C-Methylenation of anilines and indoles with CO_{2} and hydrosilane using a pentanuclear zinc complex catalyst

Kazuto Takaishi,* Hiroyasu Kosugi, Ritsuki Nishimura, Yuya Yamada, and Tadashi Ema*
Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan

Table of contents

1. General information S2
2. Synthesis of diarylmethanes S3
3. H_{2} and HD generations S8
4. DFT calculations S15
5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra S16
6. Coordinates of optimized structures S38
7. References S45

1. General information

Instrumentation. Melting points were measured on a Yanaco melting point apparatus (uncorrected). NMR spectra were recorded on a JEOL JNM-ECS400 or a JEOL JEM-ECZ600R. Data are reported as follows: chemical shifts in ppm using the residual solvent peak as an internal standard, integration, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, sext $=$ sextet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, ddd $=$ doublet of double doublets, $\mathrm{br}=$ broadened $)$, and coupling constants (Hz). High-resolution mass spectra were performed on a Bruker micrOTOF. TLC analyses were carried out on glass sheets coated with Merck Silica gel $60 \mathrm{~F}_{254}(0.25 \mathrm{~mm})$, and visualization was accomplished with UV light. Column chromatography was performed on silica gel (Fuji Silysia BW-127 ZH, 100-270 mesh) or aluminum oxide 90 active basic (Merck 01799-11, 70-230 mesh). Preparative GPC was performed on a LC-5060 HPLC system (Japan Analytical Industry) using a JAIGEL-1HH ($\varnothing 20 \mathrm{~mm} \times 600 \mathrm{~mm}$) and a JAIGEL-2HH ($\varnothing 20 \mathrm{~mm} \times 600 \mathrm{~mm}$) (Japan Analytical Industry). GC was measured on a GC-8A (Shimadzu) with a packed column, ShincarbonST 50/80 ($\varnothing 3 \mathrm{~mm} \times 6 \mathrm{~m}$) (Shinwa Chemical Industries).

Materials. Most reagents were purchased and used without further purification unless otherwise specified. Dry solvents were purchased from Kanto Chemical Co., Inc. Phenylsilane was dried over 3A molecular sieves. Aniline was purified by distillation under reduced pressure and dried over 3 A molecular sieves. ${ }^{13} \mathrm{CO}_{2}$ (99\%) was purchased from Taiyo Nippon Sanso Corporation.

The full citation of reference 14: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, GAUSSIAN 16 (Revision C.01), Gaussian, Inc., Wallingford CT, 2019.

2. Synthesis of diarylmethanes

General procedure for the synthesis of bis[4-(N, N-dimethylamino)phenyl]methane (5) from N, N dimethylaniline (4)

Catalyst 1 ($3.0 \mathrm{mg}, 1.3 \mu \mathrm{~mol}, 0.5 \mathrm{~mol} \%$ based on 4) was put in a dry Schlenk flask (30 mL), and then $N, N-$ dimethylaniline (4) ($32 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$) was added. $\mathrm{A} \mathrm{CO}_{2}$ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with CO_{2}. The reaction mixture under $\mathrm{CO}_{2}(1 \mathrm{~atm})$ was stirred at reaction temperature for 10 min , and PhSiH_{3} (3-6 equiv) was added via a syringe. The reaction mixture was stirred for reaction time. The yield was determined by using mesitylene as an internal standard after passing through a column (basic aluminum oxide, CHCl_{3}), or the product was purified by GPC $\left(\mathrm{CHCl}_{3}\right)$. Product 5 was characterized according to the literature. ${ }^{\mathrm{S} 1}$
${ }^{1}{ }^{1} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.90(\mathrm{~s}, 12 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.05(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $4 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 40.0,41.1,113.2,129.5,130.4,148.2$.

Procedure for the synthesis of bis[4-(N, N-dimethylamino)phenyl]methane (5) from aniline (6)

Catalyst $1(3.0 \mathrm{mg}, 1.3 \mu \mathrm{~mol}, 0.5 \mathrm{~mol} \%)$ was put in a dry two-necked flask (10 mL), and then aniline ($\mathbf{6}$) ($23 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$) was added. $\mathrm{A} \mathrm{CO}_{2}$ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with CO_{2}. The reaction mixture under $\mathrm{CO}_{2}(1 \mathrm{~atm})$ was stirred at $100{ }^{\circ} \mathrm{C}$ for 5 min , and $\mathrm{PhSiH}_{3}(369 \mu \mathrm{~L}, 3.00 \mathrm{mmol})$ was added via a syringe. The reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 24 h . The mixture was diluted with a mixed solvent of hexane/EtOAc (3/1). After the insoluble components were filtered off, the filtrate was evaporated to give a residue. The product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc (3:1)) to afford $5(21.7 \mathrm{mg}, 85.3 \mu \mathrm{~mol}, 68 \%)$ as a colorless solid.

Procedure for the synthesis of ${ }^{13} \mathbf{C}$-labeled bis[4-(N, N-dimethylamino)phenyl]methane (5^{\prime})

