Supporting Information

Highly regioselective and stereoselective synthesis of C-Aryl

glycosides via Nickel-catalyzed ortho-C-H glycosylation of 8-

aminoquinoline amides

Wei-Yu Shi, Ya-Nan Ding, Nian Zheng, Xue-Ya Gou, Zhe Zhang, Xi Chen, Yu-Yong Luan, Zhi-Jie Niu and Yong-Min Liang *

State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China E-mail: <u>liangym@lzu.edu.cn</u>

Table of Contents

1. General Remarks	2
2. Optimization of reaction conditions	3
3. General Procedure	4
4. General Procedure for the Preparation of Starting amides	5
5. General Procedure for the Preparation of Glycosyl chlorides	6
6. X-ray Single Crystal Diffraction Data of 3q	11
7. Preliminary Mechanism Research and Hydrolysis experiment	12
8. References	16
9. Characterization Data	17
10. NMR Spectroscopic Data	

1. General Remarks

Unless otherwise noted, all of these reactions were carried out under an argon atmosphere. Solvent was freshly distilled prior to use unless otherwise noted. For column chromatography, silica gel (200-300 mesh) was employed. Analytical TLC was performed with silica gel GF254 plates. Organic solutions were concentrated under reduced pressure using a rotary evaporator. Room temperature (r.t.) is 15-23°C.

Materials. Unless otherwise noted below, all other compounds have been reported in the literature or are commercially available. Commercial reagents were used without further purification. 1,4-Dioxane were dried with CaH₂ and freshly distilled, and the Ni(dppf)Cl₂ was purchased from Boka.

Instrumentation. Deuterated solvents were purchased from Cambridge Isotope Laboratories. ¹H NMR spectra were recorded on Bruker AVANCE III 400, 600 and INOVA instruments with 400, 300 and 600 MHz frequencies, and ¹³C NMR spectra were recorded on Bruker AVANCE III 400 and 600 with 101 and 75 MHz frequencies. ¹⁹F NMR spectra were recorded on a Bruker AVANCE III 400 spectrometer with a ¹⁹F operating frequency of 376 MHz. Chemical shifts (δ) were reported in ppm relative to the residual solvent signal (CDCl₃ δ = 7.26 for ¹H NMR and δ = 77.0 for ¹³C NMR). Chemical shifts (ppm) were recorded with tetramethylsilane (TMS) as the internal reference standard. Multiplicities are given as s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), dt (doublet od triplet), dq (double of quartet) td (triplet of doublets) or m (multiplet). HRMS was obtained using a Q-TOF instrument equipped with an ESI source. Data collection for crystal structure was performed at room temperature using Mo K α radiation on a Bruker APEXII diffractometer.

2. Optimization of reaction conditions

	Table S1	Optimization	of reaction	conditions
--	----------	--------------	-------------	------------

Entry	1a:2a	Catalyst	Solvent	Base	Yield ^b (%)
1	1:2	Ni ₂ CO ₃	Dioxane	KHCO ₃	n.r. ^c
2	1:2	Ni(OTf) ₂	Dioxane	KHCO ₃	trace
3	1:2	Ni(OAc) ₂	Dioxane	KHCO ₃	trace
4	1:2	Ni(DME)Cl ₂	Dioxane	KHCO ₃	27
5	1:2	Ni(dppf)Cl ₂	Dioxane	KHCO ₃	38
6	1:2	-	Dioxane	KHCO ₃	n.r.
7	1:2	Ni(dppf)Cl ₂	PhMe	KHCO ₃	31
8	1:2	Ni(dppf)Cl ₂	DMF	KHCO ₃	n.r.
9	1:2	Ni(dppf)Cl ₂	DCE	KHCO ₃	21
10	1:2	Ni(dppf)Cl ₂	PhCl	KHCO ₃	20
11	2:1 ^d	Ni(dppf)Cl ₂	Dioxane	KHCO ₃	61
12	2:1	Ni(dppf)Cl ₂	Dioxane	K ₂ CO ₃	48
13	2:1	Ni(dppf)Cl ₂	Dioxane	K ₃ PO ₄	trace
14	2:1	Ni(dppf)Cl ₂	Dioxane	KOAc	52
15	2:1	Ni(dppf)Cl ₂	Dioxane	NEt ₃	n.r.
16	2:1	Ni(dppf)Cl ₂	Dioxane	NaHCO ₃	47
17	2:1	Ni(dppf)Cl ₂	Dioxane	CsHCO ₃	53
18	2:1	Ni(dppf)Cl ₂	Dioxane	-	n.r.

^aReaction conditions: **1a** (0.1mmol), 2a (0.2 mmol, 2.0 equiv.), catalyst (5mol%), base (0.2mmol, 2.0 equiv.), solvent (0.5mL), 140°C, 16h and Ar. ^bIsolated yield. ^cn.r.: no reaction. ^dReaction conditions: **1a** (0.2mmol, 2.0 equiv.), **2a** (0.1 mmol).

3. General Procedure

In an oven-dried 10 ml tube, starting amide 1 (0.2 mmol), 2 (0.1 mmol), KHCO₃ (0.4 mmol, 20mg) and Ni(dppf)Cl₂ (5 mol%, 3.4 mg) were added and charged with argon more than five times (The tube was sealed with tipping plug). Dioxane (0.5 mL) was injected into the tube. The resulting suspension was stirred vigorously at 140 °C for 16 h. After the reaction was completed, the resulting mixture was filtered through a celite pad and concentrated under reduced pressure. The residue was purified with chromatography column on silica gel or preparative TLC (Petroleum ether/EtOAc = 8:1 - 3:1).

4. General Procedure for the Preparation of Starting amides

All aromatic amides bearing an 8-aminoquinoline moiety were prepared by reacting the corresponding acid or the corresponding acid chlorides with 8-aminoquinoline.¹

Method 1: 8-Aminoquinoline (4.0 mmol) and triethylamine (6.0 mmol) were dissolved in anhydrous dichloromethane (20 mL), and the mixture was cooled to 0 oC. After the dropwise addition of the corresponding acid chloride in 5 mL of dichloromethane (4.4 mmol) via syringe pump, the reaction mixture was warmed to room temperature and stirred overnight. Dichloromethane (20 mL) was added and the mixture was washed with saturated aqueous sodium bicarbonate (20 mL), 1N HCl (20 mL), and brine (30 mL), dried over MgSO4 and the solvent was removed in vacuo. The crude product was purified by flash column chromatography (silica gel, EtOAc/hexanes, 1:20 to 1:4) to give the corresponding quinoline amide product.

Method 2: To an oven-dried 100 mL three-necked flask, acid (15 mmol), DMF (5 drops) and DCM (30 mL) were added under a N_2 atmosphere. Oxalyl chloride (1.5 mL, 18 mmol, 1.2 equiv.) was added dropwise at 0 °C resulting in vigorous bubbling. The mixture was stirred for 5 h at room temperature, and the solvent was then removed in vacuo. The resulting acid chloride was used immediately without further purification.

To another oven-dried 100 mL three-necked flask, 8-aminoquinoline (2.9 g, 20 mmol, 1.3 equiv.), Et₃N (4.1 mL, 30 mmol, 2 equiv.) and DCM (30 mL) were added. A solution of the acid chloride in DCM (10 mL) was added dropwise to the solution at 0 °C, and the solution was then warmed to room temperature. After stirring overnight, the reaction system was quenched with sat. aq. NaHCO3 (30 mL) and the organic layer was separated. The aqueous layer was extracted with DCM (2 x 15mL). The combined organic layers were washed with 1 M HCl aq. (30 mL) and brine (30 mL), dried over MgSO4, filtered and evaporated in vacuo. The obtained crude amide was purified by column chromatography on silica gel (hexane/EtOAc = 10/1) to afford the desired amide.

5. General Procedure for the Preparation of Glycosyl chlorides

The synthesis of sugars was based on the pervious literatures, and the spectra data are consistent with those reported in literatures.

a) Synthesis of (3aS,4R,6R,6aS)-4-chloro-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxole (**2a**)²

Step 1: To an ice-water cooled solution of D-mannose (7.2 g, 40 mmol) in acetone (100 mL) was added H_2SO_4 (0.5ml), and the mixture was left to stir at 0 °C for 30 minutes. The mixture was diluted with EtOAc (200 ml) and washed thoroughly with saturated aqueous NaHCO₃ solution water and brine. The organic layer was dried over anhydrous Na₂SO₄ and the resulting solution was concentrated under reduced pressure. The crude product was used for next step without further purification.

Step 2: The relevant crude product (10 mmol) was dissolved in dry THF (50 ml), triphosgene (1.2 g, 4 mmol) was added, and the mixture was stirred at room temperature with exclusion of moisture. Pyridine (1ml) was added slowly and the mixture was allowed to stir at room temperature for 2h while being monitored by TLC. After the reaction was completed, pyridinium hydrochloride was filtered. The solid was washed with THF, and the filtrate was concentrated under reduced pressure. The residue was purified with chromatography column on silica gel to give desired product 2a in 95% yield.

b) Synthesis of (2R,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-chlorotetrahydro-2H-pyran (**2b**)²⁻³

Step 1: To a 0 °C cooled solution of **2b-1** (10mmol) in DMF (80 mL), was carefully added NaH (64.40 mmol). Then, BnBr (64.40 mmol) was slowly added about 30 min. After 16 h at room temperature, the reaction mixture was carefully quenched with water. Then, the crude was diluted with water (50 mL) and extracted with CH_2Cl_2 (3 × 100 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to give compound **2b-2**.

