# **Electronic Supplementary Material**

# Orientational self-sorting: formation of structurally defined $Pd_4L_8$ and $Pd_6L_{12}$ cages from low-symmetry dipyridyl ligands

Ru-Jin Li,<sup>a</sup> Adam Marcus,<sup>b</sup> Farzaneh Fadaei-Tirani,<sup>a</sup> and Kay Severin\*

 <sup>a</sup> Institut of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
 <sup>b</sup> Institut of Mathematics, EPFL, 1015 Lausanne, Switzerland

# **Table of Contents**

| 1 General                                 | 2  |
|-------------------------------------------|----|
| 2 Syntheses                               | 3  |
| 2.1 Synthesis of the ligands              | 3  |
| 2.2 Syntheses of the cages                | 9  |
| 3 Titration                               | 17 |
| 4 Control experiments                     | 18 |
| 5 Analysis of potential isomers           | 20 |
| 4.1 Translation into vectors and matrices | 20 |
| 4.2 Integer labels                        | 21 |
| 4.3 Results                               | 21 |
| 6 Crystallographic analyses               | 24 |
| 7 References                              | 26 |

### 1 General

All chemicals were obtained from commercial sources and used without further purification unless stated otherwise.

NMR spectra were measured on a Bruker Avance III HD spectrometer (<sup>1</sup>H: 400 MHz, <sup>13</sup>C: 101 MHz) equipped with a BBFO-Plus<sub>z</sub> 5 mm probe, a Bruker Avance III spectrometer (<sup>1</sup>H: 400 MHz) equipped with a BBFO<sub>z</sub> 5 mm probe, a Bruker Avance III spectrometer (<sup>1</sup>H: 400 MHz) equipped with a BBI<sub>z</sub> 5 mm probe, and a Bruker Avance III spectrometer (<sup>1</sup>H: 400 MHz) equipped with a BBI<sub>z</sub> 5 mm cryoprobe. The chemical shifts are reported in parts per million (ppm) using the solvent residual signal as a reference.

High resolution mass spectrometry experiments were carried out using a hybrid ion trap-Orbitrap Fourier transform mass spectrometer, Orbitrap Elite (Thermo Scientific) equipped with a TriVersa Nanomate (Advion) nano-electrospray ionization source. Mass spectra were acquired with a minimum resolution setting of 120,000 at 400 m/z. To reduce the degree of analyte gas phase reactions leading to side products unrelated to solution phase, the transfer capillary temperature was lowered to 50 °C. Experimental parameters were controlled via standard and advanced data acquisition software.

#### 2 Syntheses

2.1 Synthesis of the ligands



**L1-Br** : 1,3-Dibromobenzene (472 mg, 2.00 mmol), pyridin-4-ylboronic acid (123 mg, 1.00 mmol), Pd(PPh<sub>3</sub>)<sub>4</sub> (115 mg, 995  $\mu$ mol), and K<sub>2</sub>CO<sub>3</sub> (0.6 g, 4.3 mmol) were combined in a 50 mL Schlenk tube. After vacuum/backfilling with N<sub>2</sub> for three times, 20 mL degassed toluene/EtOH/H<sub>2</sub>O (2:1:1) was added with a syringe. The mixture was heated at 85 °C overnight. The reaction was cooled to RT, quenched with water, extracted with DCM (2 x 50 mL), washed with water (2 x 50 mL) and brine (50 mL), and dried over MgSO<sub>4</sub>. The solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica to yield **L1-Br** as a white powder (318 mg, 1.36 mmol, 68%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.74 (d, *J* = 5.6 Hz, 2H), 7.84 (t, *J* = 1.9 Hz, 1H), 7.77 (d, *J* = 5.5 Hz, 2H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.62 (d, *J* = 7.8 Hz, 1H), 7.44 (t, *J* = 7.9 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  145.87, 138.42, 133.74, 131.23, 130.57, 126.11, 123.90, 123.10. ESI-MS: *m/z* calculated for C<sub>11</sub>H<sub>9</sub>NBr [M+H]<sup>+</sup> 233.99, found 233.99.

