Supporting Information ©Wiley-VCH 2016 69451 Weinheim, Germany

Selective formation of a Supramolecular Coordination Complex in the Nanometre Scale with a Ferrocene-based Phospholane Ligand

Reinhard Hoy,^a Toni Grell,^b Peter Lönnecke^a and Evamarie Hey-Hawkins^{*,a}

Abstract: A straightforward synthesis of the tetradentate phospholane ligand **1** is reported. The 2:1 [M:L] reaction of **1** with [AuCl(tht)] (tht = tetrahydrothiophene) resulted in a 4:2 [M:L] supramolecular coordination complex **2** where two ligands **1** are bridging four gold(I) cations. The formation of **2** can be rationalised via a geometrical analysis of the ligand. The coordination mode of the gold atoms was evaluated based on a CSD search, revealing the geometrical changes for a transition from linear to trigonal planar coordination environment.

^{a.} Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany

^b Dipartimento di Chimica, Università degli Studi di Milano, Via Camillo Golgi 19, 20133 Milano, Italy.

1. Table of Contents

1. Table of Contents
2. General remarks
3. Synthetic Procedures
I-Bromo-2,6-diethylaniline
5-Bromo-1,3-diethyl-2-iodobenzene
I-Bromo-2,6-diethylbenzaldehyde
Synthesis of 1-[4-(Diethoxyphosphonylmethyl)phenyl]-3,5-bis {4-[(<i>E</i>)-(4-bromo-2,6-diethyl)-
tyryl]phenyl}benzene
Synthesis of 1,1'-Bis{(E)-[4-(3,5-bis{4-[(E)-(4-bromo-2,6-diethyl)styryl]phenyl})styryl]}ferrocene9
Synthesis of Ligand 1 $(1,1'-Bis\{(E)-[4-(3,5-bis\{4-[(E)-(4-phospholane-2,6-$
liethyl)styryl]phenyl})styryl]}ferrocene)11
Synthesis of Complex 2 (Bis[μ -1,1'-bis{(E)-[4-(3,5-bis{4-[(E)-(4-phospholane-2,6-
liethyl)styryl]phenyl})styryl]}ferrocene- $\kappa^4 P, P', P'', P'''$]tetragold(I)-tetrachloride)
4. Single-Crystal X-Ray Diffraction
5. CSD Search
Search Parameters
Conclusions of the Search
5. TGA/DSC-measurements
7. References

2. General remarks

All oxygen- and moisture-sensitive experiments were carried out under dry nitrogen using standard Schlenk-technique. Solvents were dried and degassed using an MB SPS-800 Solvent Purification System from MBraun. For reactions including *n*-butyllithium, tetrahydrofuran was used, which was dried and distilled from potassium/benzophenone and kept over molecular sieve (4Å). 1,3,5-Tris[*p*-(diethoxyphosphonylmethyl)phenyl]benzene^[1], 1,1'-diformylferrocene^[2] and [AuCl(tht)]^[3] (tht = tetrahydrothiophene) were synthesised according to the literature.

Cyclic voltammetry. Determination of redox potentials was carried out at room temperature using a three-electrode arrangement (glassy carbon working electrode, platinum counter electrode, silver pseudo-reference electrode) on a SP-50 potentiostat from Bio-Logic Science Instruments. A 0.1 M tetrabutylammonium tetrafluoroborate solution in dichloromethane was used as supporting electrolyte. Decamethylferrocene was used as internal standard.^[4]

Elemental analysis. Carbon and hydrogen contents of the compounds were determined using a Vario EL Analyser from Heraeus.

IR spectroscopy. IR spectra were recorded in the range from 4000 to 400 cm⁻¹. ATR spectra were recorded on a Thermofisher Nicolet iS5 ATR spectrometer; KBr pellets were measured on an FT-IR Spektrum 2000 spectrometer from PerkinElmer.

NMR spectroscopy. NMR spectra were recorded at room temperature using a Bruker Avance DRX 400 (¹H-NMR 400.13 MHz, ¹³C-NMR 100.16 MHz, ³¹P-NMR 161.98 MHz) NMR spectrometer. Tetramethylsilane (TMS) was used as internal standard for ¹H-NMR spectra. ¹³C- and ³¹P-NMR spectra were referenced to TMS on the Ξ scale.^[5] Correlation of ¹H and ¹³C signals was based on 2D-NMR experiments (HMBC, HSQC) and APT spectra when necessary.

Mass spectrometry. ESI mass spectra were recorded on an Impact II and Esquire 3000 Plus mass spectrometer from Bruker Daltonics.

TGA/DSC measurements. The TGA/DSC measurements were performed on a STA 449 F1 Jupiter from Netzsch, using helium as atmosphere and carrier gas. During TGA/DSC, mass fragments could be detected using a QMS 403 C Aeolos from Netzsch. The samples were prepared in alumina crucibles and a heating rate of 10 K/min was applied.

3. Synthetic Procedures

Scheme S1. Synthesis of tetrakis-phospholane 1 including description of geometrical parameters in the ferrocenylene unit.

4-Bromo-2,6-diethylaniline

2,6-Diethylaniline (25 g, 167.5 mmol; 1.0 eq) was dissolved in 200 ml dimethylsulfoxide and cooled to 0 °C. 200 ml of an aqueous HBr solution (40%) was added and the mixture was allowed to warm to room temperature. The mixture was stirred for 7 days at room temperature, then neutralised with aqueous NaOH solution and extracted with diethyl ether (3 x 80 ml). The collected organic phases were dried over MgSO₄ and the solvent was removed under reduced pressure.

Yield: 36.8 g (96%), slightly brown oil.

¹**H-NMR** (CDCl₃, 400.13 MHz): *δ* = 7.03 (s, 2H, H⁴), 3.56 (s, 2H, H¹), 2.41 (q, ³*J*_{HH} = 7.5 Hz, 4H, H⁶), 1.19 ppm (t, ³*J*_{HH} = 7.6 Hz, 6H, H⁷).

¹³C{¹H}-NMR (CDCl₃, 100.16 MHz): δ = 140.7 (s, C²), 129.6 (s, C³), 128.4 (s, C⁴), 110.1 (s, C⁵), 24.1 (s, C⁶), 12.7 ppm (s, C⁷).

IR (KBr): $\tilde{\nu}$ = 3923 (w), 3485 (s), 3402 (s), 3234 (w), 2966 (s), 2935 (m), 2875 (s), 2732 (w), 2429 (w), 2175 (w), 1739 (m), 1622 (s), 1578 (m), 1451 (s), 1378 (m), 1344 (m), 1303 (w), 1284 (m), 1247 (w), 1210 (s), 1137 (w), 1056 (m), 986 (w), 970 (w), 867 (s), 853 (m), 796 (m), 759 (w), 740 (m), 723 (w), 586 (w), 548 (m), 523 (w), 488 (w), 413 (w) cm⁻¹.

MS (ESI(+), MeCN): *m*/*z* = 228.1 [M+H]⁺.

EA for C ₁₀ H ₁₄ BrN	calculated (%)	C: 52.65	H: 6.19	N: 6.14
M = 228.13 g/mol	found (%)	C: 53.06	H: 6.15	N: 6.33

SUPPORTING INFORMATION

5-Bromo-1,3-diethyl-2-iodobenzene

4-Bromo-2,6-diethylaniline (73.0 g, 320.0 mmol; 1.0 eq) was suspended in 1.1 I H₂O, 200 ml acetonitrile and 350 ml concentrated aqueous HCl and cooled to -10 °C. NaNO₂ (40 g, 580 mmol; 1.8 eq) in 200 ml H₂O were added dropwise, resulting in a pink precipitate, followed by formation of a clear red solution. After the addition, the solution was stirred for 60 min at -10 °C, followed by dropwise addition of a solution of KI (184 g, 902 mmol; 2.8 eq) in 300 ml H₂O. The formation of a yellowish foam was observed. Afterwards, the mixture was carefully allowed to warm up to room temperature. The mixture was stirred overnight, heated to 60 °C for 30 min, cooled to room temperature, and extracted with *n*-hexane (4 x 50 ml). The collected organic phases were stirred over MgSO₄. After filtration, the solvent removed under reduced pressure.

