Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

C-Methylenation of anilines and indoles with CO₂ and hydrosilane using a pentanuclear zinc complex catalyst

Kazuto Takaishi,* Hiroyasu Kosugi, Ritsuki Nishimura, Yuya Yamada, and Tadashi Ema*

Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan

Table of contents

1.	General information	S2
2.	Synthesis of diarylmethanes	S 3
3.	H ₂ and HD generations	S 8
4.	DFT calculations	S15
5.	¹ H and ¹³ C NMR spectra	S16
6.	Coordinates of optimized structures	S38
7.	References	S45

1. General information

Instrumentation. Melting points were measured on a Yanaco melting point apparatus (uncorrected). NMR spectra were recorded on a JEOL JNM-ECS400 or a JEOL JEM-ECZ600R. Data are reported as follows: chemical shifts in ppm using the residual solvent peak as an internal standard, integration, multiplicity (s = singlet, d = doublet, t = triplet, sext = sextet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, ddd = doublet of double doublets, br = broadened), and coupling constants (Hz). High-resolution mass spectra were performed on a Bruker micrOTOF. TLC analyses were carried out on glass sheets coated with Merck Silica gel 60 F₂₅₄ (0.25 mm), and visualization was accomplished with UV light. Column chromatography was performed on silica gel (Fuji Silysia BW-127 ZH, 100–270 mesh) or aluminum oxide 90 active basic (Merck 01799-11, 70–230 mesh). Preparative GPC was performed on a LC-5060 HPLC system (Japan Analytical Industry) using a JAIGEL-1HH (Ø 20 mm × 600 mm) and a JAIGEL-2HH (Ø 20 mm × 600 mm) (Japan Analytical Industry). GC was measured on a GC-8A (Shimadzu) with a packed column, Shincarbon-ST 50/80 (Ø 3 mm × 6 m) (Shinwa Chemical Industries).

Materials. Most reagents were purchased and used without further purification unless otherwise specified. Dry solvents were purchased from Kanto Chemical Co., Inc. Phenylsilane was dried over 3A molecular sieves. Aniline was purified by distillation under reduced pressure and dried over 3A molecular sieves. ¹³CO₂ (99%) was purchased from Taiyo Nippon Sanso Corporation.

The full citation of reference 14: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, *GAUSSIAN 16 (Revision C.01)*, Gaussian, Inc., Wallingford CT, 2019.

2. Synthesis of diarylmethanes

General procedure for the synthesis of bis[4-(N,N-dimethylamino)phenyl]methane (5) from N,N-dimethylaniline (4)

Catalyst 1 (3.0 mg, 1.3 μ mol, 0.5 mol% based on 4) was put in a dry Schlenk flask (30 mL), and then *N*,*N*-dimethylaniline (4) (32 μ L, 0.25 mmol) was added. A CO₂ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with CO₂. The reaction mixture under CO₂ (1 atm) was stirred at reaction temperature for 10 min, and PhSiH₃ (3–6 equiv) was added via a syringe. The reaction mixture was stirred for reaction time. The yield was determined by using mesitylene as an internal standard after passing through a column (basic aluminum oxide, CHCl₃), or the product was purified by GPC (CHCl₃). Product **5** was characterized according to the literature.^{S1}

¹H NMR (600 MHz, CDCl₃) δ 2.90 (s, 12H), 3.81 (s, 2H), 6.68 (d, *J* = 8.6 Hz, 4H), 7.05 (d, *J* = 8.6 Hz, 4H);
¹³C NMR (151 MHz, CDCl₃) δ 40.0, 41.1, 113.2, 129.5, 130.4, 148.2.

Procedure for the synthesis of bis[4-(N,N-dimethylamino)phenyl]methane (5) from aniline (6)

Catalyst **1** (3.0 mg, 1.3 μ mol, 0.5 mol%) was put in a dry two-necked flask (10 mL), and then aniline (**6**) (23 μ L, 0.25 mmol) was added. A CO₂ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with CO₂. The reaction mixture under CO₂ (1 atm) was stirred at 100 °C for 5 min, and PhSiH₃ (369 μ L, 3.00 mmol) was added via a syringe. The reaction mixture was stirred at 100 °C for 24 h. The mixture was diluted with a mixed solvent of hexane/EtOAc (3/1). After the insoluble components were filtered off, the filtrate was evaporated to give a residue. The product was purified by column chromatography (SiO₂, hexane/EtOAc (3:1)) to afford **5** (21.7 mg, 85.3 μ mol, 68%) as a colorless solid.

Procedure for the synthesis of ¹³C-labeled bis[4-(N,N-dimethylamino)phenyl]methane (5')

Catalyst **1** (3.0 mg, 1.3 μ mol, 0.5 mol%) was put in a dry Schlenk flask (30 mL), and then aniline (**6**) (23 μ L, 0.25 mmol) was added. A ¹³CO₂ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with ¹³CO₂ (ca. 30 mL). The reaction mixture under ¹³CO₂ was stirred at 100 °C for 5 min, and PhSiH₃ (369 μ L, 3.00 mmol) was added via a syringe. The reaction mixture was stirred at 100 °C for 24 h. The mixture was passed through a basic aluminum oxide column (CHCl₃) and then purified by silica gel column chromatography (hexane/EtOAc (9:1)) to afford **5**' (5.4 mg, 21 μ mol, 17%) as a colorless solid.

