Supporting Information

SbCl₃ Initiated Conjunctive C-H Bond Functionalization and Carbochlorination between Glycine Esters and Methylenecyclopropanes (MCPs)

Yichun Su, ^[a] Shuwei Zhang, ^[a] Yuan Yuan, ^[a] Qiyuan Ma, ^[a] Zhen Sun, ^[a]

Yu Yuan $*^{[a]}$ and Xiaodong Jia $*^{[a]}$

^[a] School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou,

Jiangsu 225002, China

yyuan@yzu.edu.cn; jiaxd1975@163.com

Content	page
General	S2
Optimization of reaction conditions	S2
General experimental procedure	S 3
Detection of the intermediates by HRMS	S4
XPS analysis of the reaction between $SbCl_3$ and O_2	S5
Analytical data for compounds	S7
¹ H, ¹³ C and HRMS spectra	S21

General:

Antimony trichloride was purchased from commercial source and used without further purification. Flash chromatography was carried out with silica gel (200-300 mesh). Analytical TLC was performed with silica gel GF254 plates, and the products were visualized by UV detection. ¹H NMR and ¹³C NMR (400 MHz and 100 MHz, respectively) spectra were recorded in CDCl₃. Chemical shifts (δ) are reported in ppm using TMS as internal standard and spin-spin coupling constants (J) are given in Hz. The high resolution mass spectra (HRMS) were measured on an electrospray ionization (ESI) apparatus using time of flight (TOF) mass spectrometry.

۸ ...

Optimization of reaction conditions

Ar_N	I [∕] CO₂Me ⁻¹	Ar	O ₂ , sol Ar = 4	b <mark>Cl₃</mark> vent, 60 ⁰C 4-MeC ₆ H₄	Me		Cl ℃O ₂ Me
1	а	2a				3a	
_	Entry	[Sb]		Solvent	•	Yield (%) ^a	
	1	SbCl ₃ (1 e	quiv)	MeCN		41	
	2	SbCl ₃ (2 e	quiv)	MeCN		76	
	3	SbCl ₃ (2 e	quiv)	THF		58	
	4	SbCl ₃ (2 e	quiv)	anisole		66	
	5	SbCl ₃ (2 e	quiv)	toluene		73	
	6	SbCl ₃ (2 e	quiv)	DCE		n. r.	
	7	SbF ₃ (2 eq	uiv)	MeCN		n. r.	
	8	Sb ₂ O ₃ (2 e	quiv)	MeCN		n. r.	
	9	Sb ₂ O ₅ (2 e	quiv)	MeCN		n. r.	
	10	SbCl ₅ (2 ed	quiv)	MeCN		25	
	11	SbCl ₃ (3 e	quiv)	MeCN		84 (79) ^b	

1. SbCl₃/O₂ initiated synthesis of chlorinated quinolines

^a Yields were determined by crude ¹H NMR using 1,3,5-trimethoxylbenzene as an internal standard; ^b The yield in the parentheses is the isolated yield.

The model reaction of glycine **1a** and MCP **2a** was conducted in the presence of one equivalent of SbCl₃ under dioxygen atmosphere (Table 1), and as our expected, the conjunctive C-H bond oxidation and carbochlorination occurred smoothly, affording the desired chlorinated quinoline **3a** in 41% yield (entry 1). Increasing the amount of SbCl₃ to 2 equivalent, the reaction efficiency was enhanced to 76% yield (entry 2), and the solvent screen showed that MeCN is still the best solvent (entries3-6). Other antimony reagents were also evaluated (entries 7-10), however, only SbCl₅ gave the chlorinated quinolines in 25% yield (entry 10), probably due to that high concentration of the Sb(V) would cause over-oxidation of the substrates. When the amount of SbCl₃ was increased to 3 equivalent, the best result was obtained and the desired product 3a was provided in 84% ¹H NMR and 79% isolated yields, respectively (entry 11).

2. SbCl₃/O₂ initiated synthesis of chlorinated dihydroquinolines

			Ar ² Ar ²
Ar ¹ N CO ₂ M H 1a	$\begin{array}{c} \begin{array}{c} Ar^{2} \\ Ar^{2} \\ \hline \\ Sa \\ Ar^{2} \\ \hline \\ Sa \\ Ar^{2} \\ \hline \\ Sa \\ Ar^{2} \\ \hline \\ Ar^{2} \\ \hline \end{array}$	$ \begin{array}{c} \text{bCl}_{3} \\ \text{Ivent, } T^{\circ}C \\ \text{4-MeC} \\ \text{4-CIC} \\ 6H_{4}; \\ 6H_{4}. \end{array} R - I \\ \end{array} $	CI NH CO ₂ Me 6a
Entry	SbCl ₃ (x equiv)	Solvent	Yield (%) ^a
1	2	MeCN	44
2	2.5	MeCN	52
3	3	MeCN	35
4	3	MeCN	30 ^b
5	2.5	THF	18
6	2.5	1,4-dioxane	n. r.
7	2.5	toluene	22
8	2.5	anisole	16
9	2.5	MeCN	21 °
10	2.5	MeCN	22 ^d
11	2.5	MeCN	54 ^e
12	2.5	MeCN	23 ^f

^a The yields in the parentheses are the isolated yields; ^b In the presence of 3 equivalent of **5a**; ^c The reaction was conducted at 50°C; ^d The reaction was conducted at 70°C; ^e 10 mol % CuBr; ^f 10 mol % CuCl.

Using MeCN as the solvent, the desired dihydroquinoline **6a** was isolated in 44% yield (entry 1). Increasing the amount of SbCl₃ to 2.5 equivalent, the reaction outcome was improved to 52% yield (entry 2). However, further increasing the amount of SbCl₃ resulted in the decrease of the yields (entries 3-4), and the reaction became complicated with a series of unidentified side-products. Next, a solvent screen was performed, and the results showed that MeCN is still the best solvent (entries 5-8). Evaluation of the reaction temperature revealed that this reaction is sensitive to the reaction temperature (entries 9-10), and at 60°C, the best result was provided. To improve the reaction efficiency, the model reaction was conducted in the presence of CuX (entries 11-12), and the results showed that CuCl decreased the yield of **6a** to 23%. It is believed that in the absence of the terminal aromatization as the driving-force, the efficiency of this sp^3 C-H bond oxidation will be greatly reduced, which is consistent with our previous research.

General Experimental Procedure

1. SbCl₃/O₂ initiated synthesis of chlorinated quinolines

A solution of **1a** (0.3 mmol) and **2a** (0.6 mmol) in MeCN (5 mL) was mixed fully, then SbCl₃ (0.9 mmol) was added dropwise under O_2 atmosphere. The reaction solution was stirred at 60 °C (oil bath). After completion monitored by TLC (by UV visualization), the solvent was removed under reduced pressure. The products were separated by silica gel column chromatography eluted with petroleum ether/ethyl acetate (v/v 5:1) to afford the product **3a** in 79% yield.

2. SbCl₃/O₂ initiated synthesis of chlorinated dihydroquinolines

A solution of **1** (0.3 mmol) and **5** (0.6 mmol) in MeCN (5 mL) was mixed fully, then SbCl₃ (0.75 mmol) was added dropwise under O_2 atmosphere. The reaction solution was stirred at 60 °C (oil bath). After completion monitored by TLC (by UV visualization), the solvent was removed under reduced pressure. The products were separated by silica gel column chromatography eluted with petroleum ether/ethyl acetate (v/v 6:1) to afford the product.

Detection of the intermediate by HRMS

A solution of **1a** (0.3 mmol) and **2a** (0.6 mmol) in MeCN (5 mL) was mixed fully, then SbCl₃ (0.9 mmol) was added dropwise under O₂ atmosphere. The reaction solution was stirred under 60 °C (oil bath). After stirring for 3 hours, 3 equivalent of TEMPO was added and then the reaction mixture was tested by HRMS. Fortunately, several intermediates (**Int-1** to **4**) were detected. These intermediates imply that this reaction is mediated by a radical intermediate and the intramolecular cyclization of the generated radical might be faster than the β -fragmentation of the cyclopropylmethylene radical.

