 123.44, 120.35, 62.49, 21.71, 13.97. **HRMS** (ESI) m/z (M+H)⁺: calculated for $C_{17}H_{18}NO_2S$: 300.1058, found: 300.1046. [α]²⁰_D = -63.9 (c = 0.72, acetone). **The product was analyzed by HPLC to determine the enantiomeric excess**: 92% ee; (CHIRALPAK IE, hexane/i-PrOH = 70/30, flow rate: 1.0 mL/min, T = 30 °C, 254 nm), t_R (major) = 7.97 min, t_R (minor) = 11.40 min. The absolute configuration was assigned tentatively by analogy.

(S)-N-(1H-inden-1-yl)-4-methylbenzenesulfonamide (2b)

NHTs

2b

Yield: 69%, 19.7 mg. ¹**H NMR** (500 MHz, CDCl₃) δ 7.85 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.26 – 7.18 (m, 3H), 7.12 (dt, J = 7.4, 1.3 Hz, 1H), 6.67 (dd, J = 5.6, 1.3 Hz, 1H), 6.04 (dd, J = 5.6, 1.9 Hz, 1H), 4.90 (d, J = 9.6 Hz, 1H), 4.68 (d, J = 9.6 Hz, 1H), 2.47 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 143.76, 143.13, 142.41, 137.92, 135.10, 133.28, 129.93, 128.53, 127.30,

126.18, 123.77, 121.57, 60.41, 21.65. **HRMS** (ESI) m/z (M+H)⁺: calculated for $C_{16}H_{16}NO_2S$: 286.0902, found: 286.0894. $[\alpha]^{20}_D$ = -64.7 (c = 0.51, acetone). **The product was analyzed by HPLC to determine the enantiomeric excess**: 82% ee; (CHIRALPAK IE, hexane/i-PrOH = 70/30, flow rate: 1.0 mL/min, T = 30 °C, 254 nm), t_R (major) = 11.33 min, t_R (minor) = 12.74 min. The absolute configuration was assigned tentatively by analogy.

(R)-4-methyl-N-(2-phenyl-1H-inden-1-yl)benzenesulfonamide (2c)

H NHTs 7.3

2c

Yield: 68%, 24.6 mg. ¹**H NMR** (500 MHz, CDCl₃) δ 7.83 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.31 – 7.27 (m, 2H), 7.27 – 7.22 (m, 4H), 7.21 – 7.17

(m, 2H), 7.13 - 7.07 (m, 1H), 7.00 (d, J = 1.0 Hz, 1H), 5.44 (dd, J = 9.1, 0.7 Hz, 1H), 4.47 (d, J = 9.1 Hz, 1H), 2.50 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 146.35, 144.28, 143.85, 142.27, 138.52, 133.36, 129.96, 128.90, 128.79, 128.69, 128.01, 127.66, 127.01, 126.42, 124.82, 121.48, 59.67, 21.76. **HRMS** (ESI) m/z (M+H)+: calculated for $C_{22}H_{20}NO_2S$: 362.1215, found: 362.1205. [α]²⁰_D = -74.0 (c = 0.45, acetone). **The product was analyzed by HPLC to determine the enantiomeric excess**: 83% ee; (CHIRALPAK AD-H, hexane/i-PrOH = 80/20, flow rate: 1.0 mL/min, T = 30 °C, 254 nm), t_R (major) = 17.11 min, t_R (minor) = 18.73 min. The absolute configuration was assigned tentatively by analogy.

(S)-N-(2-benzyl-1H-inden-1-yl)-4-methylbenzenesulfonamide (2d)

Yield: 67%, 25.2 mg. ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.31 – 7.26 (m, 2H), 7.25 – 7.20 (m, 1H), 7.18 – 7.11 (m, 3H), 7.06 (d, J = 7.4 Hz, 1H), 6.96 (dt, J = 7.5, 1.0 Hz, 1H), 6.79 (d, J = 7.4 Hz, 1H), 6.20 (d, J = 0.9 Hz, 1H), 4.81 (d, J = 9.7 Hz, 1H), 4.58 (d, J = 9.7 Hz, 1H), 3.68 (d, J = 16.6 Hz, 1H), 3.51 (d, J = 16.5 Hz, 1H), 2.48 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.55, 143.83, 143.60, 142.89, 138.93, 138.50, 130.02, 129.18, 128.85, 128.59, 127.39, 126.42, 125.41, 123.70, 120.83, 61.58, 34.61, 21.75. HRMS (ESI) m/z (M+H)⁺: calculated for C₂₃H₂₂NO₂S: 376.1371, found: 376.1366. [α]²⁰_D = -79.7 (c = 0.48, acetone). The product was analyzed by HPLC to determine the enantiomeric excess: 93% ee; (CHIRALPAK IE, hexane/i-PrOH = 70/30, flow rate: 1.0 mL/min, T = 30 °C, 254 nm), t_R (major) = 8.50 min, t_R (minor) = 10.56 min. The absolute configuration was assigned tentatively by analogy.

(S)-4-methyl-N-(2-propyl-1H-inden-1-yl)benzenesulfonamide (2e)

Yield: 85%, 27.8 mg. ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 8.1 Hz, 2H), 7.17 (t, J = 7.4 Hz, 1H), 7.09 (d, J = 7.3 Hz, 1H), 6.96 (dt, J = 7.5, 0.8 Hz, 1H), 6.79 (d, J = 7.4 Hz, 1H), 6.33 (s, 1H), 4.75 (d, J = 9.7 Hz, 1H), 4.50 (d, J = 9.7 Hz, 1H), 2.48 (s, 3H), 2.28 – 2.07 (m, 2H), 1.54 – 1.34 (m, 2H), 0.87 (t, J = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 150.57, 143.79, 143.55, 143.23, 138.64, 129.98, 128.54, 127.41, 126.96, 125.11, 123.62, 120.51, 61.42, 30.14, 21.72, 21.62, 14.06. HRMS (ESI) m/z (M+H)⁺: calculated for C₁₉H₂₂NO₂S: 328.1371, found: 328.1365. [α]²⁰_D = -78.3 (c = 0.44, acetone). The product was analyzed by HPLC to determine the enantiomeric excess: 91% ee; (CHIRALPAK IE, hexane/i-PrOH = 70/30, flow rate: 1.0 mL/min, T = 30 °C, 254 nm), t_R (major) = 6.74 min, t_R (minor) = 7.54 min. The absolute configuration was assigned tentatively by analogy.

(S)-N-(2-cyclopropyl-1H-inden-1-yl)-4-methylbenzenesulfonamide (2f)

Yield: 67%, 21.8 mg. ¹H NMR (500 MHz, CDCl₃) δ 7.90 (d, J = 8.2 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 7.16 (t, J = 7.4 Hz, 1H), 7.06 (d, J = 7.4 Hz, 1H), 6.96 (dt, J = 7.5, 0.9 Hz, 1H), 6.82 (d, J = 7.4 Hz, 1H), 6.08 (s, 1H), 4.86 (d, J = 9.5 Hz, 1H), 4.59 (d, J = 9.5 Hz, 1H), 2.47 (s, 3H), 1.46 – 1.36 (m, 1H), 0.92 – 0.78 (m, 1H), 0.76 – 0.66 (m, 1H), 0.62 – 0.47 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 152.99, 143.64, 143.41, 142.90, 138.52, 129.84, 128.47, 127.33, 124.92, 123.44, 122.84, 120.40, 62.19, 21.63, 9.28, 8.84, 8.32. HRMS (ESI) m/z (M+Na)⁺: calculated for C₁₉H₁₉NNaO₂S: 348.1034, found: 348.1027. [α]²⁰_D = -63.2 (c = 0.28, acetone). The product was analyzed by

HPLC to determine the enantiomeric excess: 84% ee; (CHIRALPAK IE, hexane/i-PrOH = 70/30, flow rate: 1.0 mL/min, T = 30 °C, 254 nm), t_R (major) = 7.93 min, t_R (minor) = 8.91 min. The absolute configuration was assigned tentatively by analogy.

(S)-N-(2-cyclohexyl-1H-inden-1-yl)-4-methylbenzenesulfonamide (2g)

Yield: 88%, 32.3 mg. ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 7.17 (dt, J = 7.1, 1.4 Hz, 1H), 7.10 (d, J = 7.4 Hz, 1H), 7.02 – 6.93 (m, 2H), 6.30 (s, 1H), 4.84 (d, J = 9.8 Hz, 1H), 4.49 (d, J = 9.8 Hz, 1H), 2.47 (s, 3H), 2.11 (t, J = 11.3 Hz, 1H), 1.79 (t, J = 14.4 Hz, 2H), 1.65 (d, J = 12.3 Hz, 1H), 1.57 (dd, J = 12.1, 6.3 Hz, 2H), 1.40 – 1.30 (m, 1H), 1.24 (ddt, J = 12.8, 9.6, 3.2 Hz, 1H), 1.18 – 1.00 (m, 2H), 0.96 – 0.83 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 155.55, 143.67, 143.60, 143.01, 138.46, 129.88, 128.41, 127.35, 125.11, 123.83, 120.53, 60.04, 36.23, 34.23, 31.39, 26.50, 26.32, 26.22, 21.61. HRMS (ESI) m/z (M+H)⁺: calculated for C₂₂H₂₆NO₂S: 368.1684, found: 368.1675. [α]²⁰_D = -129.4 (c = 0.63, acetone). The product was analyzed by HPLC to determine the enantiomeric excess: 91% ee; (CHIRALPAK IE, hexane/i-PrOH = 70/30, flow rate: 1.0 mL/min, T = 30 °C, 254 nm), t_R (major) = 6.64 min, t_R (minor) = 7.18 min. The absolute configuration was assigned tentatively by analogy.

(S)-N-(2-(tert-butyl)-1H-inden-1-yl)-4-methylbenzenesulfonamide (2h)

Yield: 44%, 15.0 mg. ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, J = 8.3 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 7.15 (t, J = 7.3 Hz, 1H), 7.09 (d, J = 7.2 Hz, 1H), 6.91 (dt, J = 7.5, 1.1 Hz, 1H), 6.65 (d, J = 7.5 Hz, 1H), 6.43 (d, J = 0.9 Hz, 1H), 5.12 (d, J = 10.3 Hz, 1H), 4.35 (d, J = 10.3 Hz, 1H), 2.49 (s, 3H), 1.22 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 157.50, 144.43, 143.86, 142.32, 138.99, 130.04, 128.43, 127.43, 126.67, 125.44, 123.69, 120.64, 60.68, 33.86, 30.26, 21.76. HRMS (ESI) m/z (M+Na)+: calculated for $C_{20}H_{23}NNaO_2S$: 364.1347, found: 364.1342. [α]²⁰D = -42.1 (c = 0.34, acetone). The product was analyzed by HPLC to determine the enantiomeric excess: 82% ee; (CHIRALPAK AD-H, hexane/i-PrOH = 80/20, flow rate: 1.0 mL/min, T = 30 °C, 254 nm), t_R (major) = 5.86 min, t_R (minor) = 7.36 min. The absolute configuration was assigned tentatively by

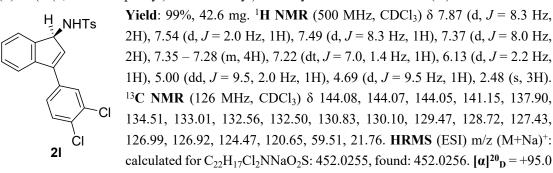
(S)-4-methyl-N-(3-methyl-1H-inden-1-yl)benzenesulfonamid (2i)

analogy.

Yield: 94%, 28.1 mg. ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 8.1 Hz, 2H), 7.29 (t, J = 7.4 Hz, 1H), 7.23 (d, J = 7.0 Hz, 1H), 7.16 (dd, J = 13.3, 7.1 Hz, 2H), 5.76 – 5.67 (m, 1H), 4.87 (d, J = 9.7 Hz, 1H), 4.47 (d, J = 9.7 Hz, 1H), 2.48 (s, 3H), 2.02 (t, J = 1.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 144.06, 143.88, 143.78, 142.08, 138.16, 130.00, 129.64, 128.52, 127.41, 126.27, 123.67, 119.41, 59.47, 21.75, 12.96. HRMS (ESI) m/z (M+Na)⁺: calculated for $C_{17}H_{17}NNaO_2S$: 322.0878, found: 322.0870. [α]²⁰_D = -69.1 (c = 0.32, acetone). The product was analyzed by HPLC to determine the enantiomeric excess: 87% ee; (CHIRALPAK IE, hexane/i-PrOH = 70/30, flow rate: 1.0 mL/min, T = 30 °C, 254 nm), t_R (major) = 21.43 min, t_R (minor) = 20.62 min. The absolute configuration was assigned tentatively by analogy.

(S)-N-(3-(tert-butyl)-1H-inden-1-yl)-4-methylbenzenesulfonamide (2j)

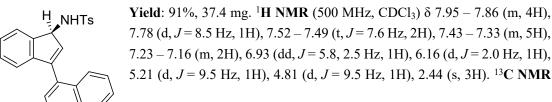
Yield: 99%, 33.8 mg. ¹H NMR (500 MHz, CDCl₃)
$$\delta$$
 7.87 (d, J = 8.3 Hz, 2H), 7.46 (d, J = 7.7 Hz, 1H), 7.36 (d, J = 8.0 Hz, 2H), 7.28 – 7.20 (m, 2H), 7.13 (dt, J = 7.4, 3.7 Hz, 1H), 5.73 (d, J = 2.1 Hz, 1H), 4.80 (dd, J = 9.5, 1.9 Hz, 1H), 4.53 (d, J = 9.5 Hz, 1H), 2.47 (s, 3H), 1.26 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 155.02, 145.16, 143.75, 142.09, 138.14, 129.94, 128.05, 127.44, 127.18, 125.66, 124.00, 122.67, 58.80, 33.17, 29.09, 21.71. HRMS (ESI) m/z (M+Na)[±]:


calculated for $C_{20}H_{23}NNaO_2S$: 364.1347, found: 364.1341. [α]²⁰_D = +46.0 (c = 0.57, acetone). The product was analyzed by HPLC to determine the enantiomeric excess: 76% ee; (CHIRALPAK IE, hexane/i-PrOH = 70/30, flow rate: 1.0 mL/min, T = 30 °C, 254 nm), t_R (major) = 7.97 min, t_R (minor) = 11.40 min. The absolute configuration was assigned tentatively by analogy.

(S)-4-methyl-N-(3-phenyl-1H-inden-1-yl)benzenesulfonamide (2k)

Yield: 93%, 33.6 mg. 1 H NMR (500 MHz, CDCl₃) δ 7.89 (d, J = 8.3 Hz, 2H), 7.48 – 7.46 (m, 2H), 7.45 – 7.38 (m, 4H), 7.38 – 7.36 (m, 2H), 7.33 – 7.28 (m, 2H), 7.21 (dt, J = 7.4, 0.8 Hz, 1H), 6.08 (d, J = 2.2 Hz, 1H), 5.03 (dd, J = 9.6, 1.9 Hz, 1H), 4.66 (d, J = 9.6 Hz, 1H), 2.47 (s, 3H). 13 C NMR (126 MHz, CDCl₃) δ 146.26, 144.33, 143.89, 142.00, 138.06, 134.54, 131.08, 130.05, 128.79, 128.53, 128.50, 127.64, 127.42, 126.59, 124.30, 121.00, 59.56, 21.74. HRMS

(ESI) m/z (M+Na)⁺: calculated for $C_{22}H_{19}NNaO_2S$: 384.1034, found: 384.1034. [α]²⁰_D = +56.4 (c = 0.37, acetone). **The product was analyzed by HPLC to determine the enantiomeric excess**: 81% ee; (CHIRALPAK IE, hexane/i-PrOH = 70/30, flow rate: 1.0 mL/min, T = 30 °C, 254 nm), t_R (major) = 14.91 min, t_R (minor) = 12.86 min. The absolute configuration was assigned tentatively by analogy.


(S)-N-(3-(3,4-dichlorophenyl)-1H-inden-1-yl)-4-methylbenzenesulfonamide (21)

(c = 0.36, acetone). The product was analyzed by HPLC to determine the enantiomeric excess: 87% ee; (CHIRALPAK AD-H, hexane/i-PrOH = 70/30, flow rate: 1.0 mL/min, T = 30 °C, 254 nm), t_R (major) = 7.97 min, t_R (minor) = 11.40 min. The absolute configuration was assigned tentatively by analogy.

(S)-4-methyl-N-(3-(naphthalen-1-yl)-1H-inden-1-yl)benzenesulfonamide (2m)

2m

(126 MHz, CDCl₃) δ 145.51, 143.92, 143.71, 143.56, 138.09, 133.79, 133.40, 132.39, 131.46, 130.09, 128.73, 128.58, 128.51, 127.41, 126.64, 126.43, 126.19, 126.16, 125.89, 125.50, 124.07, 121.56, 60.00, 21.73. **HRMS** (ESI) m/z (M+Na)+: calculated for $C_{26}H_{21}NNaO_{2}S$: 434.1191, found: 434.1182. [α]²⁰_D = -3.2 (c = 0.31, acetone). **The product was analyzed by HPLC to determine the enantiomeric excess**: 80% ee; (CHIRALPAK AD-H, hexane/i-PrOH = 95/5, flow rate: 1.0 mL/min, T = 30 °C, 254 nm), t_R (major) = 29.22 min, t_R (minor) = 25.27 min. The absolute configuration was assigned tentatively by analogy.

(S)-N-(2,3-dimethyl-1H-inden-1-yl)-4-methylbenzenesulfonamide (2n)

Me 2n

Yield: 98%, 30.7 mg. ¹**H NMR** (500 MHz, CDCl₃) δ 7.88 (d, J = 8.3 Hz, 2H), 7.37 (d, J = 8.3 Hz, 2H), 7.22 (t, J = 7.5 Hz, 1H), 7.07 (d, J = 7.4 Hz, 1H), 6.98 (t, J = 7.4 Hz, 1H), 6.77 (d, J = 7.3 Hz, 1H), 4.68 (d, J = 9.6 Hz, 1H), 4.42 (d, J = 9.7 Hz, 1H), 2.48 (s, 3H), 1.94 (s, 3H), 1.81 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 145.31, 143.71, 142.87, 138.76, 138.05, 134.17, 129.98, 128.45, 127.41, 125.18, 123.09, 118.42, 62.49, 21.75, 11.25, 10.46. **HRMS** (ESI) m/z

(M+Na)⁺: calculated for $C_{18}H_{19}NNaO_2S$: 336.1034, found: 336.1031. [α]²⁰_D = -59.2 (c = 0.53, acetone). **The product was analyzed by HPLC to determine the enantiomeric excess**: 77% ee; (CHIRALPAK IE, hexane/i-PrOH = 70/30, flow rate: 1.0 mL/min, T = 30 °C, 254 nm), t_R (major) = 8.30 min, t_R (minor) = 8.58 min. The absolute configuration was assigned tentatively by analogy.

(S)-4-methyl-N-(1,2,3,8-tetrahydrocyclopenta[a]inden-8-yl)benzenesulfonamide (20)

H NHTs

20

Yield: 85%, 27.7 mg. ¹**H NMR** (500 MHz, CDCl₃) δ 7.85 (d, J = 8.2 Hz, 2H), 7.34 (d, J = 8.2 Hz, 2H), 7.19 (t, J = 7.5 Hz, 1H), 7.13 (d, J = 7.3 Hz, 1H), 7.03 (dd, J = 16.9, 7.4 Hz, 2H), 4.71 (d, J = 9.4 Hz, 1H), 4.57 (d, J = 9.5 Hz, 1H), 2.51 – 2.43 (m, 2H), 2.46 (s, 3H), 2.31 – 2.23 (m, 2H), 2.22 – 2.16 (m, 1H), 2.14 – 2.05 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 150.88, 149.59, 148.60, 143.67, 140.01, 138.36, 129.89, 128.32, 127.40, 125.16, 124.10, 119.15, 56.56,

27.72, 27.65, 26.59, 21.73. **HRMS** (ESI) m/z (M+Na)⁺: calculated for $C_{19}H_{19}NNaO_2S$: 348.1034, found: 348.1027. [α]²⁰_D = +6.1 (c = 0.52, acetone). **The product was analyzed by HPLC to determine the enantiomeric excess**: 87% ee; (CHIRALPAK IG, hexane/i-PrOH = 70/30, flow rate: 0.5 mL/min, T = 30 °C, 254 nm), t_R (major) = 19.95 min, t_R (minor) = 17.79 min. The absolute configuration was assigned tentatively by analogy.

(S)-4-methyl-N-(2,3,4,9-tetrahydro-1H-fluoren-9-yl)benzenesulfonamide (**2p**)

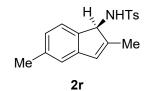
H_NHTs

2p

Yield: 65%, 22.0 mg. ¹**H NMR** (500 MHz, CDCl₃) δ 7.89 – 7.86 (m, 2H), 7.36 (d, J = 8.0 Hz, 2H), 7.21 (t, J = 7.5 Hz, 1H), 7.05 (d, J = 7.4 Hz, 1H), 7.03 – 6.96 (m, 1H), 6.89 (dd, J = 7.3, 0.5 Hz, 1H), 4.70 (d, J = 9.5 Hz, 1H), 4.46 (d, J = 9.5 Hz, 1H), 2.48 (s, 3H), 2.37 – 2.18 (m, 3H), 1.96 (dd, J = 16.7, 13.0 Hz, 1H), 1.80 – 1.61 (m, 4H).

¹³C NMR (126 MHz, CDCl₃) δ 144.08, 143.66, 143.37, 141.20, 138.59, 137.76, 129.93, 128.36, 127.38, 125.23, 123.33, 118.00, 61.23, 22.89, 22.82, 22.32, 22.12, 21.75. HRMS (ESI) m/z (M+Na)⁺: calculated for $C_{20}H_{21}NNaO_2S$: 362.1191, found: 362.1181. [α]²⁰_D = -49.4 (c = 0.32, acetone). The product was analyzed by HPLC to determine the enantiomeric excess: 94% ee; (CHIRALPAK IE, hexane/i-PrOH = 80/20, flow rate: 1.0 mL/min, T = 30 °C, 254 nm), t_R

 $(major) = 11.81 \text{ min}, t_R (minor) = 12.68 \text{ min}.$ The absolute configuration was assigned tentatively by analogy.


(S)-N-(2,7-dimethyl-1H-inden-1-yl)-4-methylbenzenesulfonamide (2q)

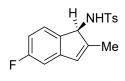
Me H NHTs

Yield: 79%, 24.8 mg. ¹**H NMR** (500 MHz, CDCl₃) δ 7.76 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 8.1 Hz, 2H), 7.08 (t, J = 7.5 Hz, 1H), 6.90 (d, J = 7.3 Hz, 1H), 6.79 (d, J = 7.6 Hz, 1H), 6.26 (s, 1H), 4.88 (d, J = 9.5 Hz, 1H), 4.37 (d, J = 9.5 Hz, 1H), 2.43 (s, 3H), 2.13 (s, 3H), 1.71 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 146.23 142.51 142.44 140.15 120.27 124.62 120.70 120.81 120.45

2q 146.33, 143.51, 143.44, 140.15, 139.37, 134.63, 129.70, 128.81, 128.45, 127.37, 127.09, 118.10, 62.53, 21.68, 18.14, 14.56. **HRMS** (ESI) m/z (M+H)+: calculated for $C_{18}H_{20}NO_2S$: 314.1215, found: 314.1208. [α]²⁰_D = -42.1 (c = 0.46, acetone). **The product was analyzed by HPLC to determine the enantiomeric excess**: 84% ee; (CHIRALPAK IE, hexane/i-PrOH = 70/30, flow rate: 1.0 mL/min, T = 30 °C, 254 nm), t_R (major) = 6.56 min, t_R (minor) = 7.68 min. The absolute configuration was assigned tentatively by analogy.

(S)-N-(2,5-dimethyl-1H-inden-1-yl)-4-methylbenzenesulfonamide (2r)

Yield: 84%, 26.3 mg. ¹**H NMR** (500 MHz, CDCl₃) δ 7.87 (d, J = 8.1 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 6.90 (s, 1H), 6.76 (d, J = 7.5 Hz, 1H), 6.59 (d, J = 7.5 Hz, 1H), 6.27 (s, 1H), 4.66 (d, J = 9.6 Hz, 1H), 4.49 (d, J = 9.6 Hz, 1H), 2.48 (s, 3H), 2.28 (s, 3H), 1.89 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 146.34, 143.72, 143.58, 140.59, 138.66, 138.38, 129.95, 127.86,


127.38, 125.62, 123.15, 121.28, 62.26, 21.73, 21.52, 14.05. **HRMS** (ESI) m/z (M+H)⁺: calculated for $C_{18}H_{20}NO_2S$: 314.1215, found: 314.1209. [α]²⁰_D = +83.5 (c = 0.46, acetone). **The product was analyzed by HPLC to determine the enantiomeric excess**: 95% ee; (CHIRALPAK IE, hexane/i-PrOH = 70/30, flow rate: 1.0 mL/min, T = 30 °C, 254 nm), t_R (major) = 8.66 min, t_R (minor) = 15.86 min. The absolute configuration was assigned tentatively by analogy.