Yield: 100.0 g (92%), slightly yellow oil.

¹**H-NMR** (CDCl₃, 400.13 MHz): δ = 7.15 (s, 2H, H³), 2.73 (q, ³J_{HH} = 7.5 Hz, 4H, H⁵), 1.18 ppm (t, ³J_{HH} = 7.4 Hz, 6H, H⁶).

¹³C{¹H}-NMR (CDCl₃, 100.16 MHz): δ = 148.8 (s, C²), 128.7 (s, C³), 122.6 (s, C⁴), 105.4 (s, C¹), 35.3 (s, C⁵), 14.5 ppm (s, C⁶).

IR (KBr): $\tilde{\nu}$ = 2968 (s), 2931 (m), 2873 (m), 2382 (w), 2347 (w), 1734 (w), 1558 (m), 1460 (s), 1427 (m), 1417 (m), 1397 (w), 1373 (m), 1327 (m), 1271 (w), 1241 (m), 1128 (m), 1075 (w), 1051 (m), 1004 (s), 862 (s), 813 (m), 784 (w), 726 (w), 709 (w), 661 (w), 600 (w), 568 (w), 530 (w), 421 (w) cm⁻¹.

MS (ESI(+), DCM/MeOH): *m*/*z* = 374.9 [C₁₀H₁₀Brl+K]⁺.

EA for C ₁₀ H ₁₂ Brl	calculated (%)	C: 35.46	H: 3.57
M = 339.01 g/mol	found (%)	C: 35.97	H: 3.55

4-Bromo-2,6-diethylbenzaldehyde

5-Bromo-1,3-diethyl-2-iodobenzene (10.0 g, 29.5 mmol; 1.0 eq) was dissolved in 100 ml diethyl ether and cooled to -78 °C. 21.9 ml (33.9 mmol; 1.1 eq) of a 1.55 M *n*-butyllithium solution in *n*-hexane were added in one portion and the mixture was stirred for 90 min at a temperature below -45 °C, resulting in a white precipitate. Afterwards 10.3 ml (132.8 mmol; 4.5 eq) dimethylformamide were added dropwise and the precipitate dissolved. The mixture was allowed to warm to room temperature and was stirred overnight, resulting again in a white precipitate. 20 ml of an aqueous NH₄Cl solution were added carefully and the mixture was extracted with diethyl ether (2 x 25 ml). The collected organic phases were dried over MgSO₄ and the solvent removed using the rotary evaporator after filtration. The raw product was filtered over silica using *n*-hexane/EtOH (20:1; R_f = 0.7) and subsequently distilled at 2.6 · 10⁻² mbar and 100 °C.

Yield: 6.2 g (87%), colourless oil.

¹**H-NMR** (CDCl₃, 400.13 MHz): δ = 10.52 (s, 1H, H¹), 7.28 (s, 2H, H⁴), 2.93 (q, ³J_{HH} = 7.5 Hz, 4H, H⁶), 1.24 ppm (t, ³J_{HH} = 7.6 Hz, 6H, H⁷).

¹³C{¹H}-NMR (CDCl₃, 100.16 MHz): δ = 192.3 (s, C¹), 149.1 (s, C³), 131.0 (s, C⁴), 130.3 (s, C²), 127.8 (s, C⁵), 26.4 (s, C⁶), 16.1 ppm (s, C⁷).

IR (KBr): $\tilde{\nu}$ = 3373 (w), 2970 (s), 2934 (m), 2874 (m), 2767 (m), 1740 (m), 1695 (s), 1574 (s), 1457 (s), 1401 (m), 1377 (m), 1324 (w), 1298 (w), 1264 (m), 1234 (s), 1184 (m), 1158 (m), 1114 (s), 1061 (m), 968 (w), 893 (m), 867 (s), 844 (s), 799 (w), 737 (m), 590 (w), 442 (m) cm⁻¹.

MS (ESI(+), MeCN): *m*/*z* = 298.3 [M+CH₃CN+CH₃]⁺.

EA for C ₁₁ H ₁₃ BrO	calculated (%)	C: 54.79	H: 5.43
M = 241.12 g/mol	found (%)	C: 54.82	H: 5.57

SUPPORTING INFORMATION

Synthesis of 1-[4-(Diethoxyphosphonylmethyl)phenyl]-3,5-bis{4-[(E)-(4-bromo-2,6-diethyl)-styryl]phenyl}benzene

1,3,5-Tris(*p*-(diethoxyphosphonylmethyl)phenyl)benzene (2.54 g, 3.36 mmol; 1.0 eq) was dissolved in 20 ml THF. NaH (0.24 g, 6.0 mmol; 1.8 eq; 60% in mineral oil) was added. The solution was stirred for 3 h followed by addition of 0.81 g (3.36 mmol; 1.0 eq) 4-bromo-2,6-diethylbenzaldehyde in 10 ml THF. The reaction mixture was stirred over night at room temperature, and the additions were repeated once more. 20 ml water was added carefully and the mixture neutralised with hydrochloric acid. All volatiles were removed in vacuum. The resulting oil was dissolved in DCM, washed with brine and water (50 ml each) and dried over MgSO₄. The pure product was obtained after column chromatography using *n*-hexane/EtOH (10:1; $R_f = 0.4$).

Yield: 1.64 g (69%), viscous, slightly yellow oil.

¹**H-NMR** (CDCl₃, 400.13 MHz): δ = 7.81 (s, 1H, H¹), 7.80 (s, 2H, H³), 7.73 (d, ³J_{HH} = 8.4 Hz, 4H, H¹³), 7.67 (d, ³J_{HH} = 7.5 Hz, 2H, H⁶), 7.62 (d, ³J_{HH} = 8.4 Hz, 4H, H¹⁴), 7.44 (m, 2H, H⁷), 7.25 (s, 4H, H²²), 7.13 (d, ³J_{HH} = 16.8 Hz, 2H, H¹⁷), 6.61 (d, ³J_{HH} = 16.8 Hz, 2H, H¹⁶), 4.07 (m, 4H, H¹⁰), 3.23 (d, ²J_{PH} = 21.9 Hz, 2H, H⁹), 2.70 (q, ³J_{HH} = 7.6 Hz, H, H²⁰), 1.29 (t, ³J_{HH} = 7.2 Hz, 6H, H¹¹), 1.20 ppm (t, ³J_{HH} = 7.6 Hz, 12H, H²¹).

¹³C{¹H}-NMR (CDCl₃, 100.16 MHz): δ = 144.7 (s, C¹⁹), 142.1 (s, C⁴), 141.9 (s, C²), 140.4 (s, C¹²), 139.6 (d, ⁵J_{PC} = 3.7 Hz, C⁵), 136.6 (s, C¹⁵), 135.2 (s, C¹⁸), 133.8 (s, C¹⁶), 131.1 (d, ²J_{PC} = 9.2 Hz, C⁸), 130.3 (d, ³J_{PC} = 6.4 Hz, C⁷), 128.8 (s, C²²), 127.6 (s, C¹³), 127.4 (d, ⁴J_{PC} = 2.8 Hz, C⁶), 126.9 (s, C¹⁴), 125.7 (s, C¹⁷), 124.9 (s, C³), 124.7 (s, C¹), 121.1 (s, C²³), 62.2 (d, ²J_{PC} = 6.7 Hz, C¹⁰), 33.5 (d, ¹J_{PC} = 138.2 Hz, C⁹), 26.8 (s, C²⁰), 16.4 (d, ³J_{PC} = 5.8 Hz, C¹¹), 15.1 ppm (s, C²¹).