XPS analysis of the reaction between SbCl₃ and O₂

A solution of $SbCl_3(0.3 \text{ mmol})$ in MeCN (5 mL) was mixed stirred at 60 °C (oil bath) under O_2 atmosphere. After stirring for 6 hours, the reaction mixture was tested by XPS, and to our

delight, both peaks of Sb $3d_{5/2}$ (530.58 eV) and Sb $3d_{3/2}$ (539.8 eV) of the Sb⁵⁺ species were detected, suggesting that in the presence of dioxygen, SbCl₃ was oxidized to the Sb(V) species.

Analytical data for compounds

Methyl 3-(2-chloroethyl)-6-methyl-4-(p-tolyl)quinoline-2-carboxylate (3a)

Reddish brown solid, m.p.: 113-116 °C; 84mg (79%); Elution: petroleum ether/ethyl acetate = 5:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 8.5 Hz, 1H), 7.53 (d, *J* = 8.6 Hz, 1H), 7.34 (d, *J* = 7.2 Hz, 2H), 7.10 (d, *J* = 7.6 Hz, 2H), 7.07 (s, 1H), 4.06 (s, 3H), 3.55 (t, *J* = 7.2 Hz, 2H), 3.23 (t, *J* = 7.2 Hz, 2H), 2.48 (s, 3H), 2.38(s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 149.7, 148.9, 144.6, 138.5, 138.2, 132.8, 132.2, 129.6, 129.5, 129.0, 128.7, 127.4, 125.1, 53.2, 43.7, 33.1, 21.9, 21.4; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₁ClNO₂, 354.1255; Found, 354.1251.

Methyl 3-(2-chloroethyl)-6-ethyl-4-(p-tolyl)quinoline-2-carboxylate (3b)

Yellow solid, m.p.: 93-96 °C; 79mg (72%); Elution: petroleum ether/ethyl acetate = 5:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 8.7 Hz, 1H), 7.57 (dd, *J* = 8.7, 1.9 Hz, 1H), 7.34 (d, *J* = 7.8 Hz, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 7.08 (d, *J* = 1.1 Hz, 1H), 4.06 (s, 3H), 3.58 – 3.51 (m, 2H), 3.28 – 3.22 (m, 2H), 2.67 (q, *J* = 7.6 Hz, 2H), 2.48 (s, 3H), 1.17 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 149.9, 149.0, 144.8, 144.7, 138.2, 132.8, 131.0, 129.8, 129.5 (two ¹³C), 129.0 (two ¹³C), 128.7, 127.4, 124.0, 53.2, 43.8, 33.1, 29.2, 21.4, 15.4; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₂H₂₂ClNO₂Na, 390.1231; Found, 390.1229.

Methyl 3-(2-chloroethyl)-6-methoxy-4-(p-tolyl)quinoline-2-carboxylate (3c)

Yellow solid, m.p.: 91-95 °C; 75mg (68%); Elution: petroleum ether/ethyl acetate = 5:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 9.2 Hz, 1H), 7.41 – 7.28 (m, 2H), 7.13 (d, *J* = 7.9 Hz, 2H), 6.55 (d, *J* = 7.9 Hz, 2H), 7.15 (d, J) = 7.15 (d, J)

2.6 Hz, 1H), 4.06 (s, 3H), 3.68 (s, 3H), 3.56 (t, J = 7.8 Hz, 2H), 3.39 – 3.14 (m, 2H), 2.48 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.2, 159.1, 149.0, 147.0, 142.0, 138.2, 132.9, 131.4, 130.1, 129.6, 128.9, 128.0, 122.6, 104.1, 55.4, 53.2, 43.8, 33.2, 21.4; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₁H₂₀ClNO₃Na, 392.1024; Found, 392.1054.

Methyl 3-(2-chloroethyl)-6-ethoxy-4-(p-tolyl)quinoline-2-carboxylate (3d)

Reddish brown solid, m.p.: 106-108 °C; 82mg (71%); Elution: petroleum ether/ethyl acetate = 6:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 9.2 Hz, 1H), 7.40 – 7.27 (m, 3H), 7.10 (d, *J* = 8.0 Hz, 2H), 6.52 (d, *J* = 2.7 Hz, 1H), 4.04 (s, 3H), 3.85 (q, *J* = 7.0 Hz, 2H), 3.59 – 3.51 (m, 2H), 3.31 – 3.19 (m, 2H), 2.46 (s, 3H), 1.36 – 1.29 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.3, 158.5, 148.9, 146.9, 142.0, 138.2, 133.0, 131.5, 130.2, 129.6, 128.9, 127.9, 122.7, 104.9, 63.6, 53.1, 43.8, 33.2, 21.4, 14.5; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₂H₂₂ClNO₃Na, 406.1180; Found, 406.1197.

Methyl 6-(tert-butyl)-3-(2-chloroethyl)-4-(p-tolyl)quinoline-2-carboxylate (3e)

Yellow solid, m.p.: 132-136 °C; 90mg (76%); Elution: petroleum ether/ethyl acetate = 6:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 8.9 Hz, 1H), 7.80 (dd, *J* = 8.9, 2.1 Hz, 1H), 7.34 (d, *J* = 7.8 Hz, 2H), 7.25 (s, 1H), 7.13 (d, *J* = 8.0 Hz, 2H), 4.06 (s, 3H), 3.62 – 3.49 (m, 2H), 3.32 – 3.20 (m, 2H), 2.48 (s, 3H), 1.28 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 167.5, 151.3, 150.3, 149.3, 144.6, 138.2, 132.8, 129.4 (two ¹³C), 129.0, 128.9, 128.4, 127.3, 121.3, 53.2, 43.8, 35.2, 33.1, 31.0, 21.4; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₄H₂₆CINO₂Na, 418.1544; Found, 418.1546.

Methyl 3-(2-chloroethyl)-6,8-dimethyl-4-(p-tolyl)quinoline-2-carboxylate (3f)

Yellow solid, m.p.: 126-128 °C; 47mg (43%); Elution: petroleum ether/ethyl acetate = 6:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 7.38 (s, 1H), 7.33 (d, *J* = 7.8 Hz, 2H), 7.10 (d, *J* = 7.9 Hz, 2H), 6.90 (s, 1H), 4.06 (s, 3H), 3.59 – 3.48 (m, 2H), 3.24 – 3.14 (m, 2H), 2.80 (s, 3H), 2.48 (s, 3H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.9, 149.4, 148.1, 143.9, 138.0, 137.9, 137.5, 133.3, 132.2, 129.4, 129.0, 128.7, 126.5, 123.1, 52.9, 43.7, 33.2, 21.9, 21.4, 17.8; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₂H₂₂ClNO₂Na, 390.1231; Found, 390.1236.

Methyl 3-(2-chloroethyl)-6-methoxy-8-methyl-4-(p-tolyl)quinoline-2-carboxylate (3g)

Yellow solid, m.p.: 125-127 °C; 49mg (43%); Elution: petroleum ether/ethyl acetate = 6:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, *J* = 7.7 Hz, 2H), 7.21 – 7.19 (m, 1H), 7.10 (d, *J* = 8.0 Hz, 2H), 6.38 (d, *J* = 2.7 Hz, 1H), 4.05 (s, 3H), 3.64 (s, 3H), 3.58 – 3.50 (m, 2H), 3.25 – 3.18 (m, 2H), 2.79 (s, 3H), 2.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.8, 158.5, 148.7, 146.2, 141.6, 139.9, 138.0, 133.4, 130.1, 129.5, 128.9, 127.3, 122.2, 102.0, 55.2, 52.8, 43.7, 33.3, 21.4, 17.91; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₂H₂₂CINO₃Na, 406.1180; Found, 406.1182.

