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Experimental Section

1. Materials Synthesis

All the reagents used in this work are commercially available and used as-received. 

The K2MnFe(CN)6 (KMF) sample was obtained via a simple chelating agent assisted 

precipitation method. Typically, the KMF sample was fabricated under room 

temperature as follows: 1) 2 mmol of trans-1,2-cyclohexanediaminetetraacetic acid 

(CyDTA, Aladdin) and 2 mmol of KOH (Beijing Chemical Works) were mixed in 50 mL 

of deionized water and stirred to get a clear solution (marked as solution A); 2) then, 

2 mmol of Mn(CH3COO)2·4H2O (Aladdin) was dissolved in solution A to obtain the 

solution B; 3) afterwards, the solution B was dropwise added into 50 mL solution 

containing 2 mmol K4Fe(CN)6·3H2O (Aladdin) with continuous magnetic stirring and N2 

bubbling. The resulting precipitate was collected by centrifugation, washed with 

water, and dried under vacuum at 80 ˚C for 12 h. The KMF-RGO sample was prepared 

by ball milling the mixture of KMF (70 wt.%) and reduced graphene oxide (RGO, 10 

wt.%, Qiaihe Baotailong) at 1200 rpm for 2 h with a ball: powder mass ratio of 20:1.

2. Materials Characterizations

The X-ray diffraction (XRD) spectra were collected using a Rigaku Dmax-2200 from 10 

degree to 60 degree with Cu Kα radiation (λ = 1.5416 Å). Fourier transform infrared 

(FT-IR) spectra were recorded by the FT-IR Microscope (Nicolet iN10). Thermal 

gravimetric analysis (TGA) measurement was conducted on a NETZSCH STA 449 F5/F3 

instrument with a heating rate of 10 °C min−1 under N2 flow from room temperature 

to xx ˚C. X-ray photoelectron spectroscopy (XPS) characterizations were carried out 

with a Thermo Escalab 250Xi with Al Kα (hv = 1486.6 eV) X-ray radiation and all binding 

energies of the XPS spectra were corrected by referencing C 1s to 284.8 eV. Inductively 

coupled plasma mass spectrometry (ICP-MS) data were measured by an Agilent 

ICPMS7800. The morphologies were recorded on a field emission scanning electron 

microscope (JEOL, JSM-7500F, 5kV). UV-vis spectra were collected by a UV-2700 
(Shimadzu, Japan).
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3. Electrochemical Measurements

KMF- RGO (80 wt.%), Ketjen Black (KB, 10 wt.%), and polyvinylidene fluoride (PVDF, 

10 wt.%) were dissolved in N-methyl-2-pyrrolidone to form a slurry, which was coated 

on aluminum foil (16 um, MTI Corp.) to obtain the working electrode, and then dried 

in vacuum at 80 °C for overnight. For the electrochemical tests in Figure 2 and S3, the 

areal loading of KMF-RGO on the electrode was around 4 mg cm−2. For other 

electrochemical tests, a relatively low areal loading of 1 mg cm−2 of KMF was used. 

The graphite anode was prepared by coating graphite, KB and PVDF on copper foil 

with a weight ratio of 8:1:1. Half-cells (coin-type, 2032, MTI Corp.) were assembled in 

an argon-filled glove box with both water and oxygen content less than 0.1 ppm by 

using working electrode, potassium metal as counter electrode, glass fiber as 

separator (Whatman, Grade GF/D) and 2.5 M potassium bis(fluorosulfonyl) imide 

(KFSI) dissolved in triethyl phosphate (TEP) as the electrolyte,1 respectively. The 

galvanostatic charge-discharge tests were performed on the Land battery system 

(Wuhan LAND electronics, China) at room temperature. Rate capability of the KMF-

RGO composite is assessed under a constant charge current density of 0.03 A/g (~ 

0.2C) but various discharge rates. In the graphite || KMF- RGO full-cell, both the KMF-

RGO cathode and graphite anode were not pre-cycled but directly assembled in the 

full-cell, and the capacity ratio of anode to cathode is 0.8:1. For the galvanostatic 

charge-discharge test of the full-cell, the specific current is calculated based on the 

weight of KMF in the full-cell. The specific energy of the full-cell is calculated by 

integration of voltage with the specific capacity which is automatically done by the 

