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Computational Methods

All computations were conducted using density functional theory (DFT) method. The Perdew-Burke-
Ernzerhof (PBE) functional was applied for electron exchange correlation within the generalized
gradient approximation (GGA), as implemented in the VASP code.!-? The ionic cores were described
by the projector-augmented wave (PAW) method.? The parameter of 500 eV was used for the plane
wave cutoff energy with a 0.18 eV width of the smearing.

The Cu(100) and Cu(111) surfaces were modelled with three-layer (3 x 3) supercells with 15 A
of vacuum space. The M@Cu models were simulated by substituting one Cu surface atom with one
dopant metal atom M (M = Pt, Pd, Au), respectively. The adsorption energies were calculated on the
Cu and M@Cu surfaces with the bottom two layers fixed. In order to evaluate the stability of the
dopant metal atom on Cu alloy surfaces, the adhesion energy of the dopant metal atom M was
calculated from the following:

Ead = Em@cu — Ecuv — Em
where Eygcy is the energy of M@Cu(100) or M@Cu(111) surface, Ec,., is the corresponding energy
of Cu(100) or Cu(111) surface with one Cu surface atom vacancy, and Ey; is the energy of M atom
(Table S1).

Kinetic barriers for C-C coupling processes were evaluted by using the climbing-image nudged
elastic band (NEB) method.* 3 Transition state energies were calculated with the top layer relaxed
and the rest constrained in the three-layer (3 x 3) supercells. Varied Gamma k-point grids were used
for different C-C coupling steps. For calculating the activation barriers of OC-COH coupling, a (4 %
4 x 1) k-point grid was applied. As for OC-CHO coupling, a (1 x 1 x 1) k-point grid was used because
it was computationally demanding to obtain the minimum energy paths with a (4 x 4 x 1) k-point
grid. This also suggested the less favorable reaction kinetics of OC-CHO coupling compared to OC-
COH coupling. Using denser k-point grid might change the activation barriers, but is unlikely to alter
the variation trend of reaction energetics on the investigated Cu-based catalyst surfaces. All structures

in geometry optimizations and transition state calculations were relaxed to forces less than 0.05 eV
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Scheme S1. Reaction pathways of CO, reduction toward C, products via C-C coupling. The blue
path represents the C, pathway via OC-CHO coupling; the orange path denotes the C, pathway via
OC-COH coupling.
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Figure S1. The reaction energies for C-C coupling of OC-COH, OC-CHO and OC-CO on Cu(100)
and M@Cu(100) catalyst surfaces. A (4 x 4 x 1) k-point grid is applied.
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Figure S2. The reaction energies for C-C coupling of OC-COH, OC-CHO and OC-CO on Cu(111)
and M@Cu(111) catalyst surfaces. A (4 x 4 x 1) k-point grid is applied.
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Figure S3. The minimum energy paths for OC-COH coupling on (a) Cu(111), (b) Pt@Cu(111), (c)
Pd@Cu(111) and (d) Au@Cu(111) catalyst surfaces, respectively. Insets show the optimized

structures of initial state (IS), transition state (TS) and final state (FS). Copper atoms are shown as

blue-spheres with other metal atoms labelled for each catalyst surface. Carbon, oxygen and hydrogen

atoms are brown, red and light pink, respectively. (e) Activation barriers and reaction energies for

C-C association between adsorbed *CO and *COH on Cu(111) and M@Cu(111) surfaces. The inset

shows the schematic configurations of the initial and final states for the corresponding C-C

association reaction. Copper and the dopant metal atoms are blue and grey, respectively.
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Figure S4. The minimum energy paths for OC-CHO coupling on (a) Cu(100), (b) Pt@Cu(100), (c)
Pd@Cu(100) and (d) Au@Cu(100) catalyst surfaces, respectively. Insets show the optimized
structures of initial state (IS), transition state (TS) and final state (FS). Copper atoms are shown as
blue-spheres with other metal atoms labelled for each catalyst surface. Carbon, oxygen and hydrogen
atoms are brown, red and light pink, respectively. A (1 x 1 x 1) k-point grid is applied. (e) Activation
barriers and reaction energies for C-C association between adsorbed *CO and *CHO on Cu(100) and
M@Cu(100) surfaces. The inset shows the schematic configurations of the initial and final states for
the corresponding C-C association reaction. Copper and the dopant metal atoms are blue and grey,

