# **Supporting Information**

### Low-dimensional magnetism in calcium nitridonickelate(II) Ca<sub>2</sub>NiN<sub>2</sub>

Simon D. Kloß\*, J. Paul Attfield\*

University of Edinburgh, Centre for Science at Extreme Conditions and School of Chemistry,

Edinburgh EH9 3FD, UK.

### **Table of Contents**

- 1. Methods
- 2. Scanning electron microscopy
- 3. Structure analysis
- 4. Magnetization
- 5. References

### 1. Methods

**Preparation of Ca<sub>2</sub>NiN<sub>2</sub>.** Ca<sub>2</sub>NiN<sub>2</sub> was prepared following Equation 1 from Ca<sub>3</sub>N<sub>2</sub> (99.9 %, AlfaAesar), Ni powder (Fluka, carbonyl Ni) and NaN<sub>3</sub> (99.99%, Sigma-Aldrich) at 900 °C and 8 GPa achieved with a multianvil 1000 t large-volume hydraulic press (Voggenreither, Mainleus, Germany). At static pressure, the temperature was increased over 150 min after which a 300 min dwell and 60 min cooling phase followed. The starting materials were ground under inert conditions ( <1 ppm H<sub>2</sub>O, O<sub>2</sub>) and filled into a Cu-capsule (0.025 mm thickness, 99.999 %, Puratronic®, AlfaAesar) before transferring into the 18/11 sized MgO-octahedron (Ceramic Substrates & Components, Isle of Wight, U.K.) employing an h-BN crucible (Henze, Kempten, Germany). Resistance heating was done via a double-layered graphite furnace (Schunk Kohlenstofftechnik GmbH, Zolling, Germany) and the octahedron was shielded from the heat via a ZrO<sub>2</sub> sleeve (Cesima Ceramics, Wust-Fischbeck, Germany). Details of the assembly can be found in the literature.<sup>1</sup> The reaction product was recovered from the octahedron under inert conditions.

**Powder diffraction.** PXRD data were collected in Transmission/Debye-Scherrer geometry with a Stadi P diffractometer (Stoe & CIE, Darmstadt, Germanx) equipped with a Mythen 1K detector (Dectris, Baden, Switzerland) and employing Cu-K<sub>al</sub> radiation monochromatized with a Ge(111) single crystal. Samples were sealed in glass capillaries (Hilgenberg, Malsfeld, Germany) with 0.3 mm diameter and 0.01 mm wall thickness. The data were analyzed with Topas6 (Bruker, Billerica, MA, USA) and the crystal structure visualized with VESTA.<sup>2</sup> Powder data were analyzed by initial indexing using the single-value decomposition (SVD) method, Pawley extraction of reflection intensities, and structure solution using the charge-flipping algorithm with tangent formula as implemented in Topas6.<sup>3–5</sup>

Details of the Rietveld refinement are in Table 1. Deposition number CSD-2096979 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.

Temperature dependent PXRD data were collected in the range of 20–1000°C in steps of 20 K using a Stadi P diffractometer with Mo-K<sub> $\alpha$ 1</sub> radiation and a position-sensitive imageplate detector. The sample was loaded under Ar in a 0.5 mm quartz capillary (Hilgenberg, Malsfeld, Germany) and sealed with grease to retain the inert atmosphere during the measurement. Data was analyzed with the WinXPOW software and Rietveld analysis performed with Topas6.<sup>6</sup> The measurement was conducted in flowing N<sub>2</sub> with 30 min/step and soon after the capillary break the sample was cooled to room temperature, which might explain why metallic Ni instead of NiO was formed.

**EDX spectroscopy.** EDX spectra of the microcrystalline sample were obtained with a EVO-Ma 10 (Zeiss, Oberkochen, Germany) scanning electron microscope. Selected particles were placed on adhesive carbon tape under inert gas atmosphere and quickly inserted into the microscope to avoid sample decomposition. The EVO-Ma 10 was equipped with a field emission gun run at 15 keV and a Bruker X-Flash 410-M detector. Data were analysed with the QUANTAX 200 software package. Oxygen content was not taken into account owing to the short exposure in air and consequential hydrolysis. Samples were not sputtered owing to the hydrolysis.