mp 78–80 °C; **IR** (KBr) 3009, 2916, 2855, 1612, 1520, 1477, 1439, 1335, 1223, 1188, 1061, 934, 826, 795 cm⁻¹; ¹**H NMR** (600 MHz, CDCl₃) δ 2.90 (dd, J = 134.9, 4.3 Hz, 12H), 3.81 (d, J = 125.9 Hz, 2H), 6.68 (d, J = 8.8 Hz, 4H), 7.05 (dd, J = 8.7, 4.0 Hz, 4H); ¹³**C NMR** (151 MHz, CDCl₃) δ 40.0, 41.1, 113.2, 129.6 (d, J = 2.9 Hz), 130.5 (d, J = 44.8 Hz), 150.3 (d, J = 320.9 Hz); **HR MS** (ESI⁺) Calcd for ¹²C₁₂¹³C₅H₂₃N₂: 260.2023 [M + H]⁺. Found: 260.2018.

Procedure for the synthesis of bis[4-(*N*,*N*-dipropylamino)phenyl]methane (8) from *N*,*N*-dipropylaniline (7)

Catalyst **1** (3.0 mg, 1.3 µmol, 0.5 mol%) was put in a dry Schlenk flask (30 mL), and then *N*,*N*-dipropylaniline (**7**) (48 µL, 0.25 mmol) was added. A CO₂ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with CO₂. The reaction mixture under CO₂(1 atm) was stirred at 80 °C for 5 min, and PhSiH₃ (123 µL, 1.00 mmol) was added via a syringe. The reaction mixture was stirred at 80 °C for 96 h. The mixture was passed through a basic aluminum oxide column (CHCl₃) and then purified by silica gel column chromatography (hexane/EtOAc (20:1)) to afford **8** (12.3 mg, 33.6 µmol, 27%) as a colorless oil.

IR (neat) 3093, 2959, 2932, 2874, 1748, 1516, 1458, 1366, 1234, 1192, 1153, 1103, 799 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 0.90 (t, *J* = 7.4 Hz, 12H), 1.58 (sext, *J* = 7.5 Hz, 8H), 3.18 (t, *J* = 7.7 Hz, 8H), 3.76 (s, 2H), 6.56 (dt, *J* = 2.6, 8.8 Hz, 4H), 7.01 (dt, *J* = 2.7, 8.8 Hz, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 11.6, 20.6, 39.8, 53.2, 112.0, 128.9, 129.6, 146.5; HR MS (ESI⁺) Calcd for C₂₅H₃₉N₂: 367.3108 [M + H]⁺. Found: 367.3100.

General procedure for the synthesis of diindolylmethanes 10

Catalyst **1** (0.5 mol% based on **9**) was put in a dry Schlenk flask (30 mL), and then indole **9** (0.25 mmol) was added. A CO₂ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with CO₂. The reaction mixture under CO₂ (1 atm) was stirred at reaction temperature for 10 min, and PhSiH₃ (184 μ L, 1.5 mmol) was added via a syringe. The reaction mixture was stirred for 24 h. The yield was determined by using mesitylene as an internal standard after short column chromatography (basic aluminum oxide, CHCl₃), or the product was purified by GPC (CHCl₃). Products **10a**^{S2}, **10b**^{S3}, **10c**^{S2}, **10d**^{S4}, **10e**^{S3}, **10f**^{S2}, and **10g**^{S2} were characterized according to the literature.

10a: ¹**H NMR** (600 MHz, CDCl₃) δ 3.71 (s, 6H), 4.22 (s, 2H), 6.79 (s, 2H), 7.09 (ddd, *J* = 0.9, 7.0, 7.9 Hz, 2H), 7.22 (ddd, *J* = 1.1, 7.0, 8.3 Hz, 2H), 7.30 (d, *J* = 8.2 Hz, 2H), 7.63 (d, *J* = 7.9 Hz, 2H); ¹³**C NMR** (151 MHz, CDCl₃) δ 21.1, 32.7, 109.2, 114.4, 118.7, 119.4, 121.5, 127.1, 128.0, 137.2.

10b: ¹**H NMR** (600 MHz, CDCl₃) δ 2.45 (s, 6H), 3.69 (s, 6H), 4.16 (s, 2H), 6.73 (s, 2H), 7.05 (d, *J* = 8.3 Hz, 2H), 7.19 (d, *J* = 8.3 Hz, 2H), 7.42 (s, 2H); ¹³**C NMR** (151 MHz, CDCl₃) δ 21.0, 21.7, 32.8, 108.9, 113.9, 119.1, 123.1, 127.2, 127.9, 128.2, 135.7.

10c: ¹**H NMR** (600 MHz, CDCl₃) δ 3.68 (s, 6H), 3.83 (s, 6H), 4.14 (s, 2H), 6.76 (s, 2H), 6.89 (dd, J = 2.4, 8.7 Hz, 2H), 7.07 (d, J = 2.4 Hz, 2H), 7.19 (d, J = 8.8 Hz, 2H); ¹³**C NMR** (151 MHz, CDCl₃) δ 21.1, 32.9, 56.2, 101.2, 110.0, 111.7, 113.8, 127.7, 128.2, 132.7, 153.7.