respectively.
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Figure S5. The minimum energy paths for OC-CHO coupling on (a) Cu(111), (b) Pt@Cu(111), (c)
Pd@Cu(111) and (d) Au@Cu(111) catalyst surfaces, respectively. Insets show the optimized
structures of initial state (IS), transition state (TS) and final state (FS). Copper atoms are shown as
blue-spheres with other metal atoms labelled for each catalyst surface. Carbon, oxygen and hydrogen
atoms are brown, red and light pink, respectively. A (1 x 1 x 1) k-point grid is applied. (e) Activation
barriers and reaction energies for C-C association between adsorbed *CO and *CHO on Cu(111) and
M@Cu(111) surfaces. The inset shows the schematic configurations of the initial and final states for
the corresponding C-C association reaction. Copper and the dopant metal atoms are blue and grey,

respectively.
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Figure S6. (a) Relationship between the charge distribution on C atom of adsorbed *CO in the initial
state of OC-COH coupling and activation barriers for OC-COH coupling on Cu(111) and
M@Cu(111) surfaces. (b) The density of states (DOS) of d-orbital for the nearby Cu atom and p-
orbital for C atom of adsorbed *CO in the initial state of OC-COH coupling on Cu(111) and
M@Cu(111) surfaces. The d-orbital DOS of the nearby Cu atom without adsorption is also shown in
the dashed line. (c) The enlargement of the grey squares in (b).
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Figure S7. The activation barriers for C-C bond dissociation of adsorbed *COCHO as a function of

the corresponding reaction barriers. A (1 x 1 x 1) k-point grid is applied.
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Figure S8. The activation barriers for OC-CHO coupling as a function of the corresponding reaction
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Table S1. The adhesion energy (in eV) of metal atom M on Cu(100) and Cu(111) surfaces.

Ead
Metal atom M
On Cu(100) surface | On Cu(111) surface
Pt -1.04 -1.47
Pd -0.96 -1.17
Au -1.10 -1.31

Table S2. Bond distance (in Angstrom) between C atom of *CO and C atom of *COH in the initial,
transition and final states for the OC-COH coupling on Cu(100) and M@Cu(100) surfaces.

*CO + *COH - *COCOH
Catalyst surface
*CO + *COH TS« *COCOH
Cu(100) 2.90 2.01 1.48
Pt@Cu(100) 2.93 2.07 1.49
Pd@Cu(100) 2.89 2.06 1.48
Au@Cu(100) 2.83 2.05 1.48

@ TS indicates transition state.

Table S3. Bond distance (in Angstrom) between C atom of *CO and C atom of *COH in the initial,
transition and final states for the OC-COH coupling on Cu(111) and M@Cu(111) surfaces.

*CO + *COH - *COCOH
Catalyst surface
*CO + *COH TS *COCOH
Cu(111) 2.83 1.91 1.45
Pt@Cu(111) 3.84 2.00 1.49
Pd@Cu(111) 3.85 2.03 1.47
Au@Cu(111) 291 1.84 1.45

@ TS indicates transition state.




Table S4. Bond distance (in Angstrom) between C atom of *CO and C atom of *CHO in the initial,
transition and final states for the OC-CHO coupling on Cu(100) and M@Cu(100) surfaces.

*CO + *CHO - *COCHO
Catalyst surface
*CO + *CHO TS *COCHO
Cu(100) 3.82 2.02 1.49
Pt@Cu(100) 3.79 1.97 1.52
Pd@Cu(100) 3.70 1.91 1.55
Au@Cu(100) 4.73 1.97 1.50

@ TS indicates transition state.

Table S5. Bond distance (in Angstrom) between C atom of *CO and C atom of *CHO in the initial,
transition and final states for the OC-CHO coupling on Cu(111) and M@Cu(111) surfaces.

*CO + *CHO - *COCHO
Catalyst surface
*CO + *CHO TS« *COCHO
Cu(111) 3.54 1.88 1.51
Pt@Cu(111) 2.85 1.78 1.54
Pd@Cu(111) 3.11 1.54 1.54
Au@Cu(111) 4.40 1.55 1.55

@ TS indicates transition state.
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