Electronic Supporting Information

Low Temperature Insights into the Crystal and Magnetic Structure of a Neutral Radical Ferromagnet

Craig M. Robertson, ^a* Stephen M. Winter, ^b Michael R. Probert, ^c Judith A. K. Howard ^d and Richard T. Oakley ^e*

^a Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, United Kingdom;

^b Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA;

^c Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom;

^d Department of Chemistry, Durham University, Durham, DH1 3LE, United Kingdom;

^e Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Author e-mail addresses: craig.robertson@liverpool.ac.uk; oakley@uwaterloo.ca

Crystallographic Measurements	Page S2
Table S1. Crystal Data for 1a.	Page S3
Theoretical Calculations	Page S4
Fig. S1. Color coded pattern of pairwise exchange interactions J_{1-4} and J_{π} .	Page S4
Table S2. Summary of all BS-DFT Exchange Energies for 1a.	Page S5
Table S3.BS-DFT Exchange Energies for 1a at 296 K.	Page S6
Table S4.BS-DFT Exchange Energies for 1a at 100 K.	Page S7
Table S5. BS-DFT Exchange Energies for 1a at 2 K.	Page S8
References	Page S9

Contents (9 pages total)

Crystallographic Measurements

Ultra-low temperature crystallographic data were collected on the custom-built XIPHOS system previously described.¹ Temperature control was achieved using a Lakeshore 340 controller with measurements performed by means of a Lakeshore DT-470-CO-13 diode. Crystals of 1a suitable for X-ray work were grown by electrocrystallization, as previously described (reference 9a, main text). A well-formed single crystal of 1a (0.250 × 0.075 × 0.070 mm) was selected and mounted onto a graphite fibre with low-temperature epoxy resin (Oxford Instruments, TRZ0004), centred optically at room temperature and then enclosed within a double-walled Be chamber. A dynamic vacuum of $\sim 5.4 \times 10^{-6}$ mbar was maintained throughout the experiment. The sample was gradually cooled from room temperature to 2 K over an approximately 12 h period and then centred in the X-ray beam via diffraction. All data were collected at a generator setting of 50 kV and 108 mA, using 20 s φ scans (0.5° frame width) at a detector distance of 8 cm from the sample. A total of 12 scans were collected at 20 angles = $\pm 20^{\circ}$ and $\pm 40^{\circ}$. Crystal centring, data collection and processing were performed with APEX2 software.² Data were integrated via SAINT³ and reflections corrected with SADABS.⁴ Using Olex2,⁵ the structure was solved with the ShelXT⁶ structure solution program using Intrinsic Phasing and refined with the XL⁷ refinement package using Least Squares minimisation.

CCDC code	701731 ^a	701735 ^a	2096260
Formula	C7H5ClN3Se4	C7H5ClN3Se4	C7H5ClN3Se4
M	482.43	482.43	482.43
<i>a</i> (Å)	16.2708(5)	16.1801(12)	16.1915(4)
<i>c</i> (Å)	4.1720(3)	4.1264(6)	4.07570(10)
$V(Å^3)$	1104.49(9)	1080.27(8)	1068.50(6)
$\rho_{\text{calcd}}(\text{g cm}^{-1})$	2.901	2.966	2.999
space group	$P\overline{4}2_1m$	$P\overline{4}2_1m$	$P\overline{4}2_1m$
Ζ	4	4	4
temp (K)	296(2)	100(2)	2(1)
μ (mm ⁻¹)	13.494	13.80	13.949
λ (Å)	0.71073	0.71073	0.71073
solution method	direct methods	direct methods	direct methods
data/restr/params	1209/0/76	1175/0/77	1663/0/83
$R, R_{\rm w}$ (on F^2)	0.0374, 0.0635	0.0376, 0.0813	0.0252, 0.0408

 Table S1 Crystal Data for 1a.

^{*a*} See reference 9a, main text.