Catalyst $\mathbf{1}(3.0 \mathrm{mg}, 1.3 \mu \mathrm{~mol}, 0.5 \mathrm{~mol} \%$) was put in a dry Schlenk flask (30 mL) , and then aniline ($\mathbf{6}$) (23 $\mu \mathrm{L}, 0.25 \mathrm{mmol}$) was added. $\mathrm{A}^{13} \mathrm{CO}_{2}$ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with ${ }^{13} \mathrm{CO}_{2}(\mathrm{ca} .30 \mathrm{~mL})$. The reaction mixture under ${ }^{13} \mathrm{CO}_{2}$ was stirred at $100{ }^{\circ} \mathrm{C}$ for 5 min, and $\mathrm{PhSiH}_{3}(369 \mu \mathrm{~L}, 3.00 \mathrm{mmol})$ was added via a syringe. The reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 24 h . The mixture was passed through a basic aluminum oxide column $\left(\mathrm{CHCl}_{3}\right)$ and then purified by silica gel column chromatography (hexane/EtOAc (9:1)) to afford 5' ${ }^{\prime}(5.4 \mathrm{mg}, 21 \mu \mathrm{~mol}, 17 \%)$ as a colorless solid.
mp 78-80 ${ }^{\circ} \mathrm{C}$; $\mathbf{I R}(\mathrm{KBr}) 3009,2916,2855,1612,1520,1477,1439,1335,1223,1188,1061,934,826$, $795 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.90(\mathrm{dd}, J=134.9,4.3 \mathrm{~Hz}, 12 \mathrm{H}), 3.81(\mathrm{~d}, J=125.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.68$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.05(\mathrm{dd}, J=8.7,4.0 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 40.0,41.1,113.2,129.6$ $(\mathrm{d}, J=2.9 \mathrm{~Hz}), 130.5(\mathrm{~d}, J=44.8 \mathrm{~Hz}), 150.3(\mathrm{~d}, J=320.9 \mathrm{~Hz}) ;$ HR MS $\left(\mathrm{ESI}^{+}\right)$Calcd for ${ }^{12} \mathrm{C}_{12}{ }^{13} \mathrm{C}_{5} \mathrm{H}_{23} \mathrm{~N}_{2}$: $260.2023[\mathrm{M}+\mathrm{H}]^{+}$. Found: 260.2018.

Procedure for the synthesis of bis[4-(N, N-dipropylamino)phenyl]methane (8) from N, N dipropylaniline (7)

Catalyst $1(3.0 \mathrm{mg}, 1.3 \mu \mathrm{~mol}, 0.5 \mathrm{~mol} \%$) was put in a dry Schlenk flask (30 mL), and then $N, N-$ dipropylaniline (7) ($48 ~ \mu \mathrm{~L}, 0.25 \mathrm{mmol}$) was added. $\mathrm{A} \mathrm{CO}_{2}$ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with CO_{2}. The reaction mixture under $\mathrm{CO}_{2}(1 \mathrm{~atm})$ was stirred at $80^{\circ} \mathrm{C}$ for 5 min , and $\mathrm{PhSiH}_{3}(123 \mu \mathrm{~L}, 1.00 \mathrm{mmol})$ was added via a syringe. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 96 h . The mixture was passed through a basic aluminum oxide column $\left(\mathrm{CHCl}_{3}\right)$ and then purified by silica gel column chromatography (hexane/EtOAc (20:1)) to afford $\mathbf{8}(12.3 \mathrm{mg}, 33.6 \mu \mathrm{~mol}, 27 \%)$ as a colorless oil.

IR (neat) $3093,2959,2932,2874,1748,1516,1458,1366,1234,1192,1153,1103,799 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 12 \mathrm{H}), 1.58(\mathrm{sext}, J=7.5 \mathrm{~Hz}, 8 \mathrm{H}), 3.18(\mathrm{t}, J=7.7 \mathrm{~Hz}, 8 \mathrm{H}), 3.76(\mathrm{~s}$, $2 \mathrm{H}), 6.56(\mathrm{dt}, J=2.6,8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.01(\mathrm{dt}, J=2.7,8.8 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.6,20.6$, 39.8, 53.2, 112.0, 128.9, 129.6, 146.5; HR MS (ESI ${ }^{+}$) Calcd for $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{~N}_{2}: 367.3108[\mathrm{M}+\mathrm{H}]^{+}$. Found: 367.3100 .

General procedure for the synthesis of diindolylmethanes $\mathbf{1 0}$

Catalyst $\mathbf{1}(0.5 \mathrm{~mol} \%$ based on 9$)$ was put in a dry Schlenk flask (30 mL), and then indole $9(0.25 \mathrm{mmol})$ was added. A_{2} balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with CO_{2}. The reaction mixture under $\mathrm{CO}_{2}(1 \mathrm{~atm})$ was stirred at reaction temperature for 10 min , and PhSiH_{3} $(184 \mu \mathrm{~L}, 1.5 \mathrm{mmol})$ was added via a syringe. The reaction mixture was stirred for 24 h . The yield was determined by using mesitylene as an internal standard after short column chromatography (basic aluminum oxide, $\left.\mathrm{CHCl}_{3}\right)$, or the product was purified by $\mathrm{GPC}\left(\mathrm{CHCl}_{3}\right)$. Products $\mathbf{1 0 a}^{\mathrm{S} 2}, \mathbf{1 0 b}^{\mathrm{S} 3}, \mathbf{1 0 c}^{\mathrm{S} 2}, \mathbf{1 0 d}^{\mathrm{S} 4}, \mathbf{1 0 e}^{\mathrm{S} 3}, \mathbf{1 0 f}^{\mathrm{S} 2}$, and $\mathbf{1 0} \mathbf{g}^{\mathrm{S} 2}$ were characterized according to the literature.

10a: ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.71(\mathrm{~s}, 6 \mathrm{H}), 4.22(\mathrm{~s}, 2 \mathrm{H}), 6.79(\mathrm{~s}, 2 \mathrm{H}), 7.09(\mathrm{ddd}, J=0.9,7.0,7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.22$ (ddd, $J=1.1,7.0,8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.1,32.7,109.2,114.4,118.7,119.4,121.5,127.1,128.0,137.2$.

10b: ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.45(\mathrm{~s}, 6 \mathrm{H}), 3.69(\mathrm{~s}, 6 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 6.73(\mathrm{~s}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.0,21.7,32.8,108.9,113.9$, 119.1, 123.1, 127.2, 127.9, 128.2, 135.7.

