Supporting Information

MoS₂ Quantum Dots for electrocatalytic N₂ reduction

Yaojing Luo#, Peng Shen#, Xingchuan Li, Yali Guo, Ke Chu*

School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

*Corresponding author. E-mail address: chukelut@163.com (K. Chu)

[#] These authors contributed equally to this work.

Experimental Section

Synthesis of MoS₂ QDs

All the chemicals are of analytical grade and used as received. MoS_2 QDs were synthesized by a one-step microwave-assisted hydrothermal approach. Typically, 0.121 g of Na₂MoO₄·2H₂O were dispersed in 12.5 mL of deionized water followed by adjusting the pH to 6.5 with 0.1 M HCl. Then, 0.615 g of glutathione (GSH) was dissolved in 25 ml of deionized water. Afterwards, the above two solutions were mixed and sealed into a quartz tube, which were reacted for 30 min under microwave irradiation (2450 MHz). After cooling to room temperature, the mixture was collected by centrifugation, filtered through a 0.22 µm microporous membrane and further purified by dialyzing in deionized water. The solution was eventually concentrated by a rotatory evaporator and freeze-dried to obtain MoS₂ QDs.

Electrochemical experiments

Electrochemical measurements were performed under ambient conditions using a CHI-760E electrochemical workstation with a three-electrode cell. The Ag/AgCl (saturated KCl), graphite rod and catalyst on carbon cloth (CC) were used as reference, counter and working electrodes, respectively. The CC was pretreated by soaking it in 0.5 M H₂SO₄ for 12 h, and then washed with deionized water several times and dried at 60 °C for 24 h.All potentials were referenced to reversible hydrogen electrode (RHE) by following equation: E_{RHE} (V) = $E_{\text{Ag/AgCl}}$ +0.197+0.059×pH. To prepare the working electrode, 1 mg of the catalyst was dispersed in 100 µL of ethyl alcohol containing 5 µL of Nafion (5 wt%) under sonication. The obtained homogeneous catalyst ink (20 µL) was dropped onto the pretreated CC electrode. The mass loading was 0.2 mg cm⁻². The NRR measurements were carried out using an H-type twocompartment electrochemical cell separated by a Nafion 211 membrane. The Nafion membrane was pretreated by heating it in 5% H₂O₂ aqueous solution at 80 °C for 1 h and then in deionized water at 80 °C for another 1 h. Before the NRR tests, all the feeding gases were purified through acid trap (0.05 M H_2SO_4) and alkaline trap (0.1 M KOH)) to remove any possible contaminants (NH₃ and NO_x). During the NRR

electrolysis, the purified N_2 gas was continuously purged into the cathodic chamber at a flow rate of 20 mL min⁻¹. After electrolysis, the produced NH₃ and possible N_2H_4 were quantitatively determined by the indophenol blue method[1], and approach of Watt and Chrisp[2], respectively. The detailed determination procedures are given in our previous publications [3-5].

Characterizations

Raman spectra were conducted on a JY-HR800 spectroscope. X-ray photoelectron spectroscopy (XPS) analysis was recorded on a PHI 5702 spectrometer. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) were carried out on a Tecnai G² F20 microscope. Fluorescence spectra were recorded on an F-4700 fluorescence spectrophotometer. UV-vis absorbance measurements were performed using a MAPADA P5 spectrophotometer.

Calculation details

All spin-polarized density functional theory (DFT) calculations were performed using the Cambridge sequential total energy package (CASTEP). The exchangecorrelation interactions were described by the Perdew–Burke–Ernzerhof (PBE) functional. Electronic energies were computed with the tolerance of 2×10^{-5} and total forces were converged to less than 0.05 eV/Å. The $4\times4\times1$ Monkhorst-Pack mesh was used in Brillouin zone sampling. The kinetic cutoff energy for the plane wave basis was set at 500 eV. The MoS₂ nanocluster model derived from the layered MoS₂ is constructed to simulate the MoS₂ QDs. A vacuum region of 15 Å was used to separate adjacent slabs.

The adsorption energy (ΔE) is defined as [6]

$$\Delta E = E_{\rm ads/s\,lab} - E_{\rm ads} - E_{\rm slab} \tag{1}$$

where $E_{ads/slab}$, E_{ads} and E_{slab} are the total energies for adsorbed species on slab, adsorbed species and isolated slab, respectively.

The Gibbs free energy (ΔG , 298 K) of reaction steps is calculated by [6]:

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S \tag{2}$$

where ΔE is the adsorption energy, ΔZPE is the zero point energy difference and $T\Delta S$

is the entropy difference between the gas phase and adsorbed state. The entropies of free gases were acquired from the NIST database.

Fig. S1. XRD pattern of MoS₂ QDs.

Fig. S2. (a) HRTEM image of MoS_2 QDs. (b) Atomic models of MoS_2 QDs and MoS_2 nanosheets (NSs), showing that MoS_2 QDs enable the exposure of more edge sites than MoS_2 nanosheets NSs.