Methyl 3-(2-chloroethyl)-6,8-dimethoxy-4-(p-tolyl)quinoline-2-carboxylate (3h) White solid, m.p.: 161-163 °C; 42mg (35%); Elution: petroleum ether/ethyl acetate = 5:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, *J* = 7.7 Hz, 2H), 7.11 (d, *J* = 7.9 Hz, 2H), 6.66 (d, *J* = 2.4 Hz, 1H), 6.10 (d, *J* = 2.4 Hz, 1H), 4.04 (s, 3H), 4.02 (s, 3H), 3.64 (s, 3H), 3.61 – 3.50 (m, 2H), 3.35 – 3.24 (m, 2H), 2.46 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.0 , 159.8, 156.6, 148.9, 145.1, 138.1, 134.9, 133.3, 131.1, 129.5, 129.3, 128.8, 101.1, 95.9, 56.3, 55.4, 53.0, 43.8, 33.2, 21.4; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₂H₂₂ClNO₄Na, 422.1130; Found, 422.1128.

Ethyl 3-(2-chloroethyl)-6-methyl-4-(p-tolyl)quinoline-2-carboxylate (3i)

Dark brown solid, m.p.: 88-90 °C; 33mg (30%); Elution: petroleum ether/ethyl acetate = 8:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 8.6 Hz, 1H), 7.53 (d, *J* = 8.6 Hz, 1H), 7.36 (d, *J* = 7.9 Hz, 1H), 7.12 (d, *J* = 7.8 Hz, 1H), 7.08 (s, 1H), 4.56 (q, *J* = 7.1 Hz, 2H), 3.64 – 3.36 (m, 2H), 3.30 – 3.03 (m, 2H), 2.49 (s, 2H), 2.39 (s, 2H), 1.49 (t, *J* = 7.1 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 167.1, 149.9, 149.5, 144.6, 138.3, 138.2, 132.8, 132.1, 129.6, 129.5, 128.9, 128.5, 126.8, 125.1, 62.3, 43.5, 33.3, 21.9, 21.4, 14.2; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₂H₂₂ClNO₂Na, 390.1231; Found, 390.1257.

Cyclopentyl 3-(2-chloroethyl)-6-methoxy-4-(p-tolyl)quinoline-2-carboxylate (3j) White solid, m.p.: 130-133 °C; 25mg (20%); Elution: petroleum ether/ethyl acetate = 8:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 9.2 Hz, 1H), 7.33 (dd, *J* = 8.9, 2.9 Hz, 3H), 7.11 (d, *J* = 8.0 Hz, 2H), 6.53 (d, *J* = 2.7 Hz, 1H), 5.55 (tt, *J* = 6.3, 3.3 Hz, 1H), 3.66 (s, 3H), 3.54 – 3.46 (m, 2H), 3.20 – 3.12 (m, 2H), 2.47 (s, 3H), 2.11 – 1.92 (m, 4H), 1.88 – 1.76 (m, 2H), 1.72 – 1.63 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 167.3, 158.7, 149.0, 148.5, 142.3, 138.2, 132.9, 131.4, 129.7, 129.6, 128.8, 126.5, 122.3, 104.1, 79.4, 55.4, 43.4, 33.4, 32.7, 23.9, 21.4; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₅H₂₆ClNO₃Na, 446.1493; Found, 446.1486.

Cyclopropylmethyl 3-(2-chloroethyl)-6-methoxy-4-(p-tolyl)quinoline-2carboxylate (3k)

Yellowish solid, m.p.: 108-110 °C; 22mg (18%); Elution: petroleum ether/ethyl acetate = 6:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 9.2 Hz, 1H), 7.35 (dd, *J* = 9.2, 2.4 Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 6.56 (d, *J* = 2.7 Hz, 1H), 4.32 (d, *J* = 7.4 Hz, 2H), 3.68 (s, 2H), 3.63 – 3.41 (m, 2H), 3.45 – 3.15 (m, 2H), 2.49 (s, 2H), 1.49 – 1.32 (m, 1H), 0.66 (q, *J* = 6.0 Hz, 1H), 0.43 (q, *J* = 4.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 167.3, 158.9, 148.7, 148.4, 142.2, 138.2, 132.9, 131.5, 129.9, 129.6, 128.8, 127.1, 122.3, 104.1, 71.1, 55.4, 43.5, 33.4, 21.4, 9.9, 3.6; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₄H₂₄ClNO₃Na, 432.1337; Found, 432.1332.

Methyl 3-(2-chloroethyl)-4-(4-methoxyphenyl)-6-methylquinoline-2-carboxylate (3l)

Yellow solid, m.p.: 144-147 °C; 51mg (46%); Elution: petroleum ether/ethyl acetate = 5:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 8.6 Hz, 1H), 7.54 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.15 (d, *J* = 8.6 Hz, 2H), 7.07 (d, *J* = 8.7 Hz, 3H), 4.06 (s, 3H), 3.92 (s, 3H), 3.55 (t, *J* = 7.8 Hz, 2H), 3.29 – 3.23 (m, 2H), 2.40 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 159.5, 149.4, 149.0, 144.6, 138.5, 132.1, 130.3, 129.7, 128.9, 127.9, 127.7, 125.1, 114.2, 55.3, 53.2, 43.7, 33.1, 22.0; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₁H₂₀ClNO₃Na, 392.1024; Found, 392.1024.

Methyl 3-(2-chloroethyl)-6-ethyl-4-(4-methoxyphenyl)quinoline-2-carboxylate (3m)

Yellow solid, m.p.: 114-117 °C; 63mg (55%); Elution: petroleum ether/ethyl acetate = 6:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 8.7 Hz, 1H), 7.58 (dd, *J* = 8.7, 1.9 Hz, 1H), 7.19 – 7.13 (m, 2H), 7.13 – 7.05 (m, 3H), 4.06 (s, 3H), 3.92 (s, 3H), 3.57 – 3.53 (m, 2H), 3.28 – 3.24 (m, 2H), 2.68 (q, *J* = 7.6 Hz, 2H), 1.18 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 159.5, 149.6, 149.1, 144.8, 144.7, 131.0, 130.3, 129.8, 129.0, 127.9, 127.6, 123.9, 114.2, 55.3, 53.2, 43.7, 33.1, 29.2, 15.3; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₂H₂₂CINO₃Na, 406.1180; Found, 406.1179.

Methyl 3-(2-chloroethyl)-6-methoxy-4-(4-methoxyphenyl)quinoline-2carboxylate (3n)

Dark brown solid, m.p.: 114-116 °C; 72mg (62%); Elution: petroleum ether/ethyl acetate = 5:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 9.2 Hz, 1H), 7.36 (dd, *J* = 9.2, 2.8 Hz, 1H), 7.17 (d, *J* = 8.7

Hz, 2H), 7.08 (d, J = 8.7 Hz, 2H), 6.57 (d, J = 2.7 Hz, 1H), 4.07 (s, 2H), 3.92 (s, 3H), 3.69 (s, 2H), 3.57 (t, J = 7.8 Hz, 2H), 3.38 – 3.01 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 167.3, 159.5, 159.1, 148.7, 147.1, 142.1, 131.5, 130.4, 130.2, 128.3, 128.0, 122.5, 114.3, 104.0, 55.3, 53.2, 43.7, 33.2, 30.2; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₁H₂₀ClNO₄Na, 408.0973; Found, 408.1005.

Methyl 3-(2-chloroethyl)-6-ethoxy-4-(4-methoxyphenyl)quinoline-2-carboxylate (30)

Yellow solid, m.p.: 107-110 °C; 83mg (69%); Elution: petroleum ether/ethyl acetate = 5:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 9.2 Hz, 1H), 7.34 (dd, *J* = 9.2, 2.7 Hz, 1H), 7.20 – 7.11 (m, 2H), 7.07 (d, *J* = 8.7 Hz, 2H), 6.54 (d, *J* = 2.7 Hz, 1H), 4.05 (s, 3H), 3.92 (s, 3H), 3.87 (q, *J* = 7.0 Hz, 2H), 3.57 – 3.54 (m, 2H), 3.29 – 3.25 (m, 2H), 1.35 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.3, 159.5, 158.5, 148.6, 146.9, 142.0, 131.5, 130.4, 130.2, 128.2, 128.1, 122.7, 114.3, 104.8, 63.7, 55.3, 53.1, 43.7, 33.2, 14.5; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₂H₂₂ClNO₄Na, 422.1130; Found, 422.1124.