10c: ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.68(\mathrm{~s}, 6 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H}), 6.76(\mathrm{~s}, 2 \mathrm{H}), 6.89(\mathrm{dd}, J=2.4$, $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.1,32.9$, 56.2, 101.2, 110.0, 111.7, 113.8, 127.7, 128.2, 132.7, 153.7.

10d: ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.71(\mathrm{~s}, 6 \mathrm{H}), 4.11(\mathrm{~s}, 2 \mathrm{H}), 6.81(\mathrm{~s}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.20$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.9,33.0,110.4,113.6,118.7,121.9$, 124.6, 128.3, 128.8, 135.7.

10e: ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.71(\mathrm{~s}, 6 \mathrm{H}), 4.10(\mathrm{~s}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29$ $(\mathrm{dd}, J=1.7,8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.9,33.0,110.8,112.3$, 113.6, 121.8, 124.5, 128.2, 129.5, 136.0.

10f: ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.83(\mathrm{sext}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 4.01(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 4 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H}), 6.85(\mathrm{~s}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.7,21.3,23.8,48.1,109.4,114.5,118.6$, 119.6, 121.4, 126.2, 128.4, 136.8.

10g: ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.38(\mathrm{~s}, 6 \mathrm{H}), 3.65(\mathrm{~s}, 6 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}), 6.96(\mathrm{t}, J=7.4 \mathrm{H}, 2 \mathrm{H}), 7.09$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.5$, 20.2, 29.6, 108.5, 110.6, 118.6, 118.7, 120.4, 128.4, 132.8, 136.9.

Table S1 Optimization of the synthesis of diindolylmethane 10a ${ }^{\text {a }}$

Entry	X (equiv)	Y (mol\%)	Temp $\left({ }^{\circ} \mathrm{C}\right)$	Yield $(\%)^{b}$
1	6	0.5	100	74
2	6	0.5	90	92
3	6	0.5	80	$95(94)^{c}$
4	6	0.5	70	89
5	6	0.5	60	85
6	6	0.5	40	0
7	4	0.5	80	73
8	6	0.2	80	10

${ }^{a}$ Conditions: $9 \mathrm{a}(0.25 \mathrm{mmol}), \mathrm{CO}_{2}$ (1 atm , balloon), PhSiH_{3} (amount indicated above), cat. 1 (amount indicated above), $24 \mathrm{~h} .{ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR using mesitylene as an internal standard. ${ }^{c}$ Isolated yield.

Procedure for the synthesis of unsymmetrical diarylmethane 11

Catalyst $1(3.0 \mathrm{mg}, 1.3 \mu \mathrm{~mol}, 0.5 \mathrm{~mol} \%$) was put in a dry Schlenk flask (30 mL), and then N, N dimethylaniline (4) ($15.8 \mu \mathrm{~L}, 0.125 \mathrm{mmol})$ and 1-methylindole ($\mathbf{9 a}$) ($15.6 \mu \mathrm{~L}, 0.125 \mathrm{mmol})$ were added. A CO_{2} balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with CO_{2}. The reaction mixture under $\mathrm{CO}_{2}(1 \mathrm{~atm})$ was stirred at $60^{\circ} \mathrm{C}$ for 10 min , and $\mathrm{PhSiH}_{3}(123 \mu \mathrm{~L}, 1.00 \mathrm{mmol})$ was added via a syringe. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 24 h . The product was purified by column chromatography (basic aluminum oxide, $\left.\mathrm{CHCl}_{3}\right)$ and $\operatorname{GPC}\left(\mathrm{CHCl}_{3}\right)$ to afford $11(9.3 \mathrm{mg}, 0.041 \mathrm{mmol}, 28 \%)$ as a yellow oil and $\mathbf{1 0 a}(11.3 \mathrm{mg}, 0.0352 \mathrm{mmol}, 33 \%)$ as a pink solid. Product $\mathbf{1 1}$ was characterized according to the literature. ${ }^{55}$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.92(\mathrm{~s}, 6 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 6.73(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 7.07$ (ddd, $J=1.0$, $6.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 30.6,32.7,41.1,109.2,113.1,115.4,118.7,119.4,121.5,127.1,128.0,129.4,129.7,137.3,149.2$.

Procedures for the control experiments (Scheme 5)

(a) $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(1.4 \mathrm{mg}, 6.3 \mu \mathrm{~mol}, 2.5 \mathrm{~mol} \%$ based on 4$)$ was put in a dry Schlenk flask (30 mL), and then $4(32 \mu \mathrm{~L}, 0.25 \mathrm{mmol})$ was added. $\mathrm{A} \mathrm{CO}_{2}$ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with CO_{2}. The mixture under $\mathrm{CO}_{2}(1 \mathrm{~atm})$ was stirred at $60{ }^{\circ} \mathrm{C}$ for 10 min , and $\mathrm{PhSiH}_{3}(123 \mu \mathrm{~L}, 1.00 \mathrm{mmol})$ was added via a syringe. The reaction mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 24 h . The ${ }^{1} \mathrm{H}$ NMR spectrum was measured after passing through a column (basic aluminum oxide, CHCl_{3}), and compound 5 was not detected.

4

(b) The method using a formaldehyde gas: paraformaldehyde ($121 \mathrm{mg}, 4.0 \mathrm{mmol}$ based on formaldehyde) was put in a dry two-necked flask (5 mL) and maintained at $120^{\circ} \mathrm{C}$ under N_{2} atmosphere. The generated gas was guided to another dry two-necked flask (5 mL) containing a mixture of cat. $\mathbf{1}(3.0 \mathrm{mg}, 1.3 \mu \mathrm{~mol}, 0.5$ $\mathrm{mol} \%$ based on 4$), 4(32 \mu \mathrm{~L}, 0.25 \mathrm{mmol})$, and $\mathrm{PhSiH}_{3}(123 \mu \mathrm{~L}, 1.00 \mathrm{mmol})$ by cannula transfer. The mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 24 h . The ${ }^{1} \mathrm{H}$ NMR spectrum was measured after passing through a column (basic aluminum oxide, CHCl_{3}), and compound $\mathbf{5}$ was not detected.