**L1** : Pyridin-3-ylboronic acid (185 mg, 1.51 mmol), **L1-Br** (300 mg, 1.28 mmol), Pd(PPh<sub>3</sub>)<sub>4</sub> (81 mg, 70 μmol), and K<sub>2</sub>CO<sub>3</sub> (0.6 g, 4.3 mmol) were combined in a 50 mL Schlenk tube. After vacuum/backfilling with N<sub>2</sub> for three times, 20 mL degassed toluene/EtOH/H<sub>2</sub>O (2:1:1) was added with a syringe. The mixture was heated at 85 °C overnight. The reaction was cooled to RT, quenched with water, extracted with DCM (2 x 50 mL), washed with water (2 x 50 mL) and brine (50 mL), and dried over MgSO<sub>4</sub>. The solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica to yield **L1** as a colorless oil (179 mg, 0.77 mmol, 60%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.91 (dd, *J* = 2.4, 0.9 Hz, 1H), 8.74 – 8.69 (m, 2H), 8.65 (dd, *J* = 4.9, 1.6 Hz, 1H), 7.94 (ddd, *J* = 7.9, 2.4, 1.6 Hz, 1H), 7.83 (td, *J* = 1.8, 0.6 Hz, 1H), 7.72 – 7.62 (m, 3H), 7.62 – 7.58 (m, 2H), 7.42 (ddd, *J* = 7.9, 4.8, 0.9 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 149.94, 148.97, 148.69, 148.37, 139.11, 139.07, 136.32, 134.77, 130.15, 128.18, 126.97, 126.10, 123.87, 122.05. ESI-MS: *m/z* calculated for C<sub>16</sub>H<sub>13</sub>N<sub>2</sub> [M+H]<sup>+</sup> 233.11, found 233.11.



Figure S1. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of L1-Br.



Figure S2. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of L1-Br.



Figure S3. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of ligand L1.



Figure S4. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of ligand L1.



**L2-Br** : 2,5-Dibromothiophene (484 mg, 2.00 mmol), pyridin-3-ylboronic acid (123 mg, 1.00 mmol), Pd(PPh<sub>3</sub>)<sub>4</sub> (115 mg, 995  $\mu$ mol), and K<sub>2</sub>CO<sub>3</sub> (0.6 g, 4.3 mmol) were combined in a 50 mL Schlenk tube. After vacuum/backfilling with N<sub>2</sub> for three times, 20 mL degassed toluene/EtOH/H<sub>2</sub>O (2:1:1) was added with a syringe. The mixture was heated at 85 °C overnight. The reaction was cooled to RT, quenched with water, extracted with DCM (2 x 50 mL), washed with water (2 x 50 mL) and brine (50 mL), and dried over MgSO<sub>4</sub>. The solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica to yield **L2-Br** as a yellow powder (372 mg, 1.55 mmol, 77.5%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.80 (d, *J* = 2.4 Hz, 1H), 8.54 (dd, *J* = 4.8, 1.5 Hz, 1H), 7.80 (ddd, *J* = 8.0, 2.4, 1.6 Hz, 1H), 7.34 (ddd, *J* = 8.0, 4.9, 0.9 Hz, 1H), 7.12 (d, *J* = 3.8 Hz, 1H), 7.08 (d, *J* = 3.9 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  148.57, 146.43, 141.77, 133.20, 131.31, 130.02, 124.79, 124.01, 113.20. ESI-MS: *m/z* calculated for C<sub>9</sub>H<sub>6</sub>SNBr [M+H]<sup>+</sup> 239.95, found 239.95.

**L2** : Pyridin-4-ylboronic acid (185 mg, 1.51 mmol), **L2-Br** (300 mg, 1.25 mmol), Pd(PPh<sub>3</sub>)<sub>4</sub> (81 mg, 70 μmol), and K<sub>2</sub>CO<sub>3</sub> (0.6 g, 4.3 mmol) were combined in a 50 mL Schlenk tube. After vacuum/backfilling with N<sub>2</sub> for three times, 20 mL degassed toluene/EtOH/H<sub>2</sub>O (2:1:1) was added with a syringe. The mixture was heated at 85 °C overnight. The reaction was cooled to RT, quenched with water, extracted with DCM (2 x 50 mL), washed with water (2 x 50 mL) and brine (50 mL), and dried over MgSO<sub>4</sub>. The solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica to yield **L2** as a yellow powder (241 mg, 1.01 mmol, 80.8%). <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>CN) δ 8.93 (dd, J = 2.5, 0.9 Hz, 1H), 8.61 – 8.57 (m, 2H), 8.54 (dd, J = 4.8, 1.6 Hz, 1H), 8.02 (ddd, J = 8.0, 2.5, 1.6 Hz, 1H), 7.68 (d, J = 3.9 Hz, 1H), 7.62 – 7.57 (m, 2H), 7.55 (d, J = 3.9 Hz, 1H), 7.41 (ddd, J = 8.0, 4.8, 0.9 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CD<sub>3</sub>CN) δ 151.49, 150.09, 147.56, 142.86, 142.10, 141.47, 133.75, 130.47, 128.14, 127.01, 124.85, 120.40. ESI-MS: *m/z* calculated for C<sub>14</sub>H<sub>11</sub>N<sub>2</sub>S [M+H]<sup>+</sup> 239.06, found 239.06.



