Electronic Supplementary Information for

Synergistic Combination of ACQ and AIE Moieties to Enhance the Emission of Hexagonal Metallacycles

Bingzhao Wu,^{#a,b} Zhewen Guo,^{#b} Guangfeng Li,^b Jun Zhao,^b Yuhang Liu,^b Jinbing Wang,^{*c} Huigang Wang^{*a} and Xuzhou Yan^{*b}

^aDepartment of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China

^bSchool of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

^cDepartment of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Center for Oral Disease, Shanghai, 200011, P. R. China

[#]These authors contributed equally to this work.

*To whom correspondence should be addressed.

Email addresses: zdwhg@163.com; wangjinbing@aliyun.com; xzyan@sjtu.edu.cn

1. Materials and methods

All reagents were commercially available and used as supplied without further purification. Deuterated solvents were purchased from Cambridge Isotope Laboratory (Andover, MA). Compounds 3^{S1} was prepared according to the literature procedures. NMR spectra were recorded on a Varian Unity 300 MHz spectrometer. ¹H and ¹³C NMR chemical shifts are reported relative to residual solvent signals, and ³¹P{¹H} NMR chemical shifts are referenced to an external unlocked sample of 85% H₃PO₄ (δ 0.0). The solutions of metallacycles in dichloromethane were used for ESI-TOF-MS analysis. Mass spectra were recorded on a Micromass Quattro II triple-quadrupole mass spectrometer using electrospray ionization with a MassLynx operating system. The UV-vis experiments were conducted on a Hitachi U-4100 absorption spectrophotometer.

The fluorescent experiments were conducted on a Hitachi F-3000 fluorescence spectrophotometer. Solid-state quantum yields were measured using a Horiba FMax-4 instrument equipped with a Quanta-Phi integrating light sphere. The quantum yields were measured on solid samples obtained via precipitation and solvent removal. The solids were placed between two quartz discs and excited at 360 nm.

For SEM analysis, carbon tapes were first fitted on a steel-based sample holder. Using a micropipette, $10 \ \mu L$ solution of different samples were drop cast on the carbon tapes and was dried subsequently under vacuum for 6 h. The as-dried samples were kept in dark prior to data collection to avoid any deformities caused by light sensitivity.

Figure S1. ¹H NMR spectrum (CD₂Cl₂, room temperature, 300 MHz) of **3**.

Figure S2. ³¹P $\{^{1}H\}$ NMR spectrum (CD₂Cl₂, room temperature, 121.4 MHz) of **3**.

3. Synthesis of ligand 4

Scheme S1

To 4,4'-dibromotriphenylamine (1.00 g, 2.48 mmol) and 4-pyridylboronic acid (1.53 g, 12.4 mmol) in toluene (55.0 mL), K₂CO₃ (2.68 g, 19.8 mmol) aqueous solution (15.0 mL) and TBAB (tetrabutylammonium hydrogen sulfate) (85.0 mg, 0.250 mmol) were added. Then the Pd(PPh₃)₄ (289 mg, 0.250 mmol) was added and the reaction mixture was stirred at 85 °C for 2 days under nitrogen atmosphere. After cooling to room temperature, the product was concentrated and purified by silica gel column chromatography with CH₂Cl₂:MeOH (100:1, ν/ν) as the eluant to afford ligand **4** (0.77 g, 78%) as yellow powder. M.P. 136.5–137.3 °C. The ¹H NMR spectrum of **4** is shown in Figure S3. ¹H NMR (CD₂Cl₂, room temperature, 300 MHz) δ (ppm): 8.62 (d, *J* = 6.3 Hz, 4H), 7.58–7.65 (m, 4H), 7.52 (d, *J* = 6.0 Hz, 4H), 7.32–7.40 (m, 2H), 7.25–7.13 (m, 7H). The ¹³C NMR spectrum of **4** is shown in Figure S4. ¹³C NMR (CD₂Cl₂, room temperature, 75.0 MHz) δ (ppm): 121.03, 124.10, 124.47, 125.76, 127.99, 129.80, 132.23, 147.08, 147.46, 148.56, 150.48. LRESIMS is shown in Figure S5: *m/z* 400.22 [M + H]⁺. HRESIMS: *m/z* calcd for [M + H]⁺ C₂8H₂2N₃, 400.1808; found 400.2203.