Theoretical Calculations

Unrestricted BS-DFT⁸ calculations on the exchange energies in **1a** (J_{π} , J_{1-4}) were performed using the range of functionals listed in the text and the split-valence triple- ξ quality 6-311G(d,p) basis set, as contained in the Gaussian 16W suite of programs.⁹ Tight convergence criteria were employed, and atomic coordinates were taken from crystallographic data collected at 296 K, 100 K and 2 K. The magnitude and sign of exchange energies were based on the isotropic Heisenberg Hamiltonian $H_{ex} = -2J_{ij} \{S_i \cdot S_j\}$ for interacting pairs (i,j) of radicals and were computed (from eq. 2, main text) using single-point energies of the triplet E_{TS} and broken symmetry singlet E_{BSS} states and their respective $\langle S^2 \rangle$ expectation values. A full listing of all (J_{π} , J_{1-4}) values is provided in Table S2, with details of individual calculations given in Tables S3-S5. The model 1D calculations (Fig. 2a, main text) of J_{π} as a function of the π -stack slippage were performed using coordinates of a model **1** ($R_1 = R_2 = H$) obtained from a UB3LYP/6-31G(d,p) optimization in C_{2v} symmetry.

Fig. S1. Color coded pattern of pairwise exchange interactions J_{1-4} and J_{π} , all referenced to a single radical (black). The total number of pairwise interactions $zJ = 4J_1 + 4J_2 + 2J_3 + J_4 + 2J_{\pi}$.

Functional	$T(\mathbf{K})$	$J_1 ({\rm cm}^{-1})$	$J_2 ({ m cm}^{-1})$	$J_3 ({\rm cm}^{-1})$	$J_4 ({\rm cm}^{-1})$	$J_{\pi}(\mathrm{cm}^{-1})$	$\Theta(\mathbf{K})^a$
	296	4.92	0.13	-0.64	-0.18	-6.97	3.5
B3LYP	100	5.64	0.15	-0.57	-0.22	-7.75	4.5
	2	5.55	-0.29	-0.81	-0.20	-1.57	11.6
	296	5.14	0.83	-0.46	-0.11	-4.11	10.5
PBE0	100	5.86	0.94	-0.37	-0.15	-4.59	12.3
	2	5.77	0.55	-0.57	-0.13	1.16	18.9
	296	2.90	1.32	-0.33	-0.20	1.23	13.3
CAM-B3LYP	100	3.36	1.45	-0.31	-0.22	1.40	15.2
	2	3.34	1.29	-0.46	-0.22	5.54	20.5
	296	3.16	1.56	-0.31	-0.15	2.27	16.3
ωB97XD	100	3.56	2.04	-0.31	-0.18	3.35	20.4
	2	3.51	2.06	-0.44	-0.18	5.87	23.7
	296	2.15	1.29	-0.24	-0.18	4.49	15.9
LC-ωHPBE	100	2.50	1.47	-0.20	-0.22	5.13	18.4
	2	2.48	1.36	-0.29	-0.20	8.77	23.1

 Table S2. Summary of all BS-DFT Exchange Energies for 1a.

^{*a*} Estimated from mean field approximation as $\Theta = 0.5 zJ/k_B$, where $zJ = 4J_1 + 4J_2 + 2J_3 + J_4 + 2J_{\pi}$ (derived from the connectivity pattern shown in Fig. S1).

Table S2. BS-DFT Exchange Energies for 1a at 296 K.

UDJLI	170-3110(u,p)					
Dimer	Triplet (H)	$\langle S^2 \rangle_{TS}$	BS Singlet (H)	$\langle S^2 \rangle_{\rm BSS}$	$J(\mathrm{cm}^{-1})$	$J(\mathbf{K})$
$J_1(d_1)$	-21000.87832080	2.0517	-21000.87829840	1.0516	4.916	7.073
$J_{2}\left(d_{2} ight)$	-21000.87824180	2.0520	-21000.87824120	1.0510	0.132	0.189
$J_3(d_3)$	-21000.87817700	2.0526	-21000.87817990	1.0524	-0.636	-0.916
$J_4(d_4)$	-21000.87786390	2.0529	-21000.87786470	1.0529	-0.176	-0.253
$J_{\pi}(\delta)$	-21000.87247790	2.0522	-21000.87250980	1.0479	-6.971	-10.030
			$\Theta(\text{calc}) = 0.5 * zJ$	(calc) =	3.5	K

