Electronic Supporting Information (ESI)

Same knot, longer rope: altering ligand geometry provides

control over nuclearity in self-assembled trefoil knots

Qi-Li-Sha Wang, ${ }^{a}$ Yue-Jian Lin ${ }^{\text {a }}$ and Guo-Xin Jin ${ }^{*}{ }^{a}$
${ }^{\text {a }}$ Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China.
*E-mail: gxjin@fudan.edu.cn

Table of Contents

S.N. Contents Page

1. Materials and methods 2
2. Synthesis of complex 1, 2, 3 and 4 2-4
3. Single-Crystal Structure Determination 4
4. X-Ray crystal structure parameters of complexes 1, 2, 3, and 4 5-8
5. NMR spectra 9-14
6. References 15

1. Materials and methods

All reagents and solvents were purchased from commercial sources and used as supplied unless otherwise mentioned. The starting materials $\left[\mathrm{Cp}^{*} \mathrm{MCl}_{2}\right]_{2}(\mathrm{M}=\mathrm{Rh}), 2,2^{\prime}$-bisbenzimidazole ($\mathbf{B i b z m}$), 2,5-dihydro-3,6-di-2-pyridinylpyrrolo[3,4-c]pyrrole-1,4-dione
(Dpdpd),
(2,7dihydroxybenzo $[l m n][3,8]$ phenanthroline-1,3,6,8(2H,7H)-tetrone) (Dhndi), $\quad \mathbf{L}_{\mathbf{a}} \quad$ and $\quad \mathbf{L}_{\mathbf{b}}$ were prepared by literature method. NMR spectra were recorded on Bruker AVANCE I 400 spectrometer.

NMR spectra were recorded at room temperature and referenced to the residual protonated solvent. ${ }^{\text {S1 }}$ Proton chemical shift $\delta \mathrm{H}=1.94 \mathrm{ppm}\left(\mathrm{CD}_{3} \mathrm{CN}\right)$ is reported relative to the solvent residual peak. Coupling constants are expressed in hertz. Elemental analysis was performed with an Elementar Vario EL III analyzer. The full ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum for some complexes could not be obtained due to limited solubility even after 24 h of measuring time.

2.1 Synthesis of ligand L_{b} and L_{a}

Scheme S1. Chemical structure of ligand $\mathbf{L}_{\mathbf{a}}$

Scheme S2. Chemical structure of ligand $\mathbf{L}_{\mathbf{b}}$

The ligand $\mathbf{L}_{\mathbf{b}}$ was synthesized according to previously reported literature procedures. ${ }^{\mathrm{S} 2}$ The ligand $\mathbf{L}_{\mathbf{a}}$ was synthesized as following process. Dimethyl 2,6-Naphthalenedicarboxylate ($500 \mathrm{mg}, 2.05$ mmol) was added into 15 mL anhydrous THF. Then $\mathrm{LiAlH}_{4}(389 \mathrm{mg}, 10.24 \mathrm{mmol})$ was carefully added into the solution under nitrogen protection at $0^{\circ} \mathrm{C}$. The mixture was stirred at $66^{\circ} \mathrm{C}$ for 24 h . The mixture was extracted by ethyl acetate, and got naphthalene-2,6-diyldimethanol as a white solid in 77.8% yield. ${ }^{53}$ The following procedures were familiar to the synthesis of $\mathbf{L}_{\mathbf{b}}$.