The method using paraformaldehyde: catalyst $\mathbf{1}(2.9 \mathrm{mg}, 1.3 \mu \mathrm{~mol}, 0.5 \mathrm{~mol} \%$ based on 4) was put in a dry Schlenk flask (30 mL), and then $4(32 \mu \mathrm{~L}, 0.25 \mathrm{mmol})$ and paraformaldehyde ($30 \mathrm{mg}, 1.0 \mathrm{mmol}$ based on formaldehyde) was added. A N_{2} balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with N_{2}. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 10 min , and PhSiH_{3} (0 or 4 equiv) was added via a syringe. The reaction mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 24 h . The ${ }^{1} \mathrm{H}$ NMR spectrum was measured after passing through a column (basic aluminum oxide, CHCl_{3}), and compound $\mathbf{5}$ was not detected.

(c) Catalyst $\mathbf{1}\left(2.9 \mathrm{mg}, 1.3 \mu \mathrm{~mol}, 0.5 \mathrm{~mol} \%\right.$ based on $\left.\mathbf{4}+\mathbf{4}^{\prime}\right)$ was put in a dry Schlenk flask (30 mL), and then $4(16 \mu \mathrm{~L}, 0.13 \mathrm{mmol})$ and $\mathbf{4}^{\prime}(19 \mathrm{mg}, 0.13 \mathrm{mmol})$ were added. A N_{2} balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with N_{2}. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 10 min , and $\mathrm{PhSiH}_{3}(123 \mu \mathrm{~L}, 1.0 \mathrm{mmol})$ was added via a syringe. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 24 h . The ${ }^{1} \mathrm{H}$ NMR spectrum was measured after passing through a column (basic aluminum oxide, CHCl_{3}), and compound 5 was not detected.

3. H_{2} and HD generation reactions

General procedure for the $\mathbf{H}_{\mathbf{2}}$ generation reaction

To a solution of hydrosilane (0.75 mmol based on a number of $\mathrm{Si}-\mathrm{H}$ bonds) and cat. 1 ($0-0.9 \mathrm{~mol} \%$) in DMSO ($200 \mu \mathrm{~L}$) was added ROH (3 equiv) at reaction temperature under N_{2} atmosphere. The volume of the H_{2} gas was measured by the water displacement method. The generation of H_{2} gas was identified by ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 4.62\right.$ (s) ppm) ${ }^{\mathrm{S} 6}$ (Fig. S1), GC (Fig. S2), and olefin hydrogenation (Scheme S1).

Fig. S1 ${ }^{1} \mathrm{H}$ NMR spectrum of the produced gas $\left(\mathrm{H}_{2}\right)\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$. Reaction conditions: $\mathrm{PhSiH}_{3}(0.25 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{O}$ (3 equiv), cat. 1 ($0.3 \mathrm{~mol} \%$), DMSO ($200 \mu \mathrm{~L}$), rt (ca. $20^{\circ} \mathrm{C}$), 5 min .

Fig. S2 GC charts of (a) the produced gas and (b) authentic sample of H_{2}. GC conditions: Shincarbon-ST 50/80 (Shinwa Chemical Industries), $\phi 3 \mathrm{~mm} \times 6 \mathrm{~m}$, Inj. $200{ }^{\circ} \mathrm{C}$, Col. $70{ }^{\circ} \mathrm{C}$, Det. (TCD) $200{ }^{\circ} \mathrm{C}$, Ar. Reaction conditions: PhSiH_{3} (0.25 mmol), $\mathrm{H}_{2} \mathrm{O}$ (3 equiv), cat. 1 ($0.3 \mathrm{~mol} \%$), DMSO $(200 \mu \mathrm{~L})$, rt (ca. $\left.20^{\circ} \mathrm{C}\right), 5 \mathrm{~min}$.

Scheme S1 Synthesis of 1,2-diphenylethane (13) from trans-stilbene (12).
(a) To a solution of $\mathrm{PhSiH}_{3}(126 \mu \mathrm{~L}, 1.02 \mathrm{mmol})$ and cat. $\mathbf{1}(24.1 \mathrm{mg}, 11.0 \mu \mathrm{~mol})$ in DMSO ($800 \mu \mathrm{~L}$) $\mathrm{H}_{2} \mathrm{O}$ ($180 \mu \mathrm{~L}, 10.0 \mathrm{mmol}$) was added at room temperature under N_{2} atmosphere. The generated gas was guided to a flask containing a mixture of $\mathbf{1 2}(45.1 \mathrm{mg}, 250 \mu \mathrm{~mol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(22.5 \mathrm{mg})$ in $\mathrm{MeOH}(1.5 \mathrm{~mL})$ by cannula transfer. The mixture was stirred at room temperature for 5 h . After Pd/C was filtered off, the filtrate was evaporated to afford $\mathbf{1 3}$ as a colorless powder. The yield was determined by using mesitylene as an internal standard (>99\%). The NMR data were in agreement with those reported previously. ${ }^{57}$
(b) To a mixture of $\mathbf{1 2}(45.6 \mathrm{mg}, 253 \mu \mathrm{~mol})$, cat. $1(24.0 \mathrm{mg}, 10.9 \mu \mathrm{~mol})$, and $10 \% \mathrm{Pd} / \mathrm{C}(22.5 \mathrm{mg})$ in MeOH $(1.5 \mathrm{~mL})$ was added $\mathrm{PhSiH}_{3}(126 \mu \mathrm{~L}, 1.02 \mathrm{mmol})$ at room temperature (ca. $20^{\circ} \mathrm{C}$) under N_{2} atmosphere. The reaction mixture was stirred at room temperature for 12 h . After Pd / C was filtered off, the filtrate was evaporated to give a residue. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CHCl}_{3}\right)$ to afford $13(44.3 \mathrm{mg}, 243 \mu \mathrm{~mol}, 96 \%)$ as a colorless powder.