10d: ¹**H NMR** (600 MHz, CDCl₃) δ 3.71 (s, 6H), 4.11 (s, 2H), 6.81 (s, 2H), 7.16 (d, *J* = 8.6 Hz, 2H), 7.20 (d, *J* = 8.6 Hz, 2H), 7.54 (s, 2H); ¹³**C NMR** (151 MHz, CDCl₃) δ 20.9, 33.0, 110.4, 113.6, 118.7, 121.9, 124.6, 128.3, 128.8, 135.7.

10e: ¹**H NMR** (600 MHz, CDCl₃) δ 3.71 (s, 6H), 4.10 (s, 2H), 6.78 (s, 2H), 7.16 (d, *J* = 8.6 Hz, 2H), 7.29 (dd, *J* = 1.7, 8.6 Hz, 2H), 7.70 (d, *J* = 1.8 Hz, 2H); ¹³**C NMR** (151 MHz, CDCl₃) δ 20.9, 33.0, 110.8, 112.3, 113.6, 121.8, 124.5, 128.2, 129.5, 136.0.

10f: ¹**H NMR** (600 MHz, CDCl₃) δ 0.91 (t, *J* = 7.3 Hz, 6H), 1.83 (sext, *J* = 7.3 Hz, 4H), 4.01 (t, *J* = 7.0 Hz, 4H), 4.24 (s, 2H), 6.85 (s, 2H), 7.07 (t, *J* = 7.4 Hz, 2H), 7.20 (d, *J* = 7.4 Hz, 2H), 7.32 (d, *J* = 8.2 Hz, 2H), 7.62 (d, *J* = 8.0 Hz, 2H); ¹³**C NMR** (151 MHz, CDCl₃) δ 11.7, 21.3, 23.8, 48.1, 109.4, 114.5, 118.6, 119.6, 121.4, 126.2, 128.4, 136.8.

10g: ¹**H NMR** (600 MHz, CDCl₃) δ 2.38 (s, 6H), 3.65 (s, 6H), 4.15 (s, 2H), 6.96 (t, *J* = 7.4 H, 2H), 7.09 (d, *J* = 7.5 Hz, 2H), 7.21 (d, *J* = 8.2 Hz, 2H), 7.42 (d, *J* = 7.9 Hz, 2H); ¹³**C NMR** (151 MHz, CDCl₃) δ 10.5, 20.2, 29.6, 108.5, 110.6, 118.6, 118.7, 120.4, 128.4, 132.8, 136.9.

	9a CO PhSil Co PhSil cat. no	₂ (balloon) H ₃ (X equiv) 1 (Y mol%) o solvent	N 10a	
Entry	X (equiv)	Y (mol%)	Temp (°C)	Yield (%) ^b
1	6	0.5	100	74
2	6	0.5	90	92
3	6	0.5	80	95 (94) ^c
4	6	0.5	70	89
5	6	0.5	60	85
6	6	0.5	40	0
7	4	0.5	80	73
8	6	0.2	80	10

Table S1 Optimization of the synthesis of diindolylmethane 10a^a

^a Conditions: **9a** (0.25 mmol), CO₂ (1 atm, balloon), PhSiH₃ (amount indicated above), cat. **1** (amount indicated above), 24 h. ^b Determined by ¹H NMR using mesitylene as an internal standard. ^c Isolated yield.

Procedure for the synthesis of unsymmetrical diarylmethane 11

Catalyst **1** (3.0 mg, 1.3 µmol, 0.5 mol%) was put in a dry Schlenk flask (30 mL), and then *N*,*N*-dimethylaniline (**4**) (15.8 µL, 0.125 mmol) and 1-methylindole (**9a**) (15.6 µL, 0.125 mmol) were added. A CO₂ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with CO₂. The reaction mixture under CO₂ (1 atm) was stirred at 60 °C for 10 min, and PhSiH₃ (123 µL, 1.00 mmol) was added via a syringe. The reaction mixture was stirred at 60 °C for 24 h. The product was purified by column chromatography (basic aluminum oxide, CHCl₃) and GPC (CHCl₃) to afford **11** (9.3 mg, 0.041 mmol, 28%) as a yellow oil and **10a** (11.3 mg, 0.0352 mmol, 33%) as a pink solid. Product **11** was characterized according to the literature.^{S5}

¹**H NMR** (400 MHz, CDCl₃) δ 2.92 (s, 6H), 3.73 (s, 3H), 4.02 (s, 2H), 6.73 (br s, 3H), 7.07 (ddd, *J* = 1.0, 6.9, 7.9 Hz, 1H), 7.10–7.25 (m, 3H), 7.28 (d, *J* = 8.2 Hz, 1H), 7.54 (d, *J* = 7.9 Hz, 1H); ¹³**C NMR** (151 MHz, CDCl₃) δ 30.6, 32.7, 41.1, 109.2, 113.1, 115.4, 118.7, 119.4, 121.5, 127.1, 128.0, 129.4, 129.7, 137.3, 149.2.

Procedures for the control experiments (Scheme 5)

(a) $Zn(OAc)_2 \cdot 2H_2O$ (1.4 mg, 6.3 µmol, 2.5 mol% based on 4) was put in a dry Schlenk flask (30 mL), and then 4 (32 µL, 0.25 mmol) was added. A CO₂ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with CO₂. The mixture under CO₂ (1 atm) was stirred at 60 °C for 10 min, and PhSiH₃ (123 µL, 1.00 mmol) was added via a syringe. The reaction mixture was stirred at 60 °C for 24 h. The ¹H NMR spectrum was measured after passing through a column (basic aluminum oxide, CHCl₃), and compound **5** was not detected.