(S)-N-(2,4-dimethyl-1H-inden-1-yl)-4-methylbenzenesulfonamide (2s)

H NHTs Me Me 2s **Yield**: 75%, 23.5 mg. ¹**H NMR** (400 MHz, CDCl₃) δ 7.87 (d, J = 7.8 Hz, 2H), 7.36 (d, J = 7.8 Hz, 2H), 6.96 (d, J = 7.5 Hz, 1H), 6.86 (t, J = 7.4 Hz, 1H), 6.57 (d, J = 7.3 Hz, 1H), 6.43 (s, 1H), 4.69 (d, J = 9.5 Hz, 1H), 4.51 (d, J = 9.5 Hz, 1H), 2.48 (s, 3H), 2.28 (s, 3H), 1.92 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 145.52, 143.73, 143.38, 141.93, 138.65, 129.97, 129.70, 129.61, 127.36, 126.10, 125.08, 120.85, 62.78, 21.74, 18.15, 14.12. **HRMS** (ESI) m/z (M+Na)⁺:

calculated for $C_{18}H_{19}NNaO_2S$: 336.1034, found: 336.1029. $[\alpha]^{20}_D$ = +34.0 (c = 0.40, acetone). The product was analyzed by HPLC to determine the enantiomeric excess: 89% ee; (CHIRALPAK IE, hexane/i-PrOH = 70/30, flow rate: 1.0 mL/min, T = 30 °C, 254 nm), t_R (major) = 8.20 min, t_R (minor) = 9.37 min. The absolute configuration was assigned tentatively by analogy.

(S)-N-(5-fluoro-2-methyl-1H-inden-1-yl)-4-methylbenzenesulfonamide (2t)

2t

Yield: 50%, 15.9 mg. ¹**H NMR** (500 MHz, CDCl₃) δ 7.86 (d, J = 8.2 Hz, 2H), 7.36 (d, J = 8.1 Hz, 2H), 6.76 (dd, J = 8.7, 2.2 Hz, 1H), 6.72 (dd, J = 8.1, 5.1 Hz, 1H), 6.66 – 6.59 (m, 1H), 6.27 (s, 1H), 4.65 (d, J = 9.7 Hz, 1H), 4.60 (d, J = 9.7 Hz, 1H), 2.48 (s, 3H), 1.88 (s, 3H). ¹³**C NMR** (126 MHz,

CDCl₃) δ 163.52 (d, J = 244.6 Hz), 148.46, 145.38 (d, J = 9.3 Hz), 143.91, 138.83 (d, J = 2.6 Hz), 138.46, 130.01, 127.35, 127.27 (d, J = 2.7 Hz), 124.45 (d, J = 9.2 Hz), 111.38, 111.20, 108.03, 107.85, 61.87, 21.73, 14.12. ¹⁹**F NM**R (471 MHz, CDCl₃) δ -114.19. **HRMS** (ESI) m/z (M+Na)⁺: calculated for C₁₇H₁₆FNNaO₂S: 340.0783, found: 340.0776. [α]²⁰_D = -84.0 (c = 0.29, acetone). **The product was analyzed by HPLC to determine the enantiomeric excess**: 95% ee; (CHIRALPAK IE, hexane/i-PrOH = 70/30, flow rate: 1.0 mL/min, T = 30 °C, 254 nm), t_R (major) = 6.89 min, t_R (minor) = 9.60 min. The absolute configuration was assigned tentatively by analogy.

(S)-N-(5-methoxy-2-methyl-1H-inden-1-yl)-4-methylbenzenesulfonamide (2u)

MeO 2u NHTs

Yield: 74%, 24.4 mg. ¹**H NMR** (500 MHz, CDCl₃) δ 7.87 (d, J = 8.1 Hz, 2H), 7.36 (d, J = 8.1 Hz, 2H), 6.64 (d, J = 2.2 Hz, 1H), 6.60 (d, J = 8.2 Hz, 1H), 6.46 (dd, J = 8.2, 2.2 Hz, 1H), 6.27 (s, 1H), 4.65 (d, J = 9.6 Hz, 1H), 4.49 (d, J = 9.6 Hz, 1H), 3.75 (s, 3H), 2.48 (s, 3H), 1.90 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 160.33, 147.51, 144.88, 143.64, 138.55,

135.30, 129.87, 127.62, 127.27, 123.91, 109.54, 106.89, 61.86, 55.43, 21.63, 14.03. **HRMS** (ESI) m/z (M+Na)⁺: calculated for $C_{18}H_{19}NNaO_3S$: 352.0983, found: 352.0983. [α]²⁰_D = +36.1 (c = 0.32, acetone). **The product was analyzed by HPLC to determine the enantiomeric excess**: 92% ee; (CHIRALPAK AD-H, hexane/i-PrOH = 70/30, flow rate: 1.0 mL/min, T = 30 °C, 254 nm), t_R (major) = 7.71 min, t_R (minor) = 9.93 min. The absolute configuration was assigned tentatively by analogy.

(S)-N-(5-chloro-2-methyl-1H-inden-1-yl)-4-methylbenzenesulfonamide (2v)

CI NHTs NHTs

Yield: 45%, 15.0 mg. ¹**H NMR** (400 MHz, CDCl₃) δ 7.95 – 7.78 (m, 2H), 7.36 (dd, J = 8.5, 0.6 Hz, 2H), 7.06 (d, J = 1.9 Hz, 1H), 6.93 (dd, J = 7.9, 1.9 Hz, 1H), 6.72 – 6.69 (m, 1H), 6.28 (dt, J = 1.6, 0.6 Hz, 1H), 4.73 – 4.60 (m, 1H), 4.55 (d, J = 9.7 Hz, 1H), 2.48 (s, 3H), 1.88 (d, J = 0.7 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 148.01, 145.03, 143.98, 141.75,

138.42, 134.47, 130.04, 127.37, 127.18, 124.90, 124.44, 120.73, 62.08, 21.75, 14.09. **HRMS** (ESI) m/z (M+H)+: calculated for $C_{17}H_{17}CINO_2S$: 334.0669, found: 334.0661. [α]²⁰_D = +68.5 (c = 0.40, acetone). **The product was analyzed by HPLC to determine the enantiomeric excess**: 95% ee; (CHIRALPAK IE, hexane/i-PrOH = 70/30, flow rate: 1.0 mL/min, T = 30 °C, 254 nm), t_R (major) = 7.38 min, t_R (minor) = 13.05 min. The absolute configuration was assigned tentatively by analogy.

(S)-4-methyl-N-(6-methyl-5H-indeno[5,6-d][1,3]dioxol-5-yl)benzenesulfonamide (2w)

Yield: 93%, 40.4 mg. ¹**H NMR** (400 MHz, CDCl₃) δ 7.86 (d, J = 8.3 Hz, 2H), 7.36 (dd, J = 8.6, 0.6 Hz, 2H), 6.57 (s, 1H), 6.30 (s, 1H), 6.21 – 6.17 (m, 1H), 5.87 (d, J = 1.4 Hz, 1H), 5.87 (d, J = 1.4 Hz, 1H), 4.57 (s, 2H), 2.47 (s, 3H), 1.83 (d, J = 1.5 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 147.78, 145.60, 144.96, 143.86, 138.57, 137.22, 136.97, 130.00, 127.40,

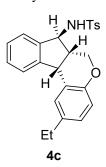
127.34, 105.59, 101.85, 101.12, 62.18, 21.72, 13.97. **HRMS** (ESI) m/z (M+Na)⁺: calculated for $C_{18}H_{17}NNaO_4S$: 366.0776, found: 366.0768. [α]²⁰_D = -83.9 (c = 0.29, acetone). **The product was analyzed by HPLC to determine the enantiomeric excess**: 93% ee; (CHIRALPAK IE, hexane/i-PrOH = 70/30, flow rate: 1.0 mL/min, T = 30 °C, 254 nm), t_R (major) = 7.97 min, t_R (minor) = 11.40 min. The absolute configuration was assigned tentatively by analogy.

4-methyl-N-((6aR,7S,11bS)-6,6a,7,11b-tetrahydroindeno[2,1-c]chromen-7-yl)benzenesulfonamide (**4a**)

Yield: 73%, 28.6 mg. ¹**H NMR** (400 MHz, CDCl₃) δ 7.87 (d, J = 8.2 Hz, 2H), 7.44 (d, J = 7.6 Hz, 1H), 7.35 (d, J = 8.0 Hz, 3H), 7.23 (d, J = 7.5 Hz, 1H), 7.17 – 7.05 (m, 2H), 6.91 (t, J = 7.5 Hz, 1H), 6.84 (d, J = 8.1 Hz, 2H), 4.97 (d, J = 8.7 Hz, 1H), 4.90 – 4.81 (m, 1H), 4.45 (d, J = 7.8 Hz, 1H), 4.08 (dd, J = 11.3, 3.1 Hz, 1H), 3.98 (dd, J = 11.3, 5.0 Hz, 1H), 2.81 – 2.69 (m, 1H), 2.46 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 154.67, 144.73, 143.88, 140.74, 138.01, 130.08, 129.80, 129.07, 128.05, 127.76, 127.24, 125.26, 124.77, 123.41, 121.51,

117.80, 64.55, 58.71, 47.74, 41.37, 21.74. **HRMS** (ESI) m/z (M+H)⁺: calculated for $C_{23}H_{22}NO_3S$: 392.1320, found: 392.1320.

 $[\alpha]^{20}_{D}$ = -39.5 (c = 0.34, acetone). The product was analyzed by HPLC to determine the enantiomeric excess: 91% ee; (CHIRALPAK IE, hexane/i-PrOH = 70/30, flow rate: 1.0 mL/min, T = 30 °C, 254 nm), t_R (major) = 14.27 min, t_R (minor) = 12.20 min. The absolute configuration was assigned tentatively by analogy.


4-methyl-N-((6aR,7S,11bS)-2-methyl-6,6a,7,11b-tetrahydroindeno[2,1-c]chromen-7-yl)benzenesulfonamide (**4b**)

H NHTs
H
Me
4b

Yield: 63%, 25.5 mg. ¹**H NMR** (400 MHz, CDCl₃) δ 7.90 – 7.83 (m, 2H), 7.45 (d, J = 7.6 Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H), 7.28 – 7.22 (m, 1H), 7.13 (dt, J = 10.2, 5.0 Hz, 2H), 6.89 (dd, J = 8.3, 2.1 Hz, 1H), 6.84 (d, J = 7.6 Hz, 1H), 6.74 (d, J = 8.3 Hz, 1H), 4.99 (d, J = 8.8 Hz, 1H), 4.92 – 4.83 (m, 1H), 4.40 (d, J = 7.9 Hz, 1H), 4.04 (dd, J = 11.3, 3.1 Hz, 1H), 3.96 (dd, J = 11.3, 4.8 Hz, 1H), 2.77 – 2.66 (m, 1H), 2.46 (s, 3H), 2.26 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 152.42, 144.76, 143.84, 140.87, 138.05, 130.71, 130.06, 129.95, 129.01, 128.48, 127.99, 127.23, 125.28, 124.73, 123.07, 117.53, 64.52, 58.66, 47.93,

41.37, 21.73, 20.83. **HRMS** (ESI) m/z (M+H)⁺: calculated for $C_{24}H_{24}NO_3S$: 406.1477, found: 406.1473. [α]²⁰_D = -20.9 (c = 0.093, acetone). **The product was analyzed by HPLC to determine the enantiomeric excess**: 91% ee; (CHIRALPAK IE, hexane/i-PrOH = 70/30, flow rate: 1.0 mL/min, T = 30 °C, 254 nm), t_R (major) = 14.57 min, t_R (minor) = 10.30 min. The absolute configuration was assigned tentatively by analogy.

N-((6aR,7S,11bS)-2-ethyl-6,6a,7,11b-tetrahydroindeno[2,1-c]chromen-7-yl)-4-methylbenzenesulfonamide (4c)

Yield: 63%, 26.4 mg. ¹**H NMR** (500 MHz, CDCl₃) δ 7.87 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 7.5 Hz, 1H), 7.35 (d, J = 7.9 Hz, 2H), 7.31 – 7.21 (m, 1H), 7.17 (s, 1H), 7.13 (t, J = 7.5 Hz, 1H), 6.92 (d, J = 8.2 Hz, 1H), 6.86 (d, J = 7.5 Hz, 1H), 6.77 (d, J = 8.3 Hz, 1H), 4.94 (d, J = 8.7 Hz, 1H), 4.91 – 4.82 (m, 1H), 4.42 (d, J = 7.8 Hz, 1H), 4.05 (dd, J = 11.2, 2.6 Hz, 1H), 3.96 (dd, J = 11.2, 4.9 Hz, 1H), 2.77 – 2.70 (m, 1H), 2.56 (q, J = 7.5 Hz, 2H), 2.46 (s, 3H), 1.20 (t, J = 7.6 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 152.63, 144.84, 143.85, 140.85, 138.07, 137.24, 130.06, 129.04, 128.82, 127.99, 127.28, 127.26, 125.26, 124.77,

123.08, 117.58, 64.58, 58.74, 47.86, 41.47, 28.27, 21.73, 15.95. **HRMS** (ESI) m/z (M+H)+:

calculated for $C_{25}H_{26}NO_3S$: 420.1633, found: 420.1636. [α]²⁰_D = -44.6 (c = 0.25, acetone). The **product was analyzed by HPLC to determine the enantiomeric excess**: 91% ee; (CHIRALPAK IE, hexane/i-PrOH = 70/30, flow rate: 1.0 mL/min, T = 30 °C, 254 nm), t_R (major) = 12.74 min, t_R (minor) = 17.37 min. The absolute configuration was assigned tentatively by analogy.

N-((6aR,7S,11bS)-2-fluoro-6,6a,7,11b-tetrahydroindeno[2,1-c]chromen-7-yl)-4-methylbenzenesulfonamide (**4d**)

H NHTs H F 4d Yield: 56%, 22.9 mg. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.3 Hz, 2H), 7.42 (d, J = 7.6 Hz, 1H), 7.35 (d, J = 8.1 Hz, 2H), 7.30 – 7.22 (m, 1H), 7.15 (t, J = 7.5 Hz, 1H), 7.07 – 6.98 (m, 1H), 6.83 (d, J = 7.6 Hz, 1H), 6.78 (dd, J = 7.5, 1.8 Hz, 2H), 4.95 – 4.83 (m, 2H), 4.41 (d, J = 7.9 Hz, 1H), 4.04 (d, J = 3.7 Hz, 2H), 2.77 – 2.72 (m, 1H), 2.46 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.38 (d, J = 239.5 Hz), 150.74, 144.06, 143.97, 140.88, 138.02, 130.12, 129.26, 128.35, 127.27, 125.19, 124.71, 118.90 (d, J = 8.1 Hz), 115.43 (d, J = 22.9 Hz), 114.81, 114.63, 64.72, 58.61, 47.96, 41.63, 21.76. HRMS (ESI) m/z (M+H)⁺:

calculated for $C_{23}H_{21}FNO_3S$: 410.1226, found: 410.1228. [α]²⁰_D = -36.2 (c = 0.5, acetone). The product was analyzed by HPLC to determine the enantiomeric excess: 92% ee; (CHIRALPAK IE, hexane/i-PrOH = 70/30, flow rate: 1.0 mL/min, T = 30 °C, 254 nm), t_R (major) = 11.32 min, t_R (minor) = 9.53 min. The absolute configuration was assigned tentatively by analogy.

N-((6aR,7S,11bS)-2-methoxy-6,6a,7,11b-tetrahydroindeno[2,1-c]chromen-7-yl)-4-methylbenzenesulfonamide (**4e**)

Yield: 61%, 25.7 mg. ¹**H NMR** (500 MHz, CDCl₃) δ 7.87 (d, J = 8.3 Hz, 2H), 7.44 (d, J = 7.6 Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H), 7.24 (t, J = 7.6 Hz, 1H), 7.13 (t, J = 7.4 Hz, 1H), 6.88 (d, J = 2.8 Hz, 1H), 6.83 (d, J = 7.5 Hz, 1H), 6.78 (d, J = 8.9 Hz, 1H), 6.66 (dd, J = 8.9, 2.9 Hz, 1H), 4.95 – 4.83 (m, 2H), 4.41 (d, J = 8.0 Hz, 1H), 4.06 – 3.96 (m, 2H), 3.75 (s, 3H), 2.75 – 2.70 (m, 1H), 2.46 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 154.05, 148.67, 144.53, 143.87, 140.96, 138.06, 130.07, 129.08, 128.11, 127.25, 125.21, 124.71, 124.23, 118.37, 114.52, 113.42, 64.66, 58.68, 55.83, 48.07, 41.75, 21.74. **HRMS** (ESI) m/z

(M+H)⁺: calculated for $C_{24}H_{24}NO_4S$: 422.1426, found: 422.1426. [α]²⁰_D = -50.6 (c = 0.40, acetone). The product was analyzed by HPLC to determine the enantiomeric excess: 92% ee; (CHIRALPAK IE, hexane/i-PrOH = 70/30, flow rate: 1.0 mL/min, T = 30 °C, 254 nm), t_R (major) = 24.94 min, t_R (minor) = 14.96 min. The absolute configuration was assigned tentatively by analogy.

7. Procedure for the synthesis of 7.

To the Schlenk tube charged with a solution of 2b (2.8 mmol, 0.8 g, 83% ee) in anhydrous CH₃OH (10 mL) were added 10% Pd/C (0.1 equiv, 0.28 mmol, 280 mg) and a stir ball. After being stirred at 25 °C under a H₂ atmosphere overnight, the mixture was filtrated with silica gel and concentrated

in vacuo. The residue was purified by flash column chromatography on silica gel (EtOAc: Petroleum ether = 1:10) to give 5 (0.740 g) in 95% yield.

To a round bottom flask containing compound 5 (0.114 g, 0.4 mmol) was added solution of SmI_2 (40 mL, 0.1 M, 4 mmol), H_2O (0.108 g, 6 mmol), and pyrrolidine (0.284 g, 2 mmol). The solution was stirred at room temperature for 12 h. The mixture was diluted with EtOAc, washed with NaHCO₃, extracted with EtOAc, dried over Na₂SO₄, and filtered. The filtrate was evaporated under reduced pressure and the resulting residue was purified by flash column chromatography (EtOAc: Petroleum ether = 1: 20) on silica gel to afford $\mathbf{6}$ (0.040 g) in 76% yield.

Potassium carbonate (0.028 g, 0.2 mmol) was added to a solution of 6 (0.026 g, 0.2 mmol) in acetonitrile (5 mL). Propargyl bromide (0.024 g, 0.2 mmol) was added to the reaction mixture with stirring at room temperature. After stirring at 30 °C for 12 h, potassium carbonate was filtered off, and acetonitrile was removed by evaporation under reduced pressure. Water (10 mL) was added to the mixture. The mixture was extracted with Et_2O (10 mL imes 3). The combined organic phase was washed with saturated aqueous NaCl and dried over MgSO₄, then concentrated in vacuo. The crude residue was purified by silica chromatography (EtOAc: Petroleum ether = 1: 40) to give 7 (0.027 g) in 79% yield.

8. Characterizations for the products 5, 6 and 7.

(S)-N-(2,3-dihydro-1H-inden-1-yl)-4-methylbenzenesulfonamide (5)

Yield: 95%, 0.74 g. ¹**H NMR** (400 MHz, CDCl₃) δ 7.83 (d, J = 8.3 Hz, 2H), H_{.NHTs} 7.34 (d, J = 8.1 Hz, 2H), 7.24 - 7.11 (m, 3H), 7.08 (d, J = 7.4 Hz, 1H), 4.88 - 1.004.67 (m, 2H), 2.89 (ddd, J = 16.0, 8.7, 3.6 Hz, 1H), 2.77 - 2.69 (m, 1H), 2.45(s, 3H), 2.37 – 2.27 (m, 1H), 1.79 – 1.70 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) 8 143.61, 142.96, 142.11, 138.30, 129.93, 128.43, 127.27, 126.99, 124.94, 124.21, 58.85, 34.87, 30.09, 21.71. **HRMS** (ESI) m/z (M+Na)+: calculated for C₁₆H₁₇NNaO₂S: 310.0878, found: 310.0871. $[\alpha]^{20}_{D}$ = -23.9 (c = 0.53, acetone). The product was analyzed by HPLC to determine the enantiomeric excess: 83% ee; (CHIRALPAK IE, hexane/i-PrOH = 70/30, flow rate: 1.0 mL/min, T = 30 °C, 254 nm), t_R (major) =24.14 min, t_R (minor) = 36.99 min. The absolute

(S)-2,3-dihydro-1H-inden-1-amine (6)

configuration was assigned tentatively by analogy.

Yield: 76%, 40.0 mg. ¹**H NMR** (400 MHz, CDCl₃) δ 7.34 – 7.32 (m, 1H), 7.25 – 7.17 (m, 3H), 4.36 (t, J = 7.5 Hz, 1H), 2.96 (ddd, J = 15.8, 8.6, 3.2 Hz, 1H), 2.89 -2.73 (m, 1H), 2.54 - 2.47 (m, 1H), 1.74 - 1.64 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) & 147.48, 143.14, 127.24, 126.54, 124.73, 123.36, 57.31, 37.39, 30.16.

HRMS (ESI) m/z (M+H)⁺: calculated for C9H12N: 134.0970, found: 134.0970. $[\alpha]^{20}_D = -53.4$ (c = 0.5, acetone). The product was analyzed by HPLC to determine the enantiomeric excess: 88% ee; (CHIRALPAK IE, hexane/i-PrOH = 70/30, flow rate: 1.0 mL/min, T = 30 °C, 254 nm), t_R $(major) = 7.97 \text{ min}, t_R \text{ (minor)} = 11.40 \text{ min}.$ The absolute configuration was assigned tentatively by analogy.

(S)-N-(prop-2-yn-1-yl)-2,3-dihydro-1H-inden-1-amine (7)

Yield: 79%, 27.0 mg. ¹**H NMR** (400 MHz, CDCl₃) δ 7.35 (d, J = 6.6 Hz, 1H), 7.26 - 7.15 (m, 3H), 4.42 (t, J = 6.0 Hz, 1H), 3.61 - 3.44 (m, 2H), 3.10 - 2.98

(m, 1H), 2.90 - 2.77 (m, 1H), 2.45 - 2.26 (m, 1H), 2.26 (s, 1H), 1.91 - 1.83 (m, 1H), 1.54 (brs, 1H). 13 C NMR (101 MHz, CDCl₃) δ 144.61, 143.94, 127.76, 126.38, 125.00, 124.31, 82.60, 71.52, 61.98, 36.29, 33.45, 30.58. HRMS (ESI) m/z (M+H)⁺: calculated for $C_{12}H_{14}N$: 172.1126, found: 172.1110. [α]²⁰_D = -4.2 (c = 0.54, acetone). The product was analyzed by HPLC to determine the enantiomeric excess: 89% ee; (CHIRALPAK AS, hexane/i-PrOH = 97/3, flow rate: 1.0 mL/min, T = 30 °C, 254 nm), t_R (major) = 5.18 min, t_R (minor) = 5.95 min. The absolute configuration was assigned tentatively by analogy.

9. X-ray Single Crystal Data for 2e

Identification code 191118shc

Empirical formula C19 H21 N O2 S

Formula weight 327.43

Temperature 170.02 K

Wavelength 1.34139 Å

Crystal system Triclinic

Space group P1

Unit cell dimensions a = 5.1578(3) Å $\alpha = 92.623(2)^{\circ}$.

 $b = 8.9611(4) \text{ Å} \qquad \qquad \beta = 103.7520(10)^{\circ}.$ $c = 9.5418(5) \text{ Å} \qquad \qquad \gamma = 95.143(2)^{\circ}.$

Volume 425.62(4) Å³

Z 1

Density (calculated) 1.277 Mg/m^3 Absorption coefficient 1.140 mm^{-1}

F(000) 174

Crystal size $0.08 \times 0.06 \times 0.05 \text{ mm}^3$

Theta range for data collection 5.790 to 54.965°.