2.2 Synthesis of complex 1

$\mathrm{AgOTf}(25.7 \mathrm{mg}, 0.10 \mathrm{mmol})$ was added to a solution of $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(15.5 \mathrm{mg}, 0.025 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}(10 \mathrm{~mL})$ at room temperature. The reaction mixture was stirred in the dark at room temperature overnight and then filtered. Bibzm ($5.85 \mathrm{mg}, 0.025 \mathrm{mmol}$) and $\mathrm{NaOH}(2 \mathrm{mg}, 0.05$
mmol) were mixed in $\mathrm{CH}_{3} \mathrm{OH}(10 \mathrm{~mL})$ at room temperature for 5 h . Then mixed the two kinds of solution above and added $\mathbf{L}_{\mathbf{b}}(10.6 \mathrm{mg}, 0.025 \mathrm{mmol})$ to the mixture. The reaction mixture was stirred at room temperature for 24 h to give a light yellow solution. The solvent was concentrated to about 6 mL in a rotary evaporator. Then added about $0.3 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{CN}$ into the solvent. After extraction with isopropyl ether, a yellow solid was precipitated and collected. The product was dried under vacuum (68% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetonitrile- d_{3}) $\delta 8.23$ (d, $J=5.8 \mathrm{~Hz}, 14 \mathrm{H}$, pyridyl-H), 8.02 (dd, $J=6.1,3.3 \mathrm{~Hz}, 16 \mathrm{H}$, pyridyl-H), $7.52-7.36(\mathrm{~m}, 52 \mathrm{H}$, pyridyl-H and phenyl-H), $7.21(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, 14 H , phenyl-H), $5.08\left(\mathrm{~s}, 16 \mathrm{H},-\mathrm{CH}_{2}\right.$) , $1.76(\mathrm{~s}, 120 \mathrm{H}, \mathrm{Cp} *-\mathrm{H})$; elemental analysis (\%) calcd for $\mathrm{C}_{248} \mathrm{H}_{232} \mathrm{~F}_{24} \mathrm{Rh}_{8} \mathrm{~N}_{24} \mathrm{O}_{40} \mathrm{~S}_{8}$: C 52.04, H 4.06, N 5.87; found: C 51.89, H 4.10, N 5.95.

2.3 Synthesis of complex 2

The synthesis of $\mathbf{2}$ was carried out similarly to that of $\mathbf{1}$, with the use of $\mathbf{L}_{\mathbf{a}}(9.96 \mathrm{mg}, 0.025 \mathrm{mmol})$ instead of $\mathbf{L}_{\mathbf{b}}$, which was obtained as a yellow solid in 78.4% yield. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Acetonitrile$\left.d_{3}\right) \delta 8.14(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 12 \mathrm{H}$, pyridyl-H), 8.02 (dd, $J=6.2,3.5 \mathrm{~Hz}, 18 \mathrm{H}$, naphthyl-H), 7.77 (s, 8 H , pyridyl-H), 7.49 (d, $J=11.3 \mathrm{~Hz}, 28 \mathrm{H}$, pyridyl-H and phenyl-H), $5.47\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{CH}_{2}\right.$) , $5.11\left(\mathrm{~s}, 8 \mathrm{H},-\mathrm{CH}_{2}\right.$), 1.77 (s, $90 \mathrm{H}, \mathrm{Cp} *-\mathrm{H}$); elemental analysis (\%) calcd for $\mathrm{C}_{180} \mathrm{H}_{168} \mathrm{~F}_{18} \mathrm{Rh}_{6} \mathrm{~N}_{18} \mathrm{O}_{30} \mathrm{~S}_{6}$: C 51.29, H 3.99, N 5.98; found: C 51.13, H 4.12, N 6.12 .

2.4 Synthesis of complex 3

$\operatorname{AgOTf}(25.7 \mathrm{mg}, 0.10 \mathrm{mmol})$ was added to a solution of $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(15.5 \mathrm{mg}, 0.025 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}(10 \mathrm{~mL})$ at room temperature. The reaction mixture was stirred in the dark at room temperature overnight and then filtered. Dpdpd ($7.20 \mathrm{mg}, 0.025 \mathrm{mmol}$) and $\mathrm{NaOH}(2 \mathrm{mg}, 0.05$ mmol) were mixed in $\mathrm{CH}_{3} \mathrm{OH}(10 \mathrm{~mL})$ at room temperature for 5 h . Then mixed the two kinds of solution above and added $\mathbf{L}_{\mathbf{a}}(9.96 \mathrm{mg}, 0.025 \mathrm{mmol})$ to the mixture. The reaction mixture was stirred at room temperature for 24 h to give a dark blue solution. The solvent was concentrated to about 6 mL in a rotary evaporator. Upon addition of diethyl ether, a dark blue solid was precipitated and collected. The product was recrystallized from a methanol/diethyl ether mixture in 71.1% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetonitrile- d_{3}) $\delta 9.00(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 4 \mathrm{H}$, pyridyl-H), $8.92(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}$, pyridylH), $8.77(\mathrm{~s}, 2 \mathrm{H}$, pyridyl-H), $8.61(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}$, pyridyl-H), $8.21(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}$, pyridyl-H), 7.85 - $7.74(\mathrm{~m}, 10 \mathrm{H}$, naphthyl-H), $7.69(\mathrm{t}, J=8.6 \mathrm{~Hz}, 10 \mathrm{H}$, pyridyl-H and naphthyl-H), $7.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 4 H, pyridyl-H), $5.68\left(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{CH}_{2}-\right), 5.35\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{CH}_{2}-\right), 1.63\left(\mathrm{~s}, 60 \mathrm{H}, \mathrm{Cp}^{*}-\right.$ H); elemental analysis (\%) calcd for $\mathrm{C}_{124} \mathrm{H}_{112} \mathrm{~F}_{12} \mathrm{Rh}_{4} \mathrm{~N}_{12} \mathrm{O}_{24} \mathrm{~S}_{4}$: C 50.48, H 3.80, N 5.70; found: C 50.28, H 3.93, N 5.87.