0003

Figure S5. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of L2-Br.



Figure S6. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of L2-Br.



Figure S7. <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>CN) spectrum of ligand L2.



Figure S8. <sup>13</sup>C NMR (101 MHz, CD<sub>3</sub>CN) spectrum of ligand L2.

#### 2.2 Syntheses of the cages



The cage compound  $[Pd_4(L1)_8](BF_4)_8$  was synthesized by stiring a mixture of ligand L1 (9 µmol, 200 µL of a 45 mM stock solution of L1 in CD<sub>3</sub>CN) and  $[Pd(CH_3CN)_4](BF_4)_2$  (4.5 µmol, 150 µL of a 30 mM stock solution in CD<sub>3</sub>CN) in 650 µL CD<sub>3</sub>CN at 70 °C overnight to give 1000 µL of a clear, colorless solution of cage  $[Pd_4(L1)_8](BF_4)_8$  (1.125 mM). <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>CN)  $\delta$  9.52 (d, *J* = 2.0 Hz, 4H), 9.48 (d, *J* = 6.2 Hz, 8H), 9.46 (d, *J* = 1.5 Hz, 8H), 9.38 (d, *J* = 2.1 Hz, 4H), 9.08 (dd, *J* = 5.7, 1.3 Hz, 4H), 8.81 (dd, *J* = 5.7, 1.2 Hz, 4H), 8.26 – 8.21 (m, 8H), 8.21 – 8.18 (m, 8H), 8.16 – 8.12 (m, 8H), 7.99 (d, *J* = 2.0 Hz, 4H), 7.85 (dt, *J* = 6.6, 2.0 Hz, 4H), 7.78 (dd, *J* = 8.1, 5.6 Hz, 4H), 7.75 – 7.71 (m, 4H), 7.69 (d, *J* = 1.7 Hz, 4H), 7.67 (t, *J* = 7.7 Hz, 4H), 7.64 – 7.61 (m, 4H), 7.61 – 7.58 (m, 4H), 7.57 (d, *J* = 1.6 Hz, 4H), 7.52 (t, *J* = 7.7 Hz, 4H). <sup>13</sup>C NMR (101 MHz, CD<sub>3</sub>CN)  $\delta$  153.20, 152.58, 152.18, 151.22, 150.59, 149.48, 140.42, 139.56, 139.21, 137.83, 137.41, 137.03, 136.02, 131.61, 131.51, 131.06, 129.66, 129.37, 129.02, 128.47, 127.93, 127.68, 126.70, 126.07.



Figure S9. <sup>1</sup>H NMR spectra (400 MHz, CD<sub>3</sub>CN) of [Pd<sub>4</sub>(L1)<sub>8</sub>](BF<sub>4</sub>)<sub>8</sub>.



**Figure S10.** <sup>13</sup>C NMR spectra (101 MHz, CD<sub>3</sub>CN) of  $[Pd_4(L1)_8](BF_4)_8$ . The poor signal-to-noise ratio is a consequence of the low concentration of the cage.



Figure S11. <sup>1</sup>H-<sup>1</sup>H COSY NMR spectrum (400 MHz, CD<sub>3</sub>CN) of [Pd<sub>4</sub>(L1)<sub>8</sub>](BF<sub>4</sub>)<sub>8</sub>.



Figure S12. <sup>1</sup>H-<sup>1</sup>H NOESY NMR spectrum (400 MHz, CD<sub>3</sub>CN) of [Pd<sub>4</sub>(L1)<sub>8</sub>](BF<sub>4</sub>)<sub>8</sub>.



Figure S13. <sup>1</sup>H-<sup>1</sup>H DOSY NMR spectrum (400 MHz, CD<sub>3</sub>CN) of [Pd<sub>4</sub>(L1)<sub>8</sub>](BF<sub>4</sub>)<sub>8</sub>.