Fig. S3. (a) UV-vis spectra of MoS_2 QDs (Inset: digital photograph of MoS_2 QDs solution irradiated by UV light). (b) Photoluminescence emission spectra of MoS_2 QDs at the excitation wavelengths of 300-400 nm.

Fig. S4. (a) UV-Vis absorption spectra of indophenol assays with NH_4Cl after incubated for 2 h at ambient conditions. (b) Calibration curve used for calculation of NH_3 concentrations.

Fig. S5. (a) UV-vis absorption spectra of N_2H_4 assays after incubated for 20 min at ambient conditions. (b) Calibration curve used for calculation of N_2H_4 concentrations.

Fig. S6. UV-vis spectra of the electrolytes (stained with the chemical indicator based on the method of Watt and Chrisp) before and after 2 h of NRR electrolysis over MoS_2 QDs at -0.3 V.

Fig. S7. (a) TEM and (b) HRTEM images of MoS₂ NSs. MoS₂ NSs were prepared by a hydrothermal method reported in our previous work[7].

Fig. S8. Electrochemical double-layer capacitance (C_{dl}) measurements at different scanning rates of 10~50 mV s⁻¹ for (a, b) MoS₂ QDs and (c, d) MoS₂ NSs.

Fig. S9. Electrochemical impendence spectra of MoS_2 QDs and MoS_2 NSs.

Fig. S10. DOS of MoS_2 QDs and MoS_2 NSs.

Fig. S11. Average potential profiles along c-axis direction for calculating the work functions of (a) MoS₂ QDs and (b) MoS₂ NSs.

Fig. S12. (a) UV-vis absorption spectra of working electrolytes after 2 h of electrolysis in Ar-saturated solutions on MoS_2 QDs at -0.3 V, N₂-saturated solution on MoS_2 QDs at open circuit, and N₂-saturated solution on pristine CC at -0.3 V, and corresponding (b) Mass of produced NH₃.

Fig. S13. Alternating cycling test in Ar- and N₂-saturated solution over MoS_2 QDs at - 0.3 V.

Fig. S14. Morphologies of MoS_2 QDs after stability test.

Fig. S15. Raman spectra of MoS_2 QDs after stability test.

Fig. S16. XPS spectra of MoS_2 QDs after stability test: (a) Mo3d; (b) S2p.

Fig. S17. PDOS of $*N_2$ on MoS₂ QDs via (a) end-on pattern and (b) side on pattern.

Fig. S18. (a) in-situ FT-IR spectra on MoS_2 QDs during the NRR electrocatalysis at various times (3-30 min) under -0.3 V. The in-situ FT-IR test follows the same procedure reported elsewhere[8]. (b) Proposed NRR associative pathway on MoS_2 QDs.

Fig. S19. Schematic of the enzymatic and consecutive NRR pathways on MoS₂ QDs and corresponding optimized structures of reaction intermediates.

Catalyst	Electrolyte	Potential (V vs RHE)	NH ₃ yield rate	FE(%)	Ref.
Pd/C	0.1 M PBS	0.1	$4.5 \\ \mu g \ h^{-1} \ m g^{-1}$	8.2	[9]
CoP hollow nanocage	1.0 M KOH	-0.4	$10.78\ \mu { m g} \ { m h}^{-1} \ { m mg}^{-1}$	7.36	[10]
Mo single atoms	0.1 M KOH	-0.3	$34 \\ \mu g \ h^{-1} \ m g^{-1}$	14.6	[11]
MoO ₂ with oxygen vacancies	0.1 M HCl	-0.15	$12.2 \ \mu g \ h^{-1} \ m g^{-1}$	8.2	[12]
Mosaic Bi nanosheets	0.1 M Na ₂ SO ₄	-0.8	13.23 $\mu g h^{-1} m g^{-1}$	10.46	[13]
Mo ₂ C/C	0.5 M Li ₂ SO ₄	-0.3	11.3 $\mu g h^{-1} m g^{-1}$	7.8	[14]
MoS ₂ nanosheets	0.1 M Na ₂ SO ₄	-0.5	8.08×10^{-11} mol s ⁻¹ cm ⁻²	1.17	[15]
Defect-rich MoS ₂ nanoflower	0.1 M Na ₂ SO ₄	-0.4	29.28 $\mu \mathrm{g} \ \mathrm{h}^{-1} \ \mathrm{mg}^{-1}$	8.34	[16]
MoS ₂ with Li-S Interactions	0.1 M Li ₂ SO ₄	-0.2	43.4 $\mu g h^{-1} m g^{-1}$	9.81	[17]
MoS ₂ /RGO	0.1 M HCl	-0.45	24.82 $\mu g h^{-1} m g^{-1}$	4.58	[18]
Defective MoS ₂	0.1 M Na ₂ SO ₄	-0.5	29.55 μ g h ⁻¹ mg ⁻¹	4.58	[19]
V _S -MoS ₂	0.1 M Na ₂ SO ₄	-0.4	46.1×10 ⁻¹¹ mol s ⁻¹ cm ⁻²	4.58	[20]
Cu _{2-x} S/MoS ₂	0.1 M Na ₂ SO ₄	-0.5	22.1 μ g h ⁻¹ mg ⁻¹	6.06	[21]
1T-MoS ₂ @Ti ₃ C ₂	0.1 M HCl	-0.3	$30.33 \ \mu g \ h^{-1} \ mg^{-1}$	10.94	[22]
MoS ₂ /C ₃ N ₄	0.1 M LiClO4	-0.3	$18.5 \ \mu g \ h^{-1} \ mg^{-1}$	17.8	[7]
MoS ₂ nanodots/RGO	0.1 M Na ₂ SO ₄	-0.75	16.41 μg h ⁻¹ mg ⁻¹	27.93	[23]
MoS ₂ QDs	0.5 M	-0.3	39.6 µg h ⁻¹	12.9	This wok
	LiClO ₄		mg ⁻¹		