2.5 Synthesis of complex 4

The synthesis of $\mathbf{4}$ was carried out similarly to that of $\mathbf{3}$, with the use of Dhndi $(7.45 \mathrm{mg}, 0.025$ mmol) instead of Dpdpd, which was obtained as a dark brown solid in 49.2% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetonitrile- d_{3}) $\delta 8.66(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 4 \mathrm{H}$, pyridyl-H), $8.46(\mathrm{~s}, 4 \mathrm{H}$, pyridyl-H), $7.85(\mathrm{~d}, J=22.6$ $\mathrm{Hz}, 6 \mathrm{H}$, naphthyl-H), 7.70 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, pyridyl-H), $7.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, pyridyl-H), $5.52(\mathrm{~s}$, $4 \mathrm{H},-\mathrm{CH}_{2}-$), 1.70 ($\mathrm{s}, 30 \mathrm{H}, \mathrm{Cp} *-\mathrm{H}$); elemental analysis (\%) calcd for $\mathrm{C}_{60} \mathrm{H}_{52} \mathrm{~F}_{6} \mathrm{Rh}_{2} \mathrm{~N}_{4} \mathrm{O}_{16} \mathrm{~S}_{2}$: C 49.05, H $3.54, \mathrm{~N} 3.82$; found: C 49.21, H 3.47, N 3.95 .

3. Single-Crystal Structure Determination

X-ray Crystallography Details. Single crystals of complex 1 suitable for X-ray diffraction study was collected at $170 \mathrm{~K}, \mathbf{2}$ was collected at $154 \mathrm{~K}, \mathbf{3}$ at and $\mathbf{4}$ at 173 K on a Bruker D8 VENTURE system. The structures of 1, 2, $\mathbf{3}$ and $\mathbf{4}$ were solved by direct methods, using Fourier techniques, and refined on F^{2} by a full-matrix least-squares method. ${ }^{\mathrm{S5}, \mathrm{~S} 6}$ In these data, the disordered solvent molecules which could not be restrained properly were removed using the SQUEEZE route.

In asymmetric unit of $\mathbf{1}$, there were disordered anions and solvents (seven triflate anions, ten methanol and eleven water molecules) which could not be restrained properly. Therefore, SQUEEZE algorithm was used to omit them. 21 ISOR and 8 DFIX instructions were used to restrain ligands and Cp * fragments so that there were 134 restraints in the data. Hydrogen of water molecules could not be found and others were put in calculated positions.
In asymmetric unit of $\mathbf{2}$, there were disordered anion and solvents (one triflate anion, seven methanol and twelve water molecules) which could not be restrained properly. Therefore, SQUEEZE algorithm was used to omit them. Two metallo-angle (Rh4, Rh6 and coordinated Cp* fragments) and one triflate anion were disordered and they were divided into two parts (61:39, 59:41 for metallo-angle and 46:54 for anion). 66 ISOR, 3 SIMU and 23 DFIX instructions were used to restrain anions, solvent molecule and Cp* fragments so that there were 599 restraints in the data. Hydrogen of methanol and water molecules could not be found and others were put in calculated positions.
In asymmetric unit of $\mathbf{3}$, there were disordered anions and solvents (two triflate anions, two $\mathrm{N}, \mathrm{N}-$ dimethylformamide, seven methanol and five water molecules) which could not be restrained properly. Therefore, SQUEEZE algorithm was used to omit them. 18 ISOR, 10 DELU and 12 DFIX instructions were used to restrain anions, ligands and solvent molecules so that there were 131 restraints in the data. Hydrogen of one water molecule could not be found and others were put in calculated positions.