**Figure S14.** High-resolution ESI mass spectrum of  $[Pd_4(L1)_8(BF_4)_x]^{8-x}$  (x = 2–6).

The cage compound  $[Pd_6(L2)_{12}](BF_4)_{12}$  was synthesized in quantitative yield by stiring a mixture of ligand L2 (9 µmol, 200 µL of a 45 mM stock solution of L2 in CD<sub>3</sub>CN) and  $[Pd(CH_3CN)_4](BF_4)_2$  (4.5 µmol, 150 µL of a 30 mM stock solution in CD<sub>3</sub>CN) in 650 µL CD<sub>3</sub>CN at 70 °C overnight to give 1000 µL of a pale yellow, slightly turbid solution of cage  $[Pd_6(L2)_{12}](BF_4)_{12}$  (0.75 mM). <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>CN)  $\delta$  9.50 (d, J = 2.0 Hz, 6H), 9.47 (d, J = 2.1 Hz, 6H), 9.23 (dd, J = 5.8, 1.2 Hz, 6H), 9.19 (d, J = 1.2 Hz, 6H), 9.18 (s, 12H), 9.16 – 9.12 (m, 12H), 8.29 (dddd, J = 11.6, 8.3, 2.2, 1.2 Hz, 12H), 7.90 – 7.79 (m, 24H), 7.77 – 7.67 (m, 24H), 7.59 (d, J = 4.1 Hz, 6H), 7.55 (d, J = 4.1 Hz, 6H). <sup>13</sup>C NMR (101 MHz, CD<sub>3</sub>CN)  $\delta$  152.07, 152.00, 150.75, 150.67, 149.09, 148.91, 145.40, 145.34, 142.10, 142.07, 140.79, 140.76, 137.87, 137.36, 133.73, 133.63, 131.24, 131.08, 129.89, 129.72, 128.69, 128.64, 123.62, 123.45.



Figure S15. <sup>1</sup>H NMR spectra (400 MHz, CD<sub>3</sub>CN) of [Pd<sub>6</sub>(L2)<sub>12</sub>](BF<sub>4</sub>)<sub>12</sub>.



**Figure S16.** <sup>13</sup>C NMR spectra (101 MHz, CD<sub>3</sub>CN) of  $[Pd_6(L2)_{12}](BF_4)_{12}$ . The poor signal-to-noise ratio is a consequence of the low concentration of the cage.



Figure S17. <sup>1</sup>H-<sup>1</sup>H COSY NMR spectrum (400 MHz, CD<sub>3</sub>CN) of [Pd<sub>6</sub>(L2)<sub>12</sub>](BF<sub>4</sub>)<sub>12</sub>.



Figure S18. <sup>1</sup>H-<sup>1</sup>H NOESY NMR spectrum (400 MHz, CD<sub>3</sub>CN) of [Pd<sub>6</sub>(L2)<sub>12</sub>](BF<sub>4</sub>)<sub>12</sub>.



Figure S19. <sup>1</sup>H-<sup>1</sup>H DOSY NMR spectrum (400 MHz, CD<sub>3</sub>CN) of [Pd<sub>6</sub>(L2)<sub>12</sub>](BF<sub>4</sub>)<sub>12</sub>.



**Figure S20.** High-resolution ESI mass spectrum of  $[Pd_6(L2)_{12}(BF_4)_x]^{12-x}$  (x = 3–9).

#### **3 Titration**

Host-guest titrations were performed at RT by stepwise addition of a stock solution of NaBPh<sub>4</sub> (CD<sub>3</sub>CN, 90 mM) to 500  $\mu$ L of a solution of [Pd<sub>4</sub>(L1)<sub>8</sub>](BF<sub>4</sub>)<sub>8</sub> (1.125 mM) in CD<sub>3</sub>CN in an NMR tube. The <sup>1</sup>H NMR spectra were recoded immediately after briefly shaking the solution. Association constants were calculated using Thordarson's online tool Bindfit (http://app.supramolecular.org/bindfit/).



**Figure S21.** <sup>1</sup>H NMR spectra (400 MHz, CD<sub>3</sub>CN) of a solution of cage [Pd<sub>4</sub>(**L1**)<sub>8</sub>](BF<sub>4</sub>)<sub>8</sub> with increasing amounts of NaBPh<sub>4</sub>.



**Figure S22.** Complexation-induced shift of the signals of  $H_a$  and  $H_G$ . Fitting the data to a 1 : 1 binding model resulted in an association constant of  $K_a = 82 \text{ M}^{-1}$ .