(b) The method using a formaldehyde gas: paraformaldehyde (121 mg, 4.0 mmol based on formaldehyde) was put in a dry two-necked flask (5 mL) and maintained at 120 °C under N₂ atmosphere. The generated gas was guided to another dry two-necked flask (5 mL) containing a mixture of cat. **1** (3.0 mg, 1.3 μ mol, 0.5 mol% based on **4**), **4** (32 μ L, 0.25 mmol), and PhSiH₃ (123 μ L, 1.00 mmol) by cannula transfer. The mixture was stirred at 60 °C for 24 h. The ¹H NMR spectrum was measured after passing through a column (basic aluminum oxide, CHCl₃), and compound **5** was not detected.

The method using paraformaldehyde: catalyst **1** (2.9 mg, 1.3 μ mol, 0.5 mol% based on **4**) was put in a dry Schlenk flask (30 mL), and then **4** (32 μ L, 0.25 mmol) and paraformaldehyde (30 mg, 1.0 mmol based on formaldehyde) was added. A N₂ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with N₂. The mixture was stirred at 60 °C for 10 min, and PhSiH₃ (0 or 4 equiv) was added via a syringe. The reaction mixture was stirred at 60 °C for 24 h. The ¹H NMR spectrum was measured after passing through a column (basic aluminum oxide, CHCl₃), and compound **5** was not detected.

(c) Catalyst **1** (2.9 mg, 1.3 μ mol, 0.5 mol% based on **4** + **4**') was put in a dry Schlenk flask (30 mL), and then **4** (16 μ L, 0.13 mmol) and **4**' (19 mg, 0.13 mmol) were added. A N₂ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with N₂. The mixture was stirred at 60 °C for 10 min, and PhSiH₃ (123 μ L, 1.0 mmol) was added via a syringe. The reaction mixture was stirred at 60 °C for 24 h. The ¹H NMR spectrum was measured after passing through a column (basic aluminum oxide, CHCl₃), and compound **5** was not detected.

3. H₂ and HD generation reactions

General procedure for the H₂ generation reaction

To a solution of hydrosilane (0.75 mmol based on a number of Si–H bonds) and cat. **1** (0–0.9 mol%) in DMSO (200 μ L) was added ROH (3 equiv) at reaction temperature under N₂ atmosphere. The volume of the H₂ gas was measured by the water displacement method. The generation of H₂ gas was identified by ¹H NMR (CDCl₃, 4.62 (s) ppm)^{S6} (Fig. S1), GC (Fig. S2), and olefin hydrogenation (Scheme S1).

Fig. S1 ¹H NMR spectrum of the produced gas (H₂) (400 MHz, CDCl₃). Reaction conditions: PhSiH₃ (0.25 mmol), H₂O (3 equiv), cat. **1** (0.3 mol%), DMSO (200 μ L), rt (ca. 20 °C), 5 min.

Fig. S2 GC charts of (a) the produced gas and (b) authentic sample of H₂. GC conditions: Shincarbon-ST 50/80 (Shinwa Chemical Industries), ϕ 3 mm × 6 m, Inj. 200 °C, Col. 70 °C, Det. (TCD) 200 °C, Ar. Reaction conditions: PhSiH₃ (0.25 mmol), H₂O (3 equiv), cat. **1** (0.3 mol%), DMSO (200 µL), rt (ca. 20 °C), 5 min.

Scheme S1 Synthesis of 1,2-diphenylethane (13) from *trans*-stilbene (12).

(a) To a solution of PhSiH₃ (126 μ L, 1.02 mmol) and cat. **1** (24.1 mg, 11.0 μ mol) in DMSO (800 μ L), H₂O (180 μ L, 10.0 mmol) was added at room temperature under N₂ atmosphere. The generated gas was guided to a flask containing a mixture of **12** (45.1 mg, 250 μ mol) and 10% Pd/C (22.5 mg) in MeOH (1.5 mL) by cannula transfer. The mixture was stirred at room temperature for 5 h. After Pd/C was filtered off, the filtrate was evaporated to afford **13** as a colorless powder. The yield was determined by using mesitylene as an internal standard (>99%). The NMR data were in agreement with those reported previously.^{S7}

(b) To a mixture of **12** (45.6 mg, 253 μ mol), cat. **1** (24.0 mg, 10.9 μ mol), and 10% Pd/C (22.5 mg) in MeOH (1.5 mL) was added PhSiH₃ (126 μ L, 1.02 mmol) at room temperature (ca. 20 °C) under N₂ atmosphere. The reaction mixture was stirred at room temperature for 12 h. After Pd/C was filtered off, the filtrate was evaporated to give a residue. The residue was purified by column chromatography (SiO₂, CHCl₃) to afford **13** (44.3 mg, 243 μ mol, 96%) as a colorless powder.