In asymmetric unit of 4, there were disordered solvent molecules (one diethyl ether, two methanol and one water molecules) which could not be restrained properly. Therefore, SQUEEZE algorithm was used to omit them. One triflate anion was disordered and it was divided into two parts (75:25). 12 ISOR and 7 DFIX instructions were used to restrain anion and solvent molecule so that there were 87 restraints in the data. Hydrogen of water molecule could not be found and others were put in calculated positions.

4. X-Ray crystal structure parameters of complexes $1,2,3$, and 4

Table S1. Crystal data and structure refinement for 1.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.679^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[I>2 \operatorname{sigma}(I)]$
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
$\mathrm{C}_{258} \mathrm{H}_{300} \mathrm{~F}_{24} \mathrm{~N}_{24} \mathrm{O}_{64} \mathrm{Rh}_{8} \mathrm{~S}_{8}$
6296.96

170(2) K
$1.54178 \AA$
Monoclinic
C2/c
$a=71.010(4) \AA \quad \alpha=90^{\circ}$.
$b=16.0851(10) \AA \quad \beta=99.200(5)^{\circ}$.
$c=49.267(2) \AA \quad \gamma=90^{\circ}$.
55549(5) \AA^{3}
8
$1.506 \mathrm{Mg} / \mathrm{m}^{3}$
$5.143 \mathrm{~mm}^{-1}$
25856
$0.250 \times 0.220 \times 0.180 \mathrm{~mm}^{3}$
2.039 to 70.000°.
$-86<=h<=86,-19<=k<=19,-58<=k<=60$
414239
$52659[R($ int $)=0.1766]$
100.0 \%

Semi-empirical from equivalents
0.753 and 0.475

Full-matrix least-squares on F^{2}
52659 / 134 / 2724
1.067
$R_{1}=0.1040, w R_{2}=0.2942$
$R_{1}=0.1506, \mathrm{w} R_{2}=0.3509$
0.000018(3)
2.502 and -1.628 e. \AA^{-3}
[a] $R_{l}=\Sigma\left\|\left|F_{0}\right|-\mid F_{c}\right\|$ (based on reflections with $\left.F_{0}{ }^{2}>2 \sigma F^{2}\right) . w R_{2}=\left[\Sigma\left[\mathrm{w}\left(F_{0}{ }^{2}-F_{c}^{2}\right)^{2}\right] / \Sigma\left[\mathrm{w}\left(F_{0}{ }^{2}\right)^{2}\right]\right]^{1 / 2} ; w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.095 P)^{2}\right] ; P=\left[\max \left(F_{0}{ }^{2}\right.\right.$,
$\left.0)+2 F_{c}^{2}\right] / 3$ (also with $F_{0}^{2}>2 \sigma F^{2}$)

Table S2. Crystal data and structure refinement for 2.