Index ranges -6 <= h <= 6, -10 <= k <= 10, -11 <= l <= 11

Reflections collected 7143

Independent reflections 3092 [R(int) = 0.0477]

Completeness to theta = 53.594° 98.5 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.7508 and 0.5114

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 3092 / 3 / 214

Goodness-of-fit on F² 1.071

Final R indices [I>2sigma(I)] R1 = 0.0368, wR2 = 0.0916 R indices (all data) R1 = 0.0374, wR2 = 0.0922

Absolute structure parameter 0.048(11)

Extinction coefficient n/a

Largest diff. peak and hole 0.384 and -0.232 e.Å⁻³

10. X-ray Single Crystal Data for 4e

Identification code 200110dd_0m Empirical formula C24 H23 N O4 S

Formula weight 421.49

Temperature 200 K

Wavelength 1.34139 Å

Crystal system Monoclinic

Space group P 1 21 1

Unit cell dimensions a = 8.1788(3) Å $\alpha = 90^{\circ}$.

b = 7.7926(3) Å $\beta = 103.581(2)^{\circ}.$

c = 16.7712(6) Å $\gamma = 90^{\circ}$.

Volume 1039.01(7) Å³

Z 2

Density (calculated) 1.347 Mg/m³
Absorption coefficient 1.064 mm⁻¹

F(000) 444

Crystal size $0.1 \times 0.08 \times 0.006 \text{ mm}^3$

Theta range for data collection 4.720 to 54.960°.

Index ranges -9<=h<=9, -9<=k<=9, -20<=l<=20

Reflections collected 13886

Independent reflections 3912 [R(int) = 0.0470]

Completeness to theta = 53.594° 99.5 %

Absorption correction Semi-empirical from equivalents

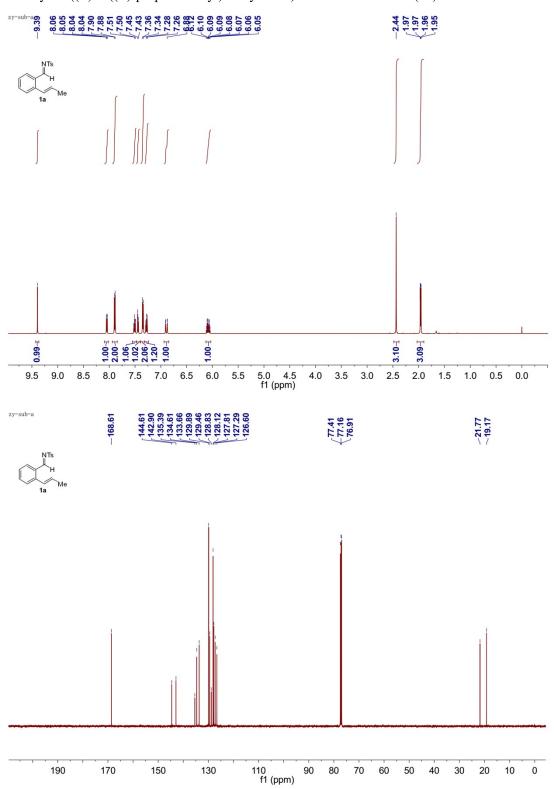
Max. and min. transmission 0.7508 and 0.6256

Refinement method Full-matrix least-squares on F²

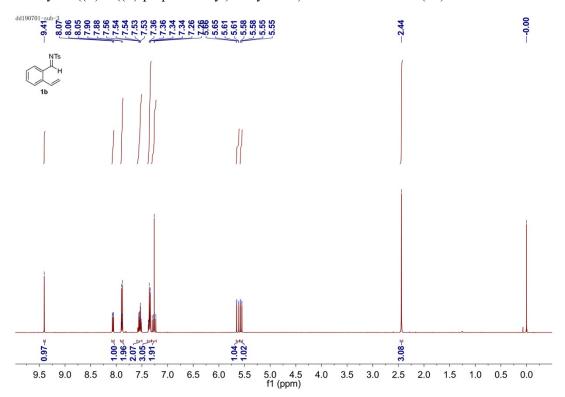
Data / restraints / parameters 3912 / 1 / 273

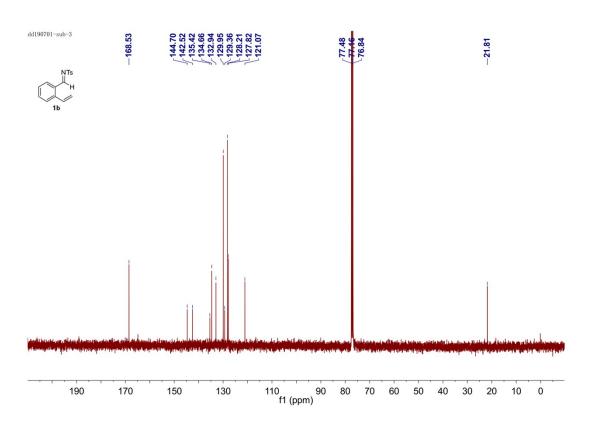
Goodness-of-fit on F² 1.048

Final R indices [I>2sigma(I)] R1 = 0.0356, wR2 = 0.0896 R indices (all data) R1 = 0.0389, wR2 = 0.0926

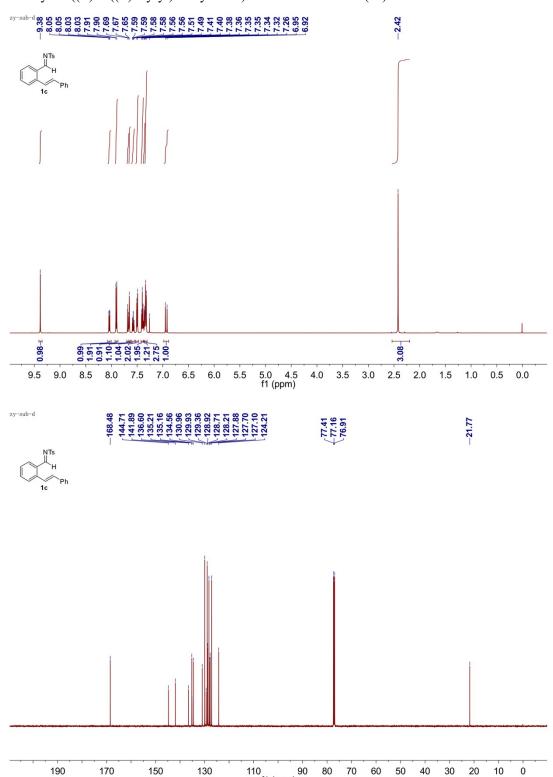

Absolute structure parameter 0.037(10)

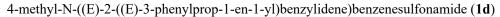
Extinction coefficient n/a

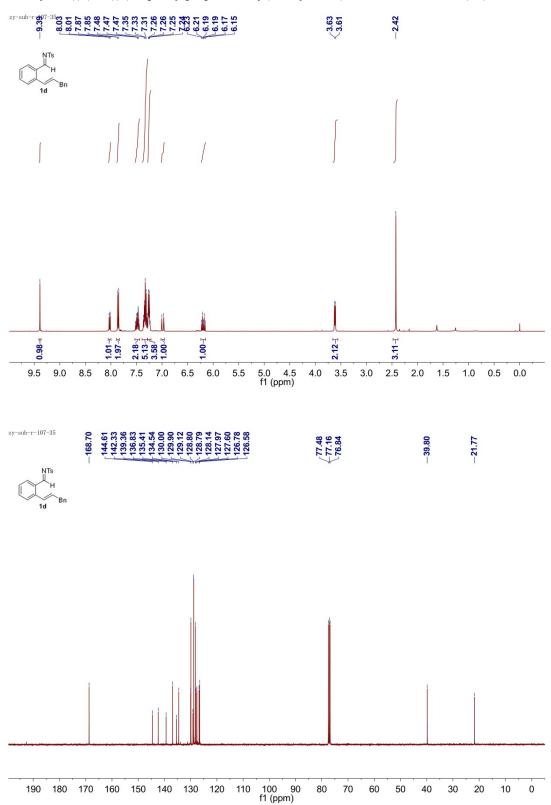

Largest diff. peak and hole 0.286 and -0.320 e.Å-3

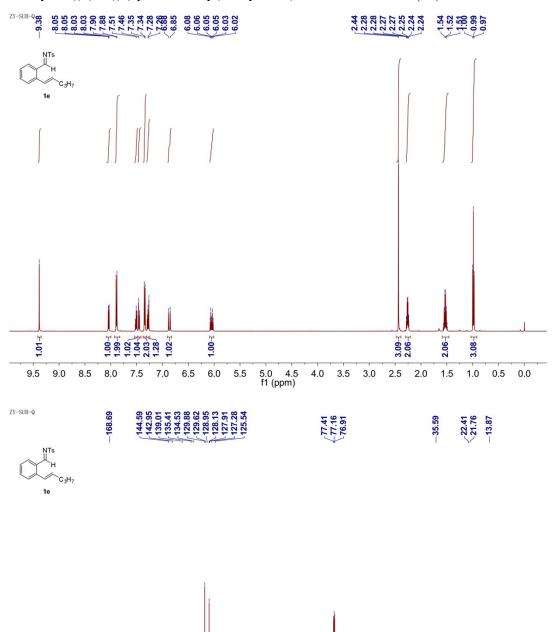

11. NMR spectra for substrates, products, 5, 6 and 7.

4-methyl-N-((E)-2-((E)-prop-1-en-1-yl)benzylidene)benzenesulfonamide (1a)



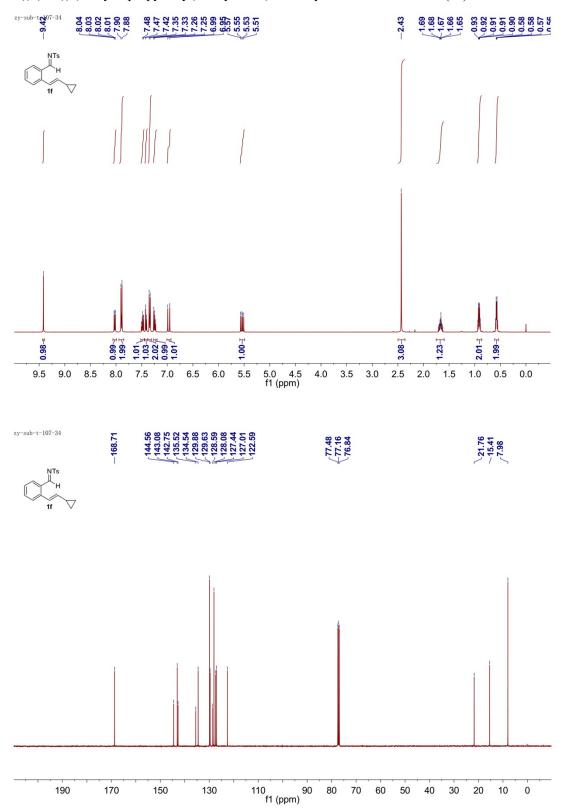

$\hbox{4-methyl-N-}((E)\hbox{-2-}((E)\hbox{-prop-1-en-1-yl}) benzylidene) benzenesul fonamide ~\textbf{(1b)}$



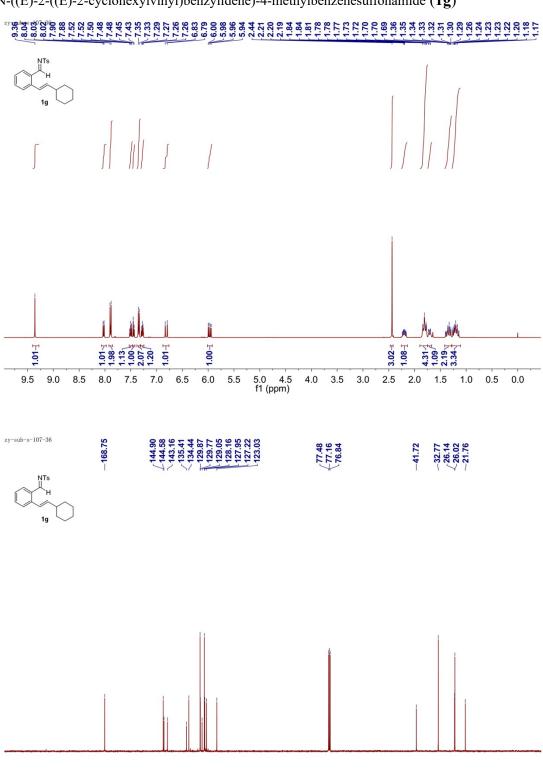

$\label{eq:continuous} \mbox{4-methyl-N-((E)-2-((E)-styryl)benzylidene)benzenesulfonamide} \ (\mbox{\bf 1c})$

$\hbox{4-methyl-N-((E)-2-((E)-pent-1-en-1-yl)benzylidene)} benzene sulfonamide \ensuremath{ (1e)}$

80 70 60 50 40 30 20 10 0


190

170


150

130

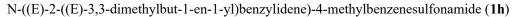
 $N\hbox{-}((E)\hbox{-}2\hbox{-}((E)\hbox{-}2\hbox{-}cyclopropylvinyl) benzylidene)\hbox{-}4\hbox{-}methylbenzene sulfonamide } \textbf{(1f)}$

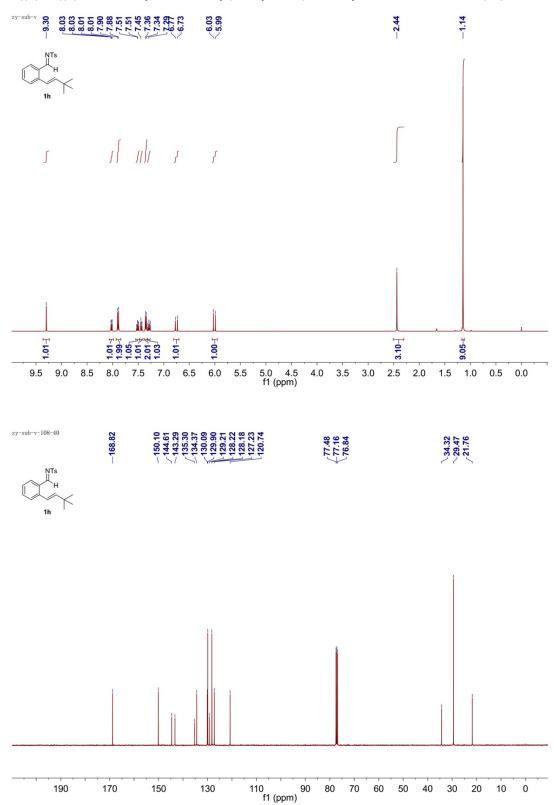
N-((E)-2-((E)-2-cyclohexylvinyl)benzylidene)-4-methylbenzenesulfonamide (1g)

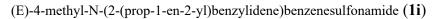
110 f1 (ppm)

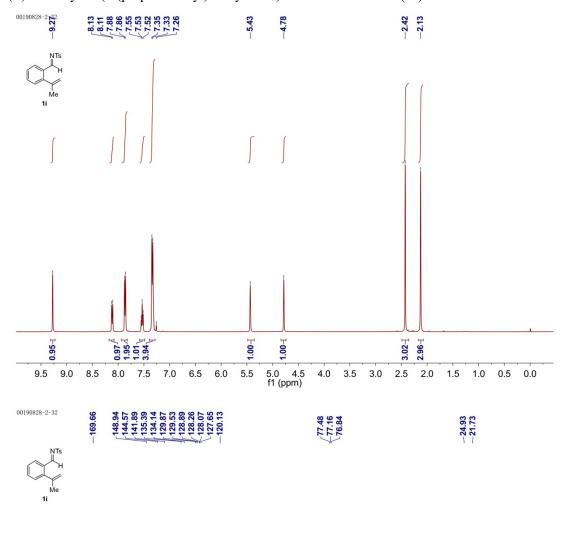
80 70 60 50 40 30

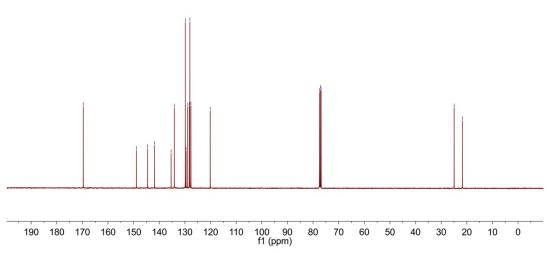
20

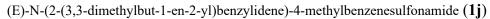

10 0

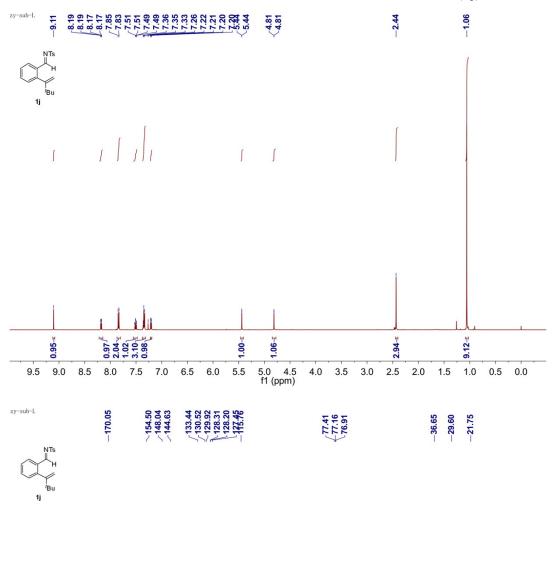

190

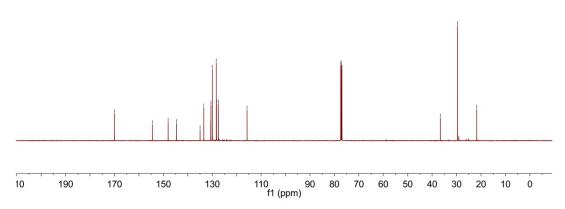

170

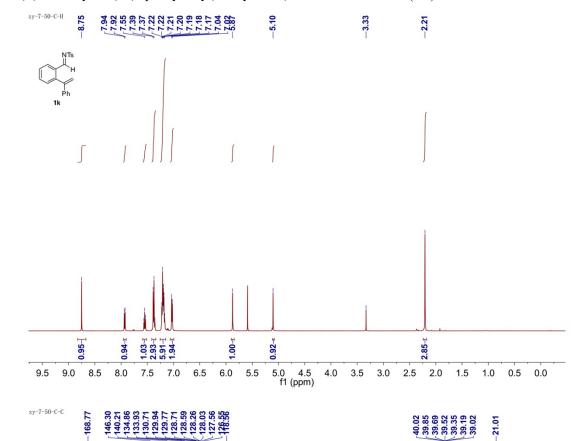

150

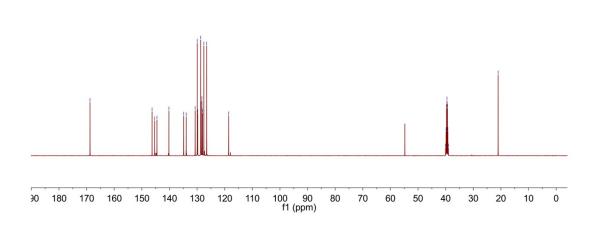

130

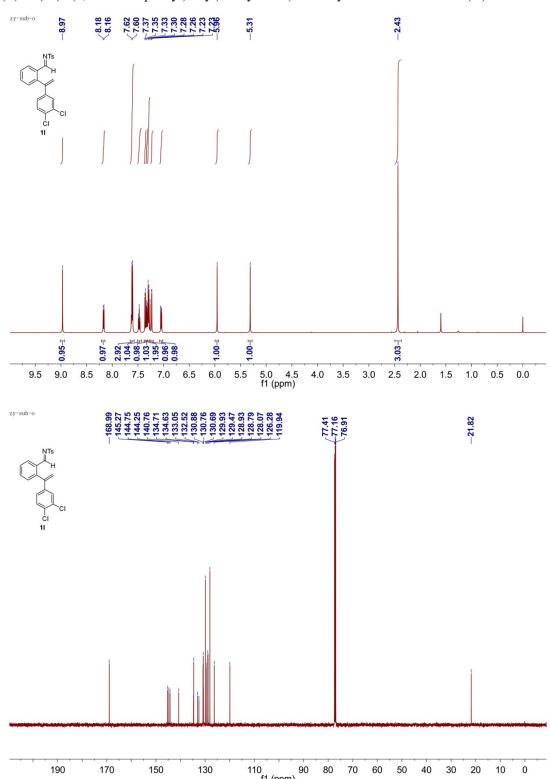




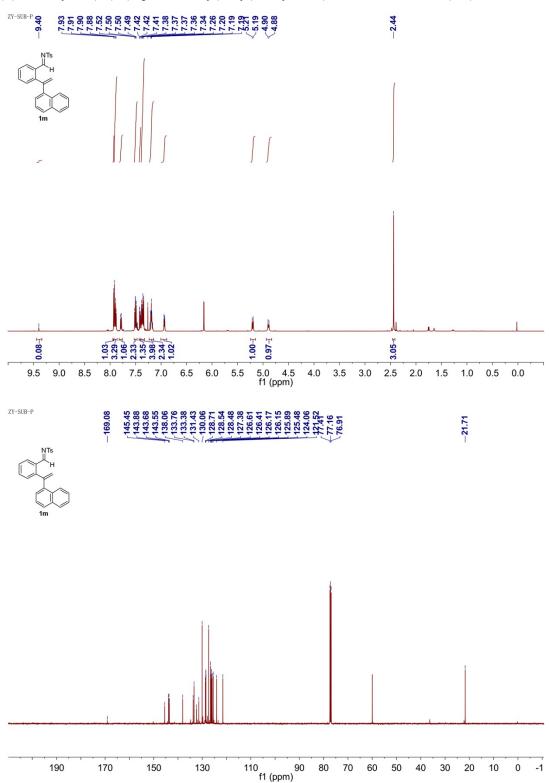


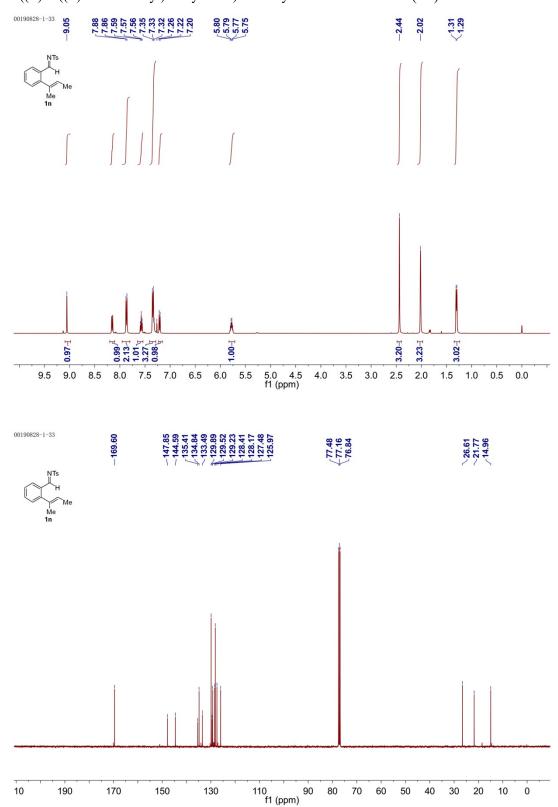


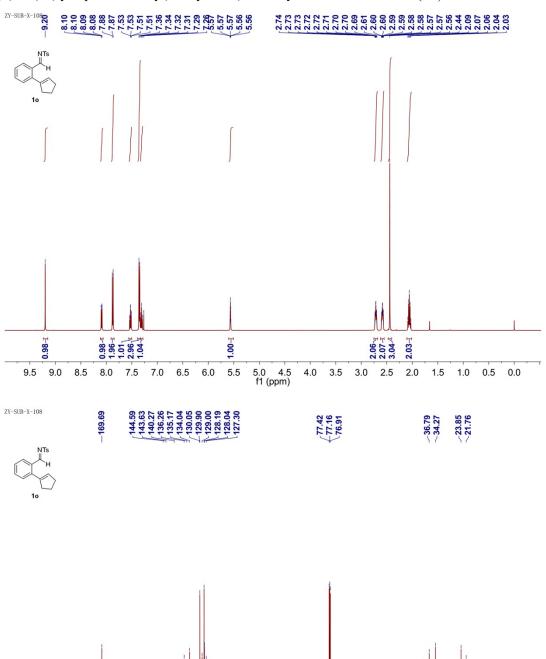




$\hbox{(E)-4-methyl-N-(2-(1-phenylvinyl)benzylidene)} benzene sulfonamide \ensuremath{(1k)}$




$(E)-N-(2-(1-(3,4-dichlorophenyl)vinyl) benzylidene)-4-methylbenzenesulfonamide ({\bf 11})$