#### **4** Control experiments



**Figure S23.** <sup>1</sup>H NMR spectra (400 MHz,  $d_6$ -DMSO) of [Pd<sub>6</sub>(L2)<sub>12</sub>](BF<sub>4</sub>)<sub>12</sub>. **a**) The sample was prepared as described above in acetonitrile. The product was precipitated with excess diethyl ether, collected by centrifugation, dried under high vacuum, and then re-dissolved in  $d_6$ -DMSO. Subsequently, a <sup>1</sup>H NMR spectrum was recorded. **b**) The sample was prepared *in situ* in  $d_6$ -DMSO, and a <sup>1</sup>H NMR spectrum was recorded.

| 9.8            | 9.6      | 9.4 | 9.2 | 9.0 | 8.8<br>ppm | 8.6 | 8.4 | 8.2 | 8.0 | 7.8 |
|----------------|----------|-----|-----|-----|------------|-----|-----|-----|-----|-----|
| 25 °C, 2 days  | <u> </u> | nM  | M   |     |            | ^   | ۸   | M   | M   |     |
| 40 °C, overniç | ght_/    | MM_ | M   |     |            | ^   | ۸   | M   | M   | L   |
| 70 °C, 3 h     |          | M   | M   |     |            | ^   | ∧   | M   |     | L_M |

**Figure S24.** <sup>1</sup>H NMR spectra (400 MHz,  $d_6$ -DMSO, 298 K) of [Pd<sub>6</sub>(L2)<sub>12</sub>](BF<sub>4</sub>)<sub>12</sub>. The samples were all prepared *in situ* in  $d_6$ -DMSO at the same concentration ([L2] = 9 mM), but at different temperatures and with different reaction times: 70 °C for 3 h (top); 40 °C overnight (middle), and room temperature for 2 days (bottom).



**Figure S25.** <sup>1</sup>H NMR spectra (400 MHz,  $d_6$ -DMSO, 298 K) of [Pd<sub>6</sub>(L2)<sub>12</sub>](BF<sub>4</sub>)<sub>12</sub>. The samples were all prepared at 70 °C for 3 h but with different concentrations: [L2] = 27 mM (top); [L2] = 9 mM (middle) and [L2] = 1.8 mM (bottom).

#### 5 Analysis of potential isomers

Our approach for enumerating possible isomers uses the standard "orbit-stabilizer" method.<sup>1</sup> Each *n*-ligand isomer is assigned a vector in  $\{-1, 1\}^n$  depending on the orientation of each of the ligands. All of the symmetries of interest (rotations and reflections) act on this set of vectors via multiplication by signed permutation matrices. In each case, the rotational symmetry group can be generated by two rigid motions (with a third generator provided by a single reflection when we wish to find chiral symmetries). This allows us to delegate the group construction, orbit computations, and comparisons to a computer in a straightforward way.

#### 4.1 Translation into vectors and matrices

We first explain our method for translating the orientations of n ligands into a vector  $v \in \{-1, 1\}^n$ . We fix an initial configuration of metals and ligand sites (places where ligands will go). The formation of an isomer will result in each ligand site receiving a ligand in one of two orientations. For clarity, we will call an assignment of orientations to each of the ligand sites an ordering. We then give labels

- $M_1, \ldots, M_m$  to each of the *m* metals, and
- $L_1, \ldots, L_n$  to each of the *n* ligand sites.

Let  $L_i$  be a ligand site connecting two metals  $M_j$  and  $M_k$ . Given an ordering x, we will say that  $L_i$  has positive orientation in x if the ligand at that site begins at  $M_{\min\{j,k\}}$  and ends at  $M_{\max\{j,k\}}$ . Otherwise, we will say it has negative orientation. This gives a natural translation of each possible ordering to a vector v with

$$v_j = \begin{cases} +1 & \text{if } L_j \text{ has positive orientation} \\ -1 & \text{if } L_j \text{ has negative orientation} \end{cases}$$

As mentioned above, all of the symmetries of interest (both rotations and reflections) correspond to signed permutation matrices in a natural way. Each symmetry results in a permutation  $\pi$  of the metals  $M_i \rightarrow M_{\pi(i)}$  as well as a permutation  $\delta$  of the ligand sites  $L_i \rightarrow L_{\delta(i)}$ . For each ligand site  $L_i$  with connecting metals  $M_j$  and  $M_k$  with j < k, the associated matrix will have entry

$$A_{i,\sigma(i)} = \begin{cases} +1 & \text{if } \pi(j) < \pi(k) \\ -1 & \text{if } \pi(j) > \pi(k) \end{cases}$$

and  $A_{i,t} \cdot = 0$  for all other *t*.