Screening of the $\mathbf{H}_{\mathbf{2}}$ generation reaction

We screened five reactants, ROHs , in the presence of $0.3 \mathrm{~mol} \%$ of cat. $\mathbf{1}$ at room temperature for 5 min in DMSO (Table S2). When $\mathrm{H}_{2} \mathrm{O}$ or MeOH was used, H_{2} gas generated quantitatively (entries 1-2), and the reaction finished within two and one minutes, respectively (Fig. S3). The bulky alcohols and phenol gave lower yields ($42-65 \%$, entries 3-5). A catalyst loading of $0.1 \mathrm{~mol} \%$ was sufficient, although the reaction rate became somewhat slower (entry 6 and Fig. S4). The reaction did not proceed without cat. 1 (entry 7). The catalyst was recyclable without lowering the catalytic activity for at least five cycles, which demonstrates the robustness of cat. 1 (entry 8 and Fig. S5). The reaction was sensitive to temperature, and interestingly, it did not proceed at $-10{ }^{\circ} \mathrm{C}$ without solidification (entry 9 and Fig. S6). In addition, we screened various hydrosilanes and confirmed that phenylsilane was the best choice (Table S3).

Table S2 Hydrogen generation from phenylsilane and water or alcohols ${ }^{\text {a }}$

${ }^{\text {a }}$ Conditions: $\mathrm{PhSiH}_{3}(0.25 \mathrm{mmol}), \mathrm{ROH}$ (3 equiv based on the number of $\mathrm{Si}-\mathrm{H}$ bonds), cat. 1 (amount indicated above), DMSO (200 $\mu \mathrm{L}$), rt (ca. $20^{\circ} \mathrm{C}$), 5 min, N_{2} atmosphere. ${ }^{b}$ Determined by volume of H_{2} collected by the water displacement method. ${ }^{c}$ After four-time recycling of the catalyst. ${ }^{d}-10^{\circ} \mathrm{C}$.

Table S3 Hydrogen generation from various hydrosilanes and $\mathrm{H}_{2} \mathrm{O}^{a}$

	$\mathrm{H}_{2} \mathrm{O}$ cat	$\frac{0.3 \mathrm{~mol} \%)}{\substack{\mathrm{SO}, \mathrm{rt} \\ \mathrm{~min}}}$
Entry	Silane	Yield of H
1	PhSiH_{3}	99
2	$\mathrm{Ph}_{2} \mathrm{SiH}_{2}$	65
3	$\mathrm{Ph}_{3} \mathrm{SiH}$	0
4	PhMe 2 SiH	0
5	$\mathrm{Ph}_{2} \mathrm{MeSiH}$	0
6	PMHS	0

${ }^{\text {a }}$ Conditions: Hydrosilane (0.25 mmol), $\mathrm{H}_{2} \mathrm{O}$ (3 equiv based on the number of $\mathrm{Si}-\mathrm{H}$ bonds), cat. 1 ($0.3 \mathrm{~mol} \%$), DMSO $(200 \mu \mathrm{~L})$, rt (ca. $20^{\circ} \mathrm{C}$), $5 \mathrm{~min}, \mathrm{~N}_{2}$ atmosphere. ${ }^{b}$ Determined by volume of H_{2} collected by the water displacement method.

Fig. S3 H_{2} generation by the reaction of PhSiH_{3} with $\mathrm{ROH}\left(\mathrm{H}_{2} \mathrm{O}\right.$ or alcohols). Conditions: PhSiH_{3} $(0.25 \mathrm{mmol})$, ROH (0.75 mmol), cat. 1 ($0.3 \mathrm{~mol} \%$), DMSO ($200 \mu \mathrm{~L}$), rt (ca. $20^{\circ} \mathrm{C}$), N_{2} atmosphere.

Fig. S4 H_{2} generation by the reaction of PhSiH_{3} with $\mathrm{H}_{2} \mathrm{O}$ using various amounts of cat. 1. Conditions: $\mathrm{PhSiH}_{3}(0.25 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{O}(0.75 \mathrm{mmol})$, cat. 1 (amount indicated above), DMSO (200 $\mu \mathrm{L}$), rt (ca. $20^{\circ} \mathrm{C}$), N_{2} atmosphere.

Fig. S5 Reuse of cat. 1. Conditions: $\mathrm{PhSiH}_{3}(0.25 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{O}(0.75 \mathrm{mmol})$, cat. 1 ($0.9 \mathrm{~mol} \%$), DMSO ($200 \mu \mathrm{~L}$), rt (ca. $20^{\circ} \mathrm{C}$), $5 \mathrm{~min}, \mathrm{~N}_{2}$ atmosphere.

Fig. S6 H_{2} generation by the reaction of PhSiH_{3} with $\mathrm{H}_{2} \mathrm{O}$ at various temperature. Conditions: $\mathrm{PhSiH}_{3}(0.25 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{O}(0.75 \mathrm{mmol})$, cat. 1 ($\left.0.3 \mathrm{~mol} \%\right)$, DMSO ($200 \mu \mathrm{~L}$), N_{2} atmosphere.