³¹P{¹H}-NMR (CDCl₃, 161.98 MHz): δ = 26.3 ppm (s).

IR (KBr): $\tilde{\nu} = 3027$ (w), 2966 (s), 2931 (m), 2872 (m), 2346 (w), 1639 (s), 1595 (s), 1575 (s), 1510 (s), 1456 (s), 1394 (m), 1326 (m), 1248 (s), 1182 (m), 1097 (m), 1054 (s), 1027 (s), 968 (s), 850 (s), 811 (s), 767 (w), 739 (w), 704 (m), 646 (w), 612 (w), 597 (w), 574 (w), 543 (s) cm⁻¹.

MS (ESI(+), DCM/MeOH): m/z = 953.3 [M+Na]⁺.

EA for C ₅₃ H ₅₅ Br ₂ O ₃ P	calculated (%)	C: 68.39	H: 5.96
M = 930,80 g/mol	found (%)	C: 67.76	H: 5.98

$\label{eq:synthesis} Synthesis of 1,1`-Bis\{(E)-[4-(3,5-bis\{4-[(E)-(4-bromo-2,6-diethyl)styryl] phenyl\}) styryl]\} for recencil and the synthesis of the synthesynthesis of the synthesis of the$

1-[4-(Diethoxyphosphonylmethyl)phenyl]-3,5-bis{4-[(*E*)-(4-bromo-2,6-diethyl)-styryl]phenyl}benzene (3.44 g, 3.70 mmol; 3.0 eq) was dissolved in 200 ml THF. NaH (0.37 g, 9.25 mmol; 7.5 eq; 60% in mineral oil) was added and the mixture was stirred for 90 min. The suspension was warmed to 50 °C for a short period, resulting in an intense dark brown colour. Subsequently, 0.30 g (1.23 mmol; 1.0 eq) of freshly purified (via column chromatography) 1,1'-diformylferrocene was added as a solid in one portion, resulting in a colour change of the solution to red. The reaction mixture was stirred over night at room temperature followed by careful addition of 15 ml water. All volatiles were removed using the rotary evaporator. The pure product was obtained after column chromatography using *n*-hexane/toluene (5:3; $R_f = 0.5$).

Yield: 1.26 g (57%), intense red, solidifying oil.

¹**H-NMR** (CDCl₃, 400.13 MHz): δ = 7.67 (s, 2H, H¹¹), 7.62 (s, 1H, H¹³), 7.52 – 7.49 (m, 6H, H⁸+H¹⁵), 7.42 (d, ³*J*_{HH} = 8.4 Hz 4H, H¹⁶), 7.34 (d, ³*J*_{HH} = 7.6 Hz, 2H, H⁷), 7.14 (s, 4H, H²⁴), 6.96 (d, ³*J*_{HH} = 16.7 Hz, 2H, H¹⁹), 6.75 (d, ³*J*_{HH} = 15.8 Hz, 1H, H⁴), 6.61 (d, ³*J*_{HH} = 15.8 Hz, 1H, H⁵), 6.45 (d, ³*J*_{HH} = 16.7 Hz, 2H, H¹²), 4.21 (s, 2H, H¹), 2.56 (q, ³*J*_{HH} = 7.5 Hz, 8H, H²²), 1.08 ppm (t, ³*J*_{HH} = 7.5 Hz, 12H, H²³).

¹³C{¹H}-NMR (CDCl₃, 100.16 MHz): δ = 144.5 (s, C²¹), 142.0 (s, C¹⁰), 141.7 (s, C¹²), 140.3 (s, C¹⁴), 139.0 (s, C⁹), 137.2 (s, C⁶), 136.4 (s, C¹⁷), 135.1 (s, C²⁰), 133.7 (s, C¹⁸), 128.7 (s, C²⁴), 127.5 (s, C¹⁵), 127.3 (s, C⁸), 126.7 (s, C¹⁶), 126.5 (s, C⁴), 126.2 (s, C⁷), 125.9 (s, C⁵), 125.6 (s, C¹⁹), 124.5 (m, C¹¹+C¹³), 121.0 (s, C²⁵), 84.1 (s, C³), 70.1 (s, C¹), 68.1 (s, C²), 26.7 (s, C²²), 15.0 ppm (s, C²³).

IR (KBr): $\tilde{\nu}$ = 3024 (w), 2964 (m), 2929 (w), 2870 (w), 1631 (m), 1594 (m), 1575 (m), 1558 (w), 1510 (m), 1456 (m), 1394 (w), 1262 (s), 1179 (w), 1096 (s), 1026 (s), 970 (m), 862 (m), 848 (m), 805 (s), 704 (w), 609 (w), 491 (w) cm⁻¹.

MS (ESI(+), DCM/MeCN): m/z = 1794.6 [M-H]⁺.

EA for C ₁₁₀ H ₉₈ Br ₄ Fe	calculated (%)	C: 73.50	H: 5.61
M = 1795,46 g/mol	found (%)	C: 73.37	H: 5.68

Cyclic voltammogram:

Synthesis of Ligand 1 (1,1'-Bis{(E)-[4-(3,5-bis{4-[(E)-(4-phospholane-2,6-diethyl)styryl]phenyl})styryl]}ferrocene)

1,1'-Bis{(*E*)-[4-(3,5-bis{4-[(*E*)-(4-bromo-2,6-diethyl)styryl]phenyl})styryl]}ferrocene (0.46 g, 0.26 mmol; 1.0 eq) was dissolved in 20 ml THF and cooled to -78 °C. To this solution, 0.84 ml (1.28 mmol; 5.0 eq) of a 1.52 M *n*-butyllithium solution in *n*-hexane was quickly added and stirred at -78 °C for 90 min, followed by addition of 0.19 g (1.54 mmol; 6.0 eq) 1-chlorophospholane. The mixture was warmed to room temperature followed by removal of the solvent in vacuum. The remaining solid was dissolved in 10 ml DCM and filtered over a layer of silica (ca. 3 cm thick, inert). Removal of the solvent in vacuum gave the pure product as red oil.

Yield: 0.43 g (91%), intense red, solidifying oil.

¹**H-NMR** (CDCl₃, 400.13 MHz): δ = 7.77 (m, 2H, H¹¹), 7.73 (s, 1H, H¹³), 7.64 – 7.60 (m, 6H, H⁸+H¹⁵), 7.55 (d, ³*J*_{HH} = 8.3 Hz 4H, H¹⁶), 7.46 (d, ³*J*_{HH} = 8.3 Hz, 2H, H⁷), 7.18 (d, ³*J*_{HH} = 16.6 Hz, 2H, H¹⁹), 7.13 (d, ³*J*_{HP} = 5.5 Hz, 4H, H²⁴), 6.87 (d, ³*J*_{HH} = 16.1 Hz, 1H, H⁴), 6.72 (d, ³*J*_{HH} = 16.1 Hz, 1H, H⁵), 6.60 (d, ³*J*_{HH} = 16.6 Hz, 2H, H¹⁸), 4.48 (s, 2H, H²), 4.32 (s, 2H, H¹), 2.71 (q, ³*J*_{HH} = 7.5 Hz, 8H, H²²), 2.02 (m, 8H, H²⁶), 1.82 (m, 8H, H²⁷), 1.20 ppm (t, ³*J*_{HH} = 7.5 Hz, 12H, H²³).