IIB3I VP/6-311C(d n)

UPBE1PBE/6-311G(d,p)

Dimer	Triplet (H)	$\langle S^2 \rangle_{TS}$	BS Singlet (H)	$\langle S^2 \rangle_{\rm BSS}$	$J(\mathrm{cm}^{-1})$	$J(\mathbf{K})$
$J_1(d_1)$	-20997.03393340	2.0732	-20997.03391000	1.0731	5.135	7.389
$J_2\left(d_2\right)$	-20997.03440010	2.0734	-20997.03439630	1.0728	0.834	1.199
$J_3(d_3)$	-20997.03171050	2.0744	-20997.03171260	1.0742	-0.461	-0.663
$J_4(d_4)$	-20997.03120790	2.0747	-20997.03120840	1.0747	-0.110	-0.158
$J_{\pi}(\delta)$	-20997.03434940	2.0740	-20997.03436820	1.0705	-4.112	-5.916
			α (1) α 5 * 7	(1)	10 5	17

 $\Theta(calc) = 0.5 * zJ(calc) = 10.5 K$

UCAM-B3LYP/6-311G(d,p)

Dimer	Triplet (H)	$\langle S^2 \rangle_{TS}$	BS Singlet (H)	$\langle S^2 \rangle_{\rm BSS}$	$J(\mathrm{cm}^{-1})$	$J(\mathbf{K})$
$J_1(d_1)$	-21001.14138450	2.1405	-21001.14137130	1.1404	2.897	4.168
$J_2\left(d_2 ight)$	-21001.14210210	2.1401	-21001.14209610	1.1399	1.317	1.894
$J_3(d_3)$	-21001.14053320	2.1419	-21001.14053470	1.1418	-0.329	-0.474
$J_{4}(d_{4})$	-21001.14016010	2.1425	-21001.14016100	1.1425	-0.198	-0.284
$J_{\pi}(\delta)$	-21001.14153680	2.1414	-21001.14153120	1.1398	1.227	1.766

 $\Theta(\text{calc}) = 0.5 * zJ(\text{calc}) = 13.3 \text{ K}$

UωB97XD/6-311G(d,p)

Dimer	Triplet (H)	$\langle S^2 \rangle_{TS}$	BS Singlet (H)	$\langle S^2 \rangle_{\rm BSS}$	$J(\mathrm{cm}^{-1})$	$J(\mathbf{K})$
$J_1(d_1)$	-21000.74575930	2.1732	-21000.74574440	1.1371	3.156	4.541
$J_2(d_2)$	-21000.74659090	2.1367	-21000.74658380	1.1364	1.558	2.241
$J_{3}(d_{3})$	-21000.74053660	2.1384	-21000.74053800	1.1384	-0.307	-0.442
$J_4(d_4)$	-21000.73999030	2.1391	-21000.73999100	1.1391	-0.154	-0.221
$J_{\pi}(\delta)$	-21000.76727650	2.1340	-21000.76726620	1.1367	2.267	3.261
			$\Theta(\text{calc}) = 0.5 * zJ$	(calc) =	16.3	K

ULC-@HPBE/6-311G(d,p)

Dimer	Triplet (H)	$\langle S^2 \rangle_{TS}$	BS Singlet (H)	$\langle S^2 \rangle_{\rm BSS}$	$J(\mathrm{cm}^{-1})$	$J(\mathbf{K})$
$J_1(d_1)$	-20997.01700740	2.2409	-20997.01699760	1.2408	2.151	3.094
$J_2(d_2)$	-20997.01802740	2.2400	-20997.01802150	1.2398	1.295	1.863
$J_{3}(d_{3})$	-20997.01631850	2.2424	-20997.01631960	1.2424	-0.241	-0.347
$J_4(d_4)$	-20997.01619280	2.2432	-20997.01619360	1.2443	-0.176	-0.253
$J_{\pi}(\delta)$	-20997.02064050	2.2424	-20997.02062000	1.2413	4.494	6.466
			$\Theta(\text{calc}) = 0.5 * zJ$	(calc) =	15.9	K

 $\Theta(\text{calc}) = 0.5 \ *zJ(\text{calc}) = 15.9 \text{ K}$

Table S3. BS-DFT Exchange Energies for 1a at 100 K.