#### 4.2 Integer labels

For the purpose of presentation, we will assign each ordering  $x_i$  a unique integer  $N_i$  with  $0 \le N_i \le 2^n - 1$ . In particular, if  $v^i \in \{-1, 1\}^n$  is the vector of ligand orientations mentioned above, we can transform between  $v^i$  and  $N_i$  in a standard way using the (unique) binary representation of each  $N_i$  as follows:

$$N_i = \sum_{j=1}^n 2^{(v_{n-j+1}^i+1)/2}.$$

In reverse, if  $b_{n-1} \dots b_1 b_0$  is the binary representation of  $N_i$  with each  $b_j \in \{0, 1\}$  (and with extra 0's added on the left if necessary), then we can recover the vector  $v^i$  using the formula

$$v_i^i = 2b_{n-i} - 1.$$

For example, in the case where n = 6 and  $N_i = 13$ , we have that the binary representation of 13 is 1101, which we pad on the left with 0's to make it have 6 digits: 001101 and then form the vector (-1, -1, +1, +1, -1, +1). Similarly, in the case where n = 8 and  $N_i = 16$ , we have that the binary representation of 16 is 10000, which we pad on the left with 0's to make it have 8 digits: 00010000 and then form the vector (-1, -1, -1, -1, -1, -1, -1, -1, -1).

#### 4.3 Results

In each of the sections below, we provide a list of the unique (under rotational symmetries) isomers for the configurations  $M_3L_6$ ,  $M_4L_8$ , and  $M_6L_{12}$  using the integer labels discussed in the previous section. In particular, we give a diagram showing the labels of metals and ligand sites that were used to generate the vectors and matrices and then describe the rotational symmetry group as it acts on the diagram. The isomers are sorted according to the number of different orderings that are considered "equivalent" to the given representative. Chiral pairs are grouped together in brackets. All computations were done in Mathematica using code that is publicly available at: <u>https://doi.org/10.5281/zenodo.5090646</u>

#### M<sub>3</sub>L<sub>6</sub>

All permutations of the metals are possible to achieve via rotations, forming the rotation group  $D_3$ . The dark lines in the diagram show the subgroup generated by the planar rotation  $M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow M_1$ .



12 orderings each: 0, {2, 13}, {3, 6}, {5, 10}
6 orderings each: {1, 8}, {4, 11}, {7, 14}
4 orderings each: 18
2 orderings each: {21, 42}

#### M4L8

The asymmetry in the double ligands restricts each isomer to having at most 4 valid rotational symmetries, forcing the symmetry group to be either  $S_2 \times S_2$  or  $C_4$ . It is easy to see that it must be the former by noticing that

1. the 180° rotation around the line through the midpoints of  $L_3$  and  $L_6$  (which takes  $L_1$  to  $L_8$ )

2. the 180° rotation around the line through the midpoints of  $L_4$  and  $L_5$  (which takes  $L_1$  to  $L_7$ ) are distinct elements of degree 2 (which can only exist  $S_2 \times S_2$ ).



**4** orderings each: {0, 3}, {1, 2}, {4, 11}, {5, 10}, {6, 9}, {7, 8}, {12, 15}, {13, 14}, {16, 35}, {17, 34}, {18, 33}, {19, 28}, {20, 43}, {21, 42}, {22, 41}, {24, 27}, {25, 38}, {26, 37}, {29, 46}, {30, 45}, {49, 50}, {53, 58}, {54, 57}, {61, 62}, {69, 109}, {70, 137}, {73, 93}, {74, 133}, {77, 85}, {78, 141} **2** orderings each: 89, 101, {65, 125}, {66, 129}, {90, 153}

#### M6L12

The rotational symmetries are the same as those of a cube (the labels used in the diagram map metal  $M_i$  to the face of a standard 6-sided die with *i* pips). This can be seen to be isomorphic to  $S_4$  (acting transitively on the 4 diagonals of the cube).



**24** orderings each: 0, 1, 6, 7, 8, 9, 14, 31, 49, 50, 55, 59, 64, 65, 70, 71, 72, 73, 94, 206, 215, 222, 238, 301, 313, {2, 4}, {3, 5}, {10, 12}, {11, 13}, {16, 32}, {17, 33}, {18, 36}, {19, 37}, {20, 34}, {21, 35}, {22, 38}, {23, 39}, {24, 40}, {25, 41}, {26, 44}, {27, 45}, {28, 42}, {29, 43}, {30, 46}, {51, 53}, {66, 68}, {67, 69}, {74, 76}, {75, 77}, {80, 96}, {81, 97}, {82, 100}, {83, 101}, {84, 98}, {85, 99}, {86, 102}, {87, 103}, {88, 104}, {89, 105}, {90, 108}, {91, 109}, {92, 106}, {93, 107}, {145, 453}, {147, 449}, {151, 223}, {192, 365}, {193, 220}, {194, 361}, {195, 450}, {196, 433}, {197, 212}, {198, 582}, {199, 443}, {200, 333}, {202, 329}, {204, 462}, {208, 229}, {209, 323}, {210, 291}, {211, 355}, {213, 339}, {214, 307}, {216, 225}, {217, 322}, {218, 290}, {219, 221}, {224, 436}, {227, 458}, {228, 432}, {230, 316}, {297, 312}, {298, 435}

 orderings each: 15, 48, 54, 57, 78, 315, 317, 330, {150, 550}, {231, 599} orderings each: 467, {232, 600}, {289, 440}, {345, 838} orderings each: 63, 119, 159, {144, 485} orderings: 1337