Screening of the H₂ generation reaction

We screened five reactants, ROHs, in the presence of 0.3 mol% of cat. **1** at room temperature for 5 min in DMSO (Table S2). When H₂O or MeOH was used, H₂ gas generated quantitatively (entries 1–2), and the reaction finished within two and one minutes, respectively (Fig. S3). The bulky alcohols and phenol gave lower yields (42–65%, entries 3–5). A catalyst loading of 0.1 mol% was sufficient, although the reaction rate became somewhat slower (entry 6 and Fig. S4). The reaction did not proceed without cat. **1** (entry 7). The catalyst was recyclable without lowering the catalytic activity for at least five cycles, which demonstrates the robustness of cat. **1** (entry 8 and Fig. S5). The reaction was sensitive to temperature, and interestingly, it did not proceed at -10 °C without solidification (entry 9 and Fig. S6). In addition, we screened various hydrosilanes and confirmed that phenylsilane was the best choice (Table S3).

PhSiH ₃ +	ROH <u>cat.</u>	1 (X mol%) >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	H ₂ + [Si]–OR
Entry	ROH	X (mol%)	Yield of H ₂ (%) ^b
1	H_2O	0.3	99
2	MeOH	0.3	99
3	ⁱ PrOH	0.3	65
4	^t BuOH	0.3	42
5	PhOH	0.3	54
6	H_2O	0.1	99
7	H_2O	0	0
8 ^c	H_2O	0.9	99
9 ^{<i>d</i>}	H ₂ O	0.3	0

Table S2 Hydrogen generation from phenylsilane and water or alcohols^a

^a Conditions: PhSiH₃ (0.25 mmol), ROH (3 equiv based on the number of Si-H bonds), cat. **1** (amount indicated above), DMSO (200 μ L), rt (ca. 20 °C), 5 min, N₂ atmosphere. ^b Determined by volume of H₂ collected by the water displacement method. ^c After four-time recycling of the catalyst. ^d-10 °C.

Table S3 Hydrogen generation from various hydrosilanes and H₂O^a

R ¹	R ² -Si-H R ³	+ H ₂ O	cat. 1 D	(0.3 mol%) MSO, rt 5 min	H ₂
	Entry	Sila	ne	Yield of H ₂ (%) ^{b}	
	1	PhSi	iH₃	99	
	2	Ph_2S	iH ₂	65	
	3	Ph₃S	SiH	0	
	4	PhMe:	₂SiH	0	
	5	Ph₂M€	eSiH	0	
	6	PMF	IS	0	

^a Conditions: Hydrosilane (0.25 mmol), H₂O (3 equiv based on the number of Si–H bonds), cat. **1** (0.3 mol%), DMSO (200 μ L), rt (ca. 20 °C), 5 min, N₂ atmosphere. ^b Determined by volume of H₂ collected by the water displacement method.

Fig. S3 H₂ generation by the reaction of PhSiH₃ with ROH (H₂O or alcohols). Conditions: PhSiH₃ (0.25 mmol), ROH (0.75 mmol), cat. **1** (0.3 mol%), DMSO (200 μ L), rt (ca. 20 °C), N₂ atmosphere.

Fig. S4 H₂ generation by the reaction of PhSiH₃ with H₂O using various amounts of cat. **1**. Conditions: PhSiH₃ (0.25 mmol), H₂O (0.75 mmol), cat. **1** (amount indicated above), DMSO (200 μ L), rt (ca. 20 °C), N₂ atmosphere.

Fig. S5 Reuse of cat. 1. Conditions: PhSiH₃ (0.25 mmol), H₂O (0.75 mmol), cat. 1 (0.9 mol%), DMSO (200 μ L), rt (ca. 20 °C), 5 min, N₂ atmosphere.

Fig. S6 H₂ generation by the reaction of PhSiH₃ with H₂O at various temperature. Conditions: PhSiH₃ (0.25 mmol), H₂O (0.75 mmol), cat. **1** (0.3 mol%), DMSO (200 μ L), N₂ atmosphere.

General procedure for the HD gas generation reaction (Schemes 7b and 7c)

To a solution of PhSiH₃ (32 μ L, 0.25 mmol) and cat. **1** (0.3 mol%) in DMSO (200 μ L) was added ROD (D₂O (99.9% D) or CD₃OD (99.8% D), 10 equiv) at room temperature (ca. 20 °C) under N₂ atmosphere. The volume of the HD gas was measured by the water displacement method. The HD gas was identified by ¹H NMR (Fig. S7).^{S8}

Fig. S7 ¹H NMR spectrum of the produced gas (600 MHz, CDCI₃). Reaction conditions: PhSiH₃ (0.25 mmol), D₂O (10 equiv), cat. **1** (0.3 mol%), DMSO (200 μ L), rt (ca. 20 °C), 5 min, N₂ atmosphere.

Procedure for the temperature-controllable H₂ gas generation reaction (Fig. 1)

To a solution of cat. **1** (0.3 mol%) in DMSO (200 μ L) and H₂O (45 μ L, 2.5 mmol) at -10 °C under N₂ atmosphere, PhSiH₃ (32 μ L, 0.25 mmol) was added, and the mixture solution was stirred for 15 min. The mixture was heated at 30 °C for 15 min. The volume of the H₂ gas was measured by the water displacement method.

General procedure for the stepwise H₂ gas generation reaction (Fig. S8 and S9)

To a solution of PhSiH₃ (246 μ L, 2.0 mmol) and cat. **1** (0.2 mol%) in DMSO (1.6 mL) was added ROH (0.25 mmol) at room temperature (ca. 20 °C) under N₂ atmosphere. The volume of the H₂ gas was measured by the water displacement method. Additional portions of ROH (0.25 mmol) were added every 30 min (5 times).