UB3LYP/6-311G(d,p)

Dimer	Triplet (H)	$\langle S^2 \rangle_{TS}$	BS Singlet (H)	$\langle S^2 \rangle_{\rm BSS}$	$J(\mathrm{cm}^{-1})$	$J(\mathbf{K})$
$J_{1}\left(d_{1} ight)$	-21000.88965690	2.0499	-21000.88963120	1.0498	5.640	8.115
$J_{2}\left(d_{2} ight)$	-21000.88941510	2.0502	-21000.88941440	1.0492	0.153	0.221
$J_3(d_3)$	-21000.88989670	2.0508	-21000.88989930	1.0506	-0.571	-0.821
$J_4(d_4)$	-21000.88961430	2.0511	-21000.88961530	1.0511	-0.219	-0.316
$J_{\pi}\left(\delta ight)$	-21000.88311080	2.0504	-21000.88314630	1.0455	-7.753	-11.156
			$\Theta(\text{calc}) = 0.5 *_zJ$	(calc) =	4.5	Κ

UPBE1PBE/6-311G(d,p)

Dimer	Triplet (H)	$\langle S^2 \rangle_{TS}$	BS Singlet (H)	$\langle S^2 \rangle_{\rm BSS}$	$J(\mathrm{cm}^{-1})$	$J(\mathbf{K})$
$J_1(d_1)$	-20997.04509520	2.0706	-20997.04506850	1.0705	5.859	8.430
$J_{2}\left(d_{2} ight)$	-20997.04536720	2.0709	-20997.04536290	1.0702	0.943	1.357
$J_3(d_3)$	-20997.04304430	2.0718	-20997.04304600	1.0717	-0.373	-0.537
$J_4(d_4)$	-20997.04254760	2.0722	-20997.04254830	1.0722	-0.154	-0.221
$J_{\pi}(\delta)$	-20997.04527680	2.0714	-20997.04529780	1.0674	-4.591	-6.605
			O(-1) 05 * 1	(1.)	10.0	IZ

 $\Theta(\text{calc}) = 0.5 * zJ (\text{calc}) = 12.3 \text{ K}$

UCAM-B3LYP/6-311G(d,p)

Dimer	Triplet (H)	$\langle S^2 \rangle_{TS}$	BS Singlet (H)	$\langle S^2 \rangle_{\rm BSS}$	$J(\mathrm{cm}^{-1})$	$J(\mathbf{K})$
$J_1(d_1)$	-21001.15237690	2.1349	-21001.15236160	1.1348	3.358	4.831
$J_2\left(d_2 ight)$	-21001.15294230	2.1347	-21001.15293570	1.1344	1.448	2.084
$J_3(d_3)$	-21001.15185420	2.1363	-21001.15185560	1.1363	-0.307	-0.442
$J_4(d_4)$	-21001.15152740	2.1370	-21001.15152840	1.1370	-0.219	-0.316
$J_{\pi}(\delta)$	-21001.15225050	2.1358	-21001.15224410	1.1340	1.402	2.017

 $\Theta(\text{calc}) = 0.5 * zJ(\text{calc}) = 15.2 \text{ K}$

UωB97XD/6-311G(d,p)

Dimer	Triplet (H)	$\langle S^2 \rangle_{TS}$	BS Singlet (H)	$\langle S^2 \rangle_{\rm BSS}$	$J(\text{cm}^{-1})$	$J(\mathbf{K})$
$J_1(d_1)$	-21000.75720430	2.1319	-21000.75718810	1.1318	3.555	5.115
$J_2(d_2)$	-21000.75777690	2.1315	-21000.75776760	1.1312	2.041	2.936
$J_{3}(d_{3})$	-21000.75216240	2.1331	-21000.75216380	1.1331	-0.307	-0.442
$J_{4}(d_{4})$	-21000.75163540	2.1338	-21000.75163620	1.1339	-0.176	-0.253
$J_{\pi}(\delta)$	-21000.77932000	2.1328	-21000.77930470	1.1310	3.352	4.823