#### 6 Crystallographic analyses

Single light yellow-grey block crystal of  $[Pd_4(L1)_8][Na(BF_4)_4](BPh_4)_2(BF_4)_3$  were obtained by slow vapor diffusion of THF/Et<sub>2</sub>O (v/v = 1 : 1) into a acetonitrile solution of  $[Pd_4(L1)_8](BF_4)_8$  (1.125 mM) with 5.0 equiv. of NaBPh<sub>4</sub>. Single crystal of  $[Pd_6(L2)_{12}](BPh_4)_8$  (some anions could not be refined) were obtained by adding an excess (20.0 equiv) NaBPh<sub>4</sub> into a acetonitrile solution of  $[Pd_6(L2)_{12}](BF_4)_{12}$  (0.75 mM) overnight.

Bragg-intensities of  $[Pd_4(L1)_8][Na(BF_4)_4](BPh_4)_2(BF_4)_3$  and  $[Pd_6(L2)_{12}](BPh_4)_4(X)_8$  were collected at low temperature using CuKa radiation. A Rigaku SuperNova dual system diffractometer with an AtlasS2 CCD detector was used. The datasets were reduced and corrected for absorption, with the help of a set of faces enclosing the crystals as snugly as possible, with the latest available version of *CrysAlis*<sup>Pro.2</sup> The solutions and refinements of the structures were performed by the latest available version of *ShelXT*<sup>3</sup> and *ShelXL*<sup>4</sup> using *Olex2*<sup>5</sup> as the graphical interface. All non-hydrogen atoms were refined anisotropically using full-matrix least-squares based on  $|F|^2$ . The hydrogen atoms were placed at calculated positions by means of the "riding" model where each H-atom was assigned a fixed isotropic displacement parameter with a value equal to 1.2  $U_{eq}$  of its parent C-atom (1.5  $U_{eq}$  for the methyl groups). The RIGU and SIMU restraints were applied to the displacement parameters of all non-hydrogen atoms. Additional counter-ions and solvent molecules, too disordered to be located in the electron density map, were taken into account using the *Olex2* solvent-mask procedure.<sup>5</sup>

In the structure  $[Pd_4(L1)_8][Na(BF_4)_4](BPh_4)_2(BF_4)_3$ , a solvent mask was calculated and 2272 electrons were found in a volume of 11740 Å<sup>3</sup>. This is consistent with the presence of three and a half THF-solvent molecules per asymmetric unit, namely three in a void of 650, half in a void of 68 and none in a void of 16, which accounts for 2240 electrons per unit cell. It should be noticed that the diethyl ether recrystallisation solvent could not be an ambiguously identified in a difference map. Possibly, it appeared as a superposition of very disordered THF solvent molecules, but this assignment was way too fragile and uncertain to include diethyl ether in the calculation of the solvent-masking program in Olex2 (knowing the number of the electrons in THF and diethyl ether to be very close; 40 vs. 42 electrons). In the structure  $[Pd_6(L2)_{12}](BPh_4)_8$ , a solvent mask was calculated and 1118 electrons were found in a volume of 4466 Å<sup>3</sup> in one void per unit cell. This is consistent with the presence of two BPh<sub>4</sub><sup>-</sup> counterions and ten acetonitrile-solvent molecules per asymmetric unit, which accounts for 558 electrons per unit cell.

Crystallographic and refinement data are summarized in **Table S1** for  $[Pd_4(L1)_8][Na(BF_4)_4](BPh_4)_2(BF_4)_3$ and  $[Pd_6(L2)_{12}](BPh_4)_8$ . Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre and correspond to the following codes:  $[Pd_4(L1)_8][Na(BF_4)_4](BPh_4)_2(BF_4)_3$  (2093068),  $[Pd_6(L2)_{12}](BPh_4)_8$  (2092340). These data can be obtained free of charge via www.ccdc.cam.ac.uk/data request/cif.