Empirical formula	$\mathrm{C}_{194} \mathrm{H}_{240} \mathrm{~F}_{18} \mathrm{~N}_{18} \mathrm{O}_{52} \mathrm{Rh}_{6} \mathrm{~S}_{6}$	
Formula weight	4807.85	
Temperature	154(2) K	
Wavelength	$1.34138 \AA$	
Crystal system	Triclinic	
Space group	$P^{\overline{1}}$	
Unit cell dimensions	$a=23.6578(11) \AA \quad \alpha=119.776(2)^{\circ}$.	
	$b=23.6790(11) \AA \quad \beta=98.285(2)^{\circ}$.	
	$c=23.8109(11) \AA \quad \gamma=91.895(2)^{\circ}$.	
Volume	$11371.5(9) \AA^{3}$	
Z	2	
Density (calculated)	$1.404 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$3.174 \mathrm{~mm}^{-1}$	
$F(000)$	4948	
Crystal size	$0.180 \times 0.140 \times 0.060 \mathrm{~mm}^{3}$	
Theta range for data collection	3.249 to 55.042°.	
Index ranges	$-28<=h<=28,-28<=k<=28,-28<=l<=29$	
Reflections collected	157195	
Independent reflections	$43046[\mathrm{R}(\mathrm{int})=0.0873]$	
Completeness to theta $=53.594^{\circ}$	99.7 \%	
Absorption correction	Multi-sccan	
Max. and min. transmission	0.751 and 0.493	
Refinement method	Full-matrix least-squares on F^{2}	
Data / restraints / parameters	43046 / 599 / 2600	
Goodness-of-fit on F^{2}	1.056	
Final R indices [$1>2 \operatorname{sigma}(1)$]	$R_{1}=0.0810, w R_{2}=0.2032$	
R indices (all data)	$R_{1}=0.1039, w R_{2}=0.2139$	
Extinction coefficient	n / a	
Largest diff. peak and hole	1.944 and -1.217e. \AA^{-3}	
[a] $R_{l}=\Sigma\| \| F_{f} \mid-F_{c} \\|$ (based on reflections with 0) $\left.+2 F_{c}{ }^{2}\right] / 3$ (also with $F_{0}{ }^{2}>2 \sigma F^{2}$)	$\left.\left.\left.\left.F_{0}{ }^{2}-F_{c}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{0}{ }^{2}\right)^{2}\right]\right]\right]^{1 / 2} ; w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.095 P)^{2}\right] ; P=\left[\max \left(F_{0}{ }^{2}\right.\right.$,	

Table S3. Crystal data and structure refinement for 3 .

Empirical formula	$\mathrm{C}_{138} \mathrm{H}_{172} \mathrm{~F}_{12} \mathrm{~N}_{14} \mathrm{O}_{41} \mathrm{Rh}_{4} \mathrm{~S}_{4}$	
Formula weight	3450.77	
Temperature	173.0 K	
Wavelength	$1.54178 \AA$	
Crystal system	Triclinic	
Space group	$P^{\overline{1}}$	
Unit cell dimensions	$a=18.7640(13) \AA \quad \alpha=111.167(4)^{\circ}$.	
	$b=20.0235(12) \AA \quad \beta=104.102(4)^{\circ}$.	
	$c=23.0409(15) \AA \quad \gamma=94.488(4)^{\circ}$.	
Volume	7696.2(9) \AA^{3}	
Z	2	
Density (calculated)	$1.489 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$4.742 \mathrm{~mm}^{-1}$	
$F(000)$	3556	
Crystal size	$0.25 \times 0.22 \times 0.18 \mathrm{~mm}^{3}$	
Theta range for data collection	2.150 to 67.499°.	
Index ranges	$-22<=h<=22,-23<=k<=23,-27<=l<=27$	
Reflections collected	93371	
Independent reflections	$27676[\mathrm{R}(\mathrm{int})=0.1710]$	
Completeness to theta $=67.499^{\circ}$	99.7 \%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7533 and 0.5089	
Refinement method	Full-matrix least-squares on F^{2}	
Data / restraints / parameters	27676 / 131 / 1539	
Goodness-of-fit on F^{2}	1.000	
Final R indices [$1>2 \operatorname{sigma}(1)$]	$R_{l}=0.1095, w R_{2}=0.2902$	
R indices (all data)	$R_{l}=0.1772, w R_{2}=0.3584$	
Extinction coefficient	0.00114(10)	
Largest diff. peak and hole	1.300 and -1.137 e. \AA^{-3}	
[a] $R_{l}=\Sigma\| \| F_{f} \mid-F_{c} \\|$ (based on reflections with 0) $\left.+2 F_{c}{ }^{2}\right] / 3$ (also with $F_{0}{ }^{2}>2 \sigma F^{2}$)	$\left.\left.\left.\left.F_{0}{ }^{2}-F_{c}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{0}{ }^{2}\right)^{2}\right]\right]\right]^{1 / 2} ; w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.095 P)^{2}\right] ; P=\left[\max \left(F_{0}{ }^{2}\right.\right.$,	

Table S4. Crystal data and structure refinement for 4.