¹³C{¹H}-NMR (CDCl₃, 100.16 MHz): δ = 142.2 (s, C²¹+C²⁵), 142.1 (s, C¹⁰), 141.9 (s, C¹²), 140.2 (s, C¹⁴), 139.2 (s, C⁹), 137.2 (s, C⁶), 136.8 (s, C¹⁷), 135.5 (s, C²⁰), 133.3 (s, C¹⁸), 128.2 (m, C²⁴), 127.6 (s, C¹⁵), 127.4 (s, C⁸), 126.8 (s, C¹⁶), 126.6 (s, C⁴), 126.5 (s, C¹⁹), 126.3 (s, C⁷), 126.0 (s, C⁵), 124.7 (s, C¹³), 124.6 (s, C¹¹), 84.1 (s, C³), 70.3 (s, C¹), 68.1 (s, C²), 28.0 (s, C²⁶), 27.1 (s, C²²+C²⁷), 15.5 ppm (s, C²³).

³¹**P**{¹**H**}-**NMR** (CDCl₃, 161.98 MHz): δ = -16.3 ppm (s).

IR (KBr): $\tilde{\nu}$ = 3025 (m), 2961 (s), 2931 (s), 2870 (s), 1780 (w), 1632 (m), 1594 (s), 1548 (w), 1510 (s), 1457 (s), 1421 (m), 1395 (m), 1373 (w), 1301 (w), 1261 (s), 1184 (w), 1095 (s), 1045 (s), 1027 (s), 970 (m), 853 (m), 807 (s), 759 (w), 705 (w), 648 (w), 609 (w), 493 (m), 393 (m) cm⁻¹.

MS (ESI(+), CHCl₃/MeCN): *m*/z = 912.9 [M+2H]²⁺, 1824.9 [M+H]⁺.

EA for C ₁₂₆ H ₁₃₀ FeP ₄	calculated (%)	C: 82.87	H: 7.29
M = 1824.17 g/mol	found (%)	C: 78.94	H: 7.24

Cyclic voltammogram:

Synthesis of Complex 2 (Bis[μ -1,1´-bis{(*E*)-[4-(3,5-bis{4-[(*E*)-(4-phospholane-2,6-diethyl)styryl]phenyl})styryl]}ferrocene- $\kappa^4 P, P', P'', P'''$]tetragold(l)-tetrachloride)

1,1'-Bis{(*E*)-[4-(3,5-bis{4-[(*E*)-(4-phospholane-2,6-diethyl)styryl]phenyl})-styryl]}ferrocene (160 mg, 88 μ mol; 2.0 eq) was dissolved in 10 ml DCM followed by addition of 60 mg (187 μ mol; 2.1 eq) [AuCl(tht)] in 6 ml DCM. The intense red, clear solution was stirred at room temperature for 15 min followed by filtration via cannula. The resulting solution was diluted with 5 ml *o*-difluorobenzene and 5 ml toluene. Gas-phase diffusion of a 1:1 (v:v) mixture of *n*-pentane/*n*-hexane into this solution at room temperature gave deep red crystals of **2** suitable for X-ray crystallography within a few days.

¹**H-NMR** (CD₂Cl₂, 400.13 MHz): δ = 7.61 – 6.41 (m, 100H, H⁴+H⁵+H⁷+H⁸+H¹¹+H¹³+H¹⁵+H¹⁶+H¹⁸+H¹⁹+H²⁴), 4.38 (s, 8H, H²), 4.24 (s, 8H, H¹), 2.58 – 1.01 ppm (m, 144H, H²²+H²³+H²⁶+H²⁷). (Numbering of positions is identical to ligand **1**)

³¹P{¹H}-NMR (CD₂Cl₂, 161.98 MHz): δ = 31.1 ppm (s).

IR (ATR): \tilde{v} = 3341 (m), 2962 (s), 2931 (s), 2870 (m), 2362 (w), 2161 (w), 1589 (m), 1506 (s), 1454 (s), 1396 (m), 1265 (m), 1121 (m), 1060 (m), 1028 (w), 970 (s), 846 (m), 808 (m), 760 (m), 689 (m) cm⁻¹.

MS (ESI(+), DCM): L = $C_{126}H_{130}FeP_4$, m/z = 1108.9 [Au₂L]²⁺, 1412.9 [Au₃L_2]³⁺, 1418.2 [Au₃L_2O]³⁺, 1490.5 [Au₄ClL_2]³⁺, 1495.8 [Au₄ClL_2O]³⁺, 2137.3 [Au₃ClL_2]²⁺, 2144.7 [Au₃ClL_2O]³⁺, 2253.7 [Au₄Cl_2L_2]²⁺, 2369.7 [Au₅Cl₃L_2]²⁺, 2485.6 [Au₃Cl_2L]⁺.

EA for $C_{252}H_{260}Au_4Cl_4Fe_2P_8 \cdot 3 CH_2Cl_2$	calculated (%)	C: 63.38	H: 5.55
M = 4832.83 g/mol	found (%)	C: 63.87	H: 5.63

Cyclic voltammogram:

Table 1: Peak and reduction potentials in dichloromethane at room temperature with 50 mV/s speed of 1a, 1 and2.

	E _{<i>p,c</i> [mV]}	E _{p,a} [mV]	<i>Δ</i> Ε _ρ [mV]	E _{red} [mV] vs. Ag/AgCl	E _{red} [mV] vs. Fc/Fc⁺
1a	546	437	109	492	-40
1	532	436	96	484	-48
2	527	438	89	486	-46

4. Single-Crystal X-Ray Diffraction

The data were collected on a Gemini diffractometer (Rigaku Inc.) using Mo-K α radiation (λ = 0.71073 Å) and ω -scan rotation. Data reduction was performed with CrysAlisPro^[6] including the program SCALE3 ABSPACK for empirical absorption correction. The structure was solved by dual space methods (SHELXT-2014 ^[7]) and the anisotropic refinement of all non-hydrogen atoms was performed with SHELXL-2018 ^[8]. All hydrogen atoms were calculated on idealised positions.

Several parts of the ligand are disordered over two positions. This involves two phospholane groups at P3 (0.58(2):0.42(2)) and P4 (0.55(2):0.45(2)), three ethyl groups at C34 (0.80(1):0.20(1)), C36 (0.58(1):0.42(1)) and C97 (0.62(1):0.38(1)), as well as a phenylene group C83-C88 (0.712(6):0.288(6)).

Although it was possible to locate 4 diffusely oriented CH_2Cl_2 solvent molecules of the asymmetric unit (8 for the unit cell), the electron density of all solvent molecules has been removed with the SQUEEZE^[9] routine implemented in PLATON. Based on the squeezed electron count, the electron density of approximately 28 poorly defined and diffusely oriented dichloromethane molecules was removed from the unit cell (28 x 42 = 1176 electrons). This value corresponds with the estimated "squeezed" electron density of 1169 electrons. A volume of 94 Å³ for one dichloromethane molecule (approximately 31 Å³ for each non-hydrogen atom) is acceptable for loosely packed solvent molecules. The solvent molecules are located in channels along the crystallographic [211] direction (Figure S1). The size of these approximately rectangular channels is 5 Å x 2 Å. CCDC 2095487 (**2**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via https://summary.ccdc.cam.ac.uk/structure-summary-form (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44)1223-336-033; or deposit@ccdc.cam.uk).

Figure S1. Representation of the rectangular channels along the crystallographic [211] direction.