 $\Theta(\text{calc}) = 0.5 \ ^*zJ(\text{calc}) = 20.4 \text{ K}$

ULC-\u00ffeHPBE/6-311G(d,p)

Dimer	Triplet (H)	$\langle S^2 \rangle_{TS}$	BS Singlet (H)	$\langle S^2 \rangle_{\rm BSS}$	$J(\mathrm{cm}^{-1})$	$J(\mathbf{K})$
$J_1(d_1)$	-20997.02815530	2.2312	-20997.02814390	1.2311	2.502	3.600
$J_2\left(d_2 ight)$	-20997.02903730	2.2304	-20997.02903060	1.2302	1.470	2.115
$J_3(d_3)$	-20997.02770920	2.2327	-20997.02771010	1.2327	-0.198	-0.284
$J_4(d_4)$	-20997.02761370	2.2336	-20997.02761470	1.2336	-0.219	-0.316
$J_{\pi}(\delta)$	-20997.03186820	2.2325	-20997.03184480	1.2313	5.130	7.380

 $\Theta(\text{calc}) = 0.5 * zJ(\text{calc}) = 18.4 \text{ K}$

Table S4. BS-DFT Exchange Energies for 1a at 2 K.

UB3LYP/6-311G(d,p)

Dimer	Triplet (H)	$\langle S^2 \rangle_{TS}$	BS Singlet (H)	$\langle S^2 \rangle_{\rm BSS}$	$J(\mathrm{cm}^{-1})$	$J(\mathbf{K})$
$J_{1}\left(d_{1} ight)$	-21000.90607280	2.0497	-21000.90604750	1.0496	5.552	7.988
$J_{2}\left(d_{2} ight)$	-21000.90597940	2.0500	-21000.90598070	1.0489	-0.285	-0.410
$J_3(d_3)$	-21000.90642880	2.0507	-21000.90643250	1.0504	-0.812	-1.168
$J_4(d_4)$	-21000.90613490	2.0509	-21000.90613580	1.0509	-0.198	-0.284
$J_{\rm p}\left(d ight)$	-21000.89838850	2.0502	-21000.89839570	1.0466	-1.575	-2.265
			$\Theta(\text{calc}) = 0.5 * zJ$	(calc) =	11.6	Κ

UPBE1PBE/6-311G(d,p)

Dimer	Triplet (H)	$< S^{2} >_{TS}$	BS Singlet (H)	$\langle S^2 \rangle_{\rm BSS}$	$J(\mathrm{cm}^{-1})$	$J(\mathbf{K})$
$J_1(d_1)$	-20997.06131230	2.0702	-20997.06128600	1.0701	5.772	8.304
$J_2(d_2)$	-20997.06172010	2.0705	-20997.06171760	1.0698	0.548	0.789
$J_3(d_3)$	-20997.05930900	2.0715	-20997.05931160	1.0713	-0.571	-0.821
$J_4(d_4)$	-20997.05880750	2.0718	-20997.05880810	1.0718	-0.132	-0.189
$J_{\rm p}\left(d\right)$	-20997.06084650	2.0710	-20997.06084120	1.0680	1.160	1.669

 $\Theta(\text{calc}) = 0.5 \ ^*zJ(\text{calc}) = 18.9 \text{ K}$

UCAM-B3LYP/6-311G(d,p)