Methyl 6-(tert-butyl)-3-(2-chloroethyl)-4-(4-methoxyphenyl)quinoline-2carboxylate (3p)

Yellow solid, m.p.: 147-149 °C; 74mg (60%); Elution: petroleum ether/ethyl acetate = 7:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 9.0 Hz, 1H), 7.80 (dd, *J* = 8.9, 2.2 Hz, 1H), 7.28 (d, *J* = 1.9 Hz, 1H), 7.21 – 7.15 (m, 2H), 7.11 – 7.03 (m, 2H), 4.06 (s, 3H), 3.92 (s, 3H), 3.58 – 3.51 (m, 2H), 3.27 (t, *J* = 7.8 Hz, 2H), 1.25 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 159.5, 151.3, 150.0, 149.2, 144.5, 130.3, 129.4, 128.8, 128.6, 127.9, 127.5, 121.3, 114.1, 55.3, 53.2, 43.7, 35.1, 33.1, 30.9; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₄H₂₆ClNO₃Na, 434.1493; Found, 434.1486.

Methyl 4-(4-(tert-butyl)phenyl)-3-(2-chloroethyl)-6-methylquinoline-2carboxylate (3q)

Yellow solid, m.p.: 96-98 °C; 104mg (88%); Elution: petroleum ether/ethyl acetate = 5:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 8.6 Hz, 1H), 7.57 – 7.49 (m, 3H), 7.15 (d, *J* = 8.2 Hz, 2H), 7.07 (s, 1H), 4.06 (s, 3H), 3.54 (t, *J* = 7.8 Hz, 2H), 3.24 (t, *J* = 7.8 Hz, 2H), 2.39 (s, 3H), 1.42 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 151.3, 149.7, 149.0, 144.6, 138.5, 132.8, 132.1, 129.6, 128.8, 128.7, 127.4, 125.6, 125.2, 53.2, 43.8, 34.8, 33.1, 31.4, 22.0; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₄H₂₆ClNO₂Na, 418.1544; Found, 418.1552.

Methyl 3-(2-chloroethyl)-4-(3,4-dimethylphenyl)-6-methylquinoline-2carboxylate (3r)

Yellow liquid; 25mg (23%); Elution: petroleum ether/ethyl acetate = 8:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 8.6 Hz, 1H), 7.54 (d, *J* = 8.6 Hz, 1H), 7.30 (d, *J* = 7.5 Hz, 1H), 7.10 (s, 1H), 7.03 – 6.81 (m, 2H), 4.07 (s, 2H), 3.64 – 3.44 (m, 2H), 3.44 – 3.13 (m, 2H), 2.40 (s, 3H), 2.40 (s, 3H), 2.35 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 149.9, 149.0, 144.5, 138.4, 137.0, 136.8, 133.2, 132.1, 130.1, 130.0, 129.6, 128.7, 127.3, 126.5, 125.2, 53.2, 43.8, 33.1, 21.9, 19.9, 19.7; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₂H₂₂ClNO₂Na, 390.1231; Found, 390.1222.

Methyl 3-(2-chloroethyl)-6-methyl-4-(m-tolyl)quinoline-2-carboxylate (3s)

Dark brown liquid; 58mg (55%); Elution: petroleum ether/ethyl acetate = 8:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, *J* = 8.6 Hz, 1H), 7.64 (d, *J* = 7.6 Hz, 1H), 7.45 (t, *J* = 7.8 Hz, 1H), 7.35 (d, *J* = 7.5 Hz, 1H), 7.11 (s, 1H), 7.04 (d, *J* = 6.6 Hz, 2H), 4.10 (s, 3H), 3.61 – 3.49 (m, 2H), 3.39 – 3.22 (m, 2H), 2.45 (s, 3H), 2.41 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.1, 153.3, 146.1, 141.8, 140.0, 138.8, 135.0, 134.2, 129.7, 129.3, 129.1, 128.8, 128.4, 127.5, 125.9, 125.4, 53.9, 43.5, 32.7, 22.1, 21.6; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₁H₂₀ClNO₂Na, 376.1075; Found, 376.1075.

Methyl 3-(2-chloroethyl)-6,8-dimethyl-4-(m-tolyl)quinoline-2-carboxylate (3t)

White solid, m.p.: 105-108 °C; 54mg (49%); Elution: petroleum ether/ethyl acetate = 8:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.39 (m, 2H), 7.31 (d, *J* = 7.5 Hz, 1H), 7.02 (d, *J* = 7.4 Hz, 2H), 6.89 (s, 1H), 4.06 (s, 3H), 3.57 – 3.53 (m, 2H), 3.25 – 3.17 (m, 2H), 2.81 (s, 3H), 2.44 (s, 3H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.9, 149.4, 148.1, 143.8, 138.4, 137.9, 137.6, 136.3, 132.2, 129.7, 129.0, 128.5, 126.4, 126.2, 123.1, 52.9, 43.7, 33.2, 21.9, 21.6, 17.8 (one ¹³C signal lost for overlap); HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₂H₂₂CINO₂Na, 390.1231; Found, 390.1230.

Methyl 4-(4-bromophenyl)-3-(2-chloroethyl)-6-methylquinoline-2-carboxylate (3u)

Reddish brown solid, m.p.: 135-138 °C; 67mg (53%); Elution: petroleum ether/ethyl acetate = 5:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 8.6 Hz, 1H), 7.71 – 7.67 (m, 2H), 7.55 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.15 – 7.11 (m, 2H), 7.00 (s, 1H), 4.06 (s, 3H), 3.55 (t, *J* = 7.6 Hz, 2H), 3.24 (t, *J* = 7.7 Hz, 2H), 2.40 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.2, 148.8, 148.1, 144.5, 139.0, 134.9, 132.4, 132.1, 130.9, 129.8, 128.2, 127.3, 124.7, 122.8, 53.3, 43.6, 32.9, 22.0; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₀H₁₇BrClNO₂Na, 440.0023; Found, 440.0017.

Methyl 3-(2-chloroethyl)-4-(4-chlorophenyl)-6-methylquinoline-2-carboxylate (3v)

Dark brown solid, m.p.: 91-94 °C; 94mg (84%); Elution: petroleum ether/ethyl acetate = 5:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 8.6 Hz, 1H), 7.58 – 7.51 (m, 3H), 7.21 – 7.17 (m, 2H), 6.99 (d, *J* = 7.1 Hz, 1H), 4.06 (s, 3H), 3.55 (t, *J* = 7.7 Hz, 2H), 3.24 (t, *J* = 7.7 Hz, 2H), 2.40 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.1, 148.8, 148.2, 144.5, 139.0, 134.6, 134.3, 132.4, 130.6, 129.8, 129.1, 128.3, 127.4, 124.7, 53.2, 43.6, 33.0, 21.9; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₀H₁₇Cl₂NO₂Na, 396.0529; Found, 396.0538.

Methyl 3-(2-chloroethyl)-4-(4-chlorophenyl)-6-ethylquinoline-2-carboxylate (3w) Yellow solid, m.p.: 98-101 °C; 101mg (87%); Elution: petroleum ether/ethyl acetate = 5:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 8.7 Hz, 1H), 7.60 (dd, *J* = 8.7, 1.9 Hz, 1H), 7.57 – 7.52 (m, 2H), 7.23 – 7.18 (m, 2H), 7.01 (d, *J* = 1.1 Hz, 1H), 4.06 (s, 3H), 3.57 (t, *J* = 7.6 Hz, 2H), 3.26 (t, *J* = 7.7 Hz, 2H), 2.69 (q, *J* = 7.6 Hz, 2H), 1.19 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.2, 148.9, 148.3, 145.1, 144.7, 134.6, 134.4, 131.2, 130.6, 130.0, 129.1, 128.3, 127.4, 123.6, 53.3, 43.6, 33.0, 29.2, 15.4; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₁H₁₉Cl₂NO₂Na, 410.0685; Found, 410.0681.