Table S1. Crystallographic data of 2.	
---------------------------------------	--

Empirical formula	C ₂₈₀ H ₃₁₆ Au ₄ Cl ₆₀ Fe ₂ P ₈	
Molecular formula	[Au ₄ Fe ₂ (C ₆₃ H ₆₅ P ₂) ₄ Cl ₄]·28 CH ₂ Cl ₂	
Formula weight	6955.64	
Temperature	130(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	PĪ	
Unit cell dimensions	a = 19.259(1) Å	α = 95.215(4)°
	b = 20.133(1) Å	β = 112.055(4)°
	c = 23.4890(9) Å	γ = 113.282(6)°
Volume	7441.2(8) Å ³	
Z	1	
Density (calculated)	1.552 Mg/m ³	
Absorption coefficient	2.693 mm ⁻¹	
F(000)	3504	
Crystal size	0.34 x 0.12 x 0.05 mm ³	
Theta range for data collection	1.883 to 28.163°	
Index ranges	-25 \geq h \geq 24, -25 \geq k \geq 26, -30 \geq l \geq 30	
Reflections collected	79657	
Independent reflections	30914 [R(int) = 0.0671]	
Completeness to theta = 25.350°	99.9 %	
Absorption correction	Analytical ^[10] and semi-empirical from equ	ivalents
Max. and min. transmission	0.882 and 0.580	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	30914 / 53 / 1213	
Goodness-of-fit on F ²	0.976	
Final R indices [I>2sigma(I)]	R ₁ = 0.0554, wR ₂ = 0.1156	
R indices (all data)	R ₁ = 0.1193, wR ₂ = 0.1373	
Largest diff. peak and hole	2.277 and -0.745 e⋅Å ⁻³	

5. CSD Search

Search Parameters

The Cambridge Structural Database (CSD), version 5.42 (November 2020)^[11] was used for the crystal structure search. The searches have been performed using the program ConQuest,^[12] version 2020.3.0. Three search motifs (Scheme S1) were utilised. Au···X distances from 1.8 to 4 Å were searched. For the remaining parameters, no restrictions were applied.

Scheme S2. Search masks used for the CSD search. Dashed lines represent "any bond" as used in ConQuest.

The search yielded 227 structures. Every search hit was individually checked and excluded from consideration if the vicinity of the halogen atom was coincidental and not the result of an interaction, such as for instance halogenated solvent molecules. If multiple measurement of a structure were present, the measurement with the better R_1 value was chosen (excluding polymorphs). After inspection, 232 hits in 165 structures were selected and sorted in three categories:

- Category 1: Complexes with Au atoms coordinated by two P atoms and a halogen (trigonal planar environment) or by two P atoms and an interaction with a halogen.
- Category 2: Complexes as in category 1 with an additional aurophilic interaction to a second Au atom. The cut-off for the consideration was set at 3.0 Å.
- *Category 3*: Complexes as in category 1 where the halogen however is not free but part of a molecular counter ion such as for instance AlCl₄⁻.

Table S2 contains the complete results of the CSD search including the categories, type of halogen as well structural parameters for every search.

SUPPORTING INFORMATION

Table S2. Complete results of the CSD search including type of halogen (X), category (see above), selected interatomic distances (Å) and angles (°).

Ref. Code	Category	Halogen X	d(Au–X)	d(Au–P1)	d(Au–P2)	<(P–Au–P)
AJEHII	1	CI	2.662	2.34	2.34	152.69
AJEHUU	3	CI	3.438	2.322	2.323	166.828
AJEJEG	3	CI	3.515	2.299	2.291	173.608
AVEBOS	1	CI	2.953	2.307	2.304	173.478
BAXWOM06	1	CI	2.544	2.324	2.312	136.813
BAXWOM16	1	CI	2.528	2.32	2.32	133.205
BEDJEC	1	CI	2 538	2 317	2 316	148 74
BIBZEU	1	CI	2 832	2 293	2 297	175 993
BIBZEU	1	CI	2.85	2 293	2 302	174 168
	2	CI	3 281	2.200	2.306	175 216
CABDAL	2	CI	2 776	2.303	2.300	166.82
CARDAL	2	CI	2.770	2.027	2.020	169.479
CABDIT	2	Ci	2.075	2.307	2.300	100.470
CABDIT	1	1	2.945	2.322	2.321	155.915
CABDIT	1	1	2.995	2.309	2.331	155.20
CABDIT	1	1	3.053	2.306	2.324	156.237
CABDIT	1	I	3.054	2.322	2.311	156.906
CELSAQ	3	CI	3.038	2.314	2.321	162.963
CINBUZ	3	CI	3.252	2.339	2.322	169.104
CINCAG	3	CI	3.239	2.325	2.297	1/3./1
CORQEI	1	CI	2.62	2.311	2.305	151.85
CTPAUB01	1	Cl	2.509	2.313	2.331	132.733
CUJQOO	1	CI	2.566	2.317	2.317	139.081
CUJROP	1	CI	2.462	2.333	2.349	116.727
CUJRUV	1	CI	2.457	2.338	2.318	117.769
CUJRUV	1	CI	2.475	2.335	2.336	120.617
CUKQII	1	I	2.996	2.342	2.322	157.905
CUKQII	1	I	3.142	2.301	2.318	159.201
DAJRIP	1	Cl	3.436	2.31	2.311	176.516
DALWAR	1	Cl	2.453	2.278	2.401	119.003
DALWEV	1	CI	2.472	2.33	2.293	119.289
DIFTOE	3	CI	2.967	2.305	2.308	160.02
DUFWIK	2	CI	2.808	2.335	2.338	171.419
DUFWOQ	2	CI	2.964	2.333	2.337	173.08
DUKREG01	2	CI	3.467	2.302	2.303	176.812
DUKREG01	2	CI	3.534	2.303	2.302	176.812
DUMJIG	2	CI	2.949	2.306	2.31	173.244
DUMJIG	2	CI	2.978	2.308	2.313	170.036
EKOWUY	1	CI	2.562	2.342	2.303	147.219
EKOWUY	1	CI	2.677	2.315	2.303	158.072
FAXCAI	1	Br	2.841	2.292	2.302	157.745
FAXCAI	1	Br	2.894	2.317	2.312	162.06
FAXCAI01	1	Br	3.764	2.327	2.305	178.447
FAXCOW	1	Br	2.777	2.323	2.323	147.449
FAXHER	1	I	3.008	2.31	2.315	159.113
FAXJIX	1	1	2.895	2.343	2.328	143.062
FEHBUR01	1	I	2.976	2.314	2.318	152.975
FEHCEC	2	1	3.203	2.306	2.304	163.134
FEYPUU	1	Br	2.625	2.323	2.323	132.458
FEYRAC	1	1	2.754	2.333	2.333	132,131
FILCEL	3	CI	3.811	2.363	2.293	179.079
FOJDUD	2	Br	2.869	2.312	2.354	156.521
FONFAR	1	CI	2 709	2 324	2.33	151 768
FONEIZ	1	CI	3 319	2 305	2 306	171 494
FONFOF	1	CI	3 197	2.301	2.301	172 766
FONSEL	3	CI	2 986	2.32	2 301	168 787
GACTEL	1	CI	2.600	2.02	2.001	153 274
GACTEL	1	CI	2.625	2.200	2.204	154 668
GACTIP	1	CI	2.627	2 292	2 303	151 554
GACTIP	1	CI	2.027	2.2.2	2.000	153 177
GACTOV	1	CI	2.000	2.200	2.20	1/18 33/
GESMEW	2	CI	2.031	2.307	2.0	1/5 1
GESMEW	2	C	2.044	2.004	2.307	1/9 200
	∠ 2	C	2.090	2.34 I 2.20	2.301	140.000
GITKO	2	Br	2.304	2.23	2.301	150.010
HIEGE	<u>د</u>		3.100	2.234	2.304	190.907
	1		J.ZZI	2.20	2.20	100
IDULEI	1	G	2.040	2.313	2.300	120.100