Dimer	Triplet (H)	$\langle S^2 \rangle_{\rm TS}$	BS Singlet (H)	$\langle S^2 \rangle_{\rm BSS}$	$J(\mathrm{cm}^{-1})$	$J(\mathbf{K})$
$J_{1}\left(d_{1} ight)$	-21001.16791440	2.1344	-21001.16789920	1.1343	3.336	4.799
$J_{2}\left(d_{2} ight)$	-21001.16863150	2.1342	-21001.16862560	1.1339	1.295	1.863
$J_{3}\left(d_{3} ight)$	-21001.16750050	2.1359	-21001.16750260	1.1359	-0.461	-0.663
$J_{4}\left(d_{4} ight)$	-21001.16717730	2.1366	-21001.16717830	1.1366	-0.219	-0.316
$J_{\rm p}\left(d ight)$	-21001.16705470	2.1353	-21001.16702940	1.1338	5.544	7.977

 $\Theta(\text{calc}) = 0.5 \ *zJ(\text{calc}) = 20.5 \ \text{K}$

UωB97XD/6-311G(d,p)

Dimer	Triplet (H)	$< S^{2} >_{TS}$	BS Singlet (H)	$\langle S^2 \rangle_{\rm BSS}$	$J(\mathrm{cm}^{-1})$	$J(\mathbf{K})$
$J_1(d_1)$	-21000.77274120	2.1313	-21000.77272520	1.1312	3.511	5.052
$J_{2}\left(d_{2} ight)$	-21000.77345840	2.1308	-21000.77344900	1.1305	2.062	2.967
$J_3(d_3)$	-21000.76780510	2.1326	-21000.76780710	1.1326	-0.439	-0.632
$J_4(d_4)$	-21000.76728410	2.1334	-21000.76728490	1.1334	-0.176	-0.253
$J_{\rm p}\left(d\right)$	-21000.79491280	2.1323	-21000.79488600	1.1308	5.873	8.450

 $\Theta(\text{calc}) = 0.5 * zJ(\text{calc}) = 23.7 \text{ K}$

ULC-ωHPBE/6-311G(d,p)

Dimer	Triplet (H)	$\langle S^2 \rangle_{\rm TS}$	BS Singlet (H)	$\langle S^2 \rangle_{\rm BSS}$	$J(\mathrm{cm}^{-1})$	$J(\mathbf{K})$
$J_{1}\left(d_{1} ight)$	-20997.04280840	2.2299	-20997.04279710	1.2298	2.480	3.568
$J_{2}\left(d_{2} ight)$	-20997.04384530	2.2290	-20997.04383910	1.2288	1.360	1.957
$J_3(d_3)$	-20997.04247370	2.2315	-20997.04247500	1.2315	-0.285	-0.411
$J_4(d_4)$	-20997.04235780	2.2324	-20997.04235870	1.2325	-0.198	-0.284
$J_{\rm p}\left(d ight)$	-20997.04609440	2.2313	-20997.04605440	1.2301	8.768	12.616

 $\Theta(\text{calc}) = 0.5 * zJ(\text{calc}) = 23.1 \text{ K}$

References

¹ M. R. Probert, C. M. Robertson, J. A. Coome, J. A. K. Howard, B. C. Michell and A. E. Goeta, *J. Appl. Cryst.*, 2010, **43**, 1415.

² APEX2, Version 2010.1-2. Bruker AXS Inc., Madison, WI, USA.

⁶ G. M. Sheldrick, Acta Cryst. A, 2018, 71, 3.

⁷ G. M. Sheldrick, *Acta Cryst. A*, 2008, **64**, 112.

⁸ (a) L. Noodleman, J. Chem. Phys., 1981, 74, 5737; (b) L. Noodleman and E. R. Davidson, Chem. Phys., 1986, 109, 131. (c) K. Yamaguchi, F. Jensen, A. Dorigo and K. N. Houk, Chem. Phys. Lett., 1988, 149, 537; (d) H. Nagao, M. Nishino, Y. Shigeta, T. Soda, Y. Kitagawa, T. Onishi, Y. Yoshika and K. Yamaguchi, Coord. Chem. Rev., 2000, 198, 265.

⁹ Gaussian 16W, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

³ SAINT, Version 7.68a. Bruker AXS Inc., Madison, WI, USA.

⁴ SADABS, 2003, Version 2.10. G. M. Sheldrick, University of Gottingen, Germany.

⁵ *OLEX2*, O V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339.