Step 2: To a -78 °C cooled solution of **2b-2** in DCM, was added dropwise BCl₃ (1.5 equiv, 1M in DCM). The reaction was stirred at -78 °C overnight. The reaction mixture was extracted with CH₂Cl₂ and washed with brine. The organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The resulting residue was purified by silica gel flash chromatography to give compound **2b**.

c) Synthesis of (2R,3R,4S,5S,6R)-2-(acetoxymethyl)-6-chlorotetrahydro-2H-pyran-3,4,5-triyl triacetate $(2c)^3$

Step 1: To a 0 °C cooled solution of **2c-1** (10mmol) in DMF (80 mL), was carefully added NaH (64.40 mmol). Then, MeI (64.40 mmol) was slowly added about 30 min. After 16 h at room temperature, the reaction mixture was carefully quenched with water. Then, the crude was diluted with water (50 mL) and extracted with CH_2Cl_2 (3 × 100 mL). The combined organic layers were washed with brine, dried over Na_2SO_4 , filtered, and concentrated *in vacuo* to give compound **2c-2**.

Step 2: To a -78 °C cooled solution of **2c-2** in DCM, was added dropwise BCl₃ (1.5 equiv, 1M in DCM). The reaction was stirred at -78 °C overnight. The reaction mixture was extracted with CH₂Cl₂ and washed with brine. The organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The resulting residue was purified by silica gel flash chromatography to give compound **2c**.

d) Synthesis of (2S,3R,4R,5S,6S)-3,4,5-tris(benzyloxy)-2-chloro-6-methyltetrahydro-2H-pyran (**2d**)³⁻⁴

Step 1: To a solution of **2d-1** (6.7 mmol) in allyl alcohol (8 mL), Amberlite IR 120 (H⁺) (0.6 g) was added, and the suspension was stirred at 90 °C for 4 h. The ion exchanger was filtered off, and the excess of allyl alcohol was removed by vacuum distillation. The crude product was purified by flash column chromatography (CH₂Cl₂/MeOH = 20:1) to give **2d-2**.

Step 2: To a 0 °C cooled solution of **2d-2** (10mmol) in DMF (80 mL), was carefully added NaH (40 mmol). Then, BnBr (40 mmol) was slowly added about 30 min. After 16 h at room temperature, the reaction mixture was carefully quenched with water. Then, the crude was diluted with water (50 mL) and extracted with CH_2Cl_2 (3 × 100 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to give compound **2d-3**.

Step 3: To a solution of compound **2d-3** (5 mmol) in anhydrous MeOH (35 mL) at room temperature, PdCl₂ (1 mmol) was added. The mixture was was allowed to stir at room temperature. Then, the reaction was diluted with Et_2O (30 mL), filtered through Celite pad, and concentrated under reduced pressure. The crude residue was purified by flash column chromatography on silica gel to afford **2d-4**.

Step 4: To a solution of compound **2d-4** (5.0 mmol) in DMF, $(COCl)_2$ (15 mmol, 3.0 equiv.) was slowly added at 0 °C. The mixture was stirred at 0 °C. After the complete consumption of compound **2d-4** monitored by TLC analysis, the reaction mixture was diluted with CH₂Cl₂. The organic layer was washed with brine, dried over anhydrous Na₂SO₄, the solvent was removed under reduced pressure. The resulting residue was purified by silica gel flash chromatography to give compound **2d**.

e) Synthesis of (2R,3S,4S,5R,6R)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-chlorotetrahydro-2H-pyran (**2e**)²⁻³

The compound 2e was synthesized following the same procedure as compound 2b.

f) Synthesis of (2R,3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-chlorotetrahydro-2H-pyran $(2f)^{2-3}$

The compound **2f** was synthesized following the same procedure as compound **2b**.

g) Synthesis of (3aR,4R,6R,6aR)-4-((benzyloxy)methyl)-6-chloro-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxole (**2g**)^{2,5}

Step 1: To a 0 °C cooled solution of **2g-1** (10mmol) in DMF (80 mL), was carefully added NaH (15 mmol). Then, BnBr (15 mmol) was slowly added about 30 min. After 16 h at room temperature, the reaction mixture was carefully quenched with water. Then, the crude was diluted with water (50 mL) and extracted with CH_2Cl_2 (3 × 100 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to give a benzyl protected compound.

Step 2: 2,3,5-Tri-O-benzyl-D-lyxofuranolactone (2.1 g, 5 mmol) was dissolved in DCM (25 ml) and cooled to -78 °C. Diisobutylaluminum hydride (7 ml, 7 mmol, 1M in hexanes) was added slowly over 10-15 minutes and the reaction mixture kept at -78 °C for 1h. Methanol (2 ml) was added dropwise to quench the reaction and the solution allowed to warm to room temperature. The solution was diluted with DCM and washed with brine. The solution was dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The product was purified by flash chromatography to give compound 2g-2.

Step 3: DMF (1.55ml, 20.0mmol) was added to 2,4,6-trichloro-[1,3,5]-triazine (TCT) (1.0g, 5.5mmol) and the solution was stirred at room temperature for 15 minutes under N₂. Compound **2g-2** (5.0 mmol) in DCE was added to the TCT-DMF suspension, the followed by addition of DBU (0.8ml, 5.5mmol). The mixture was stirred at 60 °C and monitored by TLC. The temperature was brought to room temperature and Et₂O was added to the mixture for the precipitation of cyanuric salt. Cyanuric salt was removed by filtration and the filtrate was concentrated *in vacuo*. The resulting residue was purified by silica gel flash chromatography to give compound **2g**.

h) Synthesis of tert-butyl(((3aR,4R,6R,6aR)-6-chloro-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)methoxy)diphenylsilane (**2h**)^{2,6}

Step 1: To a stirred suspension of D-ribose (7.5 g, 50 mmol) in acetone (75 mL) was added dropwise

 H_2SO_4 (conc., 0.25 mL) at room temperature and the reaction mixture was stirred at rt for 1h. Then, excess solid NaHCO₃ was carefully added to the reaction mixture. The resulting mixture was stirred until quenching of the reaction was complete. The mixture was filtered, and the filter cake was washed with acetone (150 mL). The combined filtrates were concentrated under reduced pressure to give a colorless oil, which was purified by flash column chromatography to give an anomeric mixture of acetonide protected D-ribose.

Step 2: To a mixture of acetonide-protected D-ribose (12.0 g, 63.0 mmol, 1.0 equiv) were sequentially added at 0 °C to a solution of imidazole (12.9 g, 189 mmol, 3.0 equiv) in DMF (65 mL) and tertbutyl(chloro)diphenylsilane (18.0 mL, 69.3 mmol, 1.1 equiv). The mixture was stirred at 0 °C for 3 h and then poured into cold water (400 mL). The resulting mixture was extracted with ethyl acetate (750 mL). The combined organic layers were washed with brine (200 mL), dried over Na₂SO₄, and concentrated under reduced pressure to give a colorless oil, which was purified by flash column chromatography to give **2h-1**.

The compound **2h** was synthesized following the same procedure as compound **2a** (Step 2).

i) Synthesis of (3aR,4R,6R,6aR)-4-chloro-2,2-dimethyl-6-((((E)-prop-1-en-1-yl)oxy)methyl)tetrahydrofuro[3,4-d][1,3]dioxole (**2i**)^{2,5}

Step 1: To a 0 °C cooled solution of **2g-1** (10mmol) in DMF (80 mL), was carefully added NaH (12 mmol). Then, allyl bromide (12 mmol) was slowly added about 30 min. After 16 h at room temperature, the reaction mixture was carefully quenched with water. Then, the crude was diluted with water (50 mL) and extracted with CH_2Cl_2 (3 × 100 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to give a allyl protected compound.

The compound **2f** was synthesized following the same procedure as compound **2b** (Step **2** and **3**).

6. X-ray Single Crystal Diffraction Data of 3q

Bond precision:	C-C = 0.0055 A	Wa	welength=1.54184
Cell: Temperature:	a=11.6830(1) alpha=90 301 K	b=11.6830(1) beta=90	c=39.0801(3) gamma=90
Volume Space group Hall group Moiety formula Sum formula Mr Dx,g cm ⁻³ Z Mu (mm-1) F000 F000' h,k,lmax Nref Tmin,Tmax Tmin' Correction metho	Calculated 5334.14(10) P 43 21 2 P 4nw 2abw C28 H29 I 1 C28 H29 I 1 616.43 1.535 8 9.809 2496.0 2500.69 14, 14, 49 5611 [3314 0.583, 0.67: 0.435) N2 O6 N2 O6 ⁴] 5 imits: Tmin=0.388	Reported 5334.14(10) P 43 21 2 P 4nw 2abw C28 H29 I N2 O6 C28 H29 I N2 O6 616.43 1.535 8 9.809 2496.0 14, 14, 49 5511 0.388, 1.000 8 Tmax=1.000
Data completenes	ss= 1.66 / 0.98	Theta(max)=	= 76.564
R(reflections)= 0.0248 (5145)		wR2(reflections)= 0.0627 (5511)	
S = 1.047		Npar= 338	