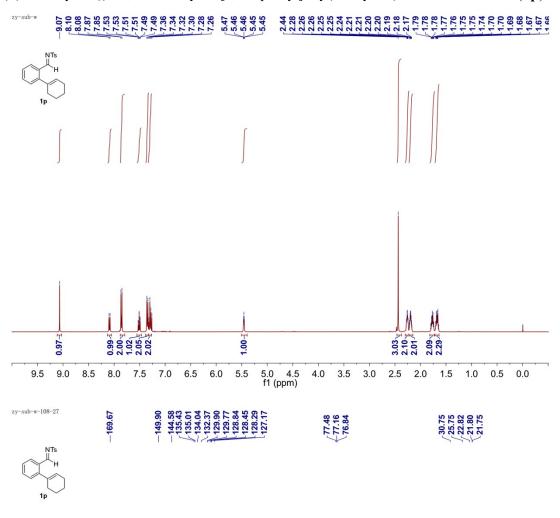

$(E) \hbox{-} 4-methyl-N-(2-(1-(naphthalen-1-yl)vinyl) benzylidene) benzenesul fonamide \ ({\bf 1m})$

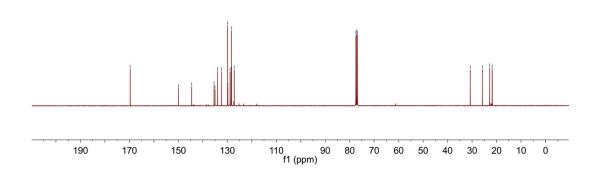
 $N\hbox{-}((E)\hbox{-}2\hbox{-}((E)\hbox{-but-}2\hbox{-en-}2\hbox{-yl}) benzylidene)\hbox{-}4\hbox{-methylbenzene sulfonamide } \boldsymbol{(1n)}$

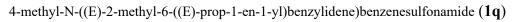
(E)-N-(2-(cyclopent-1-en-1-yl)benzylidene)-4-methylbenzenesulfonamide $(\mathbf{1o})$

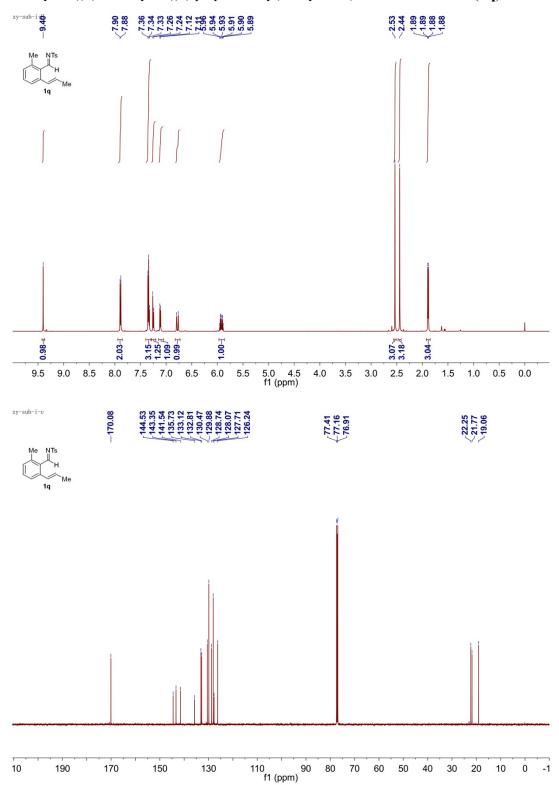
110 90 f1 (ppm)

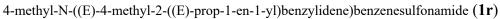
80 70 60 50 40 30 20 10

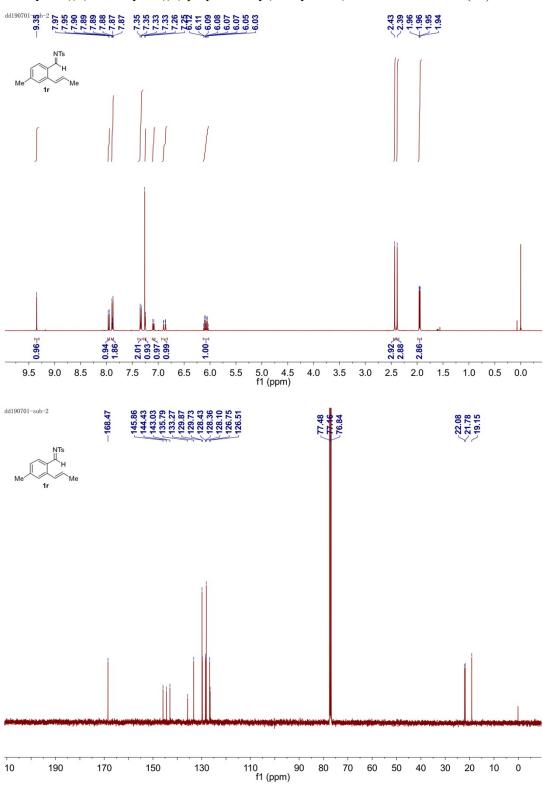

190

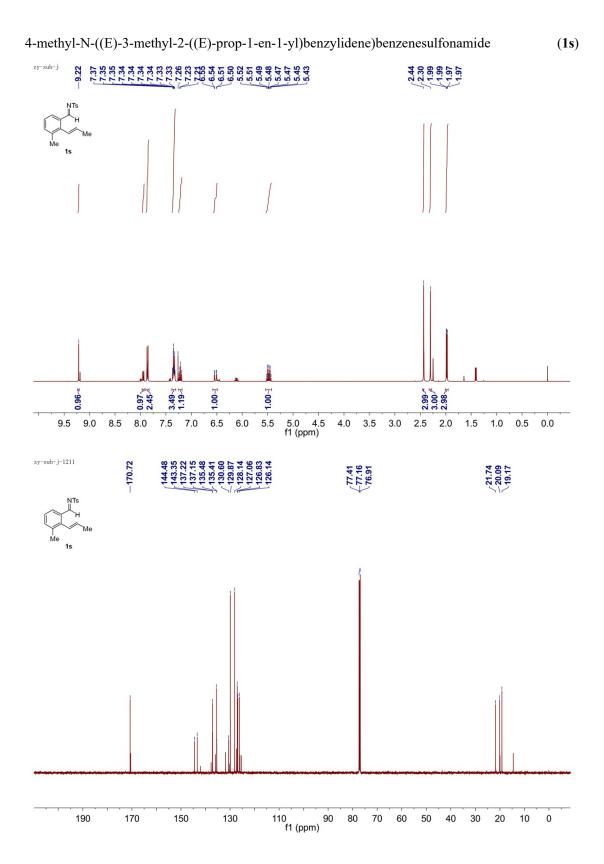

170

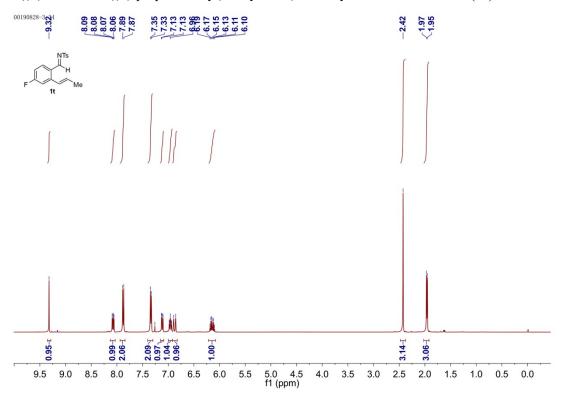

150

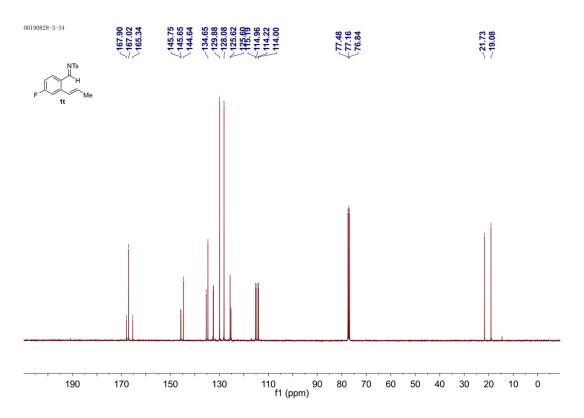

130

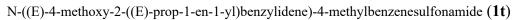

$(E) - 4 - methyl - N - ((2', 3', 4', 5' - tetrahydro - [1, 1' - biphenyl] - 2 - yl) methylene) benzenesul fonamide (\mathbf{1p})$

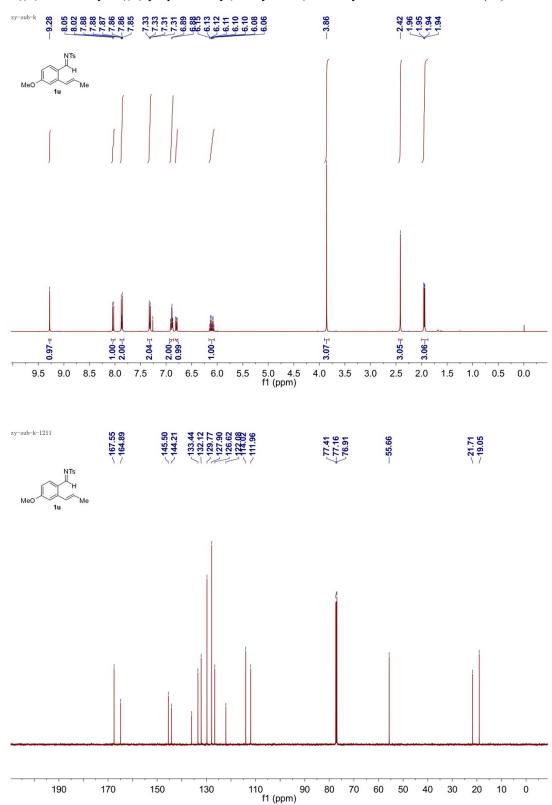


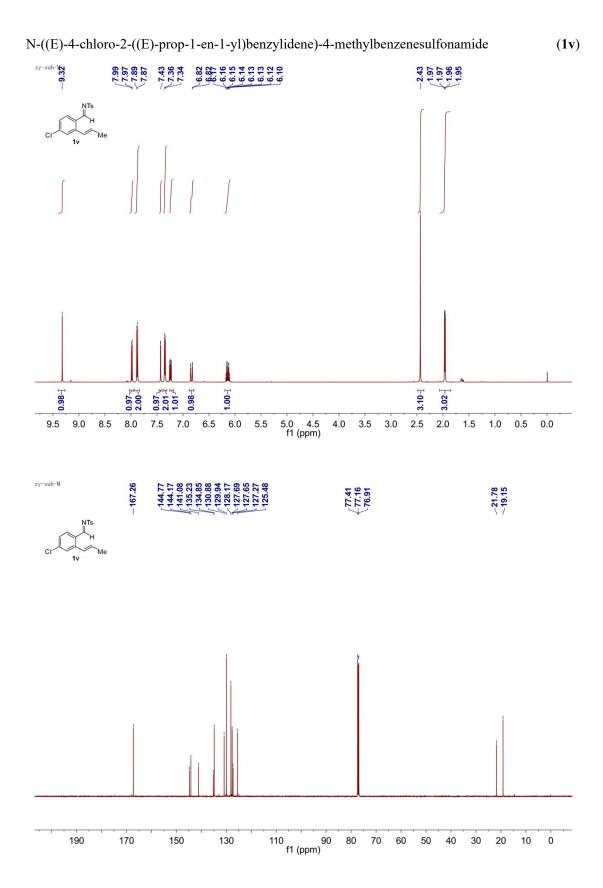


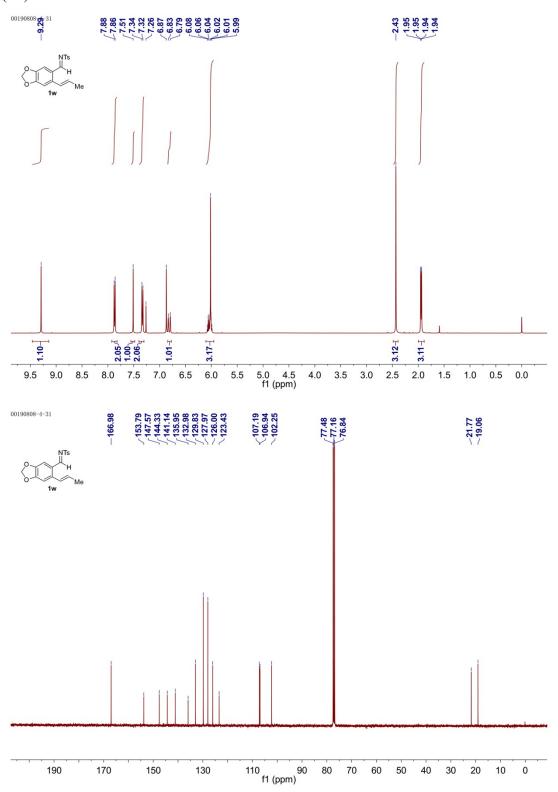


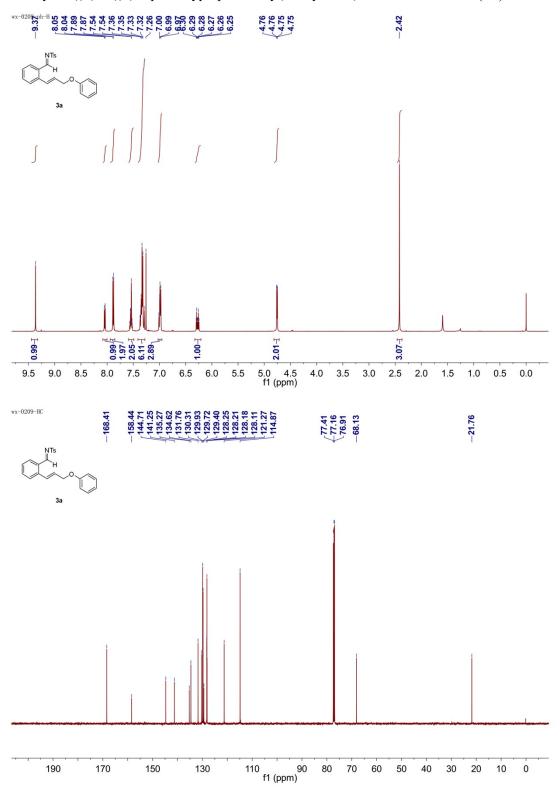


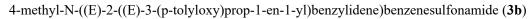


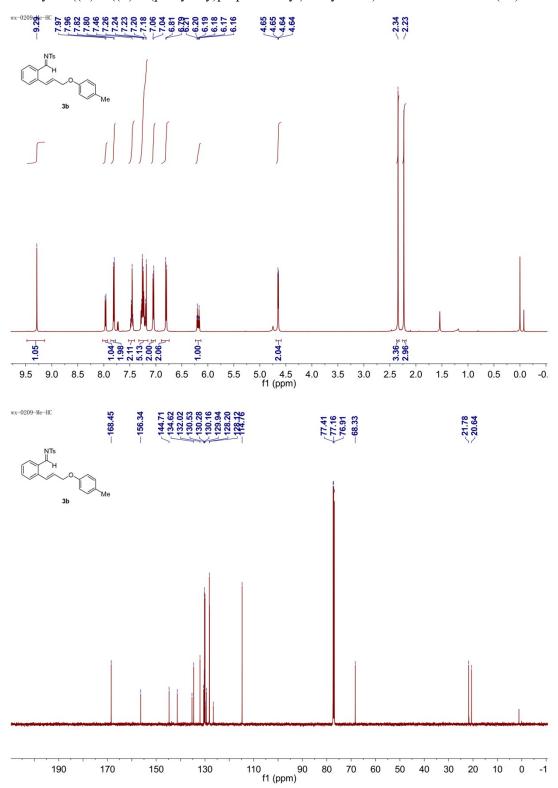


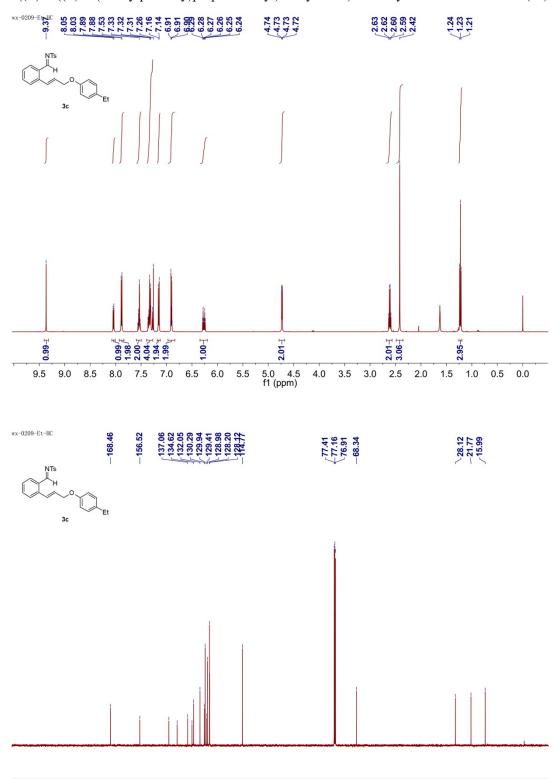

N-((E)-4-fluoro-2-((E)-prop-1-en-1-yl)benzylidene)-4-methylbenzenesulfonamide (1t)







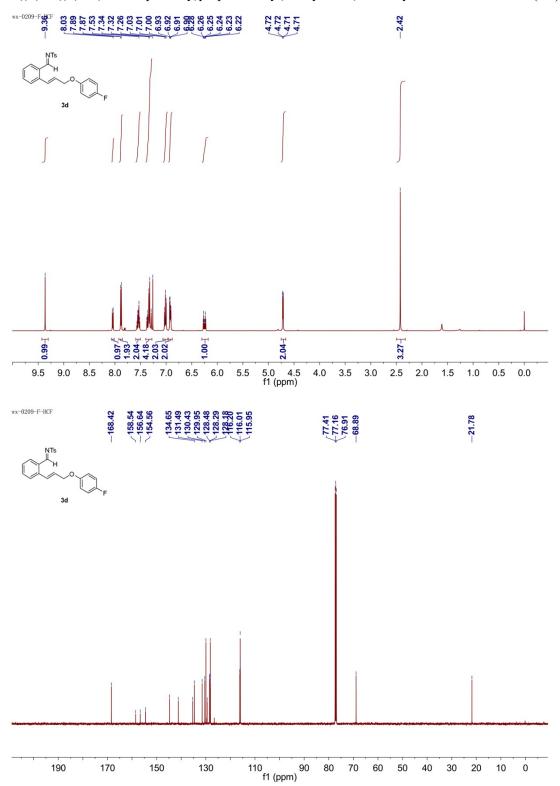

 $\label{eq:continuous} 4-methyl-N-((E)-(6-((E)-prop-1-en-1-yl)benzo[d][1,3]dioxol-5-yl)methylene) benzenesul fonamide (\textbf{1}\textbf{w})$


 $\hbox{4-methyl-N-((E)-2-((E)-3-phenoxyprop-1-en-1-yl)} benzylidene) benzene sulfonamide \eqno(3a)$

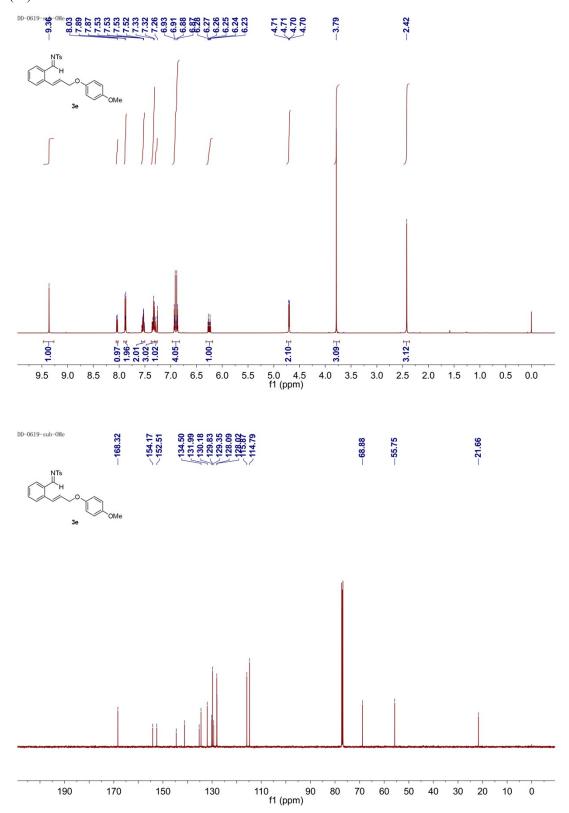
 $N\hbox{-}((E)\hbox{-}2\hbox{-}((E)\hbox{-}3\hbox{-}(4\hbox{-}ethylphenoxy)prop-}1\hbox{-}en\hbox{-}1\hbox{-}yl) benzylidene)\hbox{-}4\hbox{-}methylbenzenesulfonamide } \textbf{(3c)}$

110 90 f1 (ppm)

80 70 60 50 40 30 20

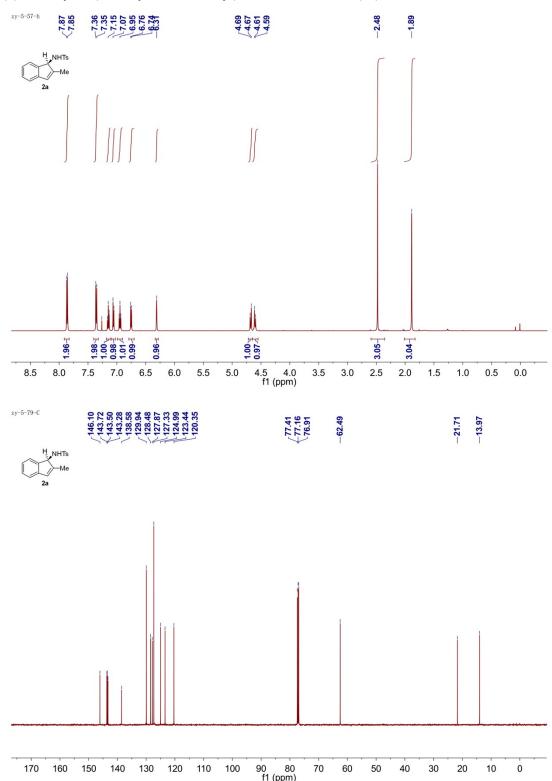

190

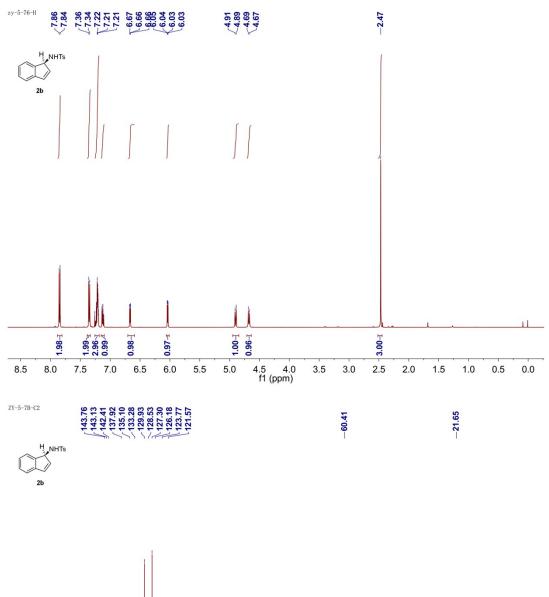
170

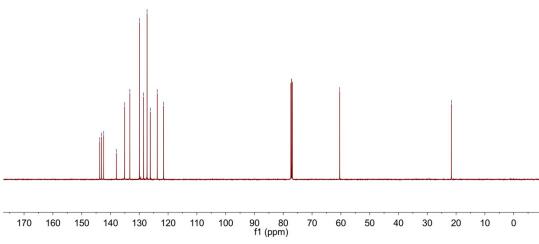

150

130

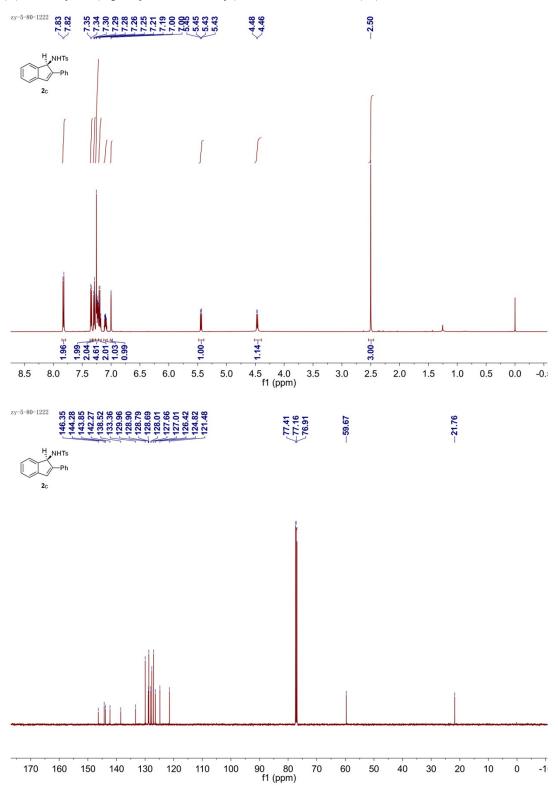
 $N-((E)-2-((E)-3-(4-fluorophenoxy)prop-1-en-1-yl) benzylidene)-4-methylbenzenesulfonamide \eqref{3d}$