General procedure for the HD gas generation reaction (Schemes 7b and 7c)

To a solution of $\mathrm{PhSiH}_{3}(32 \mu \mathrm{~L}, 0.25 \mathrm{mmol})$ and cat. $1(0.3 \mathrm{~mol} \%)$ in DMSO ($200 \mu \mathrm{~L}$) was added ROD $\left(\mathrm{D}_{2} \mathrm{O}(99.9 \% \mathrm{D})\right.$ or $\mathrm{CD}_{3} \mathrm{OD}(99.8 \% \mathrm{D}), 10$ equiv) at room temperature (ca. $20^{\circ} \mathrm{C}$) under N_{2} atmosphere. The volume of the HD gas was measured by the water displacement method. The HD gas was identified by ${ }^{1} \mathrm{H}$ NMR (Fig. S7). ${ }^{\text {S8 }}$

Fig. S7 ${ }^{1} \mathrm{H}$ NMR spectrum of the produced gas ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$). Reaction conditions: PhSiH_{3} (0.25 mmol), $\mathrm{D}_{2} \mathrm{O}$ (10 equiv), cat. 1 ($0.3 \mathrm{~mol} \%$), $\mathrm{DMSO}\left(200 \mu \mathrm{~L}\right.$), rt (ca. $20{ }^{\circ} \mathrm{C}$), $5 \mathrm{~min}, \mathrm{~N}_{2}$ atmosphere.

Procedure for the temperature-controllable \mathbf{H}_{2} gas generation reaction (Fig. 1)

To a solution of cat. $1(0.3 \mathrm{~mol} \%)$ in DMSO $(200 \mu \mathrm{~L})$ and $\mathrm{H}_{2} \mathrm{O}(45 \mu \mathrm{~L}, 2.5 \mathrm{mmol})$ at $-10{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere, $\mathrm{PhSiH}_{3}(32 \mu \mathrm{~L}, 0.25 \mathrm{mmol})$ was added, and the mixture solution was stirred for 15 min . The mixture was heated at $30^{\circ} \mathrm{C}$ for 15 min . The volume of the H_{2} gas was measured by the water displacement method.

General procedure for the stepwise $\mathrm{H}_{\mathbf{2}}$ gas generation reaction (Fig. S8 and S9)

To a solution of $\mathrm{PhSiH}_{3}(246 \mu \mathrm{~L}, 2.0 \mathrm{mmol})$ and cat. $\mathbf{1}(0.2 \mathrm{~mol} \%)$ in DMSO $(1.6 \mathrm{~mL})$ was added ROH $(0.25 \mathrm{mmol})$ at room temperature (ca. $20^{\circ} \mathrm{C}$) under N_{2} atmosphere. The volume of the H_{2} gas was measured by the water displacement method. Additional portions of ROH (0.25 mmol) were added every 30 min (5 times).

We tried to control 1-catalyzed H_{2} generation by injection of $\mathrm{H}_{2} \mathrm{O}$ (Fig. S8). The sequential injection of $\mathrm{H}_{2} \mathrm{O}$ at 30 min intervals to a mixture of phenylsilane and cat. $\mathbf{1}$ in DMSO led to sequential and immediate H_{2} generation at least five times. When MeOH was used instead of $\mathrm{H}_{2} \mathrm{O}$, injection-responsive H_{2} generation was also achieved (Fig. S9).

Fig. S8 Generation of H_{2} by sequential injection of $\mathrm{H}_{2} \mathrm{O}$ at 30 min intervals.

Fig. S9 Generation of H_{2} by sequential injection of MeOH at 30 min intervals.

4. DFT calculations

Fig. S10 DFT-optimized structures of $\mathrm{Zn} \mathrm{n}^{\prime \prime}$ complex $\mathbf{1 s i}_{\text {si }}$ at the B3LYP/6-31G(d) level for the H, C, N, O, and Si atoms and at the B3LYP/LanL2DZ level for the Zn atoms.

5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

${ }^{1} \mathrm{H}$ NMR spectrum of $5\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $5\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of 5 ' $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of 5 ' $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8

${ }^{1} \mathrm{H}$ NMR spectrum of $8\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8

${ }^{13} \mathrm{C}$ NMR spectrum of $8\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0 a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 0 a}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0 b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 0 b}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0 c}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 0 c}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0 d}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 0 d}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0 e}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 0 e}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$10 f$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0 f}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$10 f$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 0 f}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0 g}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 0 g}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $11\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 1}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

6. Coordinates of optimized structures

Zn	-4.624220	0.255814	-0.074613
Zn	-1.496302	-0.140358	0.299474
Zn	2.139647	3.611482	-0.423999
Zn	1.587425	0.084914	0.076406
Zn	1.854601	-3.385646	-0.797451
O	-3.044155	1.418332	0.440946
O	0.155824	3.401488	-0.069152
O	2.926662	1.715411	-0.360226
O	2.728748	-1.449440	-0.975207
O	-0.112621	-3.116297	-0.613425
O	-3.172808	-1.089632	-0.645763
O	-0.047957	0.272157	-0.779525
N	-4.942539	0.093820	2.159423
N	-6.257125	-1.249995	0.199522
N	1.705114	3.795541	-2.594440
N	4.102844	4.296652	-1.493725
N	3.068408	3.925523	1.584258
N	1.822500	5.821318	0.139809
N	1.863802	-3.418731	-3.069095
N	1.408343	-5.614546	-1.549178
N	1.838405	-4.203531	1.283495
N	3.927361	-4.154653	-0.403959
N	-4.895841	0.561908	-2.315756
N	-6.193650	1.871152	-0.325346
C	-2.475426	3.619303	1.145035
C	-3.018479	2.343073	1.393598
C	-3.545861	2.039569	2.709705
C	-3.477859	2.992787	3.711890
C	-2.904600	4.264767	3.501433
C	-2.846128	5.235734	4.538184
C	-2.313043	6.483542	4.312010
C	-1.816293	6.805283	3.023388
C	-1.856195	5.885028	1.999414
C	-2.397068	4.580042	2.196284