Thermal ellipsoids are shown at 30% probability

7. Preliminary Mechanism Research and Hydrolysis experiment

a) Radical scavenger Experiments

In an oven-dried 10 ml tube, starting amide **1a** (0.2 mmol), glycosyl chloride **2a** (0.1 mmol), KHCO₃ (0.4 mmol, 20mg), Ni(dppf)Cl₂ (5 mol%, 3.4 mg) and radical scavenger (0.2mmol) were added and charged with argon more than five times (The tube was sealed with tipping plug). Dioxane (0.5 mL) was injected into the tube. The resulting suspension was stirred vigorously at 140 °C for 16 h. After the reaction was completed, the resulting mixture was filtered through a celite pad and concentrated under reduced pressure. The residue was purified with chromatography column on silica gel (Petroleum ether/EtOAc = 8:1 - 3:1).

b) Deuterium-Labeling Experiments⁷

A round-bottom flask equipped with a stir bar and a condenser was charged with d8-toluene (99.9% atom D) (5 g, 50 mmol), KMnO₄ (20g, 125 mmol), Na₂CO₃ (2.64g, 25 mmol), and water (150 mL). The reaction mixture was refluxed for 8 h and then cooled to room temperature. The mixture was filtered through a pad of Celite, and the filtrate was acidified with 12 M HCl and extracted with DCM (3×30 mL). The organic

layer was washed with water and concentrated under vacuum. The crude product was recrystallized from water to give $C_6D_5CO_2H$ as white needles (4g, 64%). Synthesis of the amide **[D₅]-1a** from $C_6D_5CO_2H$ was performed using the general procedure given for the synthesis of aromatic amides.

In an oven-dried 10 ml tube, isotopically labeled compound **D**₅-1a (0.2 mmol), KHCO₃ (0.4 mmol, 20mg) and Ni(dppf)Cl₂ (5 mol%, 3.4 mg) were added and charged with argon more than five times (The tube was sealed with tipping plug). Dioxane (0.5 mL) was injected into the tube. The resulting suspension was stirred vigorously at 140 °C for 4 h. After the reaction was completed, the resulting mixture was filtered through a celite pad and concentrated under reduced pressure. The residue was purified with chromatography column on silica gel to give the product [**Dn**]-1b (48.3mg, 97%) (Petroleum ether/EtOAc = 8:1).

c) Kinetic Isotope Effect (KIE)

In an oven-dried 10 ml tube, isotopically labeled compound **D**₅-1a (0.1 mmol), amide 1a (0.1 mmol), KHCO₃ (0.4 mmol, 20mg), glycosyl chloride 2a (0.1 mmol) and Ni(dppf)Cl₂ (5 mol%, 3.4 mg) were added and charged with argon more than five times (The tube was sealed with tipping plug). Dioxane (0.5 mL) was injected into the tube. The resulting suspension was stirred vigorously at 140 °C for 4 h. After the reaction was completed, the resulting mixture was filtered through a celite pad and concentrated under reduced pressure. The residue was purified with chromatography column on silica gel to give the product **3a** and [D4]-**3a** (10.9mg, 12%) (Petroleum ether/EtOAc = 3:1).

5a, 71%

3a

In an oven-dried 10 ml tube, **3a** (0.1 mmol, 49 mg) and NaOH (2.25mmol, 90 mg) were added under air. Then EtOH (1 mL) was added with a syringe. The reaction mixture was allowed to stir at 130 °C for 20 h. After completion of the reaction (TLC monitored), the resulting mixture was filtered through a celite pad and concentrated under reduced pressure. The residue was purified with chromatography column on silica gel to give the product **5a** (25.7 mg, 71%) as a white solid.

8. References

Y. Aihara, N. Chatani, *J. Am. Chem. Soc.* 2013, *135*, 5308-11; W. Y. Shi, Y. N. Ding, C. Liu, N. Zheng,
X. Y. Gou, M. Li, Z. Zhang, H. C. Liu, Z. J. Niu, Y. M. Liang, *Chem Commun (Camb)* 2020, *56*, 12729-12732; N. Rajesh, B. Sundararaju, *Asian J. Org. Chem.* 2018, *7*, 1368-1371.

Q. Wang, S. An, Z. Deng, W. Zhu, Z. Huang, G. He, G. Chen, *Nat. Catal.* **2019**, *2*, 793-800.

Y. N. Ding, W. Y. Shi, C. Liu, N. Zheng, M. Li, Y. An, Z. Zhang, C. T. Wang, B. S. Zhang, Y. M. Liang, *J. Org. Chem.* **2020**, *85*, 11280-11296.

H. Ye, C. Xiao, Q. Q. Zhou, P. G. Wang, W. J. Xiao, J. Org. Chem. 2018, 83, 13325-13334.

C.-W. Chang, S.-S. Chang, C.-S. Chao, K.-K. T. Mong, *Tetrahedron Lett.* 2009, *50*, 4536-4540; E.
R. van Rijssel, P. van Delft, G. Lodder, H. S. Overkleeft, G. A. van der Marel, D. V. Filippov, J. D.
Codee, *Angew. Chem. Int. Ed.* 2014, *53*, 10381-5; J. Zeng, S. Vedachalam, S. Xiang, X.-W. Liu, *Org. Lett.* 2011, *13*, 42-45.

K. C. Nicolaou, S. R. Rekula, S. M. Kumar, A. R. Podilapu, R. P. Matuszak, P. M. Jung, L. T. Lam, A. C. Phillips, J. Lyssikatos, S. Munneke, C. Gu, H. Sarvaiya, J. Sandoval, M. Hammond, M. Aujay, J. W. Purcell, R. M. Reilly, J. Gavrilyuk, *J. Org. Chem.* **2021**, *86*, 2499-2521.

Q. L. Yang, X. Y. Wang, T. L. Wang, X. Yang, D. Liu, X. Tong, X. Y. Wu, T. S. Mei, *Org. Lett.* **2019**, *21*, 2645-2649.

9. Characterization Data

2-((3aR,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)-N-(quinolin-8-yl)benzamide (3a) Colorless oil, 60% (29.5mg)

¹H NMR (400 MHz, Chloroform-d) δ 10.30 (s, 1H), 8.94 (d, J = 6.8 Hz, 1H), 8.78 (dd, J = 4.2, 1.8 Hz, 1H), 8.18 (d, J = 8.0 Hz, 1H), 7.77 (d, J = 7.4 Hz, 1H), 7.61 – 7.43 (m, 6H), 5.79 (s, 1H), 4.98 (d, J = 5.6 Hz, 1H), 4.77 (dd, J = 6.0, 3.9 Hz, 1H), 4.46 (q, J = 6.4 Hz, 1H), 4.20 – 4.14 (m, 1H), 4.12 – 4.07 (m, 1H), 3.96 (dd, J = 7.7, 3.9 Hz, 1H), 1.50 (s, 3H), 1.40 (s, 3H), 1.36 (s, 3H), 1.24 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.4, 148.2, 138.6, 137.3, 136.3, 135.6, 124.4, 120.5, 120.0, 127.0

134.4, 130.5, 128.0, 128.0, 127.9, 127.3, 126.5, 121.9, 121.6, 116.8, 112.7, 109.1, 87.1, 84.0, 81.4, 80.8, 73.5, 66.9, 26.8, 26.2, 25.2, 24.6.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₈H₃₀N₂O₆Na 513.1996.1438; Found 513.1993.

2-((3aR,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-

dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl)-6-methyl-*N*-(quinolin-8-yl)benzamide **(3b)**

Colorless oil, 56% (28.2mg)

¹H NMR (400 MHz, Chloroform-*d*) δ 9.98 (s, 1H), 8.97 (dd, J = 7.3, 1.7 Hz, 1H), 8.75 (dd, J = 4.2, 1.7 Hz, 1H), 8.18 (dd, J = 8.3, 1.7 Hz, 1H), 7.63 – 7.55 (m, 2H), 7.44 (dd, J = 8.3, 4.2 Hz, 1H), 7.35 (t, J = 7.7 Hz, 1H), 7.24 (d, J = 8.3, 1H), 7.15 (d, J = 7.8 Hz, 1H), 5.38 (d, J = 1.8 Hz, 1H), 5.09 (dd, J = 6.0, 1.8 Hz, 1H), 4.84 (dd, J = 6.0, 4.0 Hz, 1H), 4.39 – 4.32 (m, 1H), 4.07 – 4.03 (m, 1H), 3.97 – 3.92 (m, 2H), 2.46 (s, 3H), 1.37 (s, 3H), 1.35 (s, 3H), 1.32 (s, 3H), 1.21 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.9, 148.2, 138.5, 136.8, 136.3, 135.9, 135.6, 134.3, 130.2, 129.0, 127.9, 127.3, 123.5, 122.0, 121.6, 116.9, 112.8, 109.1, 86.3, 84.1, 81.3, 81.1, 73.4, 66.9, 26.9, 26.2, 25.2, 24.6, 19.5. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₉H₃₂N₂O₆Na 527.2153; Found 527.2148.