#### Magnetometry.

Magnetization curves M(H,T) were recorded with a Quantum Design Physical Properties Measurement System (PPMS) on powdered samples of Ca<sub>2</sub>NiN<sub>2</sub>, which were packed into polyethylene capsules and sealed with glue to prevent decomposition. Isothermal magnetization curves in the range of ±50 kOe were recorded at temperatures of 300 and 2.5 K, while the temperature dependent susceptibility was obtained at 30 kOe in the range of 2.5 to 300 K. The obtained magnetizations were corrected for the diamagnetic contribution of the capsule.

The susceptibility was fit with a combination of a Bonner-Fisher-function  $\chi_{BF}$  and a Curie-function to account for an impurity tail. Bonner-Fisher-function  $\chi_{BF}$  was expressed as:

$$\chi_{BF} = \frac{N_A \cdot \mu_{eff}^2}{3 \cdot k_B \cdot T} \frac{0.25 + 0.149445x + 0.30094x^2}{1 + 1.9862x + 0.68854x^2 + 6.0626x^3} \text{ with } x = \frac{|J|}{k_B \cdot T}$$

The fitted values were  $\mu_{\text{eff}} = 2.19 \,\mu_{\text{B}}$  for the paramagnetic moment and exchange constant J = -157 K, as described in the main text.

## 2. Scanning electron microscopy



**Figure S1:** SEM image of Ca<sub>2</sub>NiN<sub>2</sub> crystallites showing smooth surfaces on which energy dispersive X-ray (EDX) spectroscopy was carried out.

| Table  | <b>S1:</b> Results | of EDX   | analysis  | carried   | out    | on  | $Ca_2NiN_2$ . | Evenly | distributed | Na | at | the |
|--------|--------------------|----------|-----------|-----------|--------|-----|---------------|--------|-------------|----|----|-----|
| 5 at-% | blevel is omit     | ted from | n the ana | lysis for | clarit | :y. |               |        |             |    |    |     |

| Datapoint            | N content / at-% | Ca content / at-% | Ni content / at-% |
|----------------------|------------------|-------------------|-------------------|
| 1                    | 50.3             | 34.3              | 15.4              |
| 2                    | 43.8             | 38.9              | 17.3              |
| 3                    | 34.9             | 44.4              | 20.7              |
| 4                    | 45.4             | 37.0              | 17.7              |
| 5                    | 41.7             | 39.9              | 18.4              |
| 6                    | 44.8             | 38.7              | 16.5              |
| 7                    | 32.6             | 46.0              | 21.4              |
| 8                    | 39.2             | 41.5              | 19.3              |
| 9                    | 35.8             | 44.4              | 19.8              |
| 10                   | 42.5             | 39.6              | 17.9              |
| 11                   | 37.8             | 40.3              | 22.0              |
| 12                   | 45.9             | 34.2              | 19.9              |
| 13                   | 40.7             | 41.0              | 18.3              |
| 14                   | 35.5             | 44.4              | 20.1              |
| 15                   | 37.7             | 42.5              | 19.8              |
| 16                   | 34.5             | 46.0              | 19.5              |
| 17                   | 44.5             | 38.2              | 17.3              |
| 18                   | 45.6             | 38.3              | 16.1              |
|                      |                  |                   |                   |
| Mean / at-%          | 40.7             | 40.5              | 18.7              |
| ESD / at-%           | 4.8              | 3.5               | 1.8               |
| Normalized on Ca     | 2.0              | 2.0               | 0.9               |
| ESD normalized on Ca | 0.2              | 0.2               | 0.1               |