We tried to control **1**-catalyzed H_2 generation by injection of H_2O (Fig. S8). The sequential injection of H_2O at 30 min intervals to a mixture of phenylsilane and cat. **1** in DMSO led to sequential and immediate H_2 generation at least five times. When MeOH was used instead of H_2O , injection-responsive H_2 generation was also achieved (Fig. S9).

Fig. S8 Generation of H₂ by sequential injection of H₂O at 30 min intervals.

Fig. S9 Generation of H₂ by sequential injection of MeOH at 30 min intervals.

4. DFT calculations

Fig. S10 DFT-optimized structures of Zn^{II} complex 1_{Si} at the B3LYP/6-31G(d) level for the H, C, N, O, and Si atoms and at the B3LYP/LanL2DZ level for the Zn atoms.

5. ¹H and ¹³C NMR spectra

¹H NMR spectrum of **5** (600 MHz, CDCl₃)

¹³C NMR spectrum of **5** (151 MHz, CDCl₃)

¹H NMR spectrum of **5**' (600 MHz, CDCl₃)

 ^{13}C NMR spectrum of 5' (151 MHz, CDCl_3)

¹H NMR spectrum of **8** (600 MHz, CDCl₃)

¹³C NMR spectrum of 8 (151 MHz, CDCl₃)

¹H NMR spectrum of **10a** (600 MHz, CDCl₃)

¹³C NMR spectrum of **10a** (151 MHz, CDCl₃)

¹H NMR spectrum of **10b** (600 MHz, CDCl₃)

¹³C NMR spectrum of **10b** (151 MHz, CDCl₃)

¹H NMR spectrum of **10c** (600 MHz, CDCl₃)

 ^{13}C NMR spectrum of 10c (151 MHz, CDCl_3)

¹H NMR spectrum of **10d** (600 MHz, CDCl₃)

¹³C NMR spectrum of **10d** (151 MHz, CDCl₃)

¹H NMR spectrum of **10e** (600 MHz, CDCl₃)

¹³C NMR spectrum of **10e** (151 MHz, CDCl₃)

¹H NMR spectrum of **10f** (600 MHz, CDCl₃)

¹³C NMR spectrum of **10f** (151 MHz, CDCl₃)

¹H NMR spectrum of **10g** (600 MHz, CDCl₃)

¹³C NMR spectrum of **10g** (151 MHz, CDCl₃)

¹H NMR spectrum of **11** (400 MHz, CDCl₃)

¹³C NMR spectrum of **11** (151 MHz, CDCl₃)

6. Coordinates of optimized structures

Zn	-4.624220	0.255814	-0.074613
Zn	-1.496302	-0.140358	0.299474
Zn	2.139647	3.611482	-0.423999
Zn	1.587425	0.084914	0.076406
Zn	1.854601	-3.385646	-0.797451
0	-3.044155	1.418332	0.440946
0	0.155824	3.401488	-0.069152
0	2.926662	1.715411	-0.360226
0	2.728748	-1.449440	-0.975207
0	-0.112621	-3.116297	-0.613425
0	-3.172808	-1.089632	-0.645763
0	-0.047957	0.272157	-0.779525
Ν	-4.942539	0.093820	2.159423
Ν	-6.257125	-1.249995	0.199522
Ν	1.705114	3.795541	-2.594440
Ν	4.102844	4.296652	-1.493725
Ν	3.068408	3.925523	1.584258
Ν	1.822500	5.821318	0.139809
Ν	1.863802	-3.418731	-3.069095
Ν	1.408343	-5.614546	-1.549178
Ν	1.838405	-4.203531	1.283495
Ν	3.927361	-4.154653	-0.403959
Ν	-4.895841	0.561908	-2.315756
Ν	-6.193650	1.871152	-0.325346
С	-2.475426	3.619303	1.145035
С	-3.018479	2.343073	1.393598
С	-3.545861	2.039569	2.709705
С	-3.477859	2.992787	3.711890
С	-2.904600	4.264767	3.501433
С	-2.846128	5.235734	4.538184
С	-2.313043	6.483542	4.312010
С	-1.816293	6.805283	3.023388
С	-1.856195	5.885028	1.999414
С	-2.397068	4.580042	2.196284

Coordinates of Zn^{II} complex $\mathbf{1}_{Si}$ in Fig. S10.

С	-2.133511	3.996350	-0.266714
С	-0.841354	3.740758	-0.816077
С	-0.714780	3.888411	-2.268237
С	-1.722034	4.481045	-3.010136
С	-2.915662	4.945921	-2.424777
С	-3.877544	5.679137	-3.168523
С	-5.040550	6.130607	-2.584422
С	-5.277070	5.840334	-1.215240
С	-4.369964	5.119501	-0.471745
С	-3.134526	4.656412	-1.032395
С	-4.141379	0.721620	3.048324
С	-5.551634	-1.061814	2.498002
С	-5.346540	-1.684394	3.728015
С	-4.491969	-1.067241	4.640093
С	-3.912380	0.148360	4.314650
С	-6.469632	-1.629293	1.474237
С	-7.048757	-1.717630	-0.772582
С	-8.118475	-2.574352	-0.525650
С	-8.365908	-2.951454	0.794549
С	-7.533941	-2.478821	1.804529
С	0.475113	3.465046	-3.033953
С	2.786578	3.610548	-3.380024
С	2.700690	3.006348	-4.632502
С	1.443268	2.580323	-5.067389
С	0.327468	2.816639	-4.279479
С	4.060955	4.146493	-2.829269
С	5.197848	4.805509	-0.923461
С	6.308752	5.218374	-1.658765
С	6.265879	5.083829	-3.045557
С	5.131513	4.538556	-3.641427
С	4.895755	0.400571	-0.407936
С	4.079926	1.367658	0.205011
С	4.469174	1.917885	1.484914
С	5.647441	1.504347	2.074074
С	6.486466	0.530408	1.485951
С	7.689536	0.110958	2.113672
С	8.492207	-0.850730	1.542037