2-((3aR,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)-6-fluoro-N-(quinolin-8-yl)benzamide (3c)

Yellow oil, 26% (13.2mg)

¹H NMR (400 MHz, Chloroform-*d*) δ 10.23 (s, 1H), 8.95 (dd, J = 6.7, 2.2 Hz, 1H), 8.79 (dd, J = 4.2, 1.7 Hz, 1H), 8.19 (dd, J = 8.3, 1.7 Hz, 1H), 7.63 – 7.57 (m, 2H), 7.46 (dd, J = 8.3, 4.5 Hz, 2H), 7.23 (d, J = 7.8 Hz, 1H), 7.17 (t, J = 8.8 Hz, 1H), 5.56 (d, J = 1.8 Hz, 1H), 5.02 (dd, J = 5.9, 2.0 Hz, 1H), 4.78 (dd, J = 6.0, 4.0 Hz, 1H), 4.43 – 4.38 (m, 1H), 4.02 (t, J = 5.3 Hz, 2H), 3.96 (dd, J = 7.8, 4.0 Hz, 1H), 1.46 (s, 3H), 1.34 (s, 3H), 1.33 (s, 3H), 1.21 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 162.4, 159.5 (d, J = 248.5 Hz), 148.0, 139.5 (d, J = 2.3 Hz), 138.1, 136.0, 133.8, 130.9 (d, J = 8.7 Hz), 127.6, 127.0, 123.5 (d, J = 17.7 Hz), 121.9, 121.7 (d, J = 3.0 Hz), 121.4, 116.7, 115.3 (d, J = 22.4 Hz), 112.7, 108.8, 86.4, 83.9 (d, J = 2.1 Hz), 81.4, 80.6, 73.1, 66.5, 26.5, 26.1, 24.9, 24.4. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -114.5.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{28}H_{29}FN_2O_6Na$ 531.1902; Found 531.1896.

2-((3aR,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl)-5-methyl-*N*-(quinolin-8-yl)benzamide (3d)

Light yellow oil, 42% (21.3mg)

¹H NMR (400 MHz, Chloroform-*d*) δ 10.25 (s, 1H), 8.93 (dd, J = 7.2, 1.8 Hz, 1H), 8.79 (dd, J = 4.2, 1.7 Hz, 1H), 8.18 (dd, J = 8.3, 1.7 Hz, 1H), 7.62 – 7.54 (m, 3H), 7.46 (dd, J = 8.3, 4.2 Hz, 1H), 7.35 – 7.29 (m, 2H), 5.71 (s, 1H), 4.98 (dd, J = 6.0, 1.4 Hz, 1H), 4.77 (dd, J = 6.0, 4.0 Hz, 1H), 4.47 – 4.40 (m, 1H), 4.15 (dd, J = 8.7, 4.5 Hz, 1H), 4.07 (dd, J = 8.7, 6.3 Hz, 1H), 3.92 (dd, J = 7.8, 3.9 Hz, 1H), 2.43 (s, 3H), 1.47 (s, 3H), 1.39 (s, 3H), 1.35 (s, 3H), 1.24 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 167.7, 148.2, 138.7, 138.0, 136.3, 135.9, 134.5, 134.0, 131.1, 128.8, 127.9, 127.4, 126.5, 121.9, 121.6, 116.9, 112.6, 109.1, 86.9, 83.8, 81.3, 80.9, 73.5, 67.0, 26.9, 26.2, 25.2, 24.7, 21.0.
HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₉H₃₂N₂O₆Na 527.2153; Found

527.2148.

2-((3a*R*,4*R*,6*R*,6a*S*)-6-((*R*)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl)-5-methoxy-*N*-(quinolin-8yl)benzamide (**3e**) Colorless oil, 53% (27.3mg) ¹H NMR (400 MHz, Chloroform-*d*) δ 10.27 (s, 1H), 8.92 (dd, *J* = 7.1, 1.9 Hz, 1H), 8.78 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.18 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.61 – 7.55 (m, 2H), 7.46 (dd, *J* = 8.3, 4.2 Hz, 1H), 7.34 (d, *J* = 8.6 Hz, 1H), 7.28 (d, *J* = 2.7 Hz, 1H), 7.02 (dd, *J* = 8.6, 2.7 Hz, 1H), 5.66 (d, *J* = 1.3 Hz, 1H), 4.98 (dd, *J* = 6.0, 1.4 Hz, 1H), 4.79 (dd, *J* = 6.0, 3.9 Hz, 1H), 4.43 (ddd, *J* = 7.9, 6.3, 4.5 Hz, 1H), 4.14 (dd, *J* = 8.7, 4.5 Hz, 1H), 4.06 (dd, *J* = 8.7, 6.3 Hz, 1H), 3.91 (dd, *J* = 7.8, 4.0 Hz, 1H), 3.87 (s, 3H), 1.47 (s, 3H), 1.39 (s, 3H), 1.35 (s, 3H), 1.25 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 167.3, 159.1, 148.2, 138.6, 137.3, 136.3, 134.4, 128.7, 128.0, 127.9, 127.3, 122.0, 121.6, 117.0, 115.4, 114.0, 112.6, 109.1, 86.7, 83.5, 81.2, 81.0, 73.5, 67.0, 55.5, 26.9, 26.2, 25.2, 24.6.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₉H₃₂N₂O₇Na 543.2102; Found 543.2097.

2-((3aR,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-

dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl)-5-fluoro-*N*-(quinolin-8-yl)benzamide (**3f**) (α : β = 5:1)

White solid, 60% (30.3mg)

¹H NMR (400 MHz, Chloroform-*d*) δ 10.27 (s, 1H), 8.90 (dd, J = 6.3, 2.2 Hz, 2H), 8.80 (dd, J = 4.3, 1.7 Hz, 1H), 8.19 (dd, J = 8.3, 1.7 Hz, 1H), 7.63 – 7.55 (m, 2H), 7.52 – 7.39 (m, 3H), 7.20 (td, J = 8.3, 2.6 Hz, 1H), 5.69 (s, 1H), 4.95 (dd, J = 6.0, 1.7 Hz, 1H), 4.77 (dd, J = 6.0, 4.0 Hz, 1H), 4.44 (ddd, J = 7.6, 6.3, 4.6 Hz, 1H), 4.20 – 4.03 (m, 2H), 4.00 – 3.86 (m, 1H), 1.47 (s, 3H), 1.39 (s, 3H), 1.35 (s, 3H), 1.23 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 166.0 (d, *J* = 2.1 Hz), 161.9 (d, *J* = 249.1 Hz), 148.3, 138.6, 137.5 (d, *J* = 6.4 Hz), 136.3, 134.2, 133.1 (d, *J* = 3.4 Hz), 128.6 (d, *J* = 7.9 Hz), 127.9, 127.3, 122.2, 121.7, 117.2 (d, *J* = 20.9 Hz), 117.0, 115.4 (d, *J* = 23.0 Hz), 112.9, 109.1, 87.0, 83.7, 81.5, 80.9, 73.5, 66.8, 26.8, 26.3, 25.2, 24.7. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -113.3.

5-chloro-2-((3aR, 4R, 6R, 6aS)-6-((R)-2, 2-dimethyl-1, 3-dioxolan-4-yl)-2, 2dimethyltetrahydrofuro[3, 4-d][1, 3]dioxol-4-yl)-N-(quinolin-8-yl)benzamide (**3g**) White solid, 59% (30.7mg)

¹H NMR (400 MHz, Chloroform-*d*) δ 10.26 (s, 1H), 8.90 (dd, J = 5.9, 3.1 Hz, 1H), 8.81 (dd, J = 4.3, 1.7 Hz, 1H), 8.20 (dd, J = 8.3, 1.7 Hz, 1H), 7.73 (d, J = 2.1 Hz, 1H), 7.60 (d, J = 2.9 Hz, 1H), 7.59 (s, 1H), 7.51 – 7.46 (m, 2H), 7.42 (d, J = 8.4 Hz, 1H), 5.69 (d, J = 1.5 Hz, 1H), 4.93 (dd, J = 6.0, 1.6 Hz, 1H), 4.76 (dd, J = 6.0, 3.9 Hz, 1H), 4.44 (ddd, J = 7.6, 6.3, 4.5 Hz, 1H), 4.13 – 4.05 (m, 2H), 3.92 (dd, J = 7.6, 3.9 Hz, 1H), 1.47 (s, 3H), 1.39 (s, 3H), 1.35 (s, 3H), 1.22 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 166.0, 148.4, 138.5, 137.1, 136.4, 135.8, 134.1, 133.9, 130.4, 128.1, 127.9, 127.3, 122.3, 121.7, 117.0, 112.9, 109.1, 86.9, 83.7, 81.5, 80.8, 73.4, 66.8, 26.8, 26.3, 25.2, 24.7.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{28}H_{29}ClN_2O_6Na$ 547.1606; Found 547.1602.

5-bromo-2-((3aR,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl)-*N*-(quinolin-8-yl)benzamide (**3h**) White solid, 60% (33.4mg)

¹H NMR (400 MHz, Chloroform-*d*) δ 10.24 (s, 1H), 8.89 (dd, J = 6.0, 3.0 Hz, 1H), 8.81 (dd, J = 4.3, 1.8 Hz, 1H), 8.20 (dd, J = 8.3, 1.8 Hz, 1H), 7.87 (d, J = 2.1 Hz, 1H), 7.66 – 7.57 (m, 3H), 7.48 (dd, J = 8.3, 4.2 Hz, 1H), 7.35 (d, J = 8.4 Hz, 1H), 5.65 (s, 1H), 4.93 (dd, J = 6.0, 1.8 Hz, 1H), 4.75 (dd, J = 6.0, 3.9 Hz, 1H), 4.47 – 4.39 (m, 1H), 4.13 – 4.04 (m, 2H), 3.92 (dd, J = 7.6, 3.9 Hz, 1H), 1.46 (s, 3H), 1.38 (s, 3H), 1.35 (s, 3H), 1.22 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.9, 148.4, 138.6, 137.5, 136.4, 136.4, 134.2, 133.4, 130.9, 128.3, 127.9, 127.3, 122.3, 121.8, 121.7, 117.0, 112.9, 109.1, 86.9, 83.8, 81.6, 80.9, 73.5, 66.8, 26.8, 26.3, 25.2, 24.7.
HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₈H₂₉BrN₂O₆Na 591.1101; Found 591.1098.