 $N-((E)-2-((E)-3-(4-methoxyphenoxy)prop-1-en-1-yl) benzylidene)-4-methylbenzenesulfonamide \eqno(3e)$

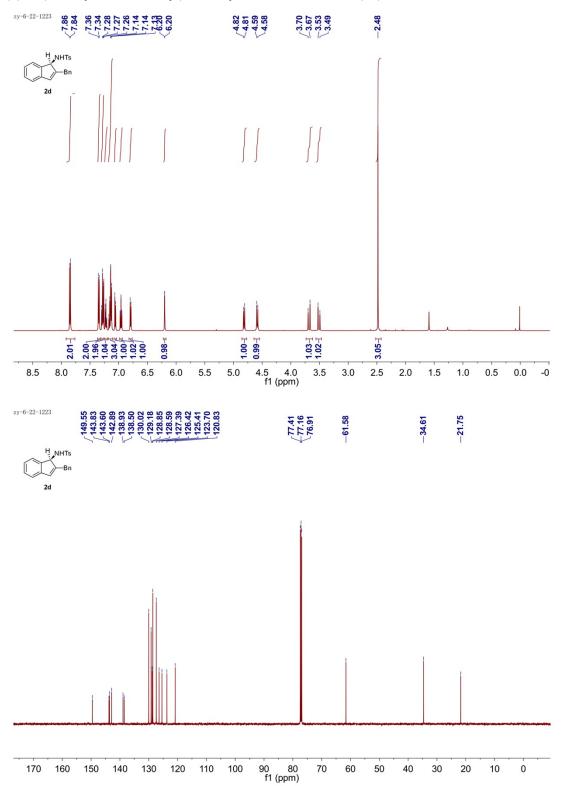

 $\label{eq:continuous} \begin{tabular}{ll} 4-methyl-N-((E)-2-((E)-3-(4-(trifluoromethyl)phenoxy)prop-1-en-1-yl)benzylidene) benzenesulfonamide & (\bf{3f}) \end{tabular}$

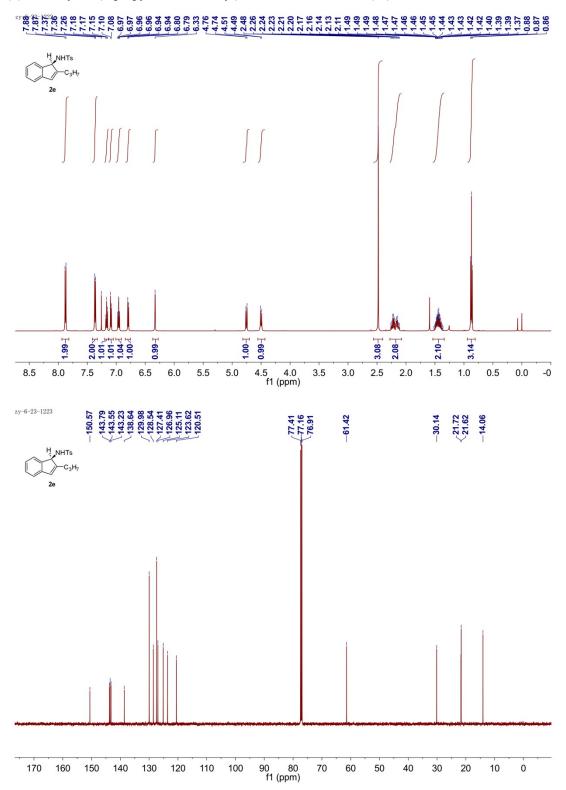


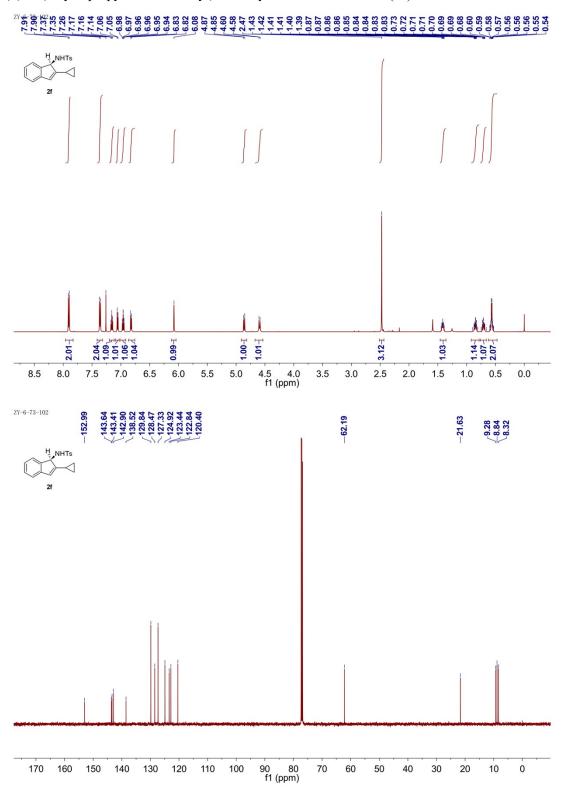
$(S)\hbox{-}4\hbox{-methyl-N-}(2\hbox{-methyl-1H-inden-1-yl}) benzene sulfonamide \eqref{eq:a}$

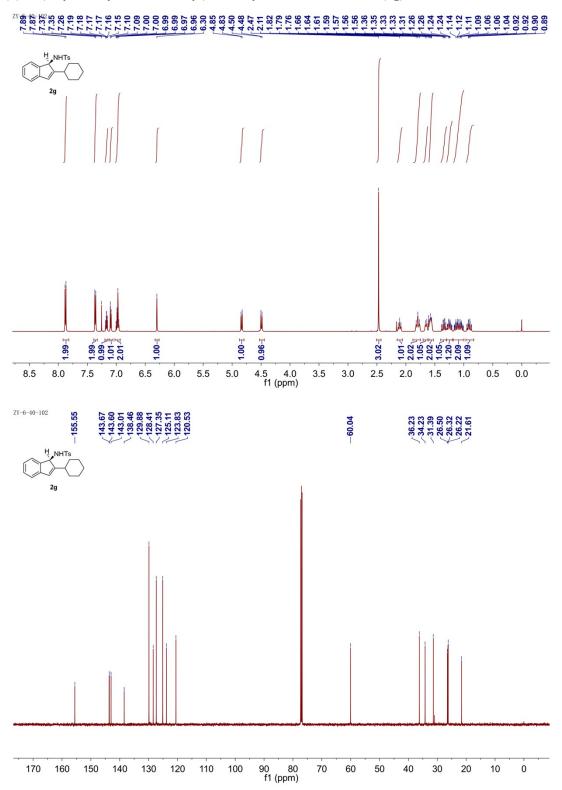


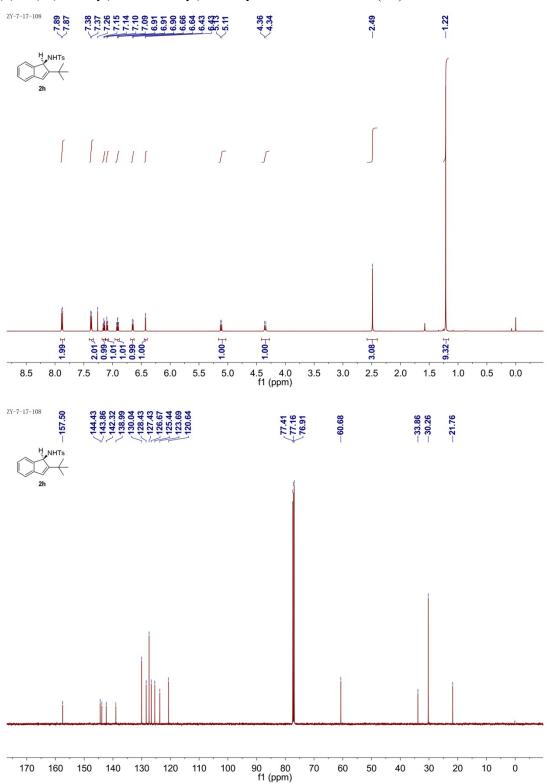
(S)-N-(1H-inden-1-yl)-4-methylbenzenesulfonamide (2b)

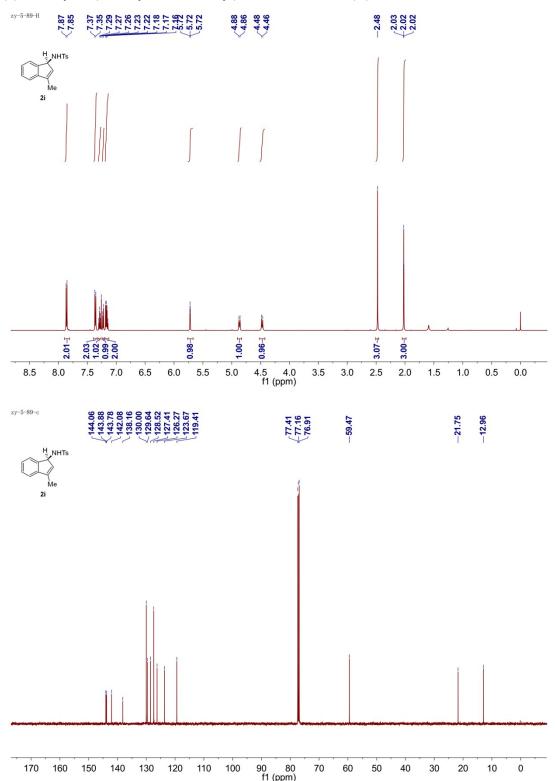


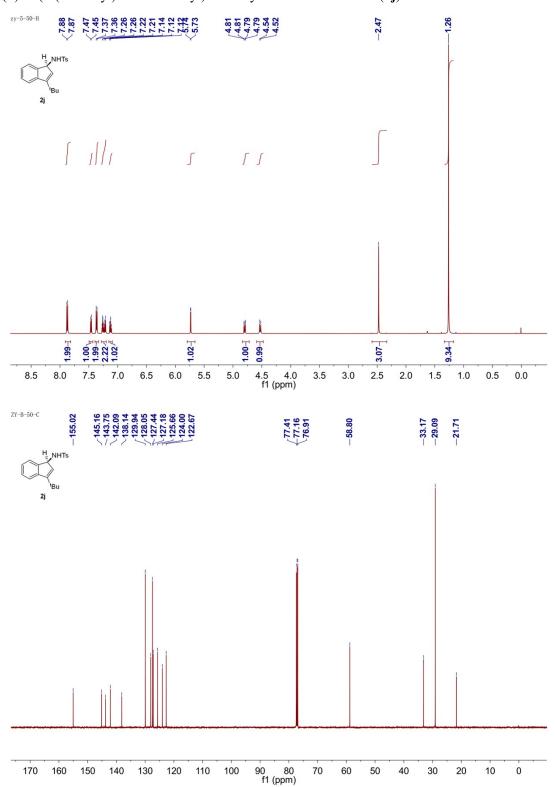

(R)-4-methyl-N-(2-phenyl-1H-inden-1-yl)benzenesulfonamide (2c)

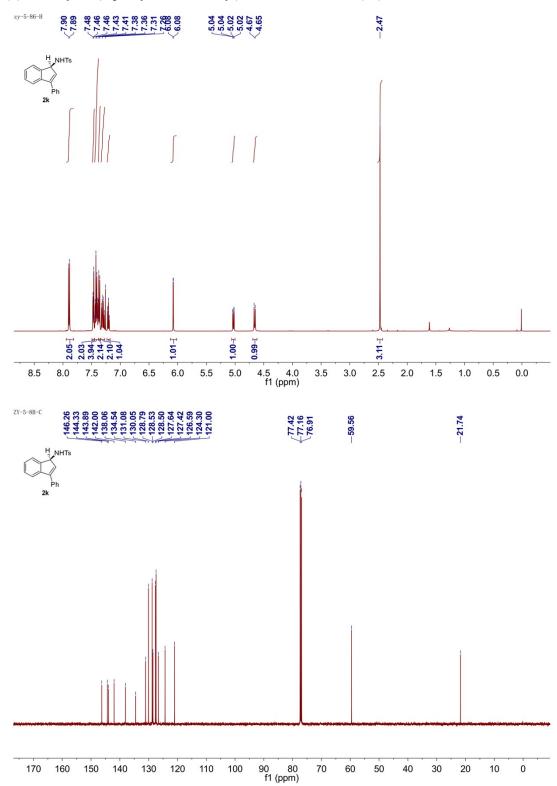

$(S)\hbox{-N-}(2\hbox{-benzyl-1H-inden-1-yl})\hbox{-}4\hbox{-methylbenzene sulfonamide } (\textbf{2d})$

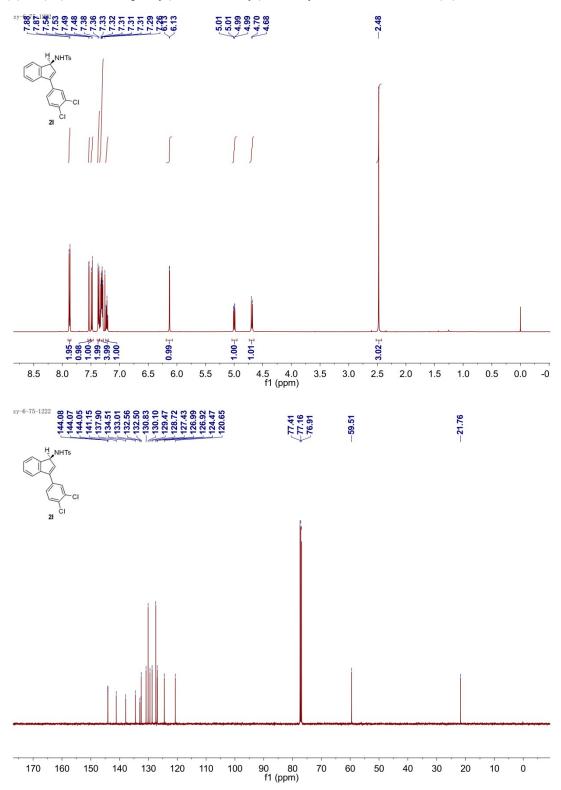

(S)-4-methyl-N-(2-propyl-1H-inden-1-yl)benzenesulfonamide (2e)

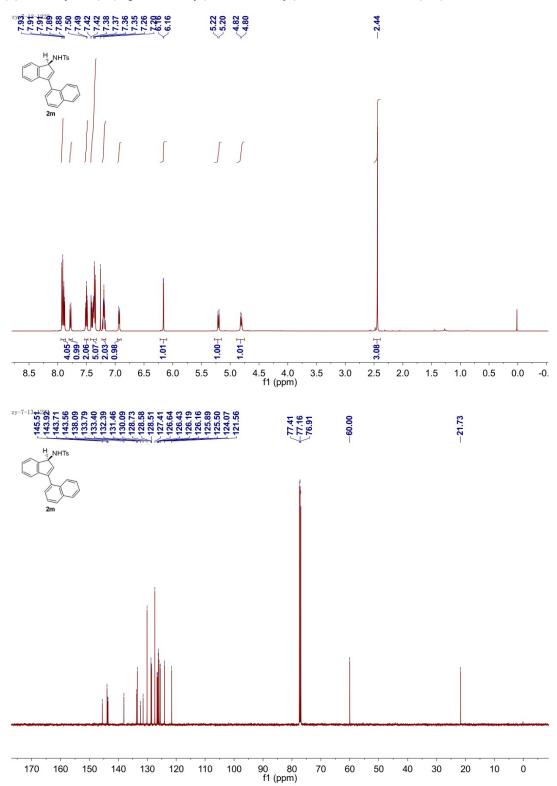

(S)-N-(2-cyclopropyl-1H-inden-1-yl)-4-methylbenzenesulfonamide (2f)

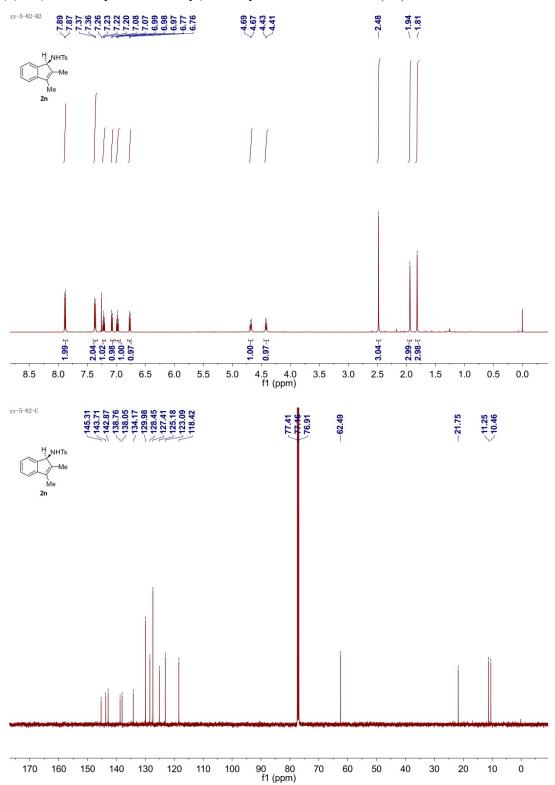

$(S)-N-(2-cyclohexyl-1H-inden-1-yl)-4-methylbenzenesulfonamide \ ({\bf 2g})$

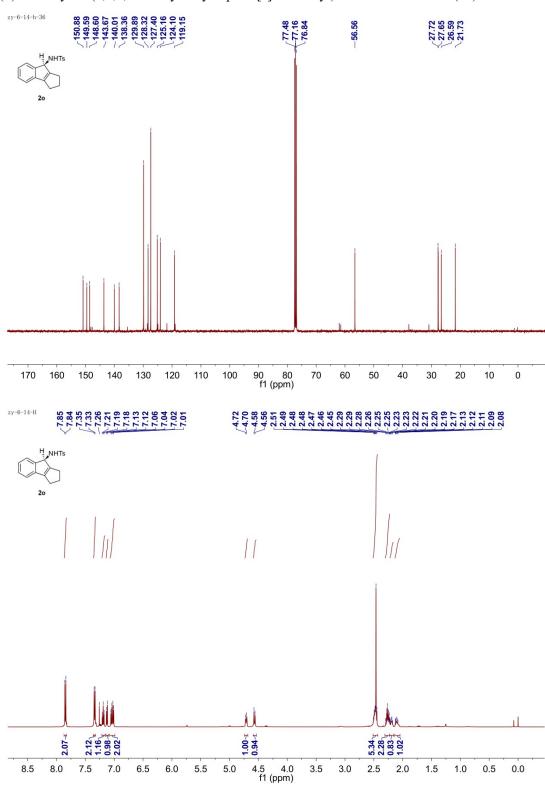

$(S)-N-(2-(tert-butyl)-1H-inden-1-yl)-4-methylbenzenesulfonamide \ ({\bf 2h}) \\$

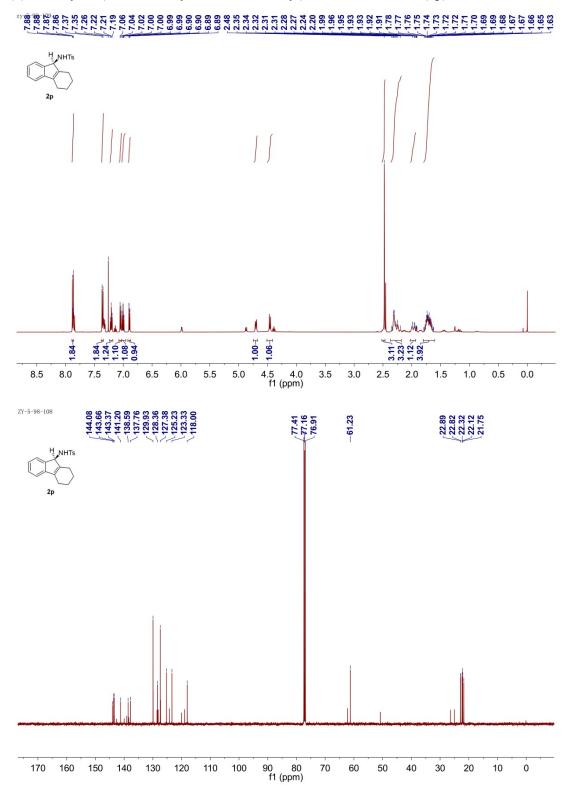

$(S)\text{-}4\text{-methyl-N-}(3\text{-methyl-1H-inden-1-yl}) benzene sulfonamid } \textbf{(2i)}$

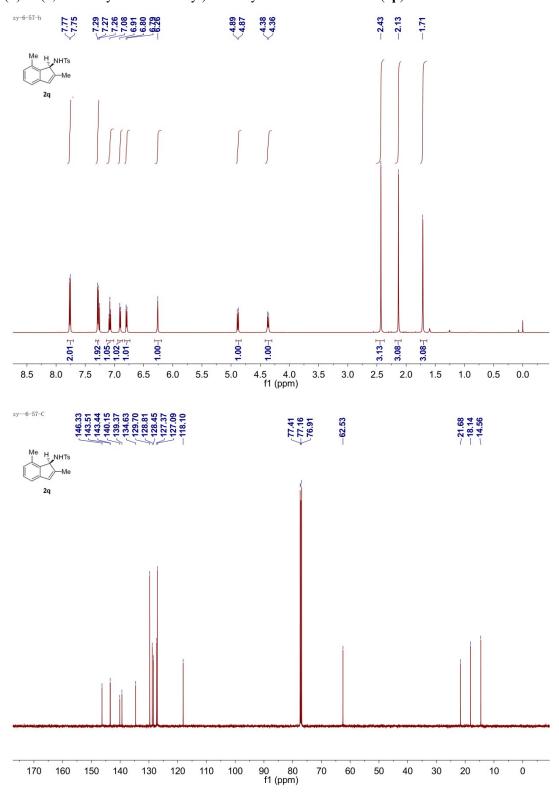

$(S)-N-(3-(tert-butyl)-1H-inden-1-yl)-4-methylbenzenesulfonamide \eqref{2j}$

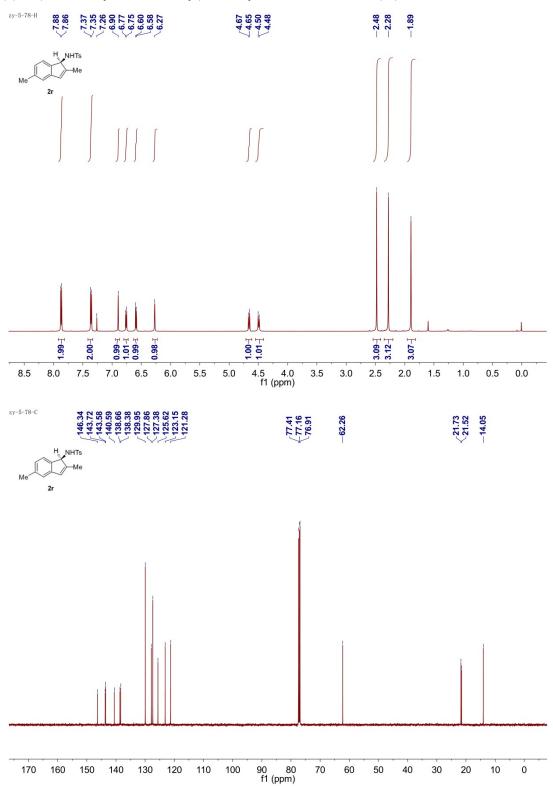

$(S)\hbox{-}4\hbox{-methyl-N-}(3\hbox{-phenyl-1H-inden-1-yl}) benzenesul fon a mide \ ({\bf 2k})$

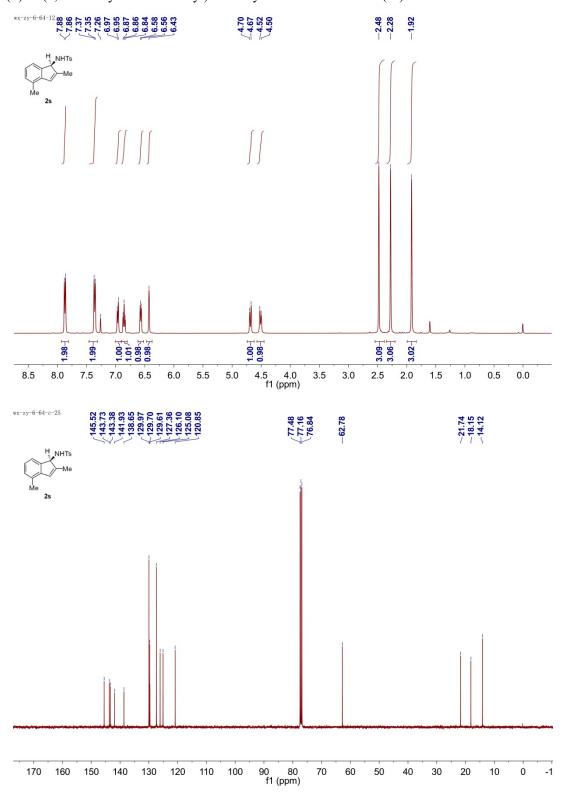

(S)-N-(3-(3,4-dichlorophenyl)-1H-inden-1-yl)-4-methylbenzenesulfonamide (21)