C	-2.133511	3.996350	-0.266714
C	-0.841354	3.740758	-0.816077
C	-0.714780	3.888411	-2.268237
C	-1.722034	4.481045	-3.010136
C	-2.915662	4.945921	-2.424777
C	-3.877544	5.679137	-3.168523
C	-5.040550	6.130607	-2.584422
C	-5.277070	5.840334	-1.215240
C	-4.369964	5.119501	-0.471745
C	-3.134526	4.656412	-1.032395
C	-4.141379	0.721620	3.048324
C	-5.551634	-1.061814	2.498002
C	-5.346540	-1.684394	3.728015
C	-4.491969	-1.067241	4.640093
C	-3.912380	0.148360	4.314650
C	-6.469632	-1.629293	1.474237
C	-7.048757	-1.717630	-0.772582
C	-8.118475	-2.574352	-0.525650
C	-8.365908	-2.951454	0.794549
C	-7.533941	-2.478821	1.804529
C	0.475113	3.465046	-3.033953
C	2.786578	3.610548	-3.380024
C	2.700690	3.006348	-4.632502
C	1.443268	2.580323	-5.067389
C	0.327468	2.816639	-4.279479
C	4.060955	4.146493	-2.829269
C	5.197848	4.805509	-0.923461
C	6.308752	5.218374	-1.658765
C	6.265879	5.083829	-3.045557
C	5.131513	4.538556	-3.641427
C	4.895755	0.400571	-0.407936
C	4.079926	1.367658	0.205011
C	4.469174	1.917885	1.484914
C	5.647441	1.504347	2.074074
C	6.486466	0.530408	1.485951
	7.689536	0.110958	2.113672

C	8.107515	-1.431407	0.309421
C	6.947743	-1.041653	-0.325212
C	6.094736	-0.044759	0.232047
C	4.536278	-0.095389	-1.777836
C	3.452176	-0.981492	-1.983464
C	3.119318	-1.344573	-3.348511
C	3.880086	-0.881577	-4.406495
C	4.996373	-0.041811	-4.221530
C	5.792038	0.386673	-5.318541
C	6.882811	1.203868	-5.127254
C	7.202547	1.629070	-3.813897
C	6.442771	1.236773	-2.733944
C	5.315798	0.371078	-2.885801
C	3.638279	2.891747	2.235375
C	2.464263	4.917477	2.274881
C	2.335430	4.879514	3.661683
C	2.843851	3.769808	4.339413
C	3.507960	2.777706	3.634303
C	1.974454	6.059787	1.455233
C	1.395072	6.798058	-0.665415
C	1.112910	8.084047	-0.207330
C	1.291180	8.349831	1.150354
C	1.724962	7.329771	1.992987
C	2.001972	-2.246017	-3.716517
C	1.027897	-4.358485	-3.557795
C	0.223445	-4.136568	-4.674958
C	0.282965	-2.885944	-5.288169
C	1.183491	-1.940147	-4.820901
C	1.037954	-5.660171	-2.839029
C	1.444242	-6.746421	-0.840338
C	1.135912	-7.992136	-1.385853
C	0.777630	-8.050101	-2.732287
C	0.724737	-6.870873	-3.470678
C	-2.341346	-3.791764	-0.230750
C	-0.982384	-3.681289	0.171358
	-0.621121	-4.206033	1.485245

C	-2.918201	-4.994479	1.848755
C	-3.862094	-5.691891	2.648553
C	-5.157513	-5.879055	2.222311
C	-5.547811	-5.360542	0.960869
C	-4.659422	-4.666213	0.169982
C	-3.304294	-4.454741	0.576428
C	-2.772081	-3.254952	-1.561557
C	-3.182755	-1.911876	-1.681495
C	-3.637021	-1.436069	-2.973780
C	-3.703251	-2.301551	-4.054087
C	-3.356129	-3.662303	-3.943446
C	-3.505717	-4.560675	-5.035513
C	-3.211649	-5.898600	-4.899367
C	-2.745286	-6.382064	-3.649251
C	-2.575312	-5.531990	-2.578942
C	-2.878123	-4.139621	-2.676266
C	0.735469	-4.148231	2.066752
C	3.057451	-4.414802	1.830433
C	3.235780	-4.555495	3.204866
C	2.128516	-4.361760	4.035609
C	0.885355	-4.124767	3.475568
C	4.190595	-4.514041	0.866879
C	4.884370	-4.240804	-1.334285
C	6.166718	-4.704519	-1.053782
C	6.454145	-5.080712	0.258187
C	5.461196	-4.986246	1.227620
C	-4.092114	-0.047639	-3.213238
C	-5.464344	1.748429	-2.614023
C	-5.213463	2.420915	-3.809308
C	-4.328559	1.836933	-4.715357
C	-3.771819	0.600684	-4.424664
C	-6.391705	2.294273	-1.586619
C	-6.983207	2.325031	0.654338
C	-8.034937	3.209477	0.423581
C	-8.269597	3.626507	-0.886186
C	-7.438518	3.1680737	-1.904323
	-0.948679	2.130312	