2-((3aR,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl)-5-iodo-*N*-(quinolin-8-yl)benzamide (3i)

Yellow solid, 50% (30.9mg)

¹H NMR (400 MHz, Chloroform-*d*) δ 10.23 (s, 1H), 8.89 (dd, J = 5.8, 3.2 Hz, 1H), 8.82 (dd, J = 4.2, 1.6 Hz, 1H), 8.20 (dd, J = 8.3, 1.7 Hz, 1H), 8.05 (d, J = 1.8 Hz, 1H), 7.84 (dd, J = 8.2, 1.8 Hz, 1H), 7.62 – 7.57 (m, 2H), 7.48 (dd, J = 8.3, 4.2 Hz, 1H), 7.21 (d, J = 8.3 Hz, 1H), 5.64 (s, 1H), 4.92 (dd, J = 6.0, 1.6 Hz, 1H), 4.75 (dd, J = 6.0, 3.9 Hz, 1H), 4.43 (ddd, J = 7.6, 6.2, 4.5 Hz, 1H), 4.13 – 4.04 (m, 2H), 3.90 (dd, J =7.6, 3.9 Hz, 1H), 1.46 (s, 3H), 1.38 (s, 3H), 1.35 (s, 3H), 1.21 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.8, 148.4, 139.4, 138.5, 137.6, 136.9, 136.6, 136.4, 134.1, 128.4, 127.9, 127.3, 122.2, 121.7, 117.0, 112.9, 109.1, 93.1, 86.8, 83.8, 81.5, 80.8, 73.4, 66.8, 26.8, 26.3, 25.2, 24.7. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₈H₂₉IN₂O₆Na 639.0963; Found 639.0961.

2-((3aR,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl)-4-methyl-*N*-(quinolin-8-yl)benzamide (3j)

Colorless oil, 47% (23.7mg)

¹H NMR (400 MHz, Chloroform-*d*) δ 10.27 (s, 1H), 8.93 (d, J = 6.1 Hz, 1H), 8.78 (dd, J = 4.2, 1.7 Hz, 1H), 8.18 (dd, J = 8.3, 1.7 Hz, 1H), 7.67 (d, J = 8.3 Hz, 1H), 7.61 – 7.53 (m, 2H), 7.45 (dd, J = 8.3, 4.3 Hz, 1H), 7.24 (d, J = 6.6 Hz, 2H), 5.74 (d, J = 1.5 Hz, 1H), 4.98 (dd, J = 6.0, 1.6 Hz, 1H), 4.78 (dd, J = 6.0, 4.0 Hz, 1H), 4.45 (ddd, J = 7.7, 6.3, 4.7 Hz, 1H), 4.15 – 4.08 (m, 2H), 3.97 (dd, J = 7.6, 4.0 Hz, 1H), 2.44 (s, 3H), 1.50 (s, 3H), 1.40 (s, 3H), 1.36 (s, 3H), 1.25 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 167.6, 148.2, 140.7, 138.6, 137.4, 136.3, 134.6, 133.0, 128.5, 128.2, 127.9, 127.4, 127.3, 121.8, 121.6, 116.8, 112.7, 109.1, 87.1, 84.0, 81.5, 80.9, 73.6, 67.0, 26.8, 26.3, 25.2, 24.7, 21.7.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{29}H_{32}N_2O_6Na$ 527.2153; Found 527.2148.

4-(tert-butyl)-2-((3aR,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2dimethyl tetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl)-*N*-(quinolin-8-yl)benzamide. (3k) Light yellow oil, 37% (20.1mg)

¹H NMR (400 MHz, Chloroform-*d*) δ 10.34 (s, 1H), 8.95 (dd, J = 7.3, 1.7 Hz, 1H), 8.79 (dd, J = 4.2, 1.7 Hz, 1H), 8.19 (dd, J = 8.3, 1.7 Hz, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.62 – 7.54 (m, 3H), 7.49 – 7.44 (m, 2H), 5.84 (s, 1H), 4.93 (dd, J = 6.0, 1.3 Hz, 1H), 4.71 (dd, J = 6.0, 3.8 Hz, 1H), 4.50 (ddd, J = 7.6, 6.2, 4.3 Hz, 1H), 4.23 (dd, J = 8.7, 4.3 Hz, 1H), 4.14 (dd, J = 8.7, 6.2 Hz, 1H), 3.93 (dd, J = 7.6, 3.8 Hz, 1H), 1.51 (s, 3H), 1.40 – 1.37 (m, 15H), 1.23 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 167.4, 154.0, 148.2, 138.7, 137.1, 136.3, 134.6, 132.5, 128.0, 128.0, 127.4, 124.6, 123.8, 121.8, 121.6, 116.8, 112.7, 109.1, 87.6, 84.4, 81.4, 80.7, 73.5, 67.0, 35.0, 31.1, 26.9, 26.3, 25.3, 24.8. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₂H₃₈N₂O₆Na 569.2622; Found 569.2618.

2-((3aR,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)-4-methoxy-N-(quinolin-8-yl)benzamide (31)

Yellow oil, 52% (27.0mg)

¹H NMR (400 MHz, Chloroform-*d*) δ 10.31 (s, 1H), 8.93 (dd, J = 7.4, 1.6 Hz, 1H), 8.80 (dd, J = 4.3, 1.7 Hz, 1H), 8.19 (dd, J = 8.3, 1.7 Hz, 1H), 7.77 (d, J = 8.4 Hz, 1H), 7.61 – 7.53 (m, 2H), 7.47 (dd, J = 8.2, 4.2 Hz, 1H), 7.07 (d, J = 2.3 Hz, 1H), 6.93 (dd, J = 8.5, 2.6 Hz, 1H), 5.85 (s, 1H), 4.91 (dd, J = 6.0, 1.3 Hz, 1H), 4.72 (dd, J = 6.0, 3.9 Hz, 1H), 4.48 (ddd, J = 7.5, 6.3, 4.5 Hz, 1H), 4.20 (dd, J = 8.7, 4.5 Hz, 1H), 4.13 (dd, J = 8.8, 6.2 Hz, 1H), 3.97 (dd, J = 7.5, 3.9 Hz, 1H), 3.89 (s, 3H), 1.50 (s, 3H), 1.42 (s, 3H), 1.37 (s, 3H), 1.23 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 167.0, 161.4, 148.2, 140.0, 138.7, 136.3, 134.7, 130.1, 128.0, 127.7, 127.4, 121.7, 121.6, 116.7, 112.7, 112.3, 109.1, 87.4, 84.0, 81.5, 80.7, 73.6, 67.0, 55.4, 26.9, 26.3, 25.2, 24.7.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{29}H_{32}N_2O_7Na$ 543.2102; Found 543.2097.

3-((3aR,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl)-*N*-(quinolin-8-yl)-[1,1'-biphenyl]-4-carboxamide (**3m**)

White solid, 51% (29.1mg)

¹H NMR (400 MHz, Chloroform-*d*) δ 10.4 (s, 1H), 9.0 (d, J = 7.1 Hz, 1H), 8.8 (dd, J = 4.2, 1.7 Hz, 1H), 8.2 (dd, J = 8.3, 1.7 Hz, 1H), 7.9 (d, J = 7.9 Hz, 1H), 7.7 (s, 1H), 7.7 – 7.6 (m, 5H), 7.5 – 7.4 (m, 4H), 5.8 (s, 1H), 5.0 (dd, J = 6.0, 1.6 Hz, 1H), 4.8 (dd,

J = 6.0, 3.9 Hz, 1H), 4.5 (ddd, J = 7.5, 6.3, 4.6 Hz, 1H), 4.2 (dd, J = 8.7, 4.6 Hz, 1H), 4.1 (dd, J = 8.7, 6.3 Hz, 1H), 4.0 (dd, J = 7.5, 3.9 Hz, 1H), 1.5 (s, 3H), 1.4 (s, 3H), 1.4 (s, 3H), 1.3 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.3, 148.3, 143.3, 140.0, 138.6, 137.9, 136.4, 134.5, 134.3, 129.0, 128.7, 128.1, 127.9, 127.4, 127.1, 126.5, 125.5, 121.9, 121.7, 116.9, 112.8, 109.1, 87.1, 84.1, 81.6, 80.9, 73.5, 66.9, 26.8, 26.3, 25.2, 24.8. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₄H₃₄N₂O₆Na 589.2309; Found 589.2305.

