SUPPORTING INFORMATION

Triggering a transient organo-gelation system in a chemically active solvent†

Romain Chevigny, a‡ Johanna Schirmer, a‡ Carmen C. Piras, b Andreas Johansson, a,c Elina Kalenius, a
David K. Smith, b Mika Pettersson, a Efstratios D. Sitsanidis, a,* and Maija Nissinen a,*

a. Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 JYU, Finland.
b. Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
c. Department of Physics, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 JYU, Finland.

Table of contents

S1 MATERIALS AND METHODS .. 2
S2 SYNTHESIS.. 2
S2.1 Synthesis of Boc-Phe-Phe-OtBu (1)... 2
S2.2 Synthesis of Phe-Phe-OtBu (2).. 4
S3 GELATION TRIALS .. 6
S3.1 Gelation protocol .. 6
S3.2 Reformation of heated organogels and phase transition temperature (Tgel-sol) measurements.......... 6
S3.3 Swelling studies .. 7
S4 NMR ANALYSIS ... 8
S4.1 Preparation and analysis of xerogels ... 8
S4.2 NMR analysis of the decayed organogel (after 4 days).. 11
S4.3 NMR analysis of the swollen organogels ... 13
S5 HIGH-RESOLUTION MASS SPECTROMETRY, HR-MS (ESI-TOF) ... 15
S6 FT-IR ANALYSIS... 16
S7 RHEOLOGICAL CHARACTERIZATION ... 17
S8 REFERENCES ... 17
S1 MATERIALS AND METHODS

Materials

Boc-phenylalanine (Boc-Phe) and tert-butyl acetate (tBuOAc) solvent were purchased from Tokyo Chemical Industry (TCI), phenylalanine-tert-butyl ester from Carbosynth (UK), 2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethylinium tetrafluoroborate (TBTU) from Sigma Aldrich, sodium hydrogen carbonate from AnalaR NORMAPUR and sulphuric acid from Fluka. All chemicals were used as supplied without further purification.

NMR spectroscopy

All spectra were recorded on a Bruker Advance III HD 300 MHz spectrometer using d_6-DMSO solvent; chemical shifts (δ) are given in ppm and coupling constants (J) in Hz. The solvent signal was used as reference (d_6-DMSO at 2.5 ppm and 39.52 ppm for ¹H and ¹³C NMR, respectively). The peaks have been assigned as singlet (s), doublet (d), triplet (t), multiplet (m), broad signal (br)). ¹³C NMR spectra were recorded with broadband ¹H decoupling.

FTIR spectroscopy

All spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer in Attenuated Total Reflection (ATR) mode in a range from 400 cm⁻¹ to 4000 cm⁻¹ (step: 2 cm⁻¹; number of scans: 124). All spectra were baseline corrected.

SEM imaging

Images were obtained on a Zeiss EVO-50XVP microscope. Xerogel samples were prepared on carbon films (400 mesh copper grids) obtained from Agar Scientific. The carbon films were dipped into the gels and allowed to dry in the open air overnight.

S2 SYNTHESIS

S2.1 Synthesis of Boc-Phe-Phe-OtBu (1)