## 3. Structure analysis

| Crystal da                       | ata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |               |                                      |           |                     |  |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|--------------------------------------|-----------|---------------------|--|--|
| Sum form                         | ula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |               | Ca <sub>2</sub> NiN <sub>2</sub>     |           |                     |  |  |
| Formula n                        | nass, g∙mol <sup>–1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |               | 166.86                               |           |                     |  |  |
| Crystal sys                      | tem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |               | Tetragonal                           |           |                     |  |  |
| Space gro                        | up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |               | <i>l</i> 4 <i>/mmm</i> (no. 139)     |           |                     |  |  |
| Cell param                       | neters, Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |               | <i>a</i> = 3.57206(2)                |           |                     |  |  |
| . 0                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |               | <i>c</i> = 12.19453(10)              |           |                     |  |  |
| Volume, A                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |               | 155.719(5)                           |           |                     |  |  |
| Ζ                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |               | 2                                    |           |                     |  |  |
| F(000)                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |               | 164                                  |           |                     |  |  |
| Calc. dens                       | ity, g∙cm <sup>–3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |               | 3.561                                |           |                     |  |  |
| Absorptio                        | n coef., µ, mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <sub> </sub> -1 |               | 35.585                               |           |                     |  |  |
| Data colle                       | ction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |               |                                      |           |                     |  |  |
| Radiation                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |               | Laboratory X-ray, Cu-K <sub>a1</sub> |           |                     |  |  |
| Temperature, K                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |               | 297(2)                               |           |                     |  |  |
| <i>d</i> -range, Å               | L Contraction of the second seco |                 |               | 17.66–0.88                           |           |                     |  |  |
| No. of data                      | apoints                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |               | 7705                                 |           |                     |  |  |
| No. of refle                     | ections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |               | 51                                   |           |                     |  |  |
| Refinemer                        | nt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |               |                                      |           |                     |  |  |
| No. of para                      | ameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |               | 12                                   |           |                     |  |  |
| $R_{ m Bragg}$                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |               | 1.99                                 |           |                     |  |  |
| R <sub>p</sub> , R <sub>wp</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |               | 3.72, 5.04                           |           |                     |  |  |
| GoF                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |               | 1.31                                 |           |                     |  |  |
| Atom posi                        | tions and disp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | blacemer        | nt parameters | 5                                    |           |                     |  |  |
| Atom                             | Wyckoff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x               | у             | Ζ                                    | Occupancy | U <sub>eq</sub> / Ų |  |  |
| Ni1                              | 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0               | 0             | 0                                    | 1         | 0.0204(4)           |  |  |
| Ca1                              | 4e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0               | 0             | 0.34681(5)                           | 1         | 0.0174(2)           |  |  |
| N1                               | 4e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0               | 0             | 0.1433(2)                            | 1         | 0.0205(8)           |  |  |

Table S2: Crystallographic data and atom positions of Ca<sub>2</sub>NiN<sub>2</sub>.

Table S3: Anisotropic displacement parameters of Ca<sub>2</sub>NiN<sub>2</sub>.

| Atom | U <sub>11</sub> / Ų | U <sub>22</sub> / Ų | U <sub>33</sub> / Ų | U <sub>23</sub> / Ų | U <sub>13</sub> / Ų | U <sub>12</sub> / Ų |
|------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Ni1  | 0.0208(5)           | 0.0208(5)           | 0.0196(8)           | 0                   | 0                   | 0                   |
| Ca1  | 0.0195(3)           | 0.0195(3)           | 0.0132(6)           | 0                   | 0                   | 0                   |
| N1   | 0.0148(10)          | 0.0148(10)          | 0.032(2)            | 0                   | 0                   | 0                   |

| <b>Cation-Anion Pair</b> | Bond Distance / Å | Vij   |
|--------------------------|-------------------|-------|
| Ni1-N1                   | 1.748             | 1.005 |
| Ni1-N1                   | 1.748             | 1.005 |
| Ni1-N1                   | 3.9766            | 0.002 |
| <b>V</b> <sub>Ni,N</sub> |                   | 2.030 |
|                          |                   |       |
| Ca1–N1                   | 2.5287            | 0.350 |
| Ca1–N1                   | 2.482             | 0.397 |
| V <sub>Ca,N</sub>        |                   | 1.796 |

**Table S4:** Bond valence sum calculations of Ca<sub>2</sub>NiN<sub>2</sub>. Bond valence parameters reported by O'Keeffe were used for Ni-N ( $r_0 = 1.75$  Å) and Ca-N ( $r_0 = 2.14$  Å) bond pairs along with empirical constant b = 0.37. A bond distance cutoff of 4 Å was used.<sup>7</sup>

### 4. Magnetization



**Figure S2: a** Field-dependent magnetization at 300 and 2.5 K showing linear field dependence typical for an antiferromagnet **b**  $d\chi/dT$  plot highlighting a possible long-range antiferromagnetic transition at  $T_N = 74$  K.

### **5. References**

- 1 H. Huppertz, *Z. Kristallogr. 2004*, **219**, 330.
- 2 K. Momma and F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272.
- 3 A. A. Coelho and J. Appl. Crystallogr. 2003, **36**, 86–95.
- 4 G. S. Pawley, J. Appl. Crystallogr. 1981, **14**, 357.
- 5 A. A. Coelho, *Acta Crystallogr. Sect. A: Found. Crystallogr. 2007*, **63**, 400.
- 6 STOE&Cie GmbH, *WinXPOW*, Darmstadt, *2007*.
- 7 N. E. Brese and M. O'Keeffe, *Acta Crystallogr. Sect. B 1991*, **47**, 192.