С	8.107515	-1.431407	0.309421
С	6.947743	-1.041653	-0.325212
С	6.094736	-0.044759	0.232047
С	4.536278	-0.095389	-1.777836
С	3.452176	-0.981492	-1.983464
С	3.119318	-1.344573	-3.348511
С	3.880086	-0.881577	-4.406495
С	4.996373	-0.041811	-4.221530
С	5.792038	0.386673	-5.318541
С	6.882811	1.203868	-5.127254
С	7.202547	1.629070	-3.813897
С	6.442771	1.236773	-2.733944
С	5.315798	0.371078	-2.885801
С	3.638279	2.891747	2.235375
С	2.464263	4.917477	2.274881
С	2.335430	4.879514	3.661683
С	2.843851	3.769808	4.339413
С	3.507960	2.777706	3.634303
С	1.974454	6.059787	1.455233
С	1.395072	6.798058	-0.665415
С	1.112910	8.084047	-0.207330
С	1.291180	8.349831	1.150354
С	1.724962	7.329771	1.992987
С	2.001972	-2.246017	-3.716517
С	1.027897	-4.358485	-3.557795
С	0.223445	-4.136568	-4.674958
С	0.282965	-2.885944	-5.288169
С	1.183491	-1.940147	-4.820901
С	1.037954	-5.660171	-2.839029
С	1.444242	-6.746421	-0.840338
С	1.135912	-7.992136	-1.385853
С	0.777630	-8.050101	-2.732287
С	0.724737	-6.870873	-3.470678
С	-2.341346	-3.791764	-0.230750
С	-0.982384	-3.681289	0.171358
С	-0.621121	-4.206033	1.485245
С	-1.583301	-4.833793	2.261135

С	-2.918201	-4.994479	1.848755
С	-3.862094	-5.691891	2.648553
С	-5.157513	-5.879055	2.222311
С	-5.547811	-5.360542	0.960869
С	-4.659422	-4.666213	0.169982
С	-3.304294	-4.454741	0.576428
С	-2.772081	-3.254952	-1.561557
С	-3.182755	-1.911876	-1.681495
С	-3.637021	-1.436069	-2.973780
С	-3.703251	-2.301551	-4.054087
С	-3.356129	-3.662303	-3.943446
С	-3.505717	-4.560675	-5.035513
С	-3.211649	-5.898600	-4.899367
С	-2.745286	-6.382064	-3.649251
С	-2.575312	-5.531990	-2.578942
С	-2.878123	-4.139621	-2.676266
С	0.735469	-4.148231	2.066752
С	3.057451	-4.414802	1.830433
С	3.235780	-4.555495	3.204866
С	2.128516	-4.361760	4.035609
С	0.885355	-4.124767	3.475568
С	4.190595	-4.514041	0.866879
С	4.884370	-4.240804	-1.334285
С	6.166718	-4.704519	-1.053782
С	6.454145	-5.080712	0.258187
С	5.461196	-4.986246	1.227620
С	-4.092114	-0.047639	-3.213238
С	-5.464344	1.748429	-2.614023
С	-5.213463	2.420915	-3.809308
С	-4.328559	1.836933	-4.715357
С	-3.771819	0.600684	-4.424664
С	-6.391705	2.294273	-1.586619
С	-6.983207	2.325031	0.654338
С	-8.034937	3.209477	0.423581
С	-8.269597	3.626507	-0.886186
С	-7.438518	3.168077	-1.904323
0	-1.643344	-0.948679	2.130312

С	-1.136531	-0.805702	3.312866
С	-0.440354	0.519668	3.616949
0	-1.186343	-1.684396	4.195027
Η	-3.892440	2.774021	4.693368
Н	-3.235401	4.970319	5.519380
Н	-2.275555	7.220290	5.110509
Н	-1.401682	7.793747	2.840604
Н	-1.478220	6.142005	1.015448
Н	-1.573758	4.645001	-4.076295
Η	-3.665846	5.892918	-4.215689
Н	-5.759806	6.713686	-3.154459
Н	-6.188522	6.198796	-0.742111
Н	-4.573177	4.922375	0.574597
Н	-5.782163	-2.654114	3.939382
Н	-4.255622	-1.546860	5.584298
Н	-3.218483	0.622330	4.996629
Η	-6.806050	-1.384632	-1.777627
Η	-8.737002	-2.928091	-1.343855
Η	-9.198321	-3.606457	1.036172
Η	-7.714623	-2.748819	2.838359
Η	3.589759	2.821855	-5.224314
Η	1.343540	2.065153	-6.019355
Η	-0.658110	2.488973	-4.587534
Η	5.170380	4.880510	0.159743
Η	7.176133	5.632206	-1.154773
Η	7.105147	5.399196	-3.659039
Η	5.073132	4.431207	-4.718338
Η	5.946161	1.926613	3.030356
Η	7.961870	0.564180	3.064824
Η	9.409862	-1.166106	2.031695
Η	8.736597	-2.194717	-0.143324
Η	6.666413	-1.497985	-1.267769
Η	3.637423	-1.200040	-5.418059
Η	5.524633	0.043583	-6.316690
Η	7.495133	1.517192	-5.969021
Η	8.060710	2.277742	-3.654588
Η	6.704251	1.585148	-1.742359