Methyl 3-(2-chloroethyl)-4-(4-chlorophenyl)-6-methoxyquinoline-2-carboxylate (3x)

Yellow solid, m.p.: 151-154 °C; 74mg (63%); Elution: petroleum ether/ethyl acetate = 5:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 9.2 Hz, 1H), 7.54 (d, *J* = 8.4 Hz, 2H), 7.37 (dd, *J* = 9.2, 2.7 Hz, 1H), 7.21 (d, *J* = 8.4 Hz, 2H), 6.46 (d, *J* = 2.7 Hz, 1H), 4.06 (s, 3H), 3.69 (s, 3H), 3.56 (t, *J* = 7.6 Hz, 2H), 3.26 (t, *J* = 7.6 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 167.1, 159.4, 147.4, 146.9, 142.1, 134.7, 134.5, 131.7, 130.6, 129.7, 129.3, 128.0, 122.7, 103.7, 55.4, 53.2, 43.7, 33.0; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₀H₁₇Cl₂NO₃Na, 412.0478; Found, 412.0472.

Methyl 3-(2-chloroethyl)-4-(4-chlorophenyl)-6-ethoxyquinoline-2-carboxylate (3y)

Dark green solid, m.p.: 108-112 °C; 82mg (68%); Elution: petroleum ether/ethyl acetate = 5:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 9.2 Hz, 1H), 7.53 (d, *J* = 8.5 Hz, 2H), 7.37 (dd, *J* = 9.2, 2.7 Hz, 1H), 7.22 - 7.18 (m, 2H), 6.45 (d, *J* = 2.6 Hz, 1H), 4.06 (s, 3H), 3.88 (q, *J* = 7.0 Hz, 2H), 3.56 (t, *J* = 7.7 Hz, 2H), 3.56 (t, *J* = 7.7 Hz), 3.56 (t, J = 7

Hz, 2H), 3.25 (t, J = 7.7 Hz, 3H), 1.36 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.1, 158.7, 147.3, 146.7, 142.0, 134.6, 134.6, 131.7, 130.6, 129.7, 129.3, 128.0, 122.9, 104.4, 63.8, 53.2, 43.7, 33.1, 14.5; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₁H₁₉Cl₂NO₃Na, 426.0634; Found, 426.0626.

Methyl 6-(tert-butyl)-3-(2-chloroethyl)-4-(4-chlorophenyl)quinoline-2carboxylate (3z)

Reddish brown solid, m.p.: 141-143 °C; 83mg (67%); Elution: petroleum ether/ethyl acetate = 5:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 8.9 Hz, 1H), 7.82 (dd, *J* = 8.9, 1.8 Hz, 1H), 7.54 (d, *J* = 8.2 Hz, 2H), 7.22 (d, *J* = 8.2 Hz, 2H), 7.18 (s, 1H), 4.06 (s, 3H), 3.54 (t, *J* = 7.6 Hz, 2H), 3.25 (t, *J* = 7.6 Hz, 2H), 1.24 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 167.2, 151.7, 149.1, 148.7, 144.5, 134.6, 134.4, 130.6, 129.6, 129.1, 129.0, 127.9, 127.3, 120.8, 53.2, 43.6, 35.2, 32.9, 30.9; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₃H₂₃Cl₂NO₂Na, 438.0998; Found, 438.1007.

Methyl 3-(2-chloroethyl)-4-(4-chlorophenyl)-6-methoxy-8-methylquinoline-2carboxylate (4a)

Reddish brown solid, m.p.: 134-138 °C; 24mg (20%); Elution: petroleum ether/ethyl acetate = 5:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.4 Hz, 2H), 7.23 – 7.21 (m, 1H), 7.18 (d, *J* = 8.4 Hz, 2H), 6.29 (d, *J* = 2.7 Hz, 1H), 4.04 (s, 3H), 3.65 (s, 3H), 3.56 (t, *J* = 7.7 Hz, 2H), 3.22 (t, *J* = 7.7 Hz, 2H), 2.79 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.6, 158.8, 147.1, 146.0, 141.6, 140.1, 135.0, 134.5, 130.6, 129.7, 129.2, 127.3, 122.4, 101.6, 55.2, 52.9, 43.6, 33.1, 17.9; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₁H₁₉Cl₂NO₃Na, 426.0634; Found, 426.0627.

Methyl 3-(2-chloroethyl)-4-(4-fluorophenyl)-6-methylquinoline-2-carboxylate (4b)

White solid, m.p.: 170-173 °C; 82mg (77%); Elution: petroleum ether/ethyl acetate = 5:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 8.6 Hz, 1H), 7.55 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.30 – 7.17 (m, 4H), 6.99 (d, *J* = 9.6 Hz, 1H), 4.06 (s, 3H), 3.55 (t, *J* = 7.7 Hz, 2H), 3.24 (t, *J* = 7.7 Hz, 2H), 2.40 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.2, 162.7 (d, *J*_{C-F} = 248.3 Hz), 148.9, 148.4, 144.6, 138.9, 132.3, 131.8 (d, *J*_{C-F} = 3.6 Hz), 131.0 (d, *J*_{C-F} = 8.1 Hz), 129.8, 128.5, 127.6, 124.8, 116.0 (d, *J*_{C-F} = 21.6 Hz), 53.2, 43.6, 33.0, 22.0; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₀H₁₇CIFNO₂Na, 380.0824; Found, 380.0822.

Methyl 6-(tert-butyl)-3-(2-chloroethyl)-4-(4-fluorophenyl)quinoline-2carboxylate (4c)

Dark brown solid, m.p.: 144-147 °C; 90mg (75%); Elution: petroleum ether/ethyl acetate = 5:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 8.9 Hz, 1H), 7.82 (dd, *J* = 9.0, 2.1 Hz, 1H), 7.28 – 7.23 (m, 4H), 7.18 (d, *J* = 2.0 Hz, 1H), 4.07 (s, 3H), 3.55 (t, *J* = 7.7 Hz, 2H), 3.27 (t, *J* = 7.7 Hz, 2H), 1.24 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 167.3, 162.6 (d, *J*_{C-F} = 248.3 Hz), 151.6, 149.0 (d, *J*_{C-F} = 13.0 Hz), 144.5, 131.8 (d, *J*_{C-F} = 3.6 Hz), 131.0, 130.9, 129.6, 129.0, 128.2, 127.4, 120.9, 115.9 (d, *J*_{C-F} = 21.6 Hz), 53.2, 43.6, 35.2, 33.0, 30.9; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₂₄ClFNO₂, 400.1474; Found, 400.1474.

Methyl 3-(2-chloroethyl)-6-methyl-4-(4-(trifluoromethyl)phenyl)quinoline-2carboxylate (4d)

Yellow solid, m.p.: 125-128 °C; 26mg (21%); Elution: petroleum ether/ethyl acetate = 4:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 8.6 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 2H), 7.57 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.40 (d, *J* = 7.9 Hz, 2H), 6.93 (s, 1H), 4.07 (s, 3H), 3.56 (t, *J* = 7.5 Hz, 2H), 3.24 (t, *J* = 7.6 Hz, 2H), 2.40 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.1, 148.8, 147.8, 144.5, 139.9, 139.2, 132.5, 130.79 (q, *J*_{C-F} = 32.8 Hz), 129.8 (two ¹³C), 127.9, 127.2, 126.7 (q, *J*_{C-F} = 272.3 Hz), 125.8 (q, *J*_{C-F} = 3.7 Hz), 124.5, 53.2, 43.6, 32.9, 21.9; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₁H₁₇ClF₃NO₂Na, 430.0792, Found, 430.0792.

Methyl 3-(2-chloroethyl)-4-(2-fluorophenyl)-6-methylquinoline-2-carboxylate (4e)

Light yellow solid, m.p.: 101-105 °C; 52mg (49%); Elution: petroleum ether/ethyl acetate = 5:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 8.6 Hz, 1H), 7.62 – 7.51 (m, 2H), 7.38 – 7.32 (m, 1H), 7.29 (t, *J* = 8.9 Hz, 1H), 7.22 (td, *J* = 7.4, 1.6 Hz, 1H), 7.02 (s, 1H), 4.07 (s, 3H), 3.67 – 3.48 (m, 2H), 3.36 – 3.14 (m, 2H), 2.40 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.1, 159.4 (d, *J*_{C-F} = 246.5 Hz), 148.7, 144.6, 143.3, 139.1, 132.4, 131.4 (d, *J*_{C-F} = 3.1 Hz), 131.0 (d, *J*_{C-F} = 7.9 Hz), 129.9, 128.3 (d, *J*_{C-F} = 11.4 Hz), 124.6 (d, *J*_{C-F} = 3.6 Hz), 124.3, 123.3 (d, *J*_{C-F} = 17.2 Hz), 116.3 (d, *J*_{C-F} = 21.5 Hz), 53.3, 43.2, 33.6, 22.0; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₀H₁₇ClFNO₂Na, 380.0824; Found, 380.0822.