Table S1. Comparison of the optimum NH₃ yield and Faradic efficiency (FE) for state-of-the-art NRR electrocatalysts at ambient conditions

Supplementary references

- [1]. D. Zhu, L. Zhang, R. E. Ruther and R. J. Hamers, *Nat. Mater.*, 2013, **12**, 836.
- [2]. G. W. Watt and J. D. Chrisp, Anal. Chem., 1952, 24, 2006-2008.
- [3]. J. Wang, H. Nan, Y. Tian and K. Chu, ACS Sustain. Chem. Eng., 2020, 8, 12733-12740.
- [4]. Y. Liu, Y. Luo, Q. Li, J. Wang and K. Chu, Chem. Commun., 2020, 56, 10227-10230.
- [5]. Q. Li, Y. Cheng, X. Li, Y. Guo and K. Chu, *Chem. Commun.*, 2020, 56, 13009-13012.
- [6]. A. A. Peterson, *Energy Environ. Sci.*, 2010, **3**, 1311-1315.
- [7]. K. Chu, Y. P. Liu, Y. B. Li, Y. L. Guo and Y. Tian, ACS Appl. Mater. Inter., 2020, 12, 7081-7090.
- [8]. R. Hao, W. Sun, Q. Liu, X. Liu, J. Chen, X. Lv, W. Li, Y. p. Liu and Z. Shen, Small, 2020, 16, 2000015.
- [9]. J. Wang, L. Yu, L. Hu, G. Chen, H. Xin and X. Feng, Nat. Commun., 2018, 9, 1795.
- [10]. W. Guo, Z. Liang, J. Zhao, B. Zhu, K. Cai, R. Zou and Q. Xu, Small Methods, 2018, 2, 1800204.
- [11]. L. Han, X. Liu, J. Chen, R. Lin, H. Liu, F. Lu, S. Bak, Z. Liang, S. Zhao and E. Stavitski, Angew. Chem. Int. Edit., 2018, 58, 2321-2325.
- [12]. G. Zhang, Q. Ji, K. Zhang, Y. Chen, Z. Li, H. Liu, J. Li and J. Qu, *Nano Energy*, 2019, **59**, 10-16.
- [13]. L. Li, C. Tang, B. Xia, H. Jin, Y. Zheng and S.-Z. Qiao, ACS Catal., 2019, 9, 2902-2908.
- [14]. H. Cheng, L. X. Ding, G. F. Chen, L. Zhang, J. Xue and H. Wang, Adv. Mater., 2018, 30, 1803694.
- [15]. L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang and X. Sun, *Adv. Mater.*, 2018, **30**, 1800191.
- [16]. X. Li, T. Li, Y. Ma, Q. Wei, W. Qiu, H. Guo, X. Shi, P. Zhang, A. M. Asiri and L. Chen, Adv. Energy. Mater., 2018, 8, 1801357.
- [17]. Y. Liu, M. Han, Q. Xiong, S. Zhang, C. Zhao, W. Gong, G. Wang, H. Zhang and H. Zhao, *Adv. Energy. Mater.*, 2019, 9, 1803935.
- [18]. X. Li, X. Ren, X. Liu, J. Zhao, X. Sun, Y. Zhang, X. Kuang, T. Yan, Q. Wei and D. Wu, J. Mater. Chem. A, 2019, 7, 2524-2528.
- [19]. B. Liu, C. Ma, D. Liu and S. Yan, ChemElectroChem, 2021, DOI: 10.1002/celc.202100534.
- [20]. C. Ma, N. Zhai, B. Liu and S. Yan, *Electrochim. Acta*, 2021, 370.
- [21]. T. Jiang, L. Li, L. Li, Y. Liu, D. Zhang, D. Zhang, H. Li, B. Mao and W. Shi, *Chem. Eng. J.*, 2021, **426**.
- [22]. X. Xu, B. Sun, Z. Liang, H. Cui and J. Tian, ACS Appl. Mater. Inter., 2020, 12, 26060-26067.
- [23]. Y. Liu, W. Wang, S. Zhang, W. Li, G. Wang, Y. Zhang, M. Han and H. Zhang, ACS Sustain. Chem. Eng., 2020, 8, 2320-2326.