2-((3aR,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-

dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl)-4-fluoro-*N*-(quinolin-8-yl)benzamide **(3n)**

Yellow oil, 60% (30.5mg)

¹H NMR (400 MHz, Chloroform-*d*) δ 10.29 (s, 1H), 8.91 (dd, J = 6.8, 2.2 Hz, 1H), 8.80 (dd, J = 4.2, 1.7 Hz, 1H), 8.20 (dd, J = 8.3, 1.7 Hz, 1H), 7.79 (dd, J = 8.5, 5.5 Hz, 1H), 7.63 – 7.56 (m, 2H), 7.48 (dd, J = 8.3, 4.2 Hz, 1H), 7.22 (ddd, J = 10.0, 2.7, 0.9 Hz, 1H), 7.13 (td, J = 8.1, 2.6 Hz, 1H), 5.79 (s, 1H), 4.91 (dd, J = 6.0, 1.6 Hz, 1H), 4.74 (dd, J = 6.0, 3.9 Hz, 1H), 4.46 (ddd, J = 7.4, 6.3, 4.7 Hz, 1H), 4.18 – 4.09 (m, 2H), 3.96 (dd, J = 7.4, 3.9 Hz, 1H), 1.48 (s, 3H), 1.42 (s, 3H), 1.37 (s, 3H), 1.22 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 166.4, 163.8 (d, J = 251.3 Hz), 148.3, 141.1 (d, J = 7.1 Hz), 138.6, 136.4, 134.3, 131.5 (d, J = 3.3 Hz), 130.3 (d, J = 8.7 Hz), 127.9, 127.4, 122.0, 121.7, 116.9, 114.7 (d, J = 21.7 Hz), 114.0 (d, J = 23.4 Hz), 112.9, 109.1, 87.2, 83.7, 81.7, 80.7, 73.5, 66.8, 26.8, 26.2, 25.2, 24.7. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -108.3. HPMS (FELTOF) m/π [M + Nol⁺ Colod for Coulty FNAO No 521 1002; Found

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₈H₂₉FN₂O₆Na 531.1902; Found 531.1897.

4-chloro-2-((3aR, 4R, 6R, 6aS)-6-((R)-2, 2-dimethyl-1, 3-dioxolan-4-yl)-2, 2-dimethyltetrahydrofuro[3, 4-d][1,3]dioxol-4-yl)-N-(quinolin-8-yl)benzamide (**30**) White solid, 53% (27.8mg)

¹H NMR (400 MHz, Chloroform-*d*) δ 10.26 (s, 1H), 8.90 (d, J = 5.0 Hz, 1H), 8.85 – 8.77 (m, 1H), 8.19 (d, J = 7.5 Hz, 1H), 7.70 (d, J = 8.1 Hz, 1H), 7.64 – 7.55 (m, 2H), 7.50 – 7.41 (m, 3H), 5.70 (s, 1H), 4.94 (dd, J = 5.9, 1.9 Hz, 1H), 4.78 (dd, J = 6.0, 4.0 Hz, 1H), 4.44 (q, J = 6.2 Hz, 1H), 4.15 – 4.06 (m, 2H), 3.97 (dd, J = 7.5, 4.0 Hz, 1H), 1.47 (s, 3H), 1.40 (s, 3H), 1.36 (s, 3H), 1.23 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 166.5, 148.3, 139.8, 138.6, 136.7, 136.4, 134.3, 134.0, 129.5, 128.1, 127.9, 127.3, 126.9, 122.1, 121.7, 116.9, 113.0, 109.1, 87.0, 83.7, 81.8, 80.9, 73.5, 66.9, 26.8, 26.3, 25.2, 24.8.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₈H₂₉ClN₂O₆Na 547.1606; Found 547.1602.

4-bromo-2-((3aR,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)-N-(quinolin-8-yl)benzamide (**3p**) White solid, 60% (34.2mg)

¹H NMR (400 MHz, Chloroform-*d*) δ 10.24 (s, 1H), 8.89 (dd, J = 6.5, 2.5 Hz, 1H), 8.79 (dd, J = 4.2, 1.7 Hz, 1H), 8.19 (dd, J = 8.3, 1.7 Hz, 1H), 7.64 – 7.56 (m, 5H), 7.47 (dd, J = 8.3, 4.2 Hz, 1H), 5.68 (s, 1H), 4.94 (dd, J = 6.0, 1.9 Hz, 1H), 4.78 (dd, J = 6.0, 4.0 Hz, 1H), 4.43 (dt, J = 7.3, 5.6 Hz, 1H), 4.07 (dd, J = 5.7, 1.6 Hz, 2H), 3.97 (dd, J = 7.4, 4.0 Hz, 1H), 1.47 (s, 3H), 1.39 (s, 3H), 1.35 (s, 3H), 1.24 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.6, 148.3, 139.8, 138.6, 136.4, 134.5, 134.3, 131.1, 129.8, 129.6, 127.9, 127.3, 125.0, 122.1, 121.7, 116.9, 113.0, 109.1, 87.0, 83.7, 81.8, 80.9, 73.5, 66.9, 26.8, 26.4, 25.2, 24.8. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₈H₂₉BrN₂O₆Na 591.1101; Found 591.1099.

2-((3aR,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-

dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl)-4-iodo-*N*-(quinolin-8-yl)benzamide (3q)

Light yellow solid, 60% (36.5mg)

¹H NMR (400 MHz, Chloroform-*d*) δ 10.25 (s, 1H), 8.89 (dd, J = 6.4, 2.6 Hz, 1H), 8.78 (dd, J = 4.3, 1.7 Hz, 1H), 8.19 (dd, J = 8.3, 1.7 Hz, 1H), 7.82 – 7.78 (m, 2H), 7.61 – 7.56 (m, 2H), 7.47 (dd, J = 8.2, 3.1 Hz, 2H), 5.65 (s, 1H), 4.94 (dd, J = 6.0, 2.0 Hz, 1H), 4.78 (dd, J = 6.0, 3.9 Hz, 1H), 4.43 (dt, J = 7.5, 5.6 Hz, 1H), 4.07 (d, J = 5.6 Hz, 2H), 3.95 (dd, J = 7.6, 4.0 Hz, 1H), 1.47 (s, 3H), 1.39 (s, 3H), 1.35 (s, 3H), 1.24 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 166.7, 148.3, 139.5, 138.5, 137.1, 136.4, 135.8, 135.1, 134.2, 129.5, 127.9, 127.3, 122.1, 121.7, 116.9, 113.0, 109.1, 97.0, 86.9, 83.6, 81.8, 80.9, 73.4, 66.9, 26.7, 26.4, 25.2, 24.8.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{28}H_{29}IN_2O_6Na$ 639.0963; Found 639.0959.

2-((3a*R*,4*R*,6*R*,6a*S*)-6-((*R*)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl)-*N*-(quinolin-8-yl)-4-(trifluoromethyl)benzamide (**3r**) Yellow oil, 44% (24.6mg) ¹H NMR (400 MHz, Chloroform-*d*) δ 10.29 (s, 1H), 8.91 (dd, *J* = 5.7, 3.2 Hz, 1H), 8.79 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.21 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.86 (d, *J* = 7.7 Hz, 1H), 7.75 - 7.70 (m, 2H), 7.63 - 7.58 (m, 2H), 7.48 (dd, *J* = 8.3, 4.2 Hz, 1H), 5.70 (s, 1H), 4.97 (dd, *J* = 5.9, 2.1 Hz, 1H), 4.79 (dd, *J* = 6.0, 3.9 Hz, 1H), 4.44 (dt, *J* = 7.5, 5.5 Hz, 1H), 4.06 (d, *J* = 5.5 Hz, 2H), 3.96 (dd, *J* = 7.5, 3.9 Hz, 1H), 1.49 - 1.46 (m, 3H), 1.36 (s, 3H), 1.35 (s, 3H), 1.24 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.3, 148.4, 138.9, 138.7, 138.5, 136.4,

134.1, 132.3 (d, *J* = 32.7 Hz), 128.5, 127.9, 127.3, 125.0 (d, *J* = 4.0 Hz), 123.7 (d, *J* = 3.7 Hz), 123.5 (d, *J* = 272.8 Hz), 122.4, 121.8, 117.0, 113.2, 109.2, 86.9, 84.0, 81.9, 80.9, 73.4, 66.8, 26.7, 26.4, 25.3, 24.8.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.0.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{29}H_{29}F_3N_2O_6Na$ 581.1870; Found 581.1867.

2-((3aR,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-

dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl)-4-nitro-*N*-(quinolin-8-yl)benzamide (3s)

Yellow oil, 51% (27.4mg)

¹H NMR (400 MHz, Chloroform-*d*) δ 10.31 (s, 1H), 8.92 – 8.88 (m, 1H), 8.80 (dd, *J* = 4.2, 1.8 Hz, 1H), 8.35 – 8.26 (m, 2H), 8.24 – 8.20 (m, 1H), 7.90 (d, *J* = 8.3 Hz, 1H), 7.62 (d, *J* = 3.8 Hz, 2H), 7.50 (dd, *J* = 8.2, 4.2 Hz, 1H), 5.68 (s, 1H), 4.98 (dd, *J* = 6.0, 2.2 Hz, 1H), 4.82 (dd, *J* = 6.0, 3.9 Hz, 1H), 4.44 (dt, *J* = 7.6, 5.6 Hz, 1H), 4.06 (d, *J* = 5.5 Hz, 2H), 3.98 (dd, *J* = 7.5, 3.9 Hz, 1H), 1.47 (s, 3H), 1.37 (s, 3H), 1.35 (s, 3H), 1.25 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 165.5, 148.7, 148.4, 141.1, 140.0, 138.4, 136.5, 133.9, 129.2, 127.9, 127.3, 124.0, 123.1, 122.6, 121.9, 117.1, 113.4, 109.2, 86.7, 83.8, 82.0, 80.9, 73.3, 66.8, 26.7, 26.4, 25.2, 24.8.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{28}H_{29}N_3O_8Na$ 558.1847; Found 558.1842.