Figure S3. ¹H NMR spectrum (CD₂Cl₂, room temperature, 300 MHz) of 4.

Figure S4. ¹³C NMR spectrum (CD₂Cl₂, room temperature, 75.0 MHz) of 4.

Figure S5. Electrospray ionization mass spectrum of 4.

4. Synthesis of ligand 5

Scheme S2

To 4,4'-dibromo-4-phenyltriphenylamine (1.00 g, 2.09 mmol) and 4-pyridylboronic acid (1.28 g, 10.4 mmol) in toluene (55.0 mL), K₂CO₃ (2.31 g, 16.7 mmol) aqueous solution (15.0 mL) and TBAB (tetrabutylammonium hydrogen sulfate) (71.0 mg, 0.210 mmol) were added. Then the Pd(PPh₃)₄ (243 mg, 0.210 mmol) was added and the reaction mixture was stirred at 85 °C for 2 days under nitrogen atmosphere. After cooling to room temperature, the product was concentrated and purified by silica gel column chromatography with CH₂Cl₂:MeOH (100:1, *v/v*) as the eluant to afford ligand **5** (0.80 g, 81%) as pale-yellow powder. M.P. 100.8–101.5 °C. The ¹H NMR spectrum of **5** is shown in Figure S6. ¹H NMR (CD₂Cl₂, room temperature, 300 MHz) δ (ppm): 8.62 (d, *J* = 6.3 Hz, 4H), 7.57–7.66 (m, 8H), 7.53 (d, *J* = 6.0 Hz, 4H), 7.42–7.49 (m, 2H), 7.31–7.38 (m, 1H), 7.23–7.29 (m, 6H). The ¹³C NMR spectrum of **5** is shown in Figure S7. ¹³C NMR (CDCl₃, room temperature, 75.0 MHz) δ (ppm): 121.22, 124.40, 125.64, 127.01, 128.16, 128.43, 129.08, 132.46, 137.10, 140.54, 146.27, 147.67, 148.41, 150.53. LRESIMS is shown in Figure S8: *m/z* 476.20 [M + H]⁺. HRESIMS: *m/z* calcd for [M + H]⁺ C₃₄H₂₆N₃, 476.2121; found 476.2049.

Figure S7. ¹³C NMR spectrum (CDCl₃, room temperature, 75.0 MHz) of **5**.

Figure S8. Electrospray ionization mass spectrum of 5.

5. Synthesis of hexagon 1

In a 1:1 molar ratio, ligand **4** (1.20 mg, 0.003 mmol) and TPE-based diplatinum acceptor **3** (4.47 mg, 0.003 mmol) were dissolved in 0.50 mL of CH₂Cl₂ in a 2.00 mL vial. The reaction mixture was allowed to stir for 8 h at room temperature. To the resulting homogeneous solution, hexane was added to precipitate the product, which was then isolated and dried under reduced pressure and re-dissolved in CD₂Cl₂ for characterization. The ¹H NMR spectrum of **1** is shown in Figure S9. ¹H NMR (CD₂Cl₂, room temperature, 300 MHz) δ (ppm): 8.59 (d, *J* = 6.3 Hz, 12H), 7.91 (d, *J* = 6.3 Hz, 12H), 7.82 (d, *J* = 8.8 Hz, 12H), 7.42 (t, *J* = 7.6 Hz, 6H), 7.19–7.31 (m, 21H), 7.00–7.16 (m, 42H), 6.77 (d, *J* = 8.0 Hz, 12H), 1.24–1.44 (m, 72H), 1.00–1.18 (m, 108H). The ³¹P{¹H} NMR spectrum of **1** is shown in Figure S10. ³¹P{¹H} NMR (CD₂Cl₂, room temperature, 121.4 MHz) δ (ppm): 14.30 ppm (s, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 2702.3 Hz). ESI-TOF-MS is shown in Figure S11: *m/z* 796.6568 [M – 60Tf]⁶⁺, 1268.9484 [M – 40Tf]⁵⁺, and 1740.5327 [M – 30Tf]³⁺.

1.111 1.123 1.111 1.123 1.111 1.123 1.111 1.123 1.111 1.123 1.111 1.123

8.59

Figure S10. ³¹P{¹H} NMR spectrum (CD₂Cl₂, room temperature, 121.4 MHz) of 1.