C	-1.136531	-0.805702	3.312866
C	-0.440354	0.519668	3.616949
O	-1.186343	-1.684396	4.195027
H	-3.892440	2.774021	4.693368
H	-3.235401	4.970319	5.519380
H	-2.275555	7.220290	5.110509
H	-1.401682	7.793747	2.840604
H	-1.478220	6.142005	1.015448
H	-1.573758	4.645001	-4.076295
H	-3.665846	5.892918	-4.215689
H	-5.759806	6.713686	-3.154459
H	-6.188522	6.198796	-0.742111
H	-4.573177	4.922375	0.574597
H	-5.782163	-2.654114	3.939382
H	-4.255622	-1.546860	5.584298
H	-3.218483	0.622330	4.996629
H	-6.806050	-1.384632	-1.777627
H	-8.737002	-2.928091	-1.343855
H	-9.198321	-3.606457	1.036172
H	-7.714623	-2.748819	2.838359
H	3.589759	2.821855	-5.224314
H	1.343540	2.065153	-6.019355
H	-0.658110	2.488973	-4.587534
H	5.170380	4.880510	0.159743
H	7.176133	5.632206	-1.154773
H	7.105147	5.399196	-3.659039
H	5.073132	4.431207	-4.718338
H	5.946161	1.926613	3.030356
H	7.961870	0.564180	3.064824
H	9.409862	-1.166106	2.031695
H	8.736597	-2.194717	-0.143324
H	6.666413	-1.497985	-1.267769
H	3.637423	-1.200040	-5.418059
H	5.524633	0.043583	-6.316690
H	7.495133	1.517192	-5.969021
	8.060710	2.277742	-3.654588
H	1.585148	-1.742359	
H			

H	1.803527	5.659565	4.194191
H	2.707108	3.676837	5.413095
H	3.861543	1.876021	4.115361
H	1.273840	6.527231	-1.710642
H	0.767834	8.848485	-0.895724
H	1.096939	9.341226	1.550321
H	1.882604	7.520523	3.048179
H	-0.479894	-4.888177	-5.012912
H	-0.374895	-2.657674	-6.121978
H	1.257582	-0.960076	-5.276933
H	1.729676	-6.639705	0.201925
H	1.180508	-8.885424	-0.771241
H	0.543311	-9.000854	-3.203169
H	0.458300	-6.888005	-4.521133
H	-1.303557	-5.263449	3.218210
H	-3.533545	-6.083691	3.609625
H	-5.870265	-6.426079	2.834505
H	-6.565123	-5.517447	0.609455
H	-4.981947	-4.282652	-0.791866
H	-4.088678	-1.945155	-5.007126
H	-3.876072	-4.169485	-5.981842
H	-3.346916	-6.582248	-5.733820
H	-2.522027	-7.439911	-3.533577
H	-2.219882	-5.915372	-1.629014
H	4.215437	-4.727958	3.633111
H	2.249255	-4.356673	5.113842
H	0.033800	-3.860138	4.089793
H	4.599913	-3.922719	-2.333075
H	6.913163	-4.761574	-1.839093
H	7.441660	-5.445269	0.526299
H	5.670216	-5.284978	2.247602
H	-5.632620	3.402844	-3.991105
H	-4.072118	2.352658	-5.636727
H	-3.076164	0.127636	-5.107475
H	-6.754194	1.955584	1.649290
H	-8.651974	3.551646	1.247856
	-9.089309	4.302124	-1.113817

H	-7.605239	3.471722	-2.931168
H	-0.383653	0.685698	4.697686
H	-0.944324	1.363626	3.138498
H	0.577804	0.472784	3.206035
O	2.194949	-0.048055	1.960714
C	2.964334	-0.931379	2.596218
H	2.425591	-1.843516	2.905606
H	3.879160	-1.222329	2.044921
O	3.472374	-0.332734	3.869026
Si	4.179158	-1.098484	5.138537
H	5.043454	-2.251091	4.719319
H	5.085545	-0.112961	5.804859
C	2.919711	-1.704178	6.401069
C	3.306528	-2.238037	7.644651
C	1.546066	-1.645170	6.108796
C	2.357001	-2.697466	8.559446
H	4.362252	-2.295803	7.909804
C	0.590045	-2.109544	7.016333
H	1.198843	-1.250380	5.160289
C	0.995067	-2.634953	8.244565
H	2.676906	-3.104405	9.516416
H	-0.456463	-2.055694	6.730367
H	0.256815	-2.996865	8.957111

7. References

S1 D. Zhao, Y. Wang, M.-X. Zhu, Q. Shen, L. Zhang, Y. Du and J.-X. Li, RSC Adv., 2013, 3, 10272-10276.
S2 M. L. Deb, P. J. Borpatra, P. J. Sakia and P. K. Baruah, Org. Biomol. Chem., 2017, 15, 1435-1443.
S3 F. Pu, Y. Li, Y.-H. Song, J. Xiao, Z.-W. Liu, C. Wang, Z.-T. Liu, J.-G. Chen and J. Lu, Adv. Synth. Catal., 2016, 358, 539-542.

S4 M. Yan, R. C. Hider and Y. Ma, Org. Chem. Front., 2019, 6, 1168-1172.
S5 S. Yang, W. Tang, Z. Yang and J. Xu, ACS Catal., 2018, 8, 9320-9326.
S6 G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, Organometallics, 2010, 29, 2176-2179.
S7 P. J. Black, M. G. Edwards and J. M. J. Williams, Eur. J. Org. Chem., 2006, 2006, 4367-4378.
S8 (a) K. Tokmic, C. R. Markus, L. Zhu and A. R. Fout, J. Am. Chem. Soc., 2016, 138, 11907-11913; (b) J. Matthes, T. Pery, S. Gründemann, G. Buntkowsky, S. Sabo-Etienne, B. Chaudret and H.-H. Limbach, J. Am. Chem. Soc., 2004, 126, 8366-8367; (c) G. Laurenczy, M. Faure, L. Vieille-Petit, G. Süss-Fink and T. R. Ward, Adv. Synth. Catal., 2002, 344, 1073-1077.