Methyl 3-(2-chloroethyl)-6-methyl-4-(naphthalen-2-yl)quinoline-2-carboxylate (4f)

Yellow solid, m.p.: 123-126 °C; 41mg (35%); Elution: petroleum ether/ethyl acetate = 5:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 8.12 (t, *J* = 9.4 Hz, 1H), 8.02 (t, *J* = 7.4 Hz, 1H), 8.01 – 7.96 (m, 1H), 7.93 – 7.86 (m, 1H), 7.74 (s, 1H), 7.65 – 7.52 (m, 3H), 7.35 (dd, *J* = 8.3, 1.4 Hz, 1H), 7.05 (s, 1H), 4.08 (s, 3H), 3.58 (t, *J* = 7.7 Hz, 2H), 3.39 – 3.22 (m, 2H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.3, 149.4, 149.0, 144.6, 138.8, 133.4, 133.1, 132.9, 132.3, 129.7, 128.6 (two ¹³C), 128.3, 128.2, 128.0, 127.6, 127.0, 126.9, 126.8, 125.1, 53.2, 43.8, 33.1, 21.9; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₄H₂₀ClNO₂Na, 412.1075; Found, 412.1068.

Methyl 3-(2-chloroethyl)-4,4-bis(4-chlorophenyl)-6-methyl-1,4-dihydroquinoline-2-carboxylate (6a)

Yellow solid, m.p.: 86-89 °C; 76mg (52%); Elution: petroleum ether/ethyl acetate = 6:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, *J* = 8.7 Hz, 4H), 7.19 (d, *J* = 8.7 Hz, 4H), 6.89 (dd, *J* = 8.1, 1.3 Hz, 1H), 6.79 (s, *NH*, 1H), 6.64 (s, 1H), 6.60 (d, *J* = 8.1 Hz, 1H), 3.95 (s, 3H), 2.76 (s, 4H), 2.15 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 163.5, 143.7, 134.8, 132.7, 131.3, 131.0, 130.8, 130.1, 128.5, 128.3, 127.5, 125.0,

118.5, 114.0, 57.9, 52.9, 43.3, 35.6, 21.0; HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{26}H_{22}Cl_3NO_2Na$, 508.0608; Found, 508.0580.

Methyl 3-(2-chloroethyl)-4,4-bis(4-chlorophenyl)-6-methoxy-1,4dihydroquinoline-2-carboxylate (6b)

Yellow oil; 41mg (27%); Elution: petroleum ether/ethyl acetate = 5:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 7.27 (t, *J* = 8.1 Hz, 4H), 7.18 (d, *J* = 8.5 Hz, 4H), 6.73 (s, *NH*, 1H), 6.68 (dd, *J* = 8.7, 2.1 Hz, 1H), 6.63 (d, *J* = 8.7 Hz, 1H), 6.39 (d, *J* = 2.0 Hz, 1H), 3.94 (s, 3H), 3.62 (s, 3H), 2.76 (s, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 163.5, 154.6, 143.3, 132.8, 131.4, 131.2, 128.3, 127.7, 126.2, 117.2, 115.4, 114.8, 113.5, 58.2, 55.6, 52.9, 43.3, 35.5; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₆H₂₂Cl₃NO₃Na, 524.0558; Found, 524.0559.

Methyl 6-(tert-butyl)-3-(2-chloroethyl)-4,4-bis(4-chlorophenyl)-1,4dihydroquinoline-2-carboxylate (6c)

Yellow solid, m.p.: 109-112 °C; 47mg (30%); Elution: petroleum ether/ethyl acetate = 5:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.22 (m, 4H), 7.16 (d, *J* = 8.7 Hz, 4H), 7.10 (dd, *J* = 8.3, 2.1 Hz, 1H), 6.87 (d, *J* = 1.8 Hz, 1H), 6.78 (s, *NH*, 1H), 6.62 (d, *J* = 8.4 Hz, 1H), 3.94 (s, 3H), 2.75 (s, 3H), 1.13 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 163.5, 144.5, 143.7, 134.8, 132.7, 131.2, 128.2, 127.6, 127.0, 124.6, 124.5, 118.5, 113.5, 58.2, 52.9, 43.2, 35.5, 34.2, 31.3; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₉H₂₈Cl₃NO₂Na, 550.1078; Found, 550.1074.

Methyl 3-(2-chloroethyl)-4,4-bis(4-chlorophenyl)-6,8-dimethyl-1,4dihydroquinoline-2-carboxylate (6d)

Yellow solid, m.p.: 75-78°C; 69mg (46%); Elution: petroleum ether/ethyl acetate = 5:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, *J* = 8.7 Hz, 4H), 7.18 (d, *J* = 8.7 Hz, 4H), 6.79 – 6.80 (m, 2H), 6.51 (s, 1H), 3.97 (s, 3H), 2.78 (s, 4H), 2.21 (s, 3H), 2.13 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 163.7, 143.8, 133.3, 132.6, 131.3, 130.2, 129.7, 128.2, 128.0, 127.5, 124.7, 120.8, 118.8, 58.1, 53.0, 43.3, 35.6, 20.9, 16.7; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₇H₂₄Cl₃NO₂Na, 522.0765; Found, 522.0764.

Methyl 3-(2-chloroethyl)-4,4-bis(4-chlorophenyl)-6-methoxy-8-methyl-1,4dihydroquinoline-2-carboxylate (6e)

Yellow oil; 26mg (17%); Elution: petroleum ether/ethyl acetate = 5:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, *J* = 8.6 Hz, 4H), 7.18 (d, *J* = 8.5 Hz, 4H), 6.72 (s, *NH*, 1H), 6.59 (d, *J* = 2.2 Hz, 1H), 6.26 (d, *J* = 2.2 Hz, 1H), 3.96 (s, 3H), 3.61 (s, 3H), 2.82 – 2.74 (m, 4H), 2.23 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 163.8, 154.0, 143.4, 132.7, 131.2, 130.0, 128.2, 127.7, 125.7, 122.2, 117.6, 115.0, 113.1, 58.4, 55.6, 52.9, 43.3, 35.5, 17.1; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₇H₂₄Cl₃NO₃Na, 538.0714; Found, 538.0719.

Ethyl 3-(2-chloroethyl)-4,4-bis(4-chlorophenyl)-6-methyl-1,4-dihydroquinoline-2carboxylate (6f)

Yellow oil; 22mg (15%); Elution: petroleum ether/ethyl acetate = 5:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, *J* = 8.6 Hz, 3H), 7.19 (d, *J* = 8.6 Hz, 4H), 6.88 (d, *J* = 7.9 Hz, 1H), 6.81 (s, *NH*, 1H), 6.63 (s, 1H), 6.60 (d, *J* = 8.1 Hz, 1H), 4.41 (q, *J* = 7.1 Hz, 2H), 2.75 (s, 4H), 2.14 (s, 3H), 1.43 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 163.4, 143.7, 134.8, 132.7, 131.3, 130.9, 130.1, 128.4, 128.2, 127.7, 125.0, 117.8, 114.0, 62.4, 58.0, 43.2, 35.6, 20.9, 14.1; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₇H₂₄Cl₃NO₂Na, 522.0765; Found, 522.0738.