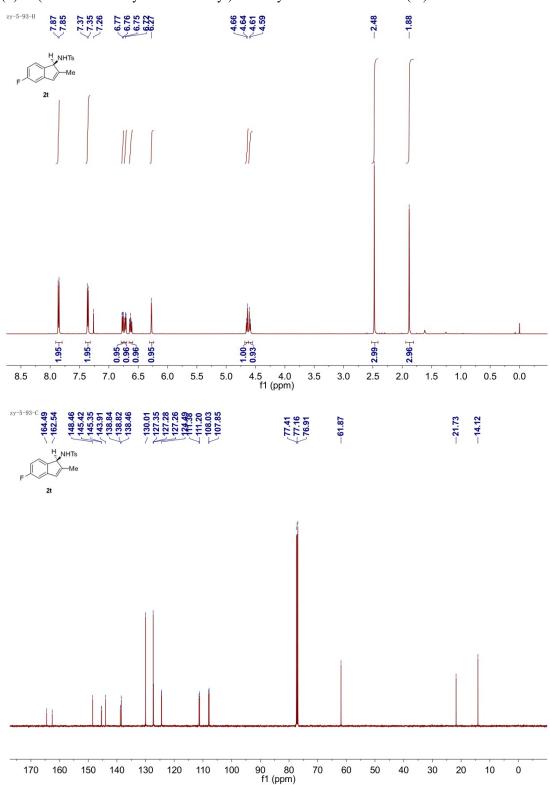

$(S)\hbox{-}4-methyl\hbox{-}N\hbox{-}(3\hbox{-}(naphthalen\hbox{-}1\hbox{-}yl)\hbox{-}1H\hbox{-}inden\hbox{-}1\hbox{-}yl)benzene sulfonamide } ({\bf 2m})$

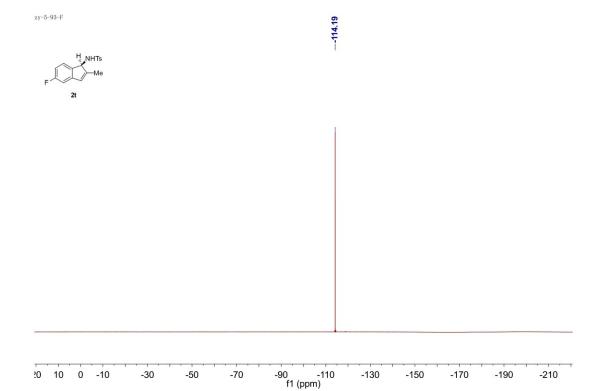

(S)-N-(2,3-dimethyl-1H-inden-1-yl)-4-methylbenzenesulfonamide (2n)


(S) - 4 - methyl - N - (1,2,3,8 - tetrahydrocyclopenta[a] inden-8 - yl) benzenesul fonamide ~(20)

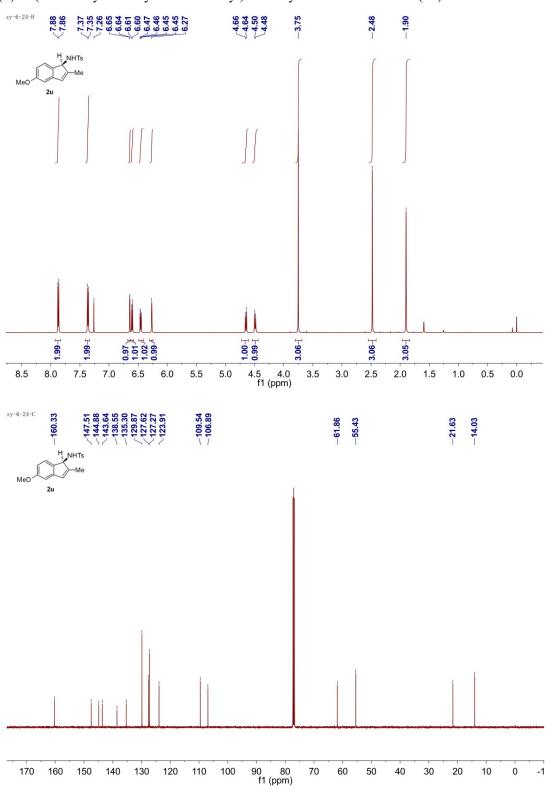

$(S) \hbox{-} 4-methyl-N-(2,3,4,9-tetrahydro-1H-fluoren-9-yl) benzenesul fon a mide \eqref{eq:power_substitution}$


$(S)\hbox{-N-}(2,7\hbox{-dimethyl-}1H\hbox{-inden-}1\hbox{-yl})\hbox{-}4\hbox{-methylbenzene sulfonamide }(\boldsymbol{2p})$

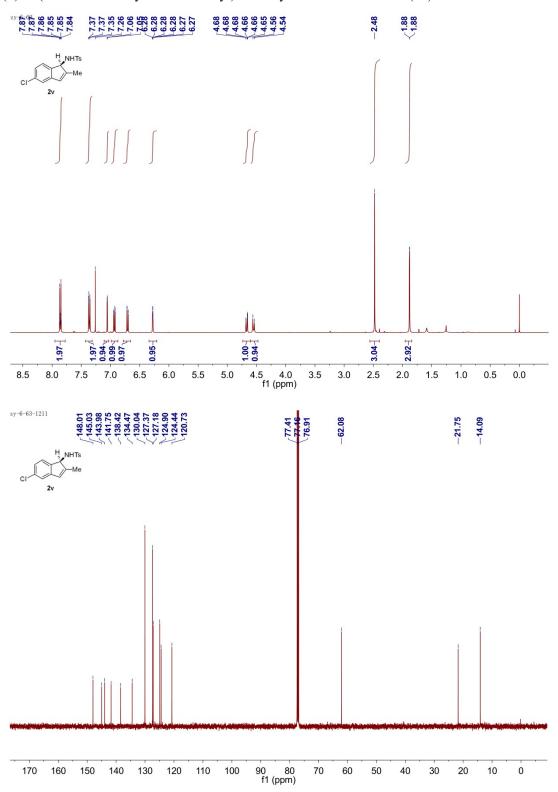

(S)-N-(2,5-dimethyl-1H-inden-1-yl)-4-methylbenzenesulfonamide (2r)

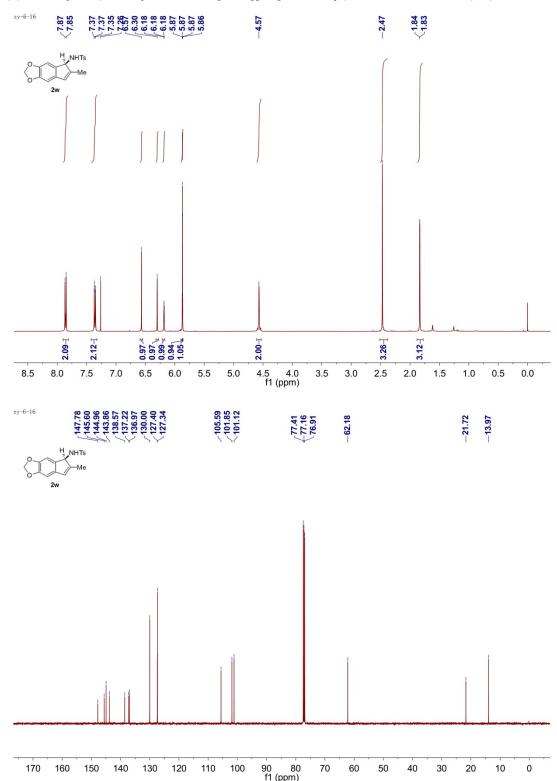


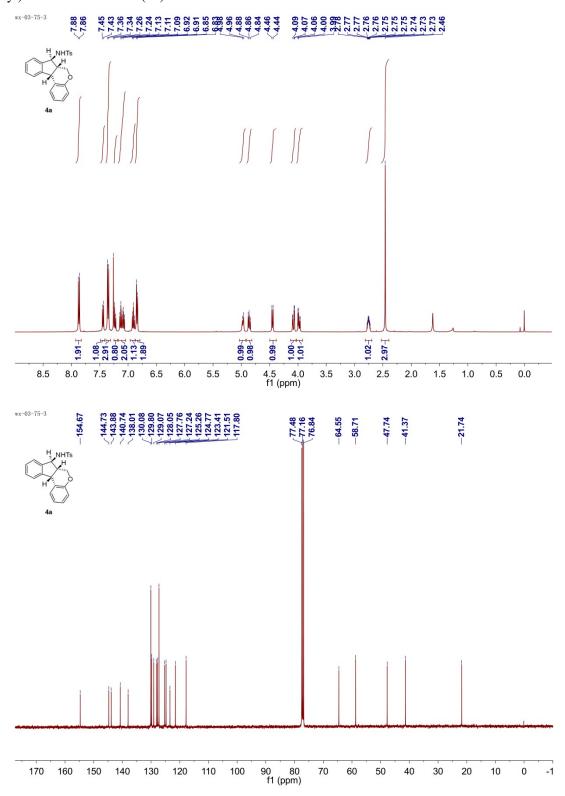
$(S)\hbox{-N-}(2,4\hbox{-dimethyl-1H-inden-1-yl})\hbox{-}4\hbox{-methylbenzene sulfonamide }(2s)$

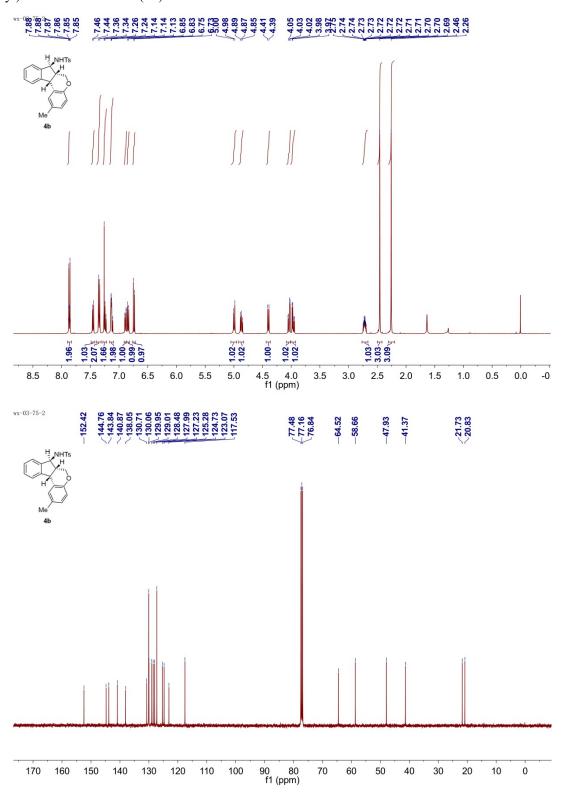


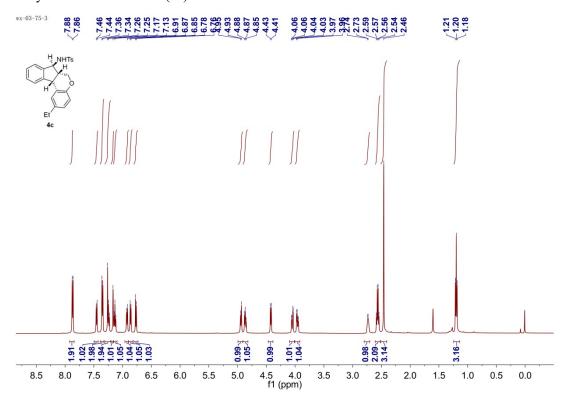
$(S)\text{-}N\text{-}(5\text{-}fluoro\text{-}2\text{-}methyl\text{-}1H\text{-}inden\text{-}1\text{-}yl)\text{-}4\text{-}methylbenzene sulfonamide }(2t)$

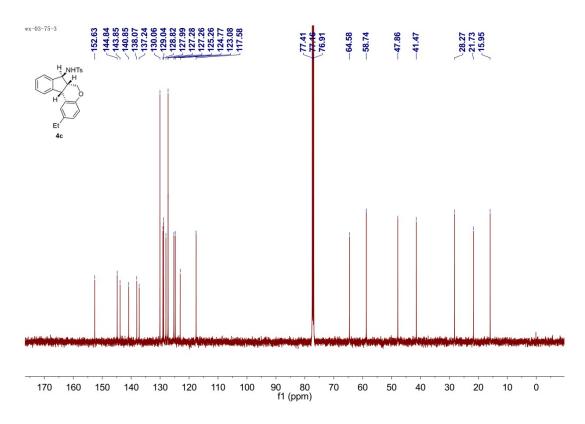



$(S)-N-(5-methoxy-2-methyl-1H-inden-1-yl)-4-methylbenzenesulfonamide\ (2u)$

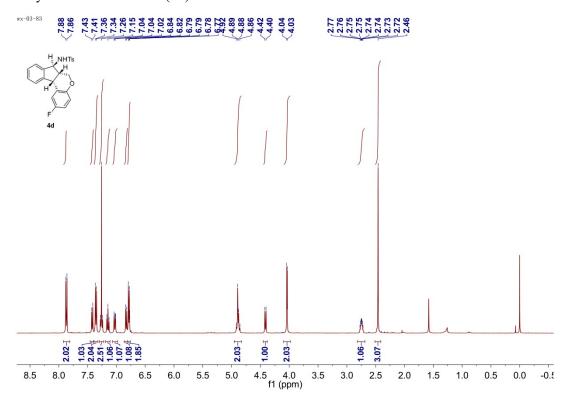

$(S)\text{-}N\text{-}(5\text{-}chloro\text{-}2\text{-}methyl\text{-}1H\text{-}inden\text{-}1\text{-}yl)\text{-}4\text{-}methylbenzenesulfonamide}\ (2v)$

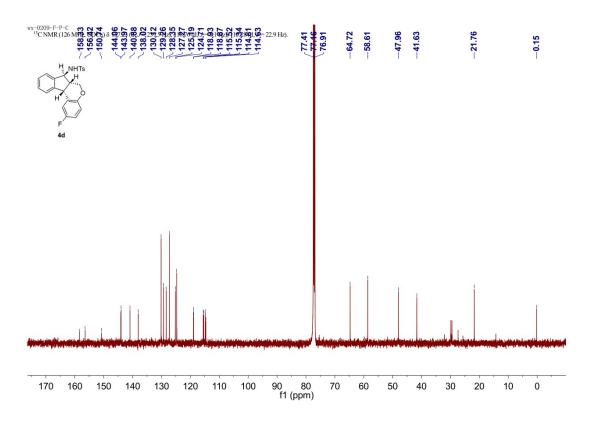

$(S)\text{-}4\text{-}methyl\text{-}N\text{-}(6\text{-}methyl\text{-}5H\text{-}indeno[5,6\text{-}d][1,3]} \\ dioxol\text{-}5\text{-}yl) benzene sulfonamide ~(\textbf{2}w)$

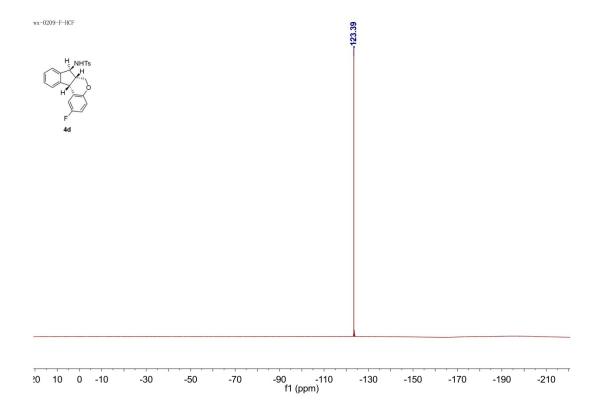

 $\label{eq:continuous} \mbox{4-methyl-N-((6aR,7S,11bS)-6,6a,7,11b-tetrahydroindeno[2,1-c]chromen-7-yl)} benzenesulfonamide ({\bf 4a})$



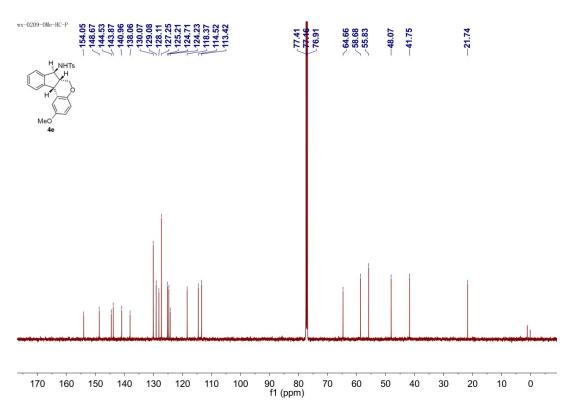
 $\label{eq:continuous} 4-methyl-N-((6aR,7S,11bS)-2-methyl-6,6a,7,11b-tetrahydroindeno[2,1-c]chromen-7-yl) benzenesulfonamide ({\bf 4b})$

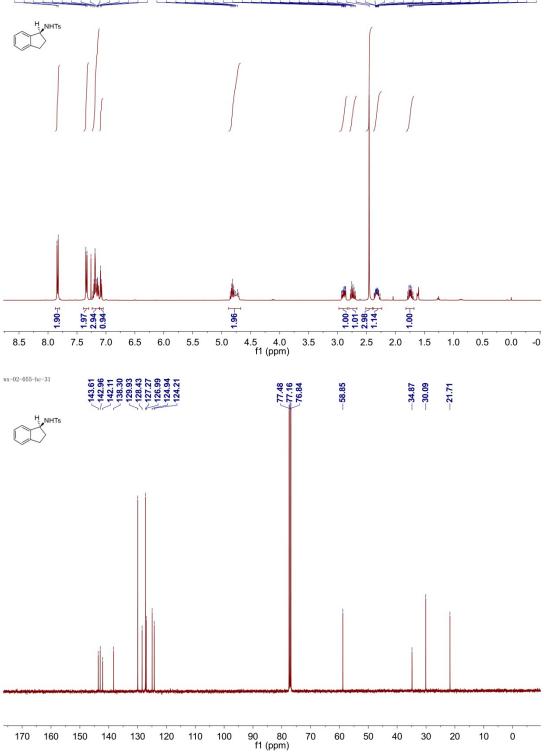


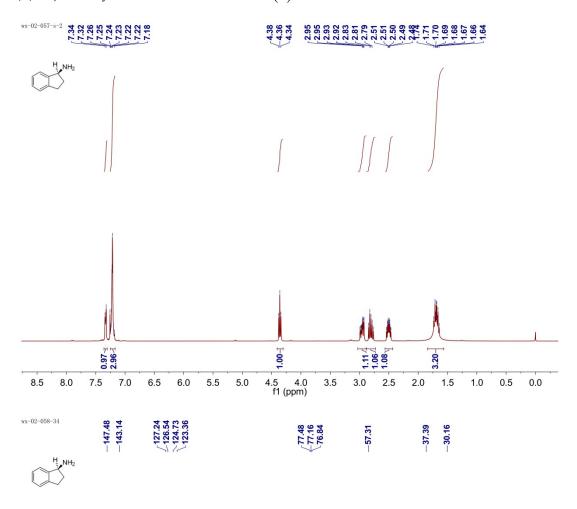

 $N-((6aR,7S,11bS)-2-ethyl-6,6a,7,11b-tetrahydroindeno[2,1-c]chromen-7-yl)-4-methylbenzenesulfonamide (\bf{4c})$

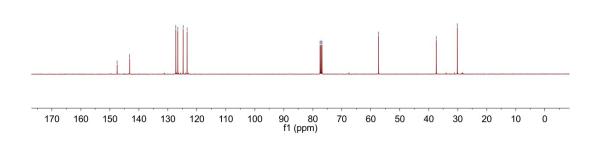


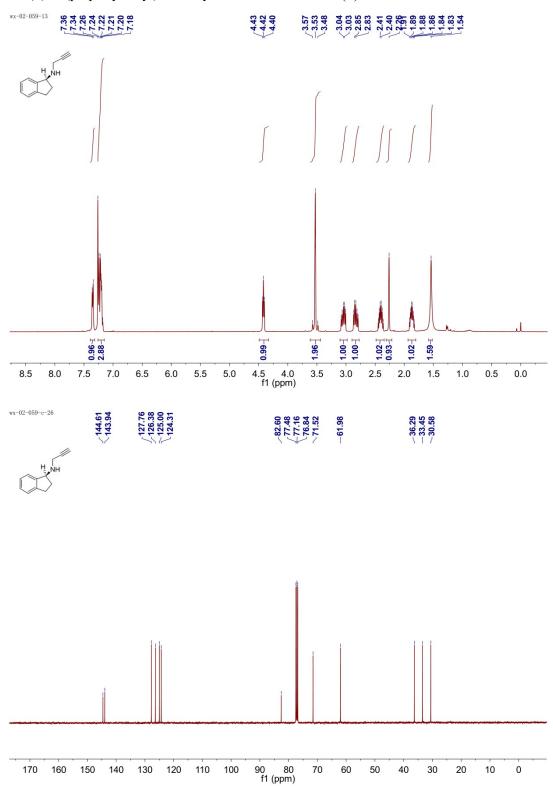

 $N-((6aR,7S,11bS)-2-fluoro-6,6a,7,11b-tetrahydroindeno[2,1-c]chromen-7-yl)-4-methylbenzenesulfonamide (\bf{4d})$



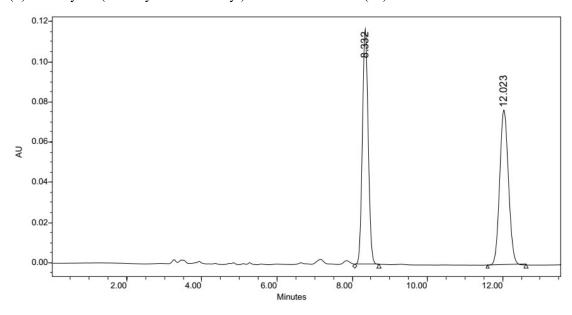

 $N-((6aR,7S,11bS)-2-methoxy-6,6a,7,11b-tetrahydroindeno[2,1-c]chromen-7-yl)-4-methylbenzenesulfonamide (\bf{4e})$



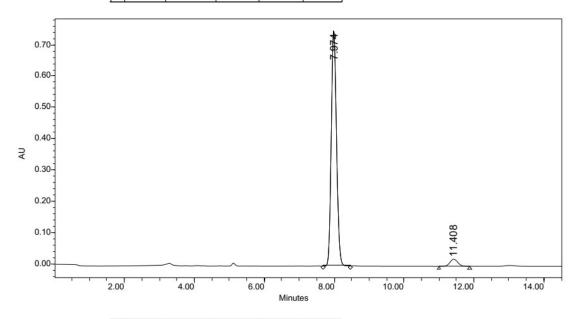

(S)-N-(2,3-dihydro-1H-inden-1-yl)-4-methylbenzenesulfonamide (5)



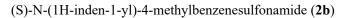
(S)-2, 3-dihydro-1H-inden-1-amine (6)

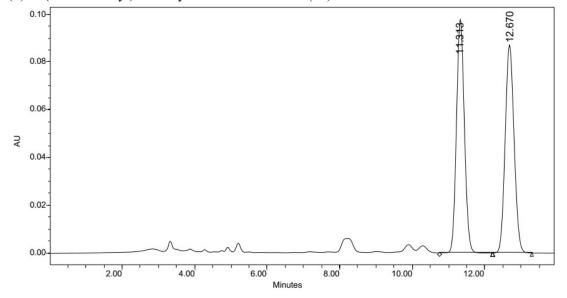


(S)-N-(prop-2-yn-1-yl)-2,3-dihydro-1H-inden-1-amine (7)