	2	CI	2.046	2 205	2.2	176 604
ICODIV	5	Ci	2.340	2.295	2.5	170.024
ICUDIV	3	CI	3.005	2.293	2.307	176.914
ICUDIV	3	CI	3.045	2.299	2.314	177.624
	2	CI	2 090	2 204	2 217	177 125
ICODIV	3	G	3.069	2.304	2.317	177.155
IDUMIF	3	CI	3.04	2.311	2.313	176.679
IDUMIF	3	CI	3.032	2.301	2.305	177.978
114\/14	2	1	3 085	2 336	2 336	158 554
IJAVIA	2	I	5.005	2.550	2.330	150.554
IJAVOG	2	I	3.538	2.329	2.329	168.122
INACOP	2	I	3.1	2.309	2.33	154.475
IVOKOY	1	Br	2 780	2 312	2 31	150 671
TIOKUX	I	DI	2.709	2.312	2.31	150.071
IYOKUD	1	Br	2.829	2.31	2.305	156.207
IYOLAK	1	Br	2.803	2,306	2.31	154.191
	1	Br	2 817	2 312	2 31	153 362
HOLLO		DI	2.017	2.512	2.51	155.502
IYOLIS	1	Br	2.711	2.3	2.32	139.874
IYOLIS	1	Br	2.725	2.303	2.313	145.104
	1	Br	2 885	2 304	2 303	157 803
HOLOT		-	2.000	2.004	2.000	107.000
IYOLUE	1	Br	2.823	2.305	2.311	155.799
IYOMAL	1	Br	2.713	2.302	2.315	141.485
	1	Br	2 737	2 300	2 315	1/6 689
HOMAL		5	2.101	2.000	2.010	140.005
IZOCOQ	3	CI	2.934	2.303	2.307	175.026
IZOCOQ	3	CI	2.986	2.296	2.317	175.616
170000	3	CI	3.04	2 301	2 319	176 459
120000	0	01	0.04	2.001	2.010	170.400
IZOCOQ	3	CI	3.057	2.297	2.308	175.536
IZOCUW	3	CI	3.107	2.479	2.447	173.991
	3	CL	3 / 51	2 021	2.02	176.85
120000	5	OI .	0.401	2.021	2.02	170.00
IZODEH	3	CI	2.949	2.305	2.311	175.671
IZODEH	3	CI	2.967	2.296	2.305	175.748
	3	CL	2 770	2 206	2 31/	166 605
	5	OI .	2.115	2.230	2.514	100.005
IZODEH	3	CI	2.744	2.271	2.301	165.452
JAFGOM	2	CI	3.591	2.304	2.301	177.415
IAEGOM	2	CL	3 670	2 301	2 304	177 /15
	2	-	0.070	2.001	2.004	177.410
JAJMUC	2	Br	3.494	2.305	2.302	176.696
JAJNEN	2	CI	3.028	2.293	2.286	178.035
	2	CI	3 022	2 301	2 295	178 192
	-	ъ. В	0.022	2.001	2.200	170.002
JAJNIR	2	Br	3.083	2.313	2.298	178.32
JAJNIR	2	CI	3.112	2.291	2.287	176.478
JAJNOX	2	1	3,151	2,292	2,291	171.608
	-		0.077	0.04	0.007	170.570
JAJNUX	2	I	3.211	2.31	2.297	1/8.5/8
JAJNOX	2	I	3.331	2.285	2.287	176.024
JAJNOX	2	i i	3 267	2 287	2 294	174 027
	-	CI	0.504	0.01	0.01	104 110
JAZRAD	I	CI	2.521	2.31	2.31	134.110
KEPSII06	1	CI	2.582	2.328	2.346	136.446
KIXGAC	1	CI	3.955	2.313	2.314	175.899
KIXCAC	1	CI	2 704	2 2 2 2	2 222	179 570
KINGAC	1	G	3.704	2.322	2.322	170.579
KIXGAC	1	CI	3.678	2.316	2.305	177.22
KIXGAC	1	CI	3.659	2.314	2.324	177.842
KOBSIG	2	CI	2 588	2 306	2.34	1/1 301
Robolo	2	OI .	2.500	2.000	2.04	141.001
KUCMIZ	3	CI	3.042	2.304	2.303	165.202
KOQXEW	1	CI	3.015	2.319	2.317	166.657
KOQXEW	1	CI	3,296	2,313	2.311	172.946
KUNUAD	4	0	0.544	0.000	2 200	407.004
KUNHAD	I	G	2.044	2.323	2.300	137.304
KUNHEH	1	CI	2.572	2.345	2.355	132.885
KUNHEH	1	CI	2.591	2.352	2.327	137.801
	4	CI	0.047	2 200	0.000	170.001
LAPXUQ	I	CI	2.047	2.306	2.306	173.221
LEHWAW	2	CI	3.866	2.321	2.335	173.987
LEHWAW	2	CI	3.768	2.321	2.335	173.987
LEKGAL	2	C	2 051	2 333	2 200	164 806
LENGAJ	2	CI	2.901	2.555	2.299	104.050
MIVMEL	1	CI	2.788	2.319	2.319	158.314
NAWQAE	1	CI	2.534	2.313	2.33	135.514
NEKIU	3	I	3 662	2 302	2 302	180
		-	0.002	2.002	2.002	
NELNOK	1	CI	2.661	2.305	2.309	144.905
NOFJAV	1	CI	2.902	2.297	2.294	172.768
NOFJF7	1	CI	2,924	2.3	2,306	167 356
NOFIEZ		0	0.000			407.004
NUFJEZ	1	CI	3.038	2.295	2.3	167.621
NOFJEZ	1	CI	3.05	2.298	2.301	167.746
NOFJEZ		CI	3 268	2,297	2 293	170.066
	1	CI CI	3.200		2.200	
	1		3.200	2 200	2.200	175.000
NOFKEA	1 1	CI	2.941	2.296	2.292	175.323
NOFKEA NOFWUC	1 1 1	CI CI	2.941 2.807	2.296 2.299	2.292 2.299	175.323 169.376