Land battery testing system.
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Figure S1. TGA curves of the KMF (a) and (b) KMF-RGO. 
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Figure S2. SEM images of (a, b and c) KMF and (d, e and f) KMF-RGO. The RGO and 
KMF are marked by red arrows in e and f. 
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Figure S3. Rate capability of the KMF-RGO electrode with a high loading. The test is   
done under a constant charge current density of 0.03 A/g (~ 0.2C) but various 
discharge rates.
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Figure S4. Comparison of (a) rate capability and (b) cycling performance between 
the KMF-RGO composite synthesized with and without CyDTA. The rate capability test 
is performed under a constant charge current density of 0.03 A/g (~ 0.2C) but various 
discharge rates, and the cycling performance test is done under a specific current of 
75 mA g-1. 
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Figure S5. FT-IR spectrum of RGO.
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Figure S6. TGA curve of the KMF-RGO-Air sample.
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Figure S7. Charge–discharge potential profiles of the KMF-RGO and KMF-RGO-Air at 
15 mA g−1.
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Table S1. ICP-MS results for the KMF and KMF-RGO

sample K:Mn:Fe molecular formula

KMF 2:1:0.982  K
2
Mn[Fe(CN)

6
]

0.982
□

0.018
•0.164H

2
O

KMF-RGO 1.91:1:0.965  K
1.91

Mn[Fe(CN)
6
]

0.965
□

0.035
•0.389H

2
O
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Table S2. Comparison of the areal capacity for some reported cathode materials for 
KIBs

.

Cathodes
Discharge capacity 

(mAh g-1 ) 
@Current density 

(mA g-1 )

The loading 
mass of 
active  

material（
mg cm-2）

areal 
capacity
（mAh 
cm−2）

K1.91Mn[Fe(CN)6]0.965□0.035•0.389H2

O
(This work)

151.8@15 4.2 0.62

K1.94Mn[Fe(CN)6]0.994□0.006•0.08H2O2 154.7@15 1 0.15
K1.84Ni[Fe (CN)6]0.88·0.49H2O3  62.8@100 1.5 0.09

K2NiFe(CN)6·1.2H2O4 77.4@400 2 0.15
K1.88Zn2.88[Fe(CN)6]2(H2O)5

5 64.9@69.08 0.84 0.05
K2FeII[FeII(CN)6]·2H2O6 120@200 2 0.24

K1.93Fe[Fe(CN)6]0.97 ⋅ 1.82H2O7 142@75 1.015 0.15
K0.220Fe[Fe(CN)6]0.805⋅4.01H2O8 73.2@50 0.9 0.07

K1.7Fe[Fe(CN)6]0.9
9 140@10 0.875 0.12

K1.4Fe4[Fe(CN)6]3
10 71@50 1.05 0.07

K1.85Mn[Fe(CN)6]0.98□0.02·0.7H2O11 142.6@15 2.5 0.36
K 1.87Fe[Fe(CN)6]0.97·□0.03·0.84H2O12 88.9@50 1.68 0.15

FeFe(CN)6
13 121@62.5 1.2 0.15

K1.6Mn[Fe(CN)6]0.96
14 115@20  1.6 0.18

KFe[Fe(CN)6]15 118.7@10  2 0.24
K0.3Ti0.75Fe0.25[Fe(CN)6]0.95⋅2.8H2O16 113@100 0.7 0.08

Fe[Fe(CN)6]17 123@111 2.88 0.35
K0.12Fe[Fe(CN)6]0.75

18 215@1000 1 0.22
K1.92Fe[Fe(CN)6]0.94·0.5H2O19 133@65 1.4 0.19

K1.81Ni[Fe(CN)6]0.97·0.086H2O20 57@10 1.75 0.10
K0.77MnO2⋅0.23H2O 21 134@100 1.5 0.20

K0.5MnO2
22 106@5 4.4 0.49

K0.6CoO2
23 80@2 5.408 0.43

K0.69CrO2
24 100@10 3.5 0.35

K0.65Fe0.5Mn0.5O2
25 151@20 1.429 0.22

K0.51V2O5 26 131@30 0.5 0.26
K2Ni2TeO6

27 65@6.4 3.825 0.25
PTCDA28 131@10 1.0 0.13
PAQS29 200@20 2 0.40
PPTS30 250@100 1.2 0.30

ADAPTS23 134@15.5 0.66 0.09
KVPO4F31 92@6.65 4.076 0.37
KVP2O7

32 60@25.4 1.3 0.08
KVPO4F33 105@5 4.08 0.43
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KVOPO4
34 115@24 2 0.23
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