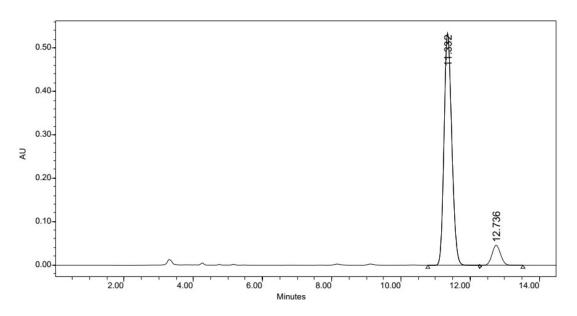


12. HPLC spectra for products, 5, 6 and 7.

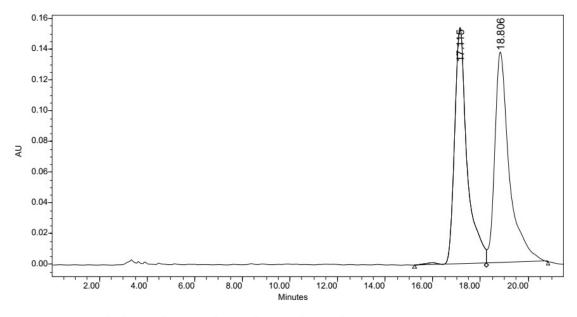

(S)-4-methyl-N-(2-methyl-1H-inden-1-yl)benzenesulfonamide (2a)



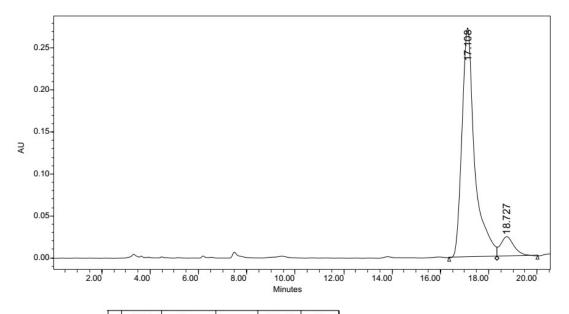
	RT (min)	Area (V*sec)	% Area	Height (V)	% Height
1	8.332	1254317	50.01	116830	60.22
2	12.023	1253720	49.99	77189	39.78



	RT (min)	Area (V*sec)	% Area	Height (V)	% Height
1	7.974	7857792	95.75	753865	97.09
2	11.408	349055	4.25	22631	2.91

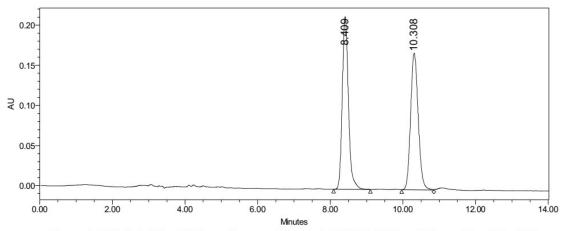


	RT (min)	Area (V*sec)	% Area	Height (V)	% Height
1	11.313	1486314	50.00	97789	52.89
2	12.670	1486031	50.00	87116	47.11



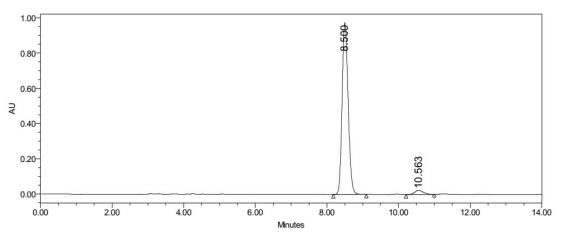
		RT (min)	Area (V*sec)	% Area	Height (V)	% Height
	1	11.332	8307523	91.17	535794	92.06
	2	12.736	805025	8.83	46218	7.94

$(R)\hbox{-}4\hbox{-methyl-N-}(2\hbox{-phenyl-1H-inden-1-yl}) benzene sulfonamide \eqref{eq:constraint} (\textbf{2c})$



	RT (min)	Area (V*sec)	% Area	Height (V)	% Height
1	17.115	5654668	49.13	153692	52.83
2	18.806	5853770	50.87	137246	47.17

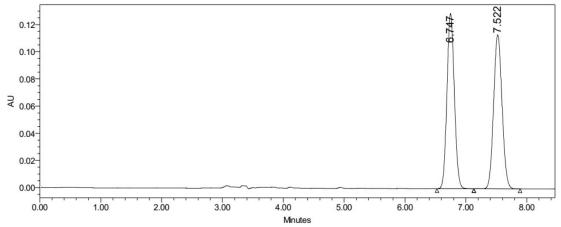
		RT (min)	Area (V*sec)	% Area	Height (V)	% Height
	1	17.108	10039621	91.45	273722	92.02
	2	18.727	938499	8.55	23749	7.98


$(S)\hbox{-N-}(2\hbox{-benzyl-1H-inden-1-yl})\hbox{-}4\hbox{-methylbenzene sulfonamide } (\textbf{2d})$

Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 1509; Processing Method: 6 22 1 rac

Processed Channel Descr.: 2998 Ch1 254nm@4.8nm

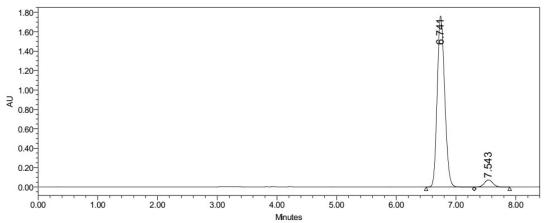
	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 Ch1 254nm@4.8nm	8.409	2530110	50.59	214849
2	2998 Ch1 254nm@4.8nm	10.308	2471068	49.41	170246



Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 1527; Processing Method: 6 22 2

Processed Channel Descr.: 2998 Ch1 254nm@4.8nm

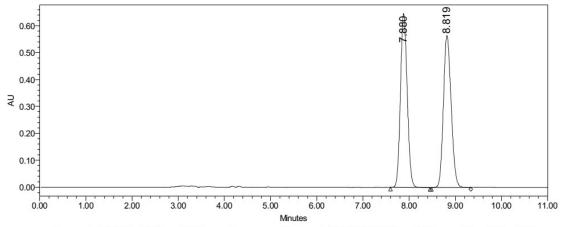
_				·	
	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 Ch1 254nm@4.8nm	8.500	11373917	96.73	974414
2	2998 Ch1 254nm@4.8nm	10.563	384588	3.27	23282


(S)-4-methyl-N-(2-propyl-1H-inden-1-yl)benzenesulfonamide (2e)

Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 1515; Processing Method: 6 23 1 rac

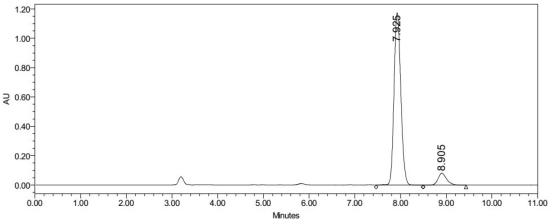
Processed Channel Descr.: 2998 Ch1 254nm@4.8nm

1 10000000 Onamici Beson: 2000					2,4.011111
	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 Ch1 254nm@4.8nm	6.747	1092434	50.01	128955
2	2998 Ch1 254nm@4.8nm	7.522	1092052	49.99	113402



Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 1529; Processing Method: 6 23 2

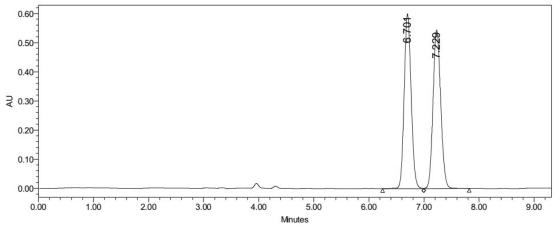
Processed Channel Descr.: 2998 Ch1 254nm@4.8nm


	10003300 Onamici Do	301 4	LOGO OIII	20411116	27.011111
	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 Ch1 254nm@4.8nm	6.741	15416457	95.50	1761809
2	2998 Ch1 254nm@4.8nm	7.543	726499	4.50	73760

(S)-N-(2-cyclopropyl-1H-inden-1-yl)-4-methylbenzenesulfonamide (2f)

Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 1989; Processing Method: 6 73 1

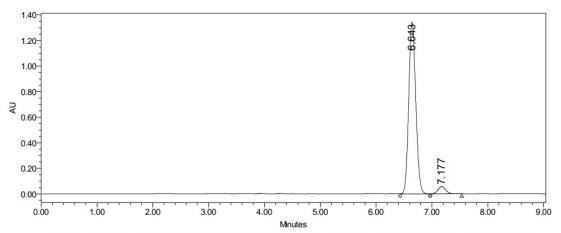
Р	rocessed Channel Des	cr.: 29	998 Ch1	254nm@	<u>⊉4.8nm</u>
	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 Ch1 254nm@4.8nm	7.880	6547608	49.87	646055
2	2998 Ch1 254nm@4.8nm	8.819	6581355	50.13	564755



Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 1995; Processing Method: 6 73 2

Processed Channel De	scr.: 2	2998 Ch1	254nm@	24.8nm
Processed	RT	Area	% Area	Height

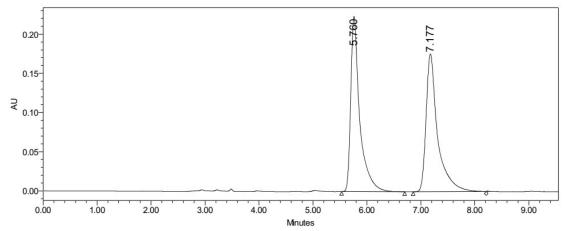
	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 Ch1 254nm@4.8nm	7.925	12082457	91.98	1173408
2	2998 Ch1 254nm@4.8nm	8.905	1053219	8.02	80757


(S)-N-(2-cyclohexyl-1H-inden-1-yl)-4-methylbenzenesulfonamide (2g)

Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 1649; Processing Method: 6 40 1 rac

Processed Channel Descr.: 2998 Ch1 254nm@4.8nm

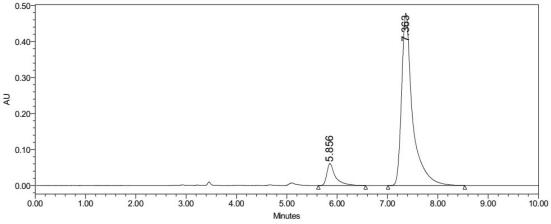
1 1 0003300 Onamici Desci 2000 Oni 2						Z-7.011111	
		Processed Channel Descr.	RT	Area	% Area	Height	
I	1	2998 Ch1 254nm@4.8nm	6.701	5289009	50.07	599493	
	2	2998 Ch1 254nm@4.8nm	7.229	5274604	49.93	544316	



Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 1923; Processing Method: 6 40 2

Processed Channel Descr.: 2998 Ch1 254nm@4.8nm

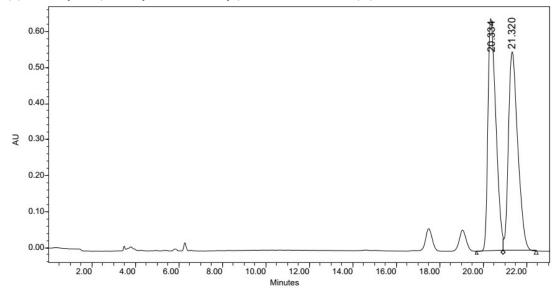
	Treatment and the second and the sec					
		Processed Channel Descr.	RT	Area	% Area	Height
	1	2998 Ch1 254nm@4.8nm	6.643	11768714	95.45	1344490
	2	2998 Ch1 254nm@4.8nm	7.177	560426	4.55	57863


(S)-N-(2-(tert-butyl)-1H-inden-1-yl)-4-methylbenzenesulfonamide (2h)

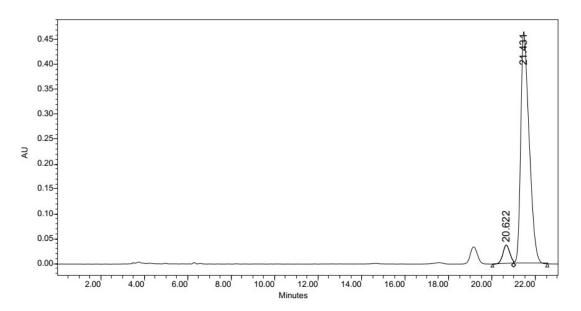
Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 2301; Processing Method: 6 80 1

Processed Channel Descr.: 2998 Ch1 254nm@4.8nm

Trocessed Charmer Descri. 2000 Chr 2						Z-T. OI III I
		Processed Channel Descr.		Area	% Area	Height
	1	2998 Ch1 254nm@4.8nm	5.760	2592459	49.86	223434
	2	2998 Ch1 254nm@4.8nm	7.177	2607444	50.14	175848

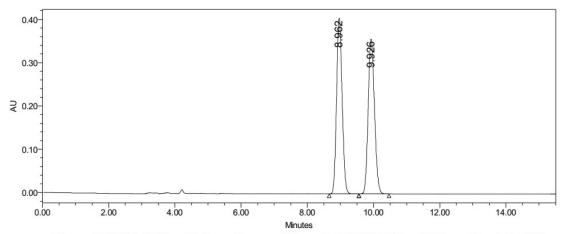


Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 2315; Processing Method: 7 17 1n


Processed Channel Descr.: 2998 Ch1 254nm@4.8nm

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1					2,
	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 Ch1 254nm@4.8nm	5.856	713978	9.00	60742
2	2998 Ch1 254nm@4.8nm	7.363	7217258	91.00	478071

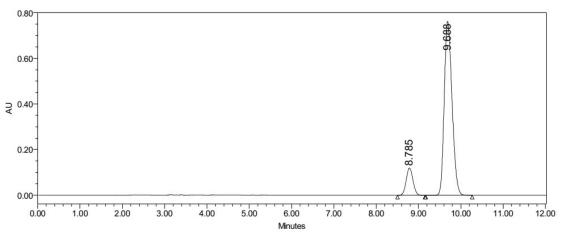
$(S)\text{-}4\text{-methyl-N-}(3\text{-methyl-1H-inden-1-yl}) benzene sulfonamid } \textbf{(2i)}$



	RT (min)	Area (V*sec)	% Area	Height (V)	% Height
1	20.334	16552816	49.94	645366	53.83
2	21.320	16589604	50.06	553543	46.17

		RT (min)	Area (V*sec)	% Area	Height (V)	% Height
1	1	20.622	872625	6.48	38183	7.56
	2	21.431	12601963	93.52	466744	92.44

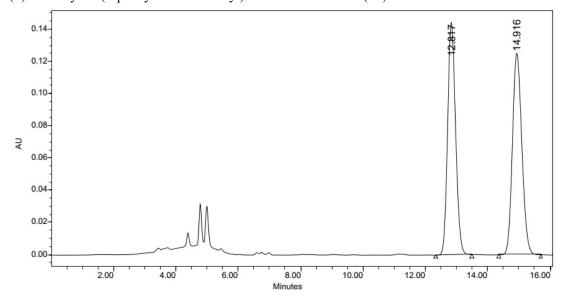
(S)-N-(3-(tert-butyl)-1H-inden-1-yl)-4-methylbenzenesulfonamide (2j)

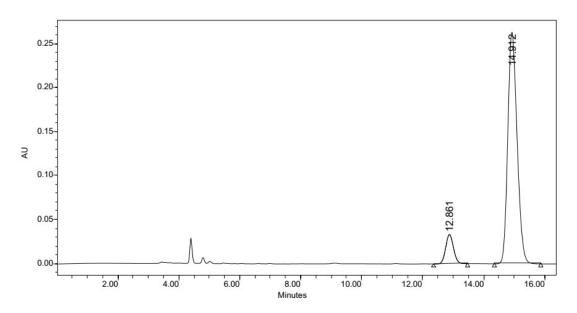


Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 1799; Processing Method: 6 50 1

Processed Channel Descr.: 2998 Ch1 254nm@4.8nm

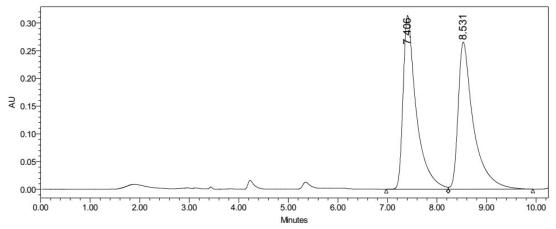
Processed RT Area % Area Height


	Channel Descr.	RT	Area	% Area	Height
1	2998 Ch1 254nm@4.8nm	8.962	4724464	50.00	405806
2	2998 Ch1 254nm@4.8nm	9.926	4723882	50.00	357877


Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 1797; Processing Method: 6 50 2

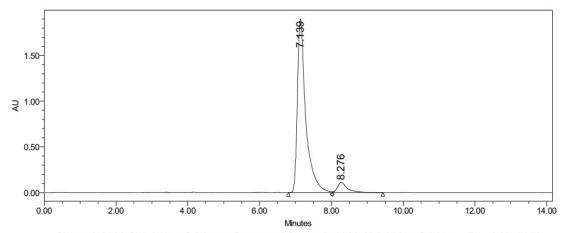
		Processed Channel Descr.	RT	Area	% Area	Height
ſ	1	2998 Ch1 254nm@4.8nm	8.785	1321030	11.93	119727
	2	2998 Ch1 254nm@4.8nm	9.688	9752973	88.07	761872

$(S)\text{-}4\text{-methyl-N-}(3\text{-phenyl-1H-inden-1-yl}) benzenesul fon a mide } (2k)$



	RT (min)	Area (V*sec)	% Area	Height (V)	% Height
1	12.817	2556767	49.36	144139	53.55
2	14.916	2622966	50.64	125042	46.45

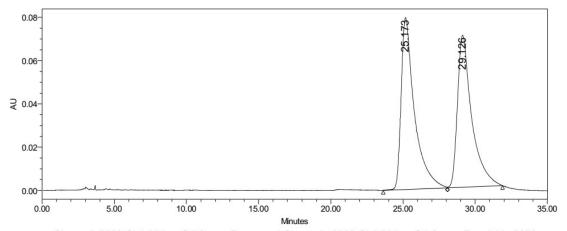
	RT (min)	Area (V*sec)	% Area	Height (V)	% Height
1	12.861	590114	9.58	33298	11.22
2	14.912	5571225	90.42	263459	88.78


(S)-N-(3-(3,4-dichlorophenyl)-1H-inden-1-yl)-4-methylbenzenesulfonamide (21)

Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 1839; Processing Method: 6 56 1

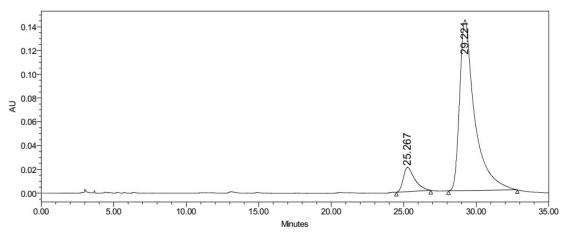
Processed Channel Descr.: 2998 Ch1 254nm@4.8nm

Troccoca Chamber Booth 2000 Chi 201						2,
		Processed Channel Descr.	RT	Area	% Area	Height
	1	2998 Ch1 254nm@4.8nm	7.406	5800538	50.42	313198
	2	2998 Ch1 254nm@4.8nm	8.531	5703666	49.58	265125



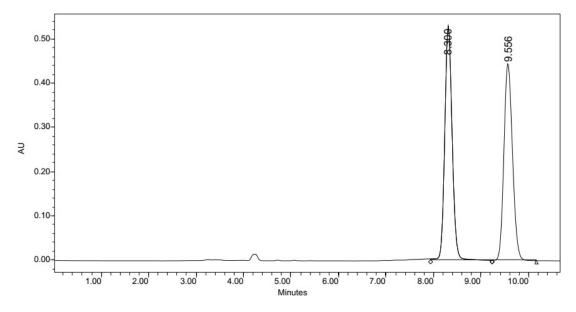
Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 2073; Processing Method: 6 56 4

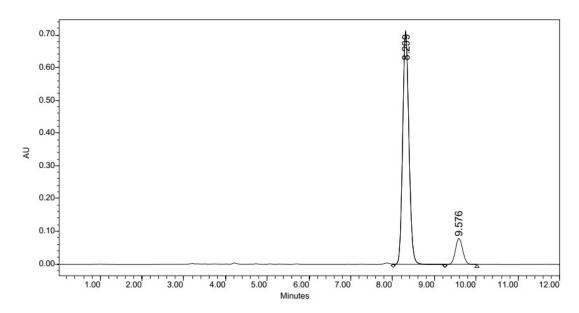
Processed Channel Descr.: 2998 Ch1 254nm@4.8nm


	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 Ch1 254nm@4.8nm	7.139	30859901	93.57	1902491
2	2998 Ch1 254nm@4.8nm	8.276	2119554	6.43	112363

$(S)\hbox{-}4-methyl\hbox{-}N\hbox{-}(3\hbox{-}(naphthalen\hbox{-}1\hbox{-}yl)\hbox{-}1H\hbox{-}inden\hbox{-}1\hbox{-}yl)benzene sulfonamide } ({\bf 2m})$

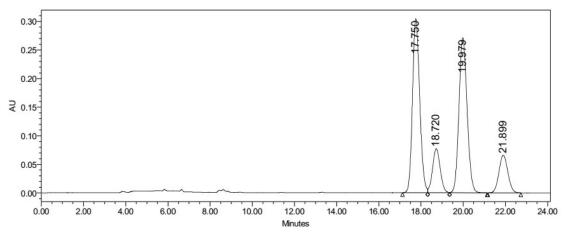
Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 2278; Processing Method: 7 13 1


Processed Channel Descr.: 2998 Ch1 254nm@4.8						4.8nm
		Processed Channel Descr.	RT	Area	% Area	Height
30	1	2998 Ch1 254nm@4.8nm	25.173	5077955	51.25	79412
100	2	2998 Ch1 254nm@4.8nm	29.126	4829934	48.75	70236


Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 2290; Processing Method: 7 13 2

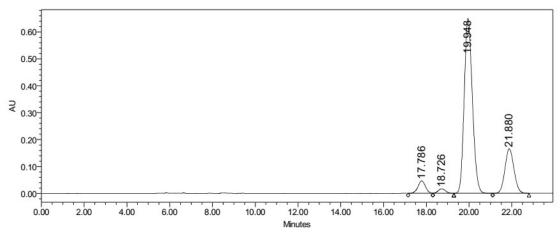
100	_	. ccccca chamber 2			<u> </u>	
		Processed Channel Descr.	RT	Area	% Area	Height
	1	2998 Ch1 254nm@4.8nm	25.267	1123497	9.82	20457
	2	2998 Ch1 254nm@4.8nm	29.221	10320377	90.18	143672

(S)-N-(2,3-dimethyl-1H-inden-1-yl)-4-methylbenzenesulfonamide (2n)



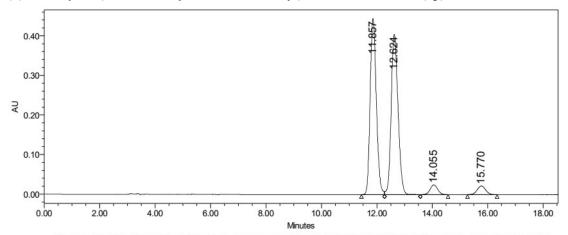
	RT (min)	Area (V*sec)	% Area	Height (V)	% Height
1	8.300	5820278	50.96	529846	54.27
2	9.556	5601678	49.04	446419	45.73

	RT (min)	Area (V*sec)	% Area	Height (V)	% Height
1	8.299	7436395	88.45	709796	89.92
2	9.576	970739	11.55	79557	10.08


(S)-4-methyl-N-(1,2,3,8-tetrahydrocyclopenta[a]inden-8-yl)benzenesulfonamide (20)

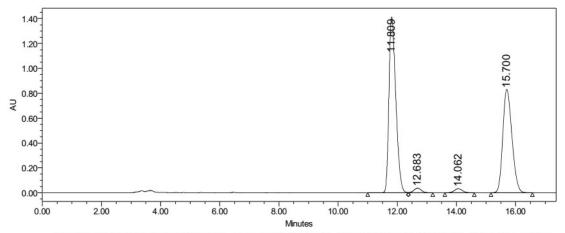
Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 1458; Processing Method: 6 14 1 rac

Processed Channel Descr.: 2998 Ch1 254nm@4.8nm


	Trocesses Chamber 2000 in 2000 chir 20 in ing norm					
	Processed Channel Descr.	RT	Area	% Area	Height	
1	2998 Ch1 254nm@4.8nm	17.750	7220419	39.30	303967	
2	2998 Ch1 254nm@4.8nm	18.720	1946099	10.59	77068	
3	2998 Ch1 254nm@4.8nm	19.979	7268686	39.56	270952	
4	2998 Ch1 254nm@4.8nm	21.899	1936897	10.54	66001	

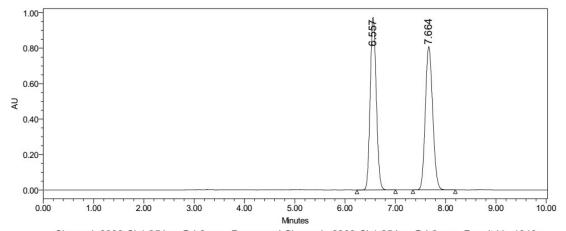
Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 1460; Processing Method: 6 14 2