Methyl 3-(2-chloroethyl)-4,4-bis(4-fluorophenyl)-6-methyl-1,4-dihydroquinoline-2-carboxylate (6g)

Yellow oil; 31mg (23%); Elution: petroleum ether/ethyl acetate = 5:1 (v : v); ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, *J* = 8.6 Hz, 2H), 7.21 (d, *J* = 8.6 Hz, 2H), 7.01 (t, *J* = 8.6 Hz, 4H), 6.88 (d, *J* = 8.0 Hz, 1H), 6.77 (s, *NH*, 1H), 6.67 (s, 1H), 6.60 (d, *J* = 8.1 Hz, 1H), 3.95 (s, 3H), 2.76 (s, 4H), 2.16 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 163.5, 161.3 (d, *J*_{C-F} = 247.1 Hz), 141.2 (d, *J*_{C-F} = 3.3 Hz), 134.8, 131.5 (d, *J*_{C-F} = 7.8 Hz), 130.8, 130.2, 128.3, 127.3, 125.5, 119.2, 114.9 (d, *J*_{C-F} = 21.2 Hz), 113.9, 57.7, 52.8, 43.3, 35.7, 20.9; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₆H₂₂ClF₂NO₂Na, 476.1199; Found, 476.1198.

C	C	೧
J	Ζ	Ζ

00		∞	S.	0	3	SO I	3	0	9		9	0	0
4	0	ŝ	4	2	0	6	9	0	5	S I		6	2
ŝ		6	- U	S.	0			9	4	6	9	ŝ	
~ . ·	ġ.	ø	त्तं	$\dot{\mathbf{o}}$	ø	- ci	~i	ġ.	ġ.	ø	ø	<u>к</u>	10
6		H	÷.			ò	ò	2	2	2	2	- Ni	- Ri
Ē	É.	È	Ì	H	H	H	H	H	H	H	ì	H	H
1					ί,	L	j.	1	<u> </u>	<u> </u>			
					\rightarrow								

23.204-43.740 33.102 √21.937 √21.397

¹³C NMR (100M, CDCI₃)

			· 1		1 1	- I '	- I - I			·	·	·	·	'	·	· 1	· 1		·	1	· 1			
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
												fl (ppm))											

Methyl 3-(2-chloroethyl)-6-methyl-4-(p-tolyl)quinoline-2-carboxylate (3a)

-167.364	$\lceil 149.862 \\ \lceil 148.988 \rceil$	√144.751 ~144.681	~138.176 ~132.811	-130.971	⁻ 129.798 -129.450	128.950	128.728	127.351	123.982	[∟] 53.204	-43.754	/33.096	~29.168	$_{7}21.400$	$_{f}15.395$
		<u> </u>	$\langle \langle \rangle$							L	2		$\overline{\ }$		<u>_</u>

¹³C NMR (100M, CDCl₃)

Methyl 3-(2-chloroethyl)-6-ethyl-4-(p-tolyl)quinoline-2-carboxylate (3b)

¹³C NMR (100M, CDC₃)

Methyl 3-(2-chloroethyl)-6-methoxy-4-(p-tolyl)quinoline-2-carboxylate (3c)

	· 1	'	'								·		, , , ,								· · · ·		
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
											-	fl (nnm)										

-10

Methyl 3-(2-chloroethyl)-6-ethoxy-4-(p-tolyl)quinoline-2-carboxylate (3d)

Methyl 6-(tert-butyl)-3-(2-chloroethyl)-4-(p-tolyl)quinoline-2-carboxylate (3e)

S37

$$-167.885$$

$$-167.885$$

$$149.407$$

$$-148.073$$

$$-143.849$$

$$-137.9966$$

$$-137.541$$

$$-137.541$$

$$-137.541$$

$$-133.278$$

$$-133.278$$

$$-132.191$$

$$-128.997$$

$$-128.997$$

$$-128.649$$

$$-128.649$$

$$-128.649$$

$$-128.649$$

52.887
43.664
33.234
21.918
21.385
17.830

¹³C NMR (100M, CDC₃)

Methyl 3-(2-chloroethyl)-6,8-dimethyl-4-(p-tolyl)quinoline-2-carboxylate (3f)

S40	$\begin{bmatrix} 167.819\\ 158.508\\ 148.693\\ 146.171\\ 146.171\\ 139.863\\ 139.863\\ 139.863\\ 133.384\\ 133.384\\ 133.384\\ 129.495\\ 129.495\\ 122.182\\ 122.182 \end{bmatrix}$	 55.163 55.163 52.836 43.701 33.297 33.297 21.383 17.917

Methyl 3-(2-chloroethyl)-6-methoxy-8-methyl-4-(p-tolyl)quinoline-2-carboxylate (3g)

Methyl 3-(2-chloroethyl)-6,8-dimethoxy-4-(p-tolyl)quinoline-2-carboxylate (3h)

S46	-167.144 -167.14468 149.868 -149.506 -138.265 -138.265 -132.802 -132.802 -132.802 -132.802 -129.447 -129.447 -129.447 -128.937	-62.298	43.534	-33.251	21.901	
¹³ C NMR (100M, CDCl ₃)						
Me						
N CO ₂ Et						
		ł	ł	1		
ر از می چراند. است. از می از این می از آن می از آن می ورد از می ورد از می ورد از می ورد از از می ورد از از می مراجع می ورد از این می ورد ا		u . i 1	lit allfank suis	n. et.a. 1964 av. Jack	nd (1996 46 (1, 14 1, 16 2, 1997 , 1. 1977)	und adam Britan
╴╴╷╴╴╴╷╶╴╴╷ ╸╷╽┚╞╘┟╖╅╂┈╴╍╝╔╕╍╷╬╂╷┡┟┸╍┡╍╸╷╫ <u>╞</u> ╠┫╋╡Ѭ┝┶╕╻╻┩╶╺╍╍╍╍┙┙╍╍╻┲╔┹╾╻╩╢┵┕ᡭ		i i i i i i i i i i i i i i i i i i i				
230 220 210 200 190 180	170 160 150 140 130 120 110 100 90 80 ' f1 (ppm)	70 60 50	0 40	30	20 10 0	-10

Ethyl 3-(2-chloroethyl)-6-methyl-4-(p-tolyl)quinoline-2-carboxylate (3i)

Cyclopentyl 3-(2-chloroethyl)-6-methoxy-4-(p-tolyl)quinoline-2-carboxylate (3j)

S52	167.330 167.330 188.711 148.711 148.711 148.711 148.367 148.367 1123.903 1132.903 129.585 129.585 129.585 122.327 122.327 104.109	-71.145	-55.351	-43.519 -33.390	-21.388 -9.917 -3.633

¹³C NMR (100M, CDCl₃)

Cyclopropylmethyl 3-(2-chloroethyl)-6-methoxy-4-(p-tolyl)quinoline-2-carboxylate (3k)

Methyl 3-(2-chloroethyl)-4-(4-methoxyphenyl)-6-methylquinoline-2-carboxylate (3l)

Methyl 3-(2-chloroethyl)-6-ethyl-4-(4-methoxyphenyl)quinoline-2-carboxylate (3m)

Methyl 3-(2-chloroethyl)-6-methoxy-4-(4-methoxyphenyl)quinoline-2-carboxylate (3n)

S64

_____159.459 _____158.468 7167.299 -142.018 -130.389 -130.233 128.046 -114.296 -146.929 -131.483 -128.199 122.704 104.753 r148.557

650	323	133	743	196	
63.	55.	53.	43.	33.	
	1-		1	\leq	

-14.476

¹³C NMR (100M, CDCI₃)

			and the state of the																		ter de attende ter attende	the state to be the state
230	220 21	0 200	190 18	30 170	160	150	140	130	120 f	110 1 (ppm)	100	90	80	70	60	50	40	30	20	10	0	-10

Ι

Methyl 3-(2-chloroethyl)-6-ethoxy-4-(4-methoxyphenyl)quinoline-2-carboxylate (30)

Methyl 6-(tert-butyl)-3-(2-chloroethyl)-4-(4-methoxyphenyl)quinoline-2-carboxylate (3p)

Methyl 4-(4-(tert-butyl)phenyl)-3-(2-chloroethyl)-6-methylquinoline-2-carboxylate (3q)