NUSZAF	3	CI	3 //3	2 300	2 305	1// 205
0002/1	0	0.	0.440	2.000	2.000	144.200
OCUYUH	2	I	3.107	2.317	2.32	166.328
OCUYUH	2	I	3.101	2.31	2.311	164.704
OKACAF	3	Br	3.45	2.305	2.309	172.978
	2	Pr	2 /01	2 200	2 206	170 000
UNACEJ	3	Ы	3.401	2.309	2.300	172.090
OKACIN	3	CI	3.174	2.318	2.32	168.033
OKACOT	3	Br	3.215	2.321	2.32	170.826
	2	CI	3 161	2 037	2 303	158 651
	2	Ci	5.101	2.037	2.393	130.031
OMUFIN01	2	CI	2.829	2.413	2.324	159.877
OROXEA	3	CI	2.86	2.294	2.294	156.74
	1	Br	2.64	2 303	2 306	164 828
ONOLOL		Di a	2.04	2.000	2.000	104.020
ORULUK	1	Cl	2.554	2.311	2.305	165.479
ORUMAR	1	I	2.798	2.316	2.311	163.691
OSATOT	3	CI	3 284	2 285	2 269	164 366
DODEOD	4	0	0.201	2.200	2.200	155.007
PODFOD	1	CI	2.71	2.293	2.323	155.237
PPEAUC	2	CI	2.766	2.325	2.284	155.848
PUYKOK	3	Br	3.871	2.303	2.299	153.456
DUVKUO	2	1	2.05	2 212	2.21	152 217
FUTROQ	3	I	3.95	2.312	2.31	100.017
QABMOX	3	Cl	3.086	2.311	2.308	172.362
QAKPOK	1	CI	2.633	2.333	2.32	140.279
ΟΔΚΟΟΙ	1	CI	2.65	2 322	2 327	130 811
QARQUE		5	2.00	2.522	2.021	100.011
QEZYOL	1	Br	2.645	2.314	2.323	143.532
QEZYOL	1	Br	2.667	2.311	2.315	144.77
	2	CI	2 636	2 297	2 288	159 403
	-	B-	2.000	2.201	2.200	100.100
QIZKIW	1	Br	3.347	2.309	2.31	169.454
QIZKIW	1	Br	3.489	2.304	2.302	176.131
REDMAO	3	CI	3.373	2.295	2.32	177.513
REVOUC	1	CI	2654	2.216	2 216	120 516
REAQUG	1	Ci	2.054	2.310	2.310	139.510
RILSIR	1	CI	3.511	2.3	2.3	168.09
RILSOX	1	CI	3.494	2.302	2.306	168.248
	1	CI	2 9/9	2 307	2 308	177 607
		01	2.343	2.507	2.000	111.001
ROMSOB	2	Cl	3.349	2.328	2.321	175.448
ROZRAA	3	CI	3.037	2.307	2.305	165.209
RUHCAA	1	CI	2.871	2.291	2,295	173.063
DUTDOO		0.	2.071	2.201	2.200	115.000
RUIDOC	1	I	2.674	2.319	2.343	115.33
RUTFEU	1	I	2.703	2.321	2.324	117.695
RUTFEU	1	I	2.713	2.331	2.325	117.766
DUTEIV	1	CI	2 512	2 227	2 227	100 007
RUIFIT	1	Ci	2.312	2.321	2.321	122.007
RUTGEV	1	I	2.697	2.327	2.327	116.753
SAVROW	2	I	3.343	2.322	2.317	170.115
SAVROW	2	1	3 162	2 31	2 328	171 396
0500.411	-		0.102	2.01	2.020	150.000
SERBAU	1	I	2.931	2.305	2.322	152.881
SERBIC	1	I	3.001	2.309	2.302	164.632
SERBIC	1	1	3.083	2,309	2.311	172.317
SEDROI	1	1	2 905	0.005	2.2	122 042
SERBUI	1	I	2.005	2.335	2.5	133.042
SOVPAW	3	CI	3.257	2.334	2.285	176.367
SUCYOH	1	CI	2.334	2.673	2.24	97.664
SUCYUN	1	CI	2 322	2 235	2 629	98 141
CLUDAD	1	-	0 577	2 200	2 205	140.44
SUJBAD	1	Ci	2.311	2.323	2.305	140.14
SUJBIJ	1	CI	2.602	2.334	2.33	159.908
SUJBOP	1	CI	2.573	2.346	2.343	159.161
TAXIEH	3	CI	3 405	2 304	2 306	168 370
	5	01	0.400	2.504	2.500	100.010
IAXJEH	3	CI	3.509	2.313	2.31	170.104
TAXJEH	3	CI	3.608	2.313	2.31	170.104
TAX.IFH	3	CI	3 752	2 304	2 306	168 379
TONTUM	4		0.600	0.040	0.004	145 010
TONTOW	1	Ci	2.035	2.313	2.324	140.215
TORGIQ	2	CI	3.113	2.316	2.302	170.87
UCOXUH	3	CI	3.288	2.319	2.309	175.032
ПСОХПН	3	CI	3 506	2.31	2 315	176 314
	~	0	0.000	2.01	2.010	170.014
UCOXUH	3	CI	3.507	2.303	2.303	180
UCOXUH	3	CI	3.685	2.3	2.3	180
UCOXUH	3	CI	3.183	2.3	2.3	180
	3		3 300	2.24	2 215	176 014
JUUNUN	3	Ci	3.306	2.31	2.313	1/0.314
UCOXUH	3	CI	3.423	2.303	2.303	180
UCOXUH	3	CI	3.495	2.319	2.309	175.032
ПСОХПН	3	CI	3 270	2.31	2 315	176 314
	0	0	0.213	2.01	2.010	170.014
UCOXUH	3	CI	3.482	2.319	2.309	175.032
UCOXUH	3	CI	3.268	2.319	2.309	175.032
UCOXUH	3	CI	3.519	2.31	2.315	176.314

SUPPORTING INFORMATION

Ī	VICBOZ	1	Cl	2.658	2.318	2.305	145.257
	VIJHAA	1	CI	2.309	2.885	2.242	79.473
	VIJHEE	1	I	2.594	2.3	2.533	85.215
	VUXDUN	1	Cl	2.744	2.324	2.3	158.236
	WADLOC	2	Cl	2.897	2.311	2.308	175.904
	WEFXOU	1	Cl	2.623	2.298	2.308	143.046
	WEFXUA	1	Cl	2.551	2.316	2.315	136.483
	WIHXOD	1	Cl	2.462	2.312	2.297	118.38
	WIKNIP	1	Cl	2.489	2.341	2.331	174.094
	XAXMAK	2	Cl	3.842	2.308	2.307	164.404
	XEFKOJ	1	Cl	2.506	2.293	2.294	132.555
	XESWAV	1	Cl	2.665	2.302	2.313	147.231
	XIBKIF	1	I	2.715	2.359	2.371	115.747
	XIBKOL	1	I	2.726	2.347	2.353	119.021
	XIDVIR	1	Cl	2.523	2.306	2.306	129.488
	XIVFEQ	1	CI	2.639	2.317	2.325	139.941
	XIVFEQ	1	Cl	2.641	2.32	2.333	141.153
	XIVFEQ	1	Cl	2.65	2.298	2.362	141.768
	XUKKIA	1	CI	2.588	2.292	2.309	143.163
	YAVNOA	1	I	2.719	2.32	2.32	128.491
	YAYZAB	1	Cl	2.809	2.309	2.304	160.361
	YEXYIL	3	CI	3.285	2.285	2.294	159.916
	YINLEM	1	CI	2.952	2.3	2.3	173.171
	YUTMUW	2	Cl	3.674	2.294	2.298	168.781
	YUTNAD	2	CI	3.526	2.305	2.309	172.18
	ZAKXEO	1	Cl	2.437	2.315	2.347	116.127
	ZEPYIC	3	CI	3.134	2.319	2.324	172.777
	ZUQFOG	1	Cl	2.824	2.304	2.316	169.968

Conclusions of the Search

The following representations complement the two plots shown in Figure 3 and 4 in the main text. Figures S2 and S3 contain the plot for only category 1, pointing out by comparison with Figures 3 and 4 that the aurophilic interactions of the search hits in category 2 have no significant influence of the dependencies discussed in the main text. To underline this, complexes with the general formula $[Au_2X_2L_2]$ are shown in Table S3, where X is a halide (CI, Br, I) and L is a bisphosphane ligand. Some of these complexes possess aurophilic interaction between the gold atoms while others do not (Au···Au distance is listed). As can be seen from the Table S3, there is no systematic influence of the Au···Au distance on the investigated dependencies.

Table S3. Complete results of the CSD search including type of halogen (X), category (see above), selected interatomic distances (Å) and angles (°).