Boc-phenylalanine (1000 mg, 1.0 eq) and TBTU (1210.25 mg, 1.0 eq) were added to a solution of NaHCO₃ (316.6 mg, 1.0 eq) in anhydrous DMF (10 mL) under N₂ atmosphere. The solution was left to stir for 1 hour at room temperature. Phenylalanine-tert-butyl ester (1068 mg, 1.1 eq) and NaHCO₃ (348.26 mg, 1.1 eq) were dissolved in anhydrous DMF (10 mL) as above. The two solutions were mixed and stirred overnight at room temperature under N₂ atmosphere. The next day, the starting materials had been consumed, and a new spot appeared, as indicated by TLC (Hex: EA 1:1, Hanessian’s stain). The solvent was evaporated under vacuum (co-evaporation with toluene x3), and the residue was dissolved in DCM. The organic phase was extracted with water (x2) and subsequently washed with aqueous HCl (0.1 M), water (x2), and a saturated aqueous
solution of NaHCO₃. The organic phase was then dried with MgSO₄ and evaporated under a vacuum, yielding a yellow powder (1.036 g, 60%). The analysis is in agreement with previously published data.¹²¹H NMR (300 MHz, d₆-DMSO) δ 8.19 (d, J = 7.5 Hz, 1H), 7.37 – 7.12 (m, 10H), 6.82 (d, J = 8.8 Hz, 1H), 4.38 (q, J = 7.6 Hz, 1H), 4.19 (q, J = 7.9 Hz, 1H), 3.03 – 2.86 (m, 2H), 2.75 – 2.63 (m, 2H), 1.32 (s, 9H), 1.28 (s, 9H).¹³C NMR (75 MHz, d₆-DMSO) δ 171.7, 170.4, 155.1, 138.1, 137.1, 129.2, 129.1, 128.1, 127.9, 126.5, 126.1, 80.7, 77.9, 55.5, 54.0, 37.4, 36.9, 28.1, 27.5. HR-MS: m/z for C₂₅H₃₆N₂O₅ [M + H]+ calculated 469.27, found 469.2675.

Figure S1. ¹H NMR (300 MHz, d₆-DMSO) (A) and ¹³C NMR (75 MHz, d₆-DMSO) (B) spectra of Boc-Phe-Phe-OrBu 1.
S2.2 Synthesis of Phe-Phe-OrBu (2)

Boc-Phe-Phe-OrBu 1 (120 mg, 1.0 eq) was suspended in OrBuOAc (1.28 mL) at a final concentration of 0.2 M. Concentrated H₂SO₄ (0.0411 mL, 3.0 eq) was then added dropwise at room temperature. After 1 h, the formation of the new compound was confirmed by TLC (Hex: EA, 3:1, Hanessian’s stain). The reaction mixture was then neutralized by adding a saturated aqueous solution of NaHCO₃ and extracted with ethyl acetate. The organic phase was dried with MgSO₄ and evaporated under a vacuum, yielding a yellow gummy solid (113.5 mg, 94.6%). The analysis is in agreement with previously published data.³,⁴ ¹H NMR (300 MHz, d₆-DMSO) δ 8.15 (d, J = 8.0 Hz, 1H), 7.34 – 7.09 (m, 10H), 4.44 (q, J = 7.0 Hz, 1H), 3.42 (dd, J = 8.3, 4.6 Hz, 1H), 2.92 (dd, J = 14.8, 5.7 Hz, 2H), 2.57 (dd, J = 13.5, 8.4 Hz, 2H), 1.33 (s, 9H). ¹³C NMR (75 MHz, d₆-DMSO) δ 174.5, 170.9, 139.0, 137.4, 129.9, 129.7, 128.63, 128.57, 127.0, 126.6, 81.4, 56.3, 53.9, 41.2, 37.7, 28.0. HR-MS: m/z for C₂₂H₂₆N₂O₃ [M + H]⁺ calculated 369.21, found 369.2161.
Figure S2. 1H NMR (300 MHz, d$_6$-DMSO) (A) and 13C NMR (75 MHz, d$_6$-DMSO) (B) spectra of Phe-Phe-OtBu 2.
S3 GELATION TRIALS

S3.1 Gelation protocol

Boc-Phe-Phe-OrBu 1 (23.5 mg, 0.05 M) was suspended in tBuOAc solvent (1.0 mL) and sonicated until a fine suspension was formed, followed by the addition of concentrated H₂SO₄ (1.0 eq., 2.7 μL). The mixture was gently swirled and left to rest at room temperature for at least 12 h. Gelation was verified by the vial inversion method.

Table S1. Boc-Phe-Phe-OrBu 1 concentration screening trials in tBuOAc solvent (1.0 mL) at room temperature.