S	5	S	3	9	2	0	3	8	S	6	5	0	6	4	0	
<u>ن</u>		4	0	L	ŝ	0	0	I	4	8	9	0	ŝ	<u>6</u>		
<u>.</u>	ο.	٥.	ιŋ.	4	0.	ο.	<u></u>		0.	ο.	ιŋ.	<u> </u>	<u>.</u>	4	2	
	6	×	4	×		9	ŝ	N	0	6	6	×		9	LO .	
9	4	4	4	ŝ	3	ŝ	3	3	ŝ	Ň.	N.	N.	5	N N	2	
T	l	1	1	I	I	l	1	I	I	1	1	I	l	l	1	
				$ _ _$		/	/_									
1						YГ										

53.168 −43.837 33.113 √21.924 ~19.930 √19.691

¹³C NMR (100M, CDC₃)

	· 1	' 1						, I					1 1			1	·	1		1		1 1			
230	220	210	200	190	180	170	160	150	140	130	120	110 1 (ppm)	100	90	80	70	60	50	40	30	20	10	0	-10	

Methyl 3-(2-chloroethyl)-4-(3,4-dimethylphenyl)-6-methylquinoline-2-carboxylate (3r)

015	175	598	287	139	769	923	347	
5.(4.]	9.6	6.6		8.	5.5	6.6	
-13	-13	-12	-12	-12	-12	-12	-12	
				\rightarrow			_	

0	2	ŝ	3	S	
86	7	77	6	10	
	~	2	3		
in in	4	ŝ	,	0	
\sim	1	5			7

Methyl 3-(2-chloroethyl)-6-methyl-4-(m-tolyl)quinoline-2-carboxylate (3s)

$$167.856$$

 149.426
 149.426
 149.459360
 138.360
 137.550
 137.550
 137.550
 137.550
 137.550
 129.659
 129.659
 129.659
 122.239
 122.239
 122.239
 122.239
 122.33249
 123.052
 233.242
 33.242

¹³C NMR (100M, CDCI₃)

Methyl 3-(2-chloroethyl)-6,8-dimethyl-4-(m-tolyl)quinoline-2-carboxylate (3t)

Methyl 4-(4-bromophenyl)-3-(2-chloroethyl)-6-methylquinoline-2-carboxylate (3u)

3	∞	9	S I	0	2	S I	S I	S I	\sim	9	9	9	S I	
4	2	4	2	5		4	4	2	S		4	9	2	
	8	-	5	6	9	3	3	9			0	3		
× •			_ <u>.</u>					Ē						
12	ω.	ω.	Ţ	ω.	T	য	<u>N</u>	0	5	5	ωų.		Ţ	
9		$\overline{\mathbf{v}}$	$\overline{\mathbf{A}}$	\mathbf{c}	\mathbf{c}	3	\mathbf{c}	\mathbf{c}	2	2	2	2	2	
							l							
1			<u> </u>			t	7							
				$\overline{}$										

\53.193 ~43.601 ∫32.954 -21.934

¹³C NMR (100M, CDCI₃)

f1 (ppm) -10

Methyl 3-(2-chloroethyl)-4-(4-chlorophenyl)-6-methylquinoline-2-carboxylate (3v)

C	Ο	Ο
J	Ο	Ο

-167.187	$\lceil 148.857 \rceil$	$\lceil 148.300 m $	<i>[</i>]145.138	-144.744	$_{f}$ 134.609	L134.376	131.183	130.618	129.974	129.124	128.311	127.351	123.555	53.246	-43.640	floor 32.948	₇ 29.185	-15.351
						\sim	(ITTT											

¹³C NMR (400M, CDC₃)

f1 (ppm)

Methyl 3-(2-chloroethyl)-4-(4-chlorophenyl)-6-ethylquinoline-2-carboxylate (3w)

Methyl 3-(2-chloroethyl)-4-(4-chlorophenyl)-6-methoxyquinoline-2-carboxylate (3x)

Methyl 3-(2-chloroethyl)-4-(4-chlorophenyl)-6-ethoxyquinoline-2-carboxylate (3y)

$$-167.211$$

 151.717
 148.703
 148.703
 144.508
 134.603
 134.398
 134.398
 134.398
 129.056
 129.056
 129.056
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075
 129.075

$$-53.200$$

 $f 43.642$
 $f 35.177$
 $f 32.944$
 -30.899

Methyl 6-(tert-butyl)-3-(2-chloroethyl)-4-(4-chlorophenyl)quinoline-2-carboxylate (3z)

S100	-167.618	 -147.108 -147.108 -134.983 -134.461 134.461 130.604 -129.166 -127.299 -101.585	55.223 55.223 52.889 43.603 33.142	-17.901
¹³ C NMR (400M, CDCl₃)				
CI I				

MeO

.Cl

`CO₂Me

→ `N^{*} Me **4a**

110 100 f1 (ppm) -10

Methyl 3-(2-chloroethyl)-4-(4-chlorophenyl)-6-methoxy-8-methylquinoline-2-carboxylate (4a)

Methyl 3-(2-chloroethyl)-4-(4-fluorophenyl)-6-methylquinoline-2-carboxylate (4b)

Methyl 6-(tert-butyl)-3-(2-chloroethyl)-4-(4-fluorophenyl)quinoline-2-carboxylate (4c)

S109	-167.093	$\lceil 148.772 \rceil$	r147.771	7144.538	7139.899	-139.185	-132.449	-131.277	130.950	130.624	130.298	129.874	129.829	-128.002	125.290	L124.534	L122.581	-53.229	-43.600	r32.859	-21.928
				<u> </u>		\neg	\sim												1		

 $^{13}\text{C}\,\text{NMR}$ (100M, $\text{CDCI}_3)$

f1 (ppm)

-10

Methyl 3-(2-chloroethyl)-6-methyl-4-(4-(trifluoromethyl)phenyl)quinoline-2-carboxylate (4d)

S112	167.087 160.632 158.180 148.717 144.614 143.336 139.128	132.428 131.374 131.374 131.343 131.021 130.942 129.874 128.390 128.390	124.613 124.613 124.294 123.351 123.180 116.402 116.188	53.253 43.234 33.550 21.993

¹³C NMR (400M, CDC₃)

Methyl 3-(2-chloroethyl)-4-(2-fluorophenyl)-6-methylquinoline-2-carboxylate (4e)

Methyl 3-(2-chloroethyl)-6-methyl-4-(naphthalen-2-yl)quinoline-2-carboxylate (4f)

	'	· 1	· 1	·	'	· 1	' I	· 1	· 1	· · · ·	· 1	·	, <u> </u>		'	·	'	'			1	· ·		·
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											t	fl (ppm))											

methyl 3-(2-chloroethyl)-4,4-bis(4-chlorophenyl)-6-methyl-1,4-dihydroquinoline-2-carboxylate (6a)

S121

230

-58.185 L52.883 **~43.256** -35.497

Methyl 3-(2-chloroethyl)-4,4-bis(4-chlorophenyl)-6-methoxy-1,4-dihydroquinoline-2-carboxylate (6b)

Methyl 6-(tert-butyl)-3-(2-chloroethyl)-4,4-bis(4-chlorophenyl)-1,4-dihydroquinoline-2-carboxylate (6c)

Methyl 3-(2-chloroethyl)-4,4-bis(4-chlorophenyl)-6,8-dimethyl-1,4-dihydroquinoline-2-carboxylate (6d)

f1 (ppm)

-10

Methyl 3-(2-chloroethyl)-4,4-bis(4-chlorophenyl)-6-methoxy-8-methyl-1,4-dihydroquinoline-2-carboxylate (6e)

Ethyl 3-(2-chloroethyl)-4,4-bis(4-chlorophenyl)-6-methyl-1,4-dihydroquinoline-2-carboxylate (6f)

S136	163.535 162.555 160.096	$\int 141.162$	134.779 131.538 131.459	¹ 130.835 130.165 128.284 127.271	⁻ 125.502 -119.149 -115.002 -114.792 -113.904	\57.672 \52.814 \33.253 } 35.651	-20.942
	1 f F		ז או זור רב				1

f1 (ppm)

Methyl 3-(2-chloroethyl)-4,4-bis(4-fluorophenyl)-6-methyl-1,4-dihydroquinoline-2-carboxylate (6g)