Empirical formula	$\mathrm{C}_{70} \mathrm{H}_{84} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{22} \mathrm{Rh}_{2} \mathrm{~S}_{2}$
Formula weight	1717.35
Temperature	173(2) K
Wavelength	1.54178 A
Crystal system	Triclinic
Space group	$P^{\overline{1}}$
Unit cell dimensions	$a=11.7168(9) \AA \quad \alpha=68.846(4)^{\circ}$.
	$b=16.8296(12) \AA \quad \beta=87.425(4)^{\circ}$.
	$c=20.3839(14) \AA \quad \gamma=87.035(4)^{\circ}$.
Volume	3742.1(5) \AA^{3}
Z	2
Density (calculated)	$1.524 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$4.877 \mathrm{~mm}^{-1}$
$F(000)$	1768
Crystal size	$0.250 \times 0.220 \times 0.180 \mathrm{~mm}^{3}$
Theta range for data collection	2.325 to 69.496°.
Index ranges	$-14<=h<=14,-20<=k<=20,-23<=l<=24$
Reflections collected	77977
Independent reflections	$14061[\mathrm{R}(\mathrm{int})=0.0644]$
Completeness to theta $=67.679^{\circ}$	100.0 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.753 and 0.469
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	14061 / 79 / 914
Goodness-of-fit on F^{2}	1.046
Final R indices [$1>2 \operatorname{sigma}(1)$]	$R_{1}=0.0447, w R_{2}=0.1269$
R indices (all data)	$R_{1}=0.0517, w R_{2}=0.1320$
Extinction coefficient	n / a
Largest diff. peak and hole	1.217 and -1.196 e. \AA^{-3}
[a] $R_{l}=\Sigma\| \| F_{0}\left\|-\left\|F_{c}\right\|\right.$ (based on reflections with $\left.F_{0}{ }^{2}>2 \sigma F^{2}\right) . w R_{2}=\left[\Sigma\left[w\left(F_{0}{ }^{2}-F_{c}\right)^{2}\right] / \Sigma\left[\mathrm{w}\left(F_{0}{ }^{2}\right)^{2}\right]\right]^{1 / 2} ; w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.095 P)^{2}\right] ; P=\left[\max \left(F_{0}{ }^{2}\right.\right.$, 0) $\left.+2 F_{c}{ }^{2}\right] / 3$ (also with $F_{0}{ }^{2}>2 \sigma F^{2}$)	

5. NMR spectra

Fig. S1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) spectrum of $\mathbf{1}$.

Fig. S2. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) spectrum of $\mathbf{1}$.

Fig. S3. ${ }^{1} \mathrm{H}$ DOSY NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) spectrum of $\mathbf{1}$.

Fig. S4. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \mathrm{ppm}\right)$ spectrum of $\mathbf{2}$.

Fig. S5. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) spectrum of $\mathbf{2}$.

Fig. S6. ${ }^{1} \mathrm{H}$ DOSY NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) spectrum of 2.

Fig. S7. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right.$, ppm) spectrum of $\mathbf{3}$.

Fig. S8. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) spectrum of $\mathbf{3}$.

Fig. S9. ${ }^{1} \mathrm{H}$ DOSY NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) spectrum of $\mathbf{3}$.

Fig. S10. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \mathrm{ppm}$) spectrum of 4.

Fig. S11. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \mathrm{ppm}\right)$ spectrum of 4 .

Fig. S12. ${ }^{1} \mathrm{H}$ DOSY NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) spectrum of 4 .

References

S1 G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics 2010, 29, 2176.

S2 N. F. Liu, S. L. Huang, X. G. Liu, H. K. Luo and T. S. Andy Hor. Chem. Commun., 2017, 53, 12802.

S3 G.-Y. Zhu, M. Meng, Y.-N. Tan, X. Xiao and C.-Y. Liu. Inorg. Chem. 2016, 55, 6315.
S4 L.-L. Dang, Z.-B. Sun, W.-L. Shan, Y.-J. Lin, Z.-H. Li and G.-X. Jin. Nat. Commun. 2019, 10, 2057.
S5 G. M. Sheldrick, Acta Crystallogr. Sect. A 1990, 46, 467.
S6 G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64,112.