<table>
<thead>
<tr>
<th>Boc-Phe-Phe-OrBu (mg)</th>
<th>conc. H₂SO₄ (eq)</th>
<th>conc. H₂SO₄ (μL)</th>
<th>M (mol/L)</th>
<th>wt%</th>
<th>Gelation outcome</th>
<th>T_{gel-sol} (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>94</td>
<td>1.0</td>
<td>11</td>
<td>0.2</td>
<td>9.4</td>
<td>Self-supporting gel</td>
<td>45-50</td>
</tr>
<tr>
<td>47</td>
<td>1.0</td>
<td>5.3</td>
<td>0.1</td>
<td>4.7</td>
<td>Self-supporting gel</td>
<td>45-50</td>
</tr>
<tr>
<td>23.5*</td>
<td>1.0</td>
<td>2.7</td>
<td>0.05</td>
<td>2.35</td>
<td>Self-supporting gel</td>
<td>45-50</td>
</tr>
<tr>
<td>11.8</td>
<td>1.0</td>
<td>1.3</td>
<td>0.025</td>
<td>1.18</td>
<td>Partial gel</td>
<td>45-50</td>
</tr>
<tr>
<td>9.4</td>
<td>1.0</td>
<td>1.1</td>
<td>0.02</td>
<td>0.94</td>
<td>Partial gel</td>
<td>45-50</td>
</tr>
<tr>
<td>9.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.02</td>
<td>0.94</td>
<td>Partial gel</td>
<td>45-50</td>
</tr>
</tbody>
</table>

* Minimum gelation concentration

Table S2. Acid concentration effects on the organogel’s lifetime.

<table>
<thead>
<tr>
<th>Boc-Phe-Phe-OrBu (M)</th>
<th>conc. H₂SO₄ (eq)</th>
<th>Gelation outcome</th>
<th>gel-to-sol (lifetime)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>1.0</td>
<td>Self-supporting gel</td>
<td>4 days</td>
</tr>
<tr>
<td>0.05</td>
<td>0.5</td>
<td>Self-supporting gel</td>
<td>intact gel beyond 4 weeks</td>
</tr>
<tr>
<td>0.1</td>
<td>1.0</td>
<td>Self-supporting gel</td>
<td>4 days</td>
</tr>
<tr>
<td>0.1</td>
<td>0.5</td>
<td>Self-supporting gel</td>
<td>intact gel beyond 4 weeks</td>
</tr>
</tbody>
</table>

S3.2 Reformation of heated organogels and phase transition temperature (T_{gel-sol}) measurements

Organogels prepared at a range of concentrations (0.02 to 0.2 M) were heated in a controlled manner using a block heater. The temperature was raised from room temperature up to 55 °C by 5 °C increments every 10 min. Before moving to a higher temperature, the gels were evaluated by the vial inversion method. All organogels broke at 50 °C (free gravitational flow of the gels was observed upon inversion of the vials) and reformed upon cooling at room temperature within 12 h.
Figure S3. Thermoreversibility evaluation of the organogels. Vial inversion test of the organogels before heating (A); evaluation of gelation after heating/cooling of the gel samples (B). Concentration of the gels: (Molarity, right to left: 0.2, 0.1, 0.05, 0.025, 0.02, 0.02); in all samples 1.0 equivalent of sulphuric acid was used except the far left sample (0.02M-0.5 equivalents of acid).

S3.3 Swelling studies

Swelling studies were performed at room temperature. Gel samples (dry gels) were initially weighted, and tBuOAc solvent (500 μL) was subsequently added on top of their surface. After 24 h, the solvent was slowly removed by pipette before weighing the swollen gels (wet gels). The swelling degree (SD) was calculated according to the following equation, where \(w_t \) refers to the mass of the wet gel and \(w_0 \) refers to the mass of the dry gel:

\[
\text{SD(\%)} = \frac{w_t}{w_0} \times 100
\]

Figure S4. Swelling studies of the organogel in tBuOAc solvent at two different concentrations.
S4 NMR ANALYSIS