| Compound                                | [Pd <sub>4</sub> ( <b>L1</b> ) <sub>8</sub> ][Na(BF <sub>4</sub> ) <sub>4</sub> ](BPh <sub>4</sub> ) <sub>2</sub> (BF <sub>4</sub> ) <sub>3</sub> | [Pd <sub>6</sub> ( <b>L2</b> ) <sub>12</sub> ](BPh <sub>4</sub> ) <sub>8</sub> |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Formula                                 | C176H136B9F28N16NaPd4                                                                                                                             | $C_{360}H_{278}B_8N_{24}Pd_6S_{12}$                                            |
| D <sub>calc.</sub> / g cm <sup>-3</sup> | 1.171                                                                                                                                             | 0.939                                                                          |
| µ/mm⁻¹                                  | 3.474                                                                                                                                             | 2.877                                                                          |
| Formula Weight                          | 3552.88                                                                                                                                           | 6049.65                                                                        |
| Colour                                  | clear pale yellow                                                                                                                                 | clear light yellow                                                             |
| Shape                                   | prism-shaped                                                                                                                                      | plate-shaped                                                                   |
| Size/mm <sup>3</sup>                    | 0.39×0.35×0.30                                                                                                                                    | 0.24×0.17×0.05                                                                 |
| T/K                                     | 140.00(10)                                                                                                                                        | 140.00(10)                                                                     |
| Crystal System                          | orthorhombic                                                                                                                                      | triclinic                                                                      |
| Space Group                             | Ccce                                                                                                                                              | PĪ                                                                             |
| a/Å                                     | 30.1520(5)                                                                                                                                        | 22.4855(10)                                                                    |
| b/Å                                     | 39.3021(10́)                                                                                                                                      | 22.5246(9)                                                                     |
| c/Å                                     | 33.9980(6)                                                                                                                                        | 25.9711(13)                                                                    |
| $\alpha l^{\circ}$                      | 90                                                                                                                                                | 65.278(5)                                                                      |
| βl°                                     | 90                                                                                                                                                | 69.004(4)                                                                      |
| И°                                      | 90                                                                                                                                                | 67.104(4)                                                                      |
| V/Å <sup>3</sup>                        | 40288.9(14)                                                                                                                                       | 10702.0(10)                                                                    |
| Z                                       | 8                                                                                                                                                 | 1                                                                              |
| Z'                                      | 0.5                                                                                                                                               | 0.5                                                                            |
| Wavelength/Å                            | 1.54184                                                                                                                                           | 1.54184                                                                        |
| Radiation type                          | CuKα                                                                                                                                              | CuKα                                                                           |
| <i>O</i> minl°                          | 3.189                                                                                                                                             | 3.241                                                                          |
| $\Theta_{max}$                          | 72.696                                                                                                                                            | 50.721                                                                         |
| Measured Refl's.                        | 97504                                                                                                                                             | 57926                                                                          |
| Ind't Refl's                            | 19734                                                                                                                                             | 21834                                                                          |
| Refl's with $I > 2\sigma(I)$            | 13293                                                                                                                                             | 13360                                                                          |
| Rint                                    | 0.0461                                                                                                                                            | 0.1222                                                                         |
| Parameters                              | 1133                                                                                                                                              | 1516                                                                           |
| Restraints                              | 1847                                                                                                                                              | 2993                                                                           |
| Largest Peak/e Å <sup>-3</sup>          | 2.185                                                                                                                                             | 3.003                                                                          |
| Deepest Hole/e Å-3                      | -1.405                                                                                                                                            | -2.081                                                                         |
| GooF                                    | 1.032                                                                                                                                             | 1.899                                                                          |
| wR₂ (all data)                          | 0.3227                                                                                                                                            | 0.5476                                                                         |
| wR <sub>2</sub>                         | 0.2831                                                                                                                                            | 0.5045                                                                         |
| <i>R</i> ₁ (all data)                   | 0.1280                                                                                                                                            | 0.2797                                                                         |
| <i>R</i> <sub>1</sub>                   | 0.0985                                                                                                                                            | 0.2192                                                                         |
| CCDC number                             | 2093068                                                                                                                                           | 2092340                                                                        |

Table S1. Crystal data and structure refinement for  $[Pd_4(L1)_8][Na(BF_4)_4](BPh_4)_2(BF_4)_3$  and  $[Pd_6(L2)_{12}](BPh_4)_8$ 

## 7 References

- [1] D. S.Dummit and R. M. Foote, *Abstract Algebra*, 3<sup>rd</sup> Ed., Wiley-VCH, 2003.
- [2] CrysAlis<sup>Pro</sup> software system, Rigaku Oxford Diffraction, (2021).
- [3] G. M. Sheldrick, Acta Cryst., 2015, A71, 3–8.
- [4] G. M. Sheldrick, Acta Cryst., 2015, C71, 3–8.
- [5] O. V. Dolomanov, J. L. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339–341.