Figure S11. Experimental (red) and calculated (blue) electrospray ionization mass spectra of 1.

In a 1:1 molar ratio, ligand **5** (1.43 mg, 0.003 mmol) and TPE-based diplatinum acceptor **3** (4.47 mg, 0.003 mmol) were dissolved in 0.50 mL of CH₂Cl₂ in a 2.00 mL vial. The reaction mixture was allowed to stir for 8 h at room temperature. To the resulting homogeneous solution, hexane was added to precipitate the product, which was then isolated and dried under reduced pressure and re-dissolved in CD₂Cl₂ for characterization. The ¹H NMR spectrum of **2** is shown in Figure S12. ¹H NMR (CD₂Cl₂, room temperature, 300 MHz) δ (ppm): 8.59 (d, *J* = 6.0 Hz, 12H), 7.93 (d, *J* = 6.0 Hz, 12H), 7.85 (d, *J* = 9.0 Hz, 12H), 7.67 (d, *J* = 9.0 Hz, 12H), 7.48 (t, *J* = 7.6 Hz, 6H), 7.26–7.41 (m, 21H), 7.00–7.16 (m, 42H), 6.78 (d, *J* = 9.0 Hz, 12H), 1.24–1.44 (m, 72H), 1.00–1.18 (m, 108H). The ³¹P{¹H} NMR spectrum of **1** is shown in Figure S13. ³¹P{¹H} NMR (CD₂Cl₂, room temperature, 121.4 MHz) δ (ppm): 14.31 ppm (s, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 2706.0 Hz). ESI-TOF-MS is shown in Figure S14: *m*/*z* 833.2850 [M – 6OTf]⁶⁺, 1030.9836 [M – 5OTf]⁵⁺, 1325.9727 [M – 4OTf]⁴⁺, and 1816.5430 [M – 3OTf]³⁺.

8.59

Figure S14. Experimental (red) and calculated (blue) electrospray ionization mass spectra of 2.

Figure S15. Absorption spectra of multi-TPA-TPE hexagon 1 (a) and multi-TPA-TPE hexagon 2 (b) in CH₂Cl₂/hexane mixtures with different hexane contents ($c = 10.0 \ \mu$ M).

Figure S16. Absorption spectra of multi-TPA-TPE hexagon 2 in different solvents ($c = 10.0 \ \mu$ M). Dio, dioxane; DMF, dimethylformamide; DMSO, dimethyl sulfoxide; EA, ethyl acetate; MeOH, methanol; THF, tetrahydrofuran; Tol, toluene.

Figure S17. photographs of multi-TPA-TPE hexagon 2 in different solvents upon excitation at 365 nm using an UV lamp at 298 K ($c = 10.0 \mu$ M). Dio, dioxane; DMF, dimethylformamide; DMSO, dimethyl sulfoxide; EA, ethyl acetate; MeOH, methanol; THF, tetrahydrofuran; Tol, toluene.

10. Scanning Electron Microscopy images of metallacycle 2 in DCM/hexane mixture with varying solvent fraction

Figure S18. SEM image of metallacycle 2 in DCM.

Figure S19. *SEM image of metallacycle 2 with 80%/20% hexane/DCM mixture.*

11. Frontier orbital of ligands 4, 5 and metallacycles 1, 2

DFT calculations were performed using the Gaussian09 (G09) program packageS2 to analyze the HOMOs and LUMOs of ligands and resultant metallacycles. The B3LYP hybrid functional with LANL2DZ effective core potentials (Pt) and 6-31 G* (C, H, N, F and O) basis set. Orbitals were visualized with an isovalue of 0.02. To minimize computational cost, we simplified the compound and replaced it with 1/3 of the compound. This result showed that electrons transferred from the aniline groups to the pyridine units when ligands as well as the resultant metallacycles was excited from the ground state to the first excited state.

Figure S22. Frontier orbital of metallacycle 1 (1/3).

References

S1. X. Yan, M. Wang, T. R. Cook, M. Zhang, M. L. Saha, Z. Zhou, X. Li, F. Huang, P. J. Stang, *J. Am. Chem. Soc.* 2016, **138**, 4580-4588.

S2. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Wallingford CT, 2013.