	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 Ch1 254nm@4.8nm	17.786	1153881	4.89	46664
2	2998 Ch1 254nm@4.8nm	18.726	413407	1.75	16888
3	2998 Ch1 254nm@4.8nm	19.948	17214170	72.89	648877
4	2998 Ch1 254nm@4.8nm	21.880	4836413	20.48	164989

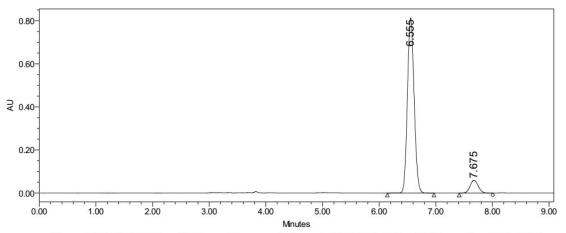

(S)-4-methyl-N-(2,3,4,9-tetrahydro-1H-fluoren-9-yl)benzenesulfonamide (2p)

Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 1433; Processing Method: 5 98 rac

Processed Channel Descr.: 2998 Ch1 254nm@4.8nm


Frocessed Charmer Descr., 2990 Chr 204mil@4.6m						
	Processed Channel Descr.	RT	Area	% Area	Height	
1	2998 Ch1 254nm@4.8nm	11.857	6903638	46.76	444646	
2	2998 Ch1 254nm@4.8nm	12.624	6935018	46.97	405228	
3	2998 Ch1 254nm@4.8nm	14.055	465332	3.15	24532	
4	2998 Ch1 254nm@4.8nm	15.770	460372	3.12	21846	

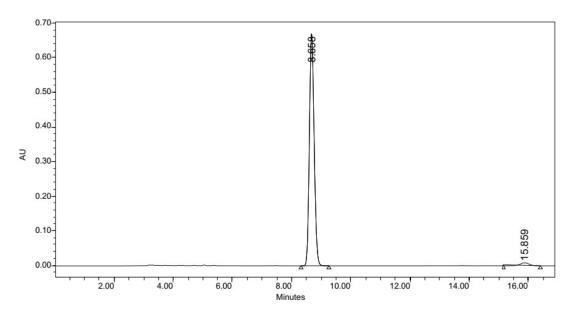
Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 1435; Processing Method: 5 98 2


	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 Ch1 254nm@4.8nm	11.809	22729630	54.33	1412283
2	2998 Ch1 254nm@4.8nm	12.683	649970	1.55	37692
3	2998 Ch1 254nm@4.8nm	14.062	617111	1.48	32853
4	2998 Ch1 254nm@4.8nm	15.700	17838341	42.64	830880

$(S)-N-(2,7-dimethyl-1H-inden-1-yl)-4-methylbenzenesulfonamide \ (\textbf{2q})$

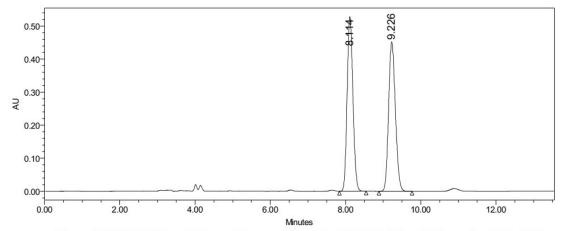
Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 1813; Processing Method: 6 57 1

Processed Channel Descr.: 2998 Ch1 254nm@4.8						24.8nm
		Processed Channel Descr.	RT	Area	% Area	Height
	1	2998 Ch1 254nm@4.8nm	6.557	8150513	49.89	973884
	2	2998 Ch1 254nm@4.8nm	7.664	8186296	50.11	808384


Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 1833; Processing Method: 6 57 2

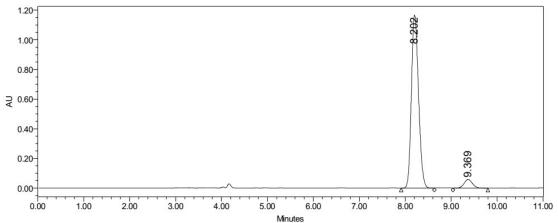
	1 0000000 Onamici Dec	VI E	000 0111		2,4.011111
	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 Ch1 254nm@4.8nm	6.555	6699795	91.81	813499
2	2998 Ch1 254nm@4.8nm	7.675	597559	8.19	60015

 $(S)-N-(2,5-dimethyl-1H-inden-1-yl)-4-methylbenzenesulfonamide\ ({\bf 2r})$



	RT (min)	Area (V*sec)	% Area	Height (V)	% Height
1	8.598	1636816	49.96	146963	65.80
2	15.597	1639557	50.04	76397	34.20

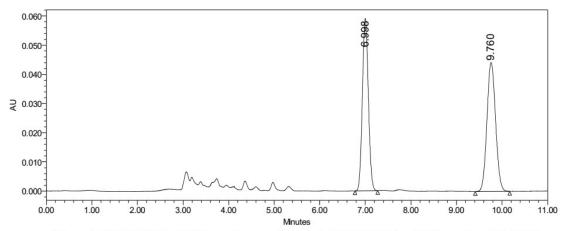
	RT (min)	Area (V*sec)	% Area	Height (V)	% Height
1	8.658	7505637	97.52	672259	98.73
2	15.859	190666	2.48	8614	1.27


$(S)-N-(2,4-dimethyl-1H-inden-1-yl)-4-methylbenzenesulfonamide \ ({\bf 2s})$

Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 1873; Processing Method: 6 64 1

Processed Channel Descr.: 2998 Ch1 254nm@4.8nm

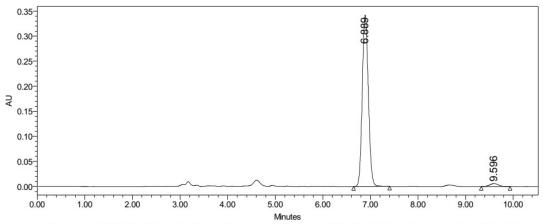
T T C C C C C C T C T C C C C C C C C C					
	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 Ch1 254nm@4.8nm	8.114	5635081	49.94	528181
2	2998 Ch1 254nm@4.8nm	9.226	5647556	50.06	452455



Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 1921; Processing Method: 6 64 2

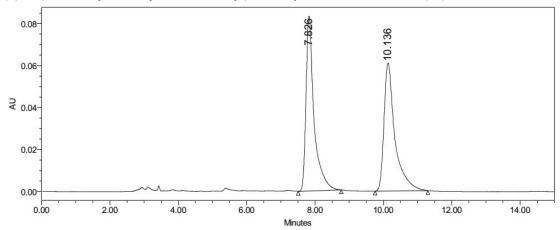
Processed Channel Descr.: 2998 Ch1 254nm@4.8nm

1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1						2, 11011111
		Processed Channel Descr.	RT	Area	% Area	Height
	1	2998 Ch1 254nm@4.8nm	8.202	12570365	94.58	1167737
	2	2998 Ch1 254nm@4.8nm	9.369	720979	5.42	57816


$(S)-N-(5-fluoro-2-methyl-1H-inden-1-yl)-4-methylbenzenesulfonamide \ (2t) \\$

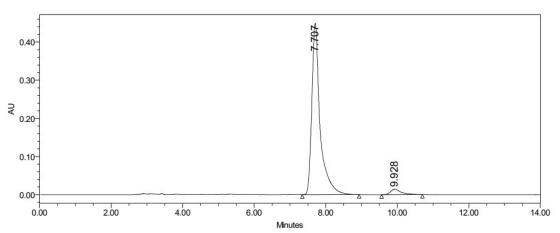
Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 1173; Processing Method: ZY 5 93 3 RAC

Processed Channel Descr.: 2998 Ch1 254nm@4.8nm


	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 Ch1 254nm@4.8nm	6.998	534988	48.06	59000
2	2998 Ch1 254nm@4.8nm	9.760	578072	51.94	44195

Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 1171; Processing Method: ZY 5 93 3 ASY

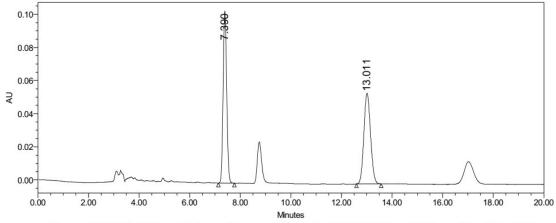
	•	TOOCCOO OTTAINIO DOC	· · · · · ·	, , , , , , , , , , , , , , , , , , , 		<u>z, 11011111</u>
		Processed Channel Descr.	RT	Area	% Area	Height
	1	2998 Ch1 254nm@4.8nm	6.889	3022651	97.58	342158
Ì	2	2998 Ch1 254nm@4.8nm	9.596	74943	2.42	5910


$(S)-N-(5-methoxy-2-methyl-1H-inden-1-yl)-4-methylbenzenesulfonamide\ (\boldsymbol{2u})$

Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 1319; Processing Method: zy 6 5 1 rac

Processed Channel Descr.: 2998 Ch1 254nm@4.8nm

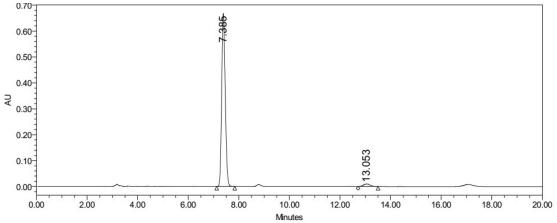
Trocessed Charmer Descr., 2990 Chris					JHIIII	7.011111
200		Processed Channel Descr.	RT	Area	% Area	Height
	1	2998 Ch1 254nm@4.8nm	7.826	1356760	50.14	83286
	2	2998 Ch1 254nm@4.8nm	10.136	1349058	49.86	61006



Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 1571; Processing Method: 6 24 3

Processed Channel Descr.: 2998 Ch1 254nm@4.8nm

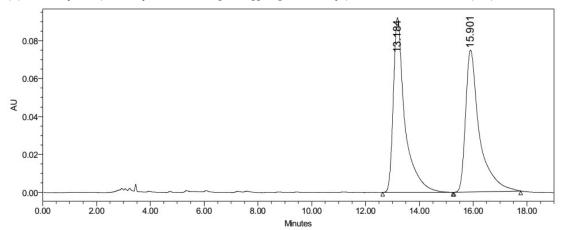
•	TOOGGOOG OHAIHIOI BOC	, v	, , , , , , , , , , , , , , , , , , , 		2, 11011111
Processed Channel Descr.		RT	Area	% Area	Height
1	2998 Ch1 254nm@4.8nm	7.707	7191441	96.08	449075
2	2998 Ch1 254nm@4.8nm	9.928	293164	3.92	14243


$(S)\text{-}N\text{-}(5\text{-}chloro\text{-}2\text{-}methyl\text{-}1H\text{-}inden\text{-}1\text{-}yl)\text{-}4\text{-}methylbenzenesulfonamide} \ (2v)$

Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 1953; Processing Method: 6 63 1n

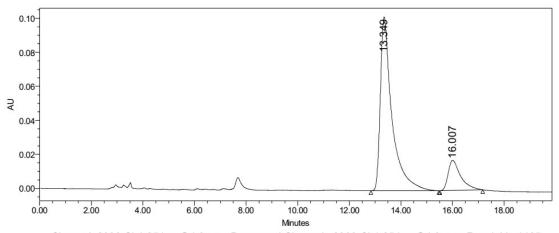
Processed Channel Descr.: 2998 Ch1 254nm@4.8nm

Frocessed Charmer Descr., 2990 Chr 254hin@4.0					/ 4 .011111
	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 Ch1 254nm@4.8nm	7.390	1015648	50.39	103821
2	2998 Ch1 254nm@4.8nm	13.011	1000071	49.61	54700



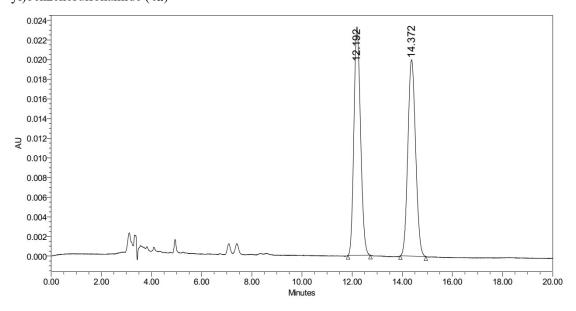
Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 1925; Processing Method: 6 63 2

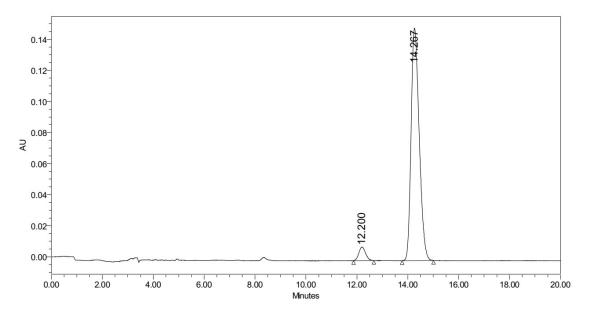
Processed Channel Descr.: 2998 Ch1 254nm@4.8nm


		Processed Channel Descr.	RT	Area	% Area	Height
	1	2998 Ch1 254nm@4.8nm	7.385	6517240	97.30	667641
2	2	2998 Ch1 254nm@4.8nm	13.053	180582	2.70	10024

$(S)\text{-}4\text{-methyl-N-}(6\text{-methyl-5H-indeno}[5,6\text{-d}][1,3] \\ dioxol\text{-}5\text{-yl}) \\ benzene sulfonamide \ (\textbf{2w})$

Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result Id: 1321; Processing Method: 6 2 1 rac

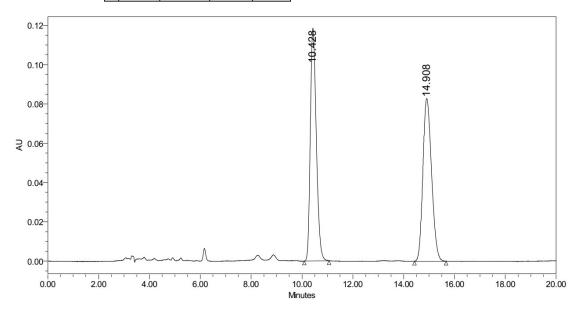

Processed Channel Descr.: 2998 Ch1 254nm@4.8nm Processed Channel Descr. RT Area % Area Height 1 2998 Ch1 254nm@4.8nm 13.184 2751405 50.77 92062 2 2998 Ch1 254nm@4.8nm 15.901 2667971 49.23 74809


Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 1485; Processing Method: 6 16 3

	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 Ch1 254nm@4.8nm	13.349	3207784	84.25	102184
2	2998 Ch1 254nm@4.8nm	16.007	599753	15.75	17785

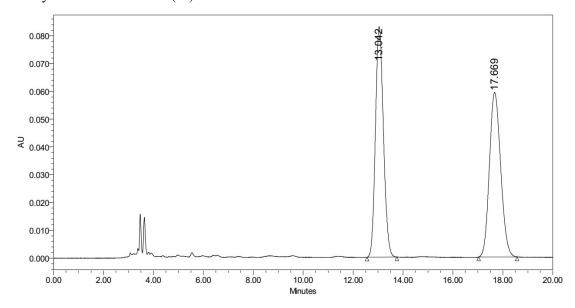
 $\label{eq:continuous} \mbox{4-methyl-N-((6aR,7S,11bS)-6,6a,7,11b-tetrahydroindeno[2,1-c]chromen-7-yl)} benzenesulfonamide ({\bf 4a})$

	RT	Area	% Area	Height
1	12.192	425702	49.85	23253
2	14.372	428238	50.15	20001

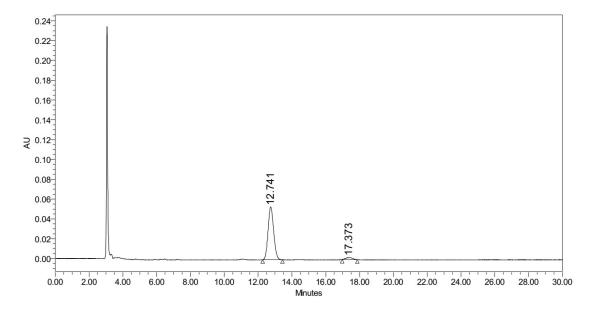


	RT	Area	% Area	Height
1	12.200	158237	4.57	8717
2	14.267	3303475	95.43	149605

 $\label{eq:continuous} 4-methyl-N-((6aR,7S,11bS)-2-methyl-6,6a,7,11b-tetrahydroindeno[2,1-c]chromen-7-yl) benzenesulfonamide ({\bf 4b})$

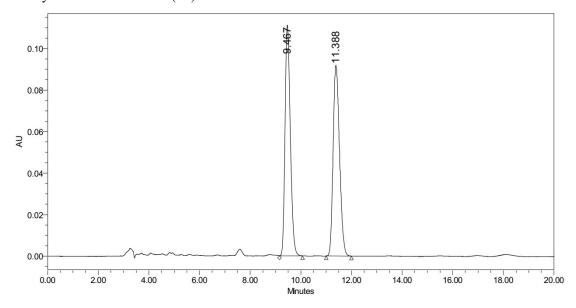


		RT	Area	% Area	Height
	1	10.302	106256	4.53	6603
	2	14.566	2239519	95.47	96280

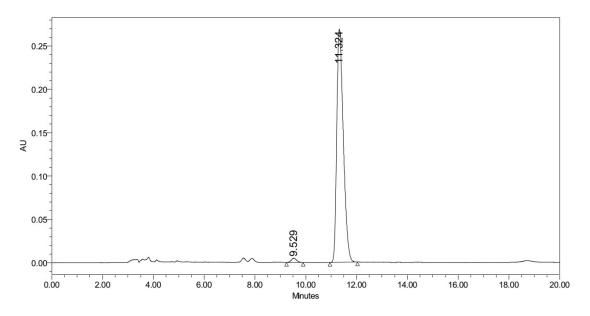


	RT	Area	% Area	Height
1	10.428	1937786	49.83	118453
2	14.908	1951030	50.17	82812

 $N-((6aR,7S,11bS)-2-ethyl-6,6a,7,11b-tetrahydroindeno[2,1-c]chromen-7-yl)-4-methylbenzenesulfonamide (\bf{4c})$

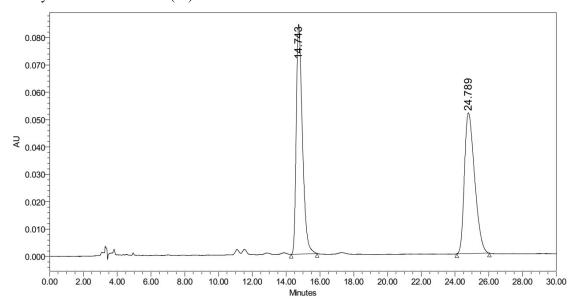


	RT	Area	% Area	Height
1	13.042	1854721	49.94	82983
2	17.669	1859510	50.06	59256

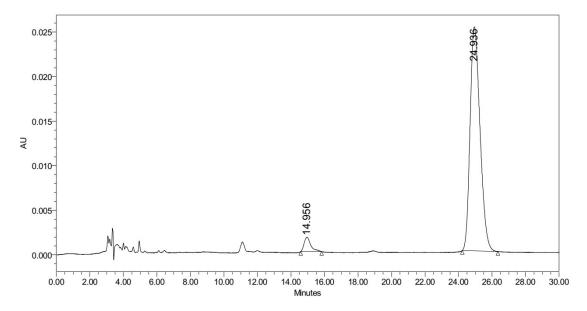


	RT	Area	% Area	Height
1	12.741	1212371	95.49	53292
2	17.373	57290	4.51	2082

 $N-((6aR,7S,11bS)-2-fluoro-6,6a,7,11b-tetrahydroindeno[2,1-c]chromen-7-yl)-4-methylbenzenesulfonamide (\bf{4d})$

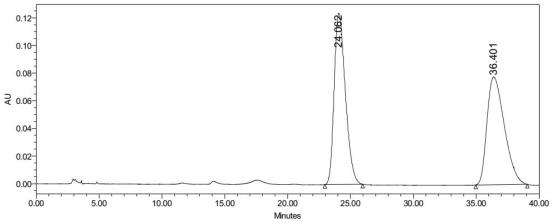


2		RT	Area	% Area	Height
	1	9.467	1618969	50.31	111087
	2	11.388	1598810	49.69	91844



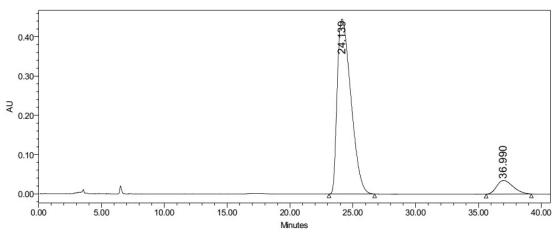
	RT	Area	% Area	Height
1	9.529	69820	1.44	4789
2	11.324	4792653	98.56	269048

 $N-((6aR,7S,11bS)-2-methoxy-6,6a,7,11b-tetrahydroindeno[2,1-c]chromen-7-yl)-4-methylbenzenesulfonamide (\bf{4e})$



	RT	Area	% Area	Height
1	14.743	2132877	49.71	83999
2	24.789	2157407	50.29	51437

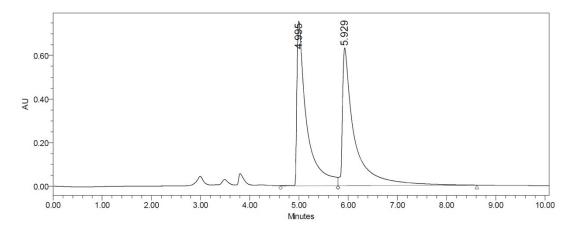
	RT	Area	% Area	Height
1	14.956	44781	4.13	1625
2	24.936	1038829	95.87	25154


(S)-N-(2,3-dihydro-1H-inden-1-yl)-4-methylbenzenesulfonamide (5)

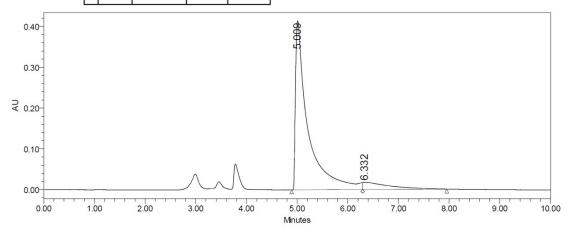
Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 2788; Processing Method: wx 55 rac

Processed Channel Descr.: 2998 Ch1 254nm@4.8nm

	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 Ch1 254nm@4.8nm	24.062	7659300	50.53	123865
2	2998 Ch1 254nm@4.8nm	36.401	7499761	49.47	78013

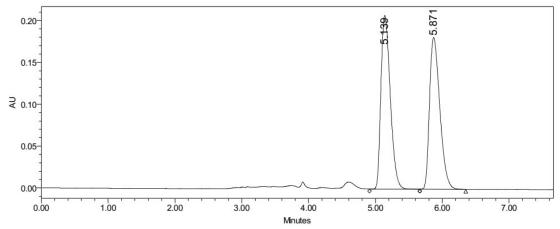


Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 2830; Processing Method: wx 55 asy


Processed Channel Descr.: 2998 Ch1 254nm@4.8nm

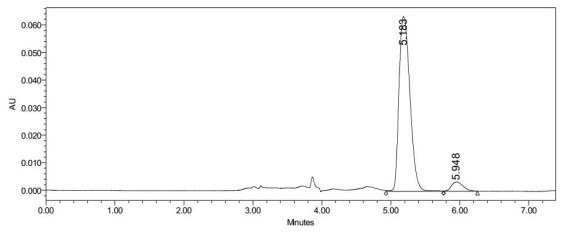
_	Tocessed Charmer De	301 Z	330 CIII 2	JTIIII	T.011111
	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 Ch1 254nm@4.8nm	24.139	33645766	91.51	445588
2	2998 Ch1 254nm@4.8nm	36.990	3120393	8.49	34750

(S)-2,3-dihydro-1H-inden-1-amine (6)



	RT	Area	% Area	Height
1	4.995	10444194	49.05	757139
2	5.929	10850852	50.95	633134

	RT	Area	% Area	Height
1	5.009	7064589	91.65	414052
2	6.332	643881	8.35	17451


(S)-N-(prop-2-yn-1-yl)-2,3-dihydro-1H-inden-1-amine (7)

Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 2762; Processing Method: wx 59 rac

Processed Channel Descr.: 2998 Ch1 254nm@4.8nm

•	1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1					
	Processed Channel Descr.	RT	Area	% Area	Height	
1	2998 Ch1 254nm@4.8nm	5.139	2012860	50.98	207478	
2	2998 Ch1 254nm@4.8nm	5.871	1935330	49.02	181231	

Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 2820; Processing Method: wx 62 asy

	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 Ch1 254nm@4.8nm	5.183	699202	94.64	63443
2	2998 Ch1 254nm@4.8nm	5.948	39572	5.36	3375