3-((3aR,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)-N-(quinolin-8-yl)-2-naphthamide (3t) White solid, 65% (34.9mg)

¹H NMR (400 MHz, Chloroform-*d*) δ 10.41 (s, 1H), 8.97 (dd, J = 7.3, 1.7 Hz, 1H), 8.79 (dd, J = 4.2, 1.7 Hz, 1H), 8.26 (s, 1H), 8.19 (dd, J = 8.3, 1.7 Hz, 1H), 7.96 – 7.87 (m, 3H), 7.64 – 7.55 (m, 4H), 7.47 (dd, J = 8.3, 4.2 Hz, 1H), 5.92 (s, 1H), 5.14 (dd, J = 6.0, 1.6 Hz, 1H), 4.80 (dd, J = 6.0, 4.0 Hz, 1H), 4.47 (ddd, J = 7.6, 6.3, 4.7 Hz, 1H), 4.15 – 4.06 (m, 2H), 4.01 (dd, J = 7.7, 4.0 Hz, 1H), 1.53 (s, 3H), 1.37 (s, 3H), 1.35 (s, 3H), 1.26 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 167.6, 148.3, 138.6, 136.3, 134.6, 133.8, 133.8, 133.5, 132.0, 128.3, 128.2, 128.1, 128.0, 127.8, 127.4, 127.0, 126.0, 121.9, 121.6, 116.9, 112.8, 109.1, 86.5, 84.1, 81.5, 81.0, 73.5, 67.0, 26.8, 26.3, 25.2, 24.7. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₂H₃₂N₂O₆Na 563.2153; Found 563.2148.

5-chloro-3-((3aR, 4R, 6R, 6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)-N-(quinolin-8-yl)thiophene-2carboxamide (**3u**) Colorless oil, 26% (13.5mg)

¹H NMR (400 MHz, Chloroform-*d*) δ 10.42 (s, 1H), 8.87 – 8.78 (m, 2H), 8.18 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.56 (d, *J* = 4.7 Hz, 2H), 7.48 (dd, *J* = 8.3, 4.2 Hz, 1H), 6.93 (s, 1H), 5.69 (s, 1H), 4.97 (dd, *J* = 6.0, 1.1 Hz, 1H), 4.80 (dd, *J* = 6.1, 3.9 Hz, 1H), 4.51 (td, *J* = 6.7, 4.6 Hz, 1H), 4.24 – 4.15 (m, 2H), 3.99 (dd, *J* = 7.2, 3.9 Hz, 1H), 1.57 (s, 3H), 1.48 (s, 3H), 1.41 (s, 3H), 1.35 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 159.1, 148.3, 144.7, 138.6, 136.3, 134.1, 133.2, 131.0, 127.9, 127.5, 127.3, 122.1, 121.7, 117.3, 112.9, 109.2, 87.3, 82.6, 82.0, 80.5, 73.5, 66.8, 26.9, 26.2, 25.2, 24.9.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{26}H_{27}ClN_2O_6Na$ 553.1171; Found 553.1165.

N-(5-chloroquinolin-8-yl)-2-((3a*R*,4*R*,6*R*,6a*S*)-6-((*R*)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl)benzamide (**3v**) Light yellow solid, 51% (26.7mg)

¹H NMR (400 MHz, Chloroform-*d*) δ 10.26 (s, 1H), 8.89 (d, J = 8.4 Hz, 1H), 8.84 (dd, J = 4.2, 1.6 Hz, 1H), 8.59 (dd, J = 8.5, 1.6 Hz, 1H), 7.76 (dd, J = 7.5, 1.4 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H), 7.58 (dd, J = 8.5, 4.2 Hz, 1H), 7.56 – 7.44 (m, 3H), 5.76 (s, 1H), 4.96 (dd, J = 6.0, 1.5 Hz, 1H), 4.76 (dd, J = 6.0, 3.9 Hz, 1H), 4.46 (ddd, J = 7.7, 6.3, 4.4 Hz, 1H), 4.16 (dd, J = 8.7, 4.4 Hz, 1H), 4.09 (dd, J = 8.7, 6.3 Hz, 1H), 3.95 (dd, J = 7.7, 4.0 Hz, 1H), 1.49 (s, 3H), 1.40 (s, 3H), 1.36 (s, 3H), 1.24 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.4, 148.7, 139.2, 137.4, 135.4, 133.7, 133.4, 130.7, 128.0, 127.2, 126.6, 125.9, 124.7, 122.4, 116.8, 112.8, 109.1, 87.1, 84.0, 81.4, 80.8, 73.5, 66.9, 26.9, 26.3, 25.2, 24.7. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₈H₂₉ClN₂O₆Na 547.1606; Found 547.1603.

2-((3aR,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl)-*N*-(7-methoxyquinolin-8-yl)benzamide (**3w**)

Yellow oil, 33% (16.9mg)

¹H NMR (400 MHz, Chloroform-*d*) δ 10.25 (s, 1H), 8.67 (d, J = 2.6 Hz, 1H), 8.61 (dd, J = 4.2, 1.7 Hz, 1H), 8.06 (d, J = 9.2 Hz, 1H), 7.75 (d, J = 7.3 Hz, 1H), 7.54 – 7.38 (m, 4H), 6.84 (d, J = 2.3 Hz, 1H), 5.74 (s, 1H), 4.98 (dd, J = 5.9, 1.6 Hz, 1H), 4.78 (dd, J = 6.0, 3.9 Hz, 1H), 4.49 – 4.40 (m, 1H), 4.16 – 4.07 (m, 2H), 3.96 (s, 4H), 1.50 (s, 3H), 1.40 (s, 3H), 1.36 (s, 3H), 1.26 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.5, 158.5, 145.6, 137.3, 135.6, 135.4,

135.2, 135.0, 130.6, 128.9, 128.1, 128.0, 126.6, 122.1, 112.8, 109.4, 109.1, 100.0, 87.1, 84.0, 81.5, 80.9, 73.6, 67.0, 55.6, 26.9, 26.3, 25.2, 24.7.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₉H₃₂N₂O₇Na 543.2102; Found 543.2097.

2-((3aR,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl)-4,5-dimethoxy-*N*-(quinolin-8-yl)benzamide (**3x**)Colorless oil, 60% (32.6mg)

¹H NMR (400 MHz, Chloroform-*d*) δ 10.30 (s, 1H), 8.91 (d, J = 6.0 Hz, 1H), 8.80 (dd, J = 4.2, 1.7 Hz, 1H), 8.19 (dd, J = 8.3, 1.6 Hz, 1H), 7.63 – 7.54 (m, 2H), 7.47 (dd, J = 8.3, 4.2 Hz, 1H), 7.30 (s, 1H), 7.05 (s, 1H), 5.75 (s, 1H), 4.90 (dd, J = 6.0, 1.4 Hz, 1H), 4.72 (dd, J = 6.0, 3.8 Hz, 1H), 4.47 (td, J = 6.7, 4.4 Hz, 1H), 4.21 (dd, J = 8.7, 4.4 Hz, 1H), 4.12 (dd, J = 8.7, 6.3 Hz, 1H), 3.99 – 3.95 (m, 7H), 1.44 (s, 3H), 1.41 (s, 3H), 1.37 (s, 3H), 1.22 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 167.0, 150.6, 148.2, 148.0, 138.7, 136.3, 134.6, 130.6, 127.9, 127.8, 127.4, 121.8, 121.6, 116.8, 112.8, 111.7, 109.6, 109.1, 87.5, 83.9, 81.3, 80.7, 73.5, 66.8, 56.2, 56.0, 26.9, 26.2, 25.2, 24.8. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₀H₃₄N₂O₈Na 573.2207; Found 573.2204.

2-((3a*S*,4*S*,6*R*,6a*R*)-6-((benzyloxy)methyl)-2,2-dimethyltetrahydrofuro[3,4d][1,3]dioxol-4-yl)-N-(quinolin-8-yl)benzamide **(4a)** Yellow oil, 37% (18.7mg) ¹H NMR (400 MHz, Chloroform-*d*) δ 10.16 (s, 1H), 8.92 (dd, *J* = 7.4, 1.6 Hz, 1H), 8.73 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.15 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.66 – 7.52 (m, 4H), 7.49 – 7.39 (m, 3H), 7.24 – 7.14 (m, 3H), 7.04 (dd, *J* = 7.2, 2.4 Hz, 2H), 5.24 (d, *J* = 4.7 Hz, 1H), 4.93 (dd, *J* = 6.9, 4.7 Hz, 1H), 4.68 (dd, *J* = 6.9, 5.2 Hz, 1H), 4.19 – 4.04 (m, 3H), 3.60 (dd, *J* = 10.3, 3.8 Hz, 1H), 3.45 (dd, *J* = 10.3, 6.4 Hz, 1H), 1.47 (s, 3H), 1.27 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.4, 148.3, 138.5, 137.9, 137.7, 136.2, 136.2, 134.9, 130.1, 128.2, 128.1, 127.9, 127.6, 127.5, 127.4, 127.3, 127.3, 121.7,

121.6, 116.6, 115.0, 86.8, 85.1, 83.5, 81.9, 73.1, 70.3, 27.4, 25.5. HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₃₁H₃₀N₂O₅Na 533.2047; Found 533.2045.