Η	1.803527	5.659565	4.194191
Н	2.707108	3.676837	5.413095
Н	3.861543	1.876021	4.115361
Н	1.273840	6.527231	-1.710642
Н	0.767834	8.848485	-0.895724
Н	1.096939	9.341226	1.550321
Н	1.882604	7.520523	3.048179
Η	-0.479894	-4.888177	-5.012912
Η	-0.374895	-2.657674	-6.121978
Н	1.257582	-0.960076	-5.276933
Η	1.729676	-6.639705	0.201925
Н	1.180508	-8.885424	-0.771241
Η	0.543311	-9.000854	-3.203169
Н	0.458300	-6.888005	-4.521133
Η	-1.303557	-5.263449	3.218210
Н	-3.533545	-6.083691	3.609625
Н	-5.870265	-6.426079	2.834505
Н	-6.565123	-5.517447	0.609455
Н	-4.981947	-4.282652	-0.791866
Н	-4.088678	-1.945155	-5.007126
Η	-3.876072	-4.169485	-5.981842
Η	-3.346916	-6.582248	-5.733820
Η	-2.522027	-7.439911	-3.533577
Η	-2.219882	-5.915372	-1.629014
Η	4.215437	-4.727958	3.633111
Η	2.249255	-4.356673	5.113842
Η	0.033800	-3.860138	4.089793
Η	4.599913	-3.922719	-2.333075
Η	6.913163	-4.761574	-1.839093
Η	7.441660	-5.445269	0.526299
Η	5.670216	-5.284978	2.247602
Η	-5.632620	3.402844	-3.991105
Н	-4.072118	2.352658	-5.636727
Η	-3.076164	0.127636	-5.107475
Η	-6.754194	1.955584	1.649290
Η	-8.651974	3.551646	1.247856
Н	-9.089309	4.302124	-1.113817

Η	-7.605239	3.471722	-2.931168
Η	-0.383653	0.685698	4.697686
Η	-0.944324	1.363626	3.138498
Η	0.577804	0.472784	3.206035
0	2.194949	-0.048055	1.960714
С	2.964334	-0.931379	2.596218
Η	2.425591	-1.843516	2.905606
Η	3.879160	-1.222329	2.044921
0	3.472374	-0.332734	3.869026
Si	4.179158	-1.098484	5.138537
Η	5.043454	-2.251091	4.719319
Η	5.085545	-0.112961	5.804859
С	2.919711	-1.704178	6.401069
С	3.306528	-2.238037	7.644651
С	1.546066	-1.645170	6.108796
С	2.357001	-2.697466	8.559446
Η	4.362252	-2.295803	7.909804
С	0.590045	-2.109544	7.016333
Η	1.198843	-1.250380	5.160289
С	0.995067	-2.634953	8.244565
Η	2.676906	-3.104405	9.516416
Η	-0.456463	-2.055694	6.730367
Н	0.256815	-2.996865	8.957111

7. References

- S1 D. Zhao, Y. Wang, M.-X. Zhu, Q. Shen, L. Zhang, Y. Du and J.-X. Li, *RSC Adv.*, 2013, **3**, 10272–10276.
- S2 M. L. Deb, P. J. Borpatra, P. J. Sakia and P. K. Baruah, Org. Biomol. Chem., 2017, 15, 1435–1443.
- S3 F. Pu, Y. Li, Y.-H. Song, J. Xiao, Z.-W. Liu, C. Wang, Z.-T. Liu, J.-G. Chen and J. Lu, Adv. Synth. Catal., 2016, 358, 539–542.
- S4 M. Yan, R. C. Hider and Y. Ma, Org. Chem. Front., 2019, 6, 1168–1172.
- S5 S. Yang, W. Tang, Z. Yang and J. Xu, ACS Catal., 2018, 8, 9320–9326.
- S6 G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics*, 2010, **29**, 2176–2179.
- S7 P. J. Black, M. G. Edwards and J. M. J. Williams, Eur. J. Org. Chem., 2006, 2006, 4367–4378.
- S8 (a) K. Tokmic, C. R. Markus, L. Zhu and A. R. Fout, *J. Am. Chem. Soc.*, 2016, **138**, 11907–11913; (b)
 J. Matthes, T. Pery, S. Gründemann, G. Buntkowsky, S. Sabo-Etienne, B. Chaudret and H.-H. Limbach, *J. Am. Chem. Soc.*, 2004, **126**, 8366–8367; (c) G. Laurenczy, M. Faure, L. Vieille-Petit, G. Süss-Fink
 and T. R. Ward, *Adv. Synth. Catal.*, 2002, **344**, 1073–1077.