Ref. Code	Category	Halogen X	d(Au–X)	d(Au–P1)	d(Au–P2)	<(P-Au-P)	d(Au…Au)
AVEBOS	1	CI	2.953	2.307	2.304	173.478	11.736
CABDAL	2	CI	3.281	2.309	2.306	175.216	2.992
CABDAL	2	CI	2.776	2.327	2.326	166.82	2.945
CABDAL	2	CI	2.873	2.307	2.306	168.478	2.945
CABDIT	1	I	2.945	2.322	2.321	155.913	3.057
CABDIT	1	I	2.993	2.309	2.331	155.28	3.028
CABDIT	1	I	3.053	2.308	2.324	158.237	3.023
CABDIT	1	I	3.054	2.322	2.311	158.908	2.993
CUKQII	1	I	2.996	2.342	2.322	157.905	3.076
CUKQII	1	I	3.142	2.301	2.318	159.201	2.951
DUKREG01	2	CI	3.467	2.302	2.303	176.812	3.014
DUKREG01	2	CI	3.534	2.303	2.302	176.812	3.014
DUMJIG	2	CI	2.949	2.306	2.31	173.244	2.974
DUMJIG	2	CI	2.978	2.308	2.313	170.036	2.974
FEHBUR01	1	I	2.976	2.314	2.318	152.975	3.395
FONFAR	1	CI	2.709	2.324	2.33	151.768	6.277
GESMEW	2	CI	2.644	2.334	2.307	145.1	3.07
GESMEW	2	CI	2.695	2.341	2.301	148.388	3.002
INACOP	2	I	3.1	2.309	2.33	154.475	2.993
IYOKUD	1	Br	2.829	2.31	2.305	156.207	3.848
IYOLAK	1	Br	2.803	2.306	2.31	154.191	3.568
IYOLIS	1	Br	2.711	2.3	2.32	139.874	3.098
IYOLIS	1	Br	2.725	2.303	2.313	145.104	3.317
IYOLOY	1	Br	2.885	2.304	2.303	157.803	3.514

SUPPORTING INFORMATION

IYOLUE	1	Br	2.823	2.305	2.311	155.799	3.734
IYOMAL	1	Br	2.713	2.302	2.315	141.485	3.094
IYOMAL	1	Br	2.737	2.309	2.315	146.689	3.325
JAFGOM	2	CI	3.591	2.304	2.301	177.415	3.019
JAFGOM	2	CI	3.679	2.301	2.304	177.415	3.019
NOFJEZ	1	CI	2.924	2.3	2.306	167.356	ca. 6
NOFJEZ	1	CI	3.038	2.295	2.3	167.621	ca. 6
NOFJEZ	1	CI	3.05	2.298	2.301	167.746	ca. 6
NOFJEZ	1	CI	3.268	2.297	2.293	170.066	ca. 6
NOFWUC	1	CI	2.845	2.288	2.294	170.157	8.504
OCUYUH	2	I	3.107	2.317	2.32	166.328	2.958
OCUYUH	2	I	3.101	2.31	2.311	164.704	2.958
DUFWIK	2	CI	2.808	2.335	2.338	171.419	2.097
DUFWOQ	2	CI	2.964	2.333	2.337	173.08	3.002
FEHCEC	2	I	3.203	2.306	2.304	163.134	3.393
FOJDUD	2	Br	2.869	2.312	2.354	156.521	3.015
GITKID	2	CI	2.964	2.29	2.301	158.513	4.339
GITKOJ	2	Br	3.108	2.294	2.304	158.967	4.346
JAJMUC	2	Br	3.494	2.305	2.302	176.696	3.023
JAJNEN	2	CI	3.028	2.293	2.286	178.035	2.927
JAJNEN	2	CI	3.022	2.301	2.295	178.192	2.927
JAJNIR	2	Br	3.083	2.313	2.298	178.32	2.944
JAJNIR	2	CI	3.112	2.291	2.287	176.478	2.944
JAJNOX	2	I.	3.151	2.292	2.291	171.608	2.976
JAJNOX	2	I	3.277	2.31	2.297	178.578	2.976
JAJNOX	2	I	3.331	2.285	2.287	176.024	2.971
JAJNOX	2	I.	3.267	2.287	2.294	174.027	2.971
KOBSIG	2	CI	2.588	2.306	2.34	141.391	3.006
LEKGAJ	2	CI	2.951	2.333	2.299	164.896	2.994
OMUFIN01	2	CI	3.161	2.037	2.393	158.651	2.925
OMUFIN01	2	CI	2.829	2.413	2.324	159.877	3.011
PPEAUC	2	CI	2.766	2.325	2.284	155.848	2.958
QIDZUZ	2	CI	2.636	2.297	2.288	159.403	2.893

The same is true, if the hits of category 3 are included which contain a molecular ion with a halogen atom instead of a halide counter ion such as for instance $AlCl_4^-$ (Figures S4 and S5). We did not include this result in the main article, as more thorough investigation would be required. It is displayed here for the sake of completeness.

Figure S2. Plot of interatomic distance d(Au-X) versus the angle <(P-Au-P) for the search hit of category 1.

Figure S3. Plot of interatomic distance d(Au–X) versus the distance d(Au–P) for the search hit of category 1.

Figure S4. Plot of interatomic distance d(Au–X) versus the angle <(P–Au–P) for the search hit of category 1 to 3.

Figure S5. Plot of interatomic distance d(Au–X) versus the distance d(Au–P) for the search hit of category 1 to 3.

6. TGA/DSC measurements

Figure S6. TGA/DSC of 2 in the temperature range from 35 to 1100 °C with a temperature raise of 10 K/min. Blue – mass of the sample; red – mass flow of 26 g/mol; black – heat of reaction.

TGA/DSC-MS measurements were performed on crystals of 2.28DCM which had been dried in vacuum. As Figure S6 shows, the sample loses 5% of its original weight until 198°C, which is in good accordance with a theoretical mass loss of 5.3% for 3 DCM. Released DCM was identified by mass spectrometry (signals with m/z 84, 86 and 88 (3 isotopic compounds due to ³⁵Cl and ³⁷Cl)). Degradation of **2** starts at 396 °C, correlated with detection of ethyne (identified with m/z 26 in MS) which is released due to decomposition of the aromatic ring in the ligand backbone.

7. References

- [1] D. Wook Chang, S.-Y. Bae, L. Dai, J.-B. Baek, J. Polym. Sci. A Polym. Chem. 2013, 51, 168.
- [2] A. C. Benniston, D. Sirbu, C. Turta, M. R. Probert, W. Clegg, *Eur. J. Inorg. Chem.* 2014, 2014, 6212.
- [3] G. R. Bourret, P. J. G. Goulet, R. B. Lennox, Chem. Mater. 2011, 23, 4954.
- [4] I. Noviandri, K. N. Brown, D. S. Fleming, P. T. Gulyas, P. A. Lay, A. F. Masters, L. Phillips, J. Phys. Chem. B 1999, 103, 6713.
- [5] R. K. Harris, E. D. Becker, S. M. Cabral De Menezes, R. Goodfellow, P. Granger, Concepts Magn. Reson. 2002, 14, 326.
- [6] Agilent, CrysAlis PRO, Agilent Technologies Ltd, Yarnton, Oxfordshire, England, 2019.
- [7] G. M. Sheldrick, Acta Crystallogr. A 2015, 71, 3.

- [8] G. M. Sheldrick, Acta Crystallogr. C 2015, 71, 3.
- [9] A. L. Spek, Acta Crystallogr. C 2015, 71, 9.
- [10] R. C. Clark, J. S. Reid, Acta Crystallogr. A 1995, 51, 887.
- [11] C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Crystallogr. B 2016, 72, 171.
- [12] I. J. Bruno, J. C. Cole, P. R. Edgington, M. Kessler, C. F. Macrae, P. McCabe, J. Pearson, R. Taylor, Acta Crystallogr. B 2002, 58, 389.