2-((3a*S*,4*S*,6*R*,6a*R*)-2,2-dimethyl-6-((((*Z*)-prop-1-en-1yl)oxy)methyl)tetrahydrofuro[3,4-d][1,3]dioxol-4-yl)-N-(quinolin-8-yl)benzamide (4b)

Colorless oil, 27% (12.4mg)

¹H NMR (400 MHz, Chloroform-*d*) δ 10.17 (s, 1H), 8.92 (dd, J = 7.2, 1.6 Hz, 1H), 8.75 (dd, J = 4.3, 1.6 Hz, 1H), 8.17 (dd, J = 8.3, 1.8 Hz, 1H), 7.70 – 7.53 (m, 4H), 7.51 – 7.39 (m, 3H), 5.64 (dt, J = 5.6, 1.7 Hz, 1H), 5.32 (d, J = 4.8 Hz, 1H), 4.87 (dd, J = 6.7, 4.8 Hz, 1H), 4.73 (dd, J = 6.8, 5.1 Hz, 1H), 4.18 – 4.07 (m, 2H), 3.90 (dd, J =11.3, 3.2 Hz, 1H), 3.75 (dd, J = 11.3, 5.5 Hz, 1H), 1.46 – 1.43 (m, 6H), 1.26 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.2, 148.2, 145.7, 138.6, 137.7, 136.2, 136.2, 134.8, 130.2, 128.1, 128.0, 127.2, 127.2, 121.8, 121.6, 116.6, 115.1, 114.8, 100.8, 86.9, 84.5, 83.3, 81.3, 71.6, 27.4, 25.5, 9.1.
HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₄H₂₃N₂O₄Na 483.1890; Found 483.1886.

2-((3a*S*,4*S*,6*R*,6a*R*)-6-(((tert-butyldiphenylsilyl)oxy)methyl)-2,2dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)-N-(quinolin-8-yl)benzamide **(4c)** Yellow oil, 49% (32.2mg)

¹H NMR (400 MHz, Chloroform-*d*) δ 10.20 (s, 1H), 8.91 (dd, *J* = 5.7, 3.3 Hz, 1H), 8.72 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.14 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.77 – 7.71 (m, 1H), 7.69 – 7.62 (m, 5H), 7.55 – 7.50 (m, 2H), 7.45 – 7.37 (m, 5H), 7.37 – 7.31 (m, 4H), 5.43 (d, *J* = 4.9 Hz, 1H), 4.82 (dd, *J* = 6.6, 4.4 Hz, 1H), 4.75 (dd, *J* = 6.6, 5.0 Hz, 1H), 4.10 (q, *J* = 4.0 Hz, 1H), 3.93 (dd, *J* = 11.1, 3.8 Hz, 1H), 3.80 (dd, *J* = 11.1, 4.0 Hz, 1H), 1.37 (s, 3H), 1.22 (s, 3H), 1.03 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 167.7, 148.1, 138.6, 138.1, 136.2, 135.6, 135.6, 134.8, 133.4, 133.2, 130.3, 129.6, 129.6, 128.0, 127.9, 127.6, 127.5, 127.3, 127.2, 121.7, 121.5, 116.7, 114.4, 87.0, 84.3, 82.8, 81.5, 63.8, 27.4, 26.8, 25.6, 19.2. HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₄₀H₄₂N₂O₅SiNa 681.2755; Found 681.2756.

N-(quinolin-8-yl)-2-((2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2*H*-pyran-2-yl)benzamide **(4d)** Yellow oil, 19% (14.8mg) ¹H NMR (400 MHz, Chloroform-*d*) δ 10.48 (s, 1H), 8.92 (dd, J = 7.6, 1.5 Hz, 1H), 8.63 (dd, J = 4.2, 1.7 Hz, 1H), 8.10 (dd, J = 8.3, 1.7 Hz, 1H), 7.69 – 7.61 (m, 1H), 7.56 (t, J = 7.9 Hz, 1H), 7.52 – 7.48 (m, 1H), 7.45 – 7.42 (m, 1H), 7.38 (ddd, J = 12.7, 7.1, 3.4 Hz, 3H), 7.30 – 7.20 (m, 7H), 7.16 – 7.10 (m, 7H), 7.09 – 7.03 (m, 4H), 6.90 – 6.84 (m, 2H), 5.63 (d, J = 7.5 Hz, 1H), 4.48 – 4.25 (m, 8H), 4.08 (dd, J = 7.5, 2.6 Hz, 1H), 4.02 (dt, J = 6.1, 3.0 Hz, 1H), 3.84 – 3.73 (m, 3H), 3.67 (dd, J = 10.2, 5.9 Hz, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 168.3, 148.0, 139.0, 138.4, 138.2, 138.1, 138.0, 137.6, 136.8, 136.1, 135.0, 130.0, 128.3, 128.1, 128.1, 128.0, 127.9, 127.7, 127.7, 127.7, 127.5, 127.5, 127.3, 127.3, 127.3, 127.2, 127.2, 121.8, 121.4, 117.5, 75.2, 74.9, 73.2, 72.4, 72.2, 71.4, 69.7, 68.5.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₅₀H₄₆N₂O₆Na 793.3248; Found 793.3244.

N-(quinolin-8-yl)-2-((2*R*,3*R*,4*S*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-methyltetrahydro-2*H*-pyran-2-yl)benzamide (**4e**)

Yellow oil, 21% (13.9mg)

¹H NMR (400 MHz, Chloroform-*d*) δ 10.39 (s, 1H), 8.91 (d, J = 6.8 Hz, 1H), 8.65 (dd, J = 4.2, 1.7 Hz, 1H), 8.11 (dd, J = 8.3, 1.7 Hz, 1H), 7.63 (dd, J = 7.5, 1.5 Hz, 1H), 7.57 – 7.48 (m, 2H), 7.40 – 7.25 (m, 6H), 7.22 – 7.11 (m, 11H), 7.03 – 6.97 (m, 2H), 5.68 (d, J = 6.0 Hz, 1H), 4.63 – 4.41 (m, 6H), 4.14 (dd, J = 6.0, 2.8 Hz, 1H), 3.82 – 3.72 (m, 2H), 3.53 (dd, J = 6.3, 5.0 Hz, 1H), 1.22 (d, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.4, 148.0, 138.9, 138.3, 138.3, 138.1, 137.6, 136.7, 136.1, 134.8, 129.9, 128.3, 128.2, 128.1, 128.0, 128.0, 127.9, 127.7, 127.6, 127.4, 127.4, 127.4, 127.3, 127.3, 121.8, 121.4, 117.4, 79.6, 76.5, 76.4, 73.1, 72.4, 71.6, 71.5, 69.7, 17.2. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₄₃H₄₀N₂O₅Na 687.2829; Found 687.2828.

2-((3aR,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2dimethyltetrahydrofuro[3,4-d][1,3] dioxol-4-yl)benzoic acid **(5a)** White solid, 70% (25.7mg) 1H NMR (400 MHz, Chloroform-d) δ 8.01 (d, J = 7.7 Hz, 1H), 7.49 (d, J = 4.0 Hz, 2H), 7.35 – 7.31 (m, 1H), 5.85 (s, 1H), 4.76 (d, J = 6.0 Hz, 1H), 4.64 (dd, J = 6.1, 3.6 Hz, 1H), 4.50 (td, J = 6.7, 4.5 Hz, 1H), 4.27 (dd, J = 8.8, 4.4 Hz, 1H), 4.20 (dd, J = 8.8, 6.4 Hz, 1H), 3.95 (dd, J = 7.2, 3.6 Hz, 1H), 1.60 (s, 3H), 1.45 (s, 3H), 1.40 (s, 3H), 1.33 (s, 3H).

13C NMR (101 MHz, Chloroform-d) δ 172.8, 139.3, 131.8, 131.5, 130.9, 127.4, 125.4, 112.6, 109.2, 88.9, 84.8, 81.4, 80.6, 73.5, 66.8, 26.9, 26.2, 25.1, 24.7.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₁₉H₂₄O₇Na 387.1414; Found 387.1411.

10. NMR Spectroscopic Data

S37

S39

¹H NMR (400 MHz, Chloroform-*d*)

¹⁹F NMR (376 MHz, Chloroform-d)


```
<sup>13</sup>C NMR (101 MHz, Chloroform-d)
```



```
<sup>13</sup>C NMR (101 MHz, Chloroform-d)
```



```
<sup>13</sup>C NMR (101 MHz, Chloroform-d)
```



```
<sup>13</sup>C NMR (101 MHz, Chloroform-d)
```


¹³C NMR (101 MHz, Chloroform-d)


```
<sup>13</sup>C NMR (101 MHz, Chloroform-d)
```


¹H NMR (400 MHz, Chloroform-*d*)

¹H NMR (400 MHz, Chloroform-d)

¹H NMR (400 MHz, Chloroform-d)

3s


```
<sup>13</sup>C NMR (101 MHz, Chloroform-d)
```



```
<sup>13</sup>C NMR (101 MHz, Chloroform-d)
```



```
<sup>13</sup>C NMR (101 MHz, Chloroform-d)
```


10,0484 8,629 8,629 8,629 8,629 8,629 8,629 8,629 8,629 7,7,551 7,751 7,751 7,751 7,751 7,751 7,751 7,751 7,751 7,751 7,751 7,


```
<sup>13</sup>C NMR (101 MHz, Chloroform-d)
```



```
<sup>13</sup>C NMR (101 MHz, Chloroform-d)
```