S4.1 Preparation and analysis of xerogels

Gel samples were prepared in vials as above and transferred on a glass slide. The samples were left to dry in the open air overnight. No further purification was performed before the NMR analysis. The xerogels consist of a mixture of compounds Phe-Phe-OtBu 2 and Phe-Phe 3 in ~1:1 ratio, tert-butanol and impurities of the tBuOAc solvent. Only signals assigned to compounds 2 and 3 are given. Signals of tertiary CH overlap with the broad peak of the hydroxyl group of tert-butanol and water. The amine groups of compounds 2 and 3 are protonated.

\[
\begin{align*}
\text{Xerogel I: } & \quad 1^H \text{ NMR (300 MHz, } d_6\text{-DMSO}) \delta 8.89 (d, J = 7.5 \text{ Hz, } 1H), 8.83 (d, J = 7.8 \text{ Hz, } 1H), 8.06 (s, 6H), 7.37 - 7.18 (m, 20H), 4.17 - 3.91 (m, 2H), 3.24 - 3.04 (m, 3H), 3.04 - 2.84 (m, 5H), 1.32 (s, 9H). \\
& \quad 13C \text{ NMR (75 MHz, } d_6\text{-DMSO}) \delta 172.2, 169.9, 168.1, 137.1, 136.7, 134.6, 134.6, 129.6, 129.21, 129.14, 128.53, 128.32, 128.3, 127.2, 126.71, 126.63, 81.2, 54.37, 53.78, 53.14, 36.98, 36.91, 36.68, 27.5. \\
\text{Xerogel II: } & \quad 1^H \text{ NMR (300 MHz, } d_6\text{-DMSO}) \delta 8.91 (d, J = 7.5 \text{ Hz, } 1H), 8.85 (d, J = 7.9 \text{ Hz, } 1H), 8.06 (s, 6H), 7.40 - 7.18 (m, 20H), 4.58 - 4.38 (m, 2H), 4.04 - 3.98 (m, 2H), 3.21 - 3.00 (m, 4H), 3.06 - 2.84 (m, 4H), 1.32 (s, 9H). \\
& \quad 13C \text{ NMR (75 MHz, } d_6\text{-DMSO}) \delta 172.2, 169.88, 168.11, 137.1, 136.6, 134.6, 129.53, 129.18, 129.11, 128.52, 128.31, 128.28, 127.22, 126.70, 81.2, 54.33, 53.75, 53.13, 36.91, 36.90, 36.66, 27.46.
\end{align*}
\]
Figure S5. 1H NMR (300 MHz, d$_6$-DMSO) spectra of xerogel I (A) and xerogel II (B).
Figure S6. 13C NMR (75 MHz, d$_6$-DMSO) spectra of xerogel I (A) and xerogel II (B).
S4.2 NMR analysis of the decayed organogel (after 4 days)

The decayed organogel was dried under vacuum. No further purification was performed on the sample before NMR analysis. The crude sample consists of a mixture of compounds Phe-Phe-\textit{O}tBu 2 and Phe-Phe 3 in ~0.3:1 ratio, \textit{tert}-butanol and impurities of the \textit{t}BuOAc solvent. Only signals assigned to compounds 2 and 3 are given. The amine groups of compounds 2 and 3 are protonated.

![Chemical structures of compounds 2 and 3](image)

\textbf{\textit{1H NMR}} (300 MHz, \textit{d}_6-DMSO) δ 8.90 (d, \textit{J} = 7.5 Hz, 0.3H), 8.84 (d, \textit{J} = 7.8 Hz, 1H), 8.06 (s, 3.7H), 7.39 – 7.19 (m, 15H), 4.57 – 4.43 (m, 1.5H), 4.05 (s, 1.5H), 3.18 – 3.06 (m, 3H), 3.02 – 2.89 (m, 3H), 1.32 (s, 2.7H).

\textbf{\textit{13C NMR}} (75 MHz, \textit{d}_6-DMSO) δ 172.7, 170.7, 168.61, 168.59, 137.61, 137.19, 135.15, 135.13, 130.1, 129.7, 129.6, 128.99, 128.80, 128.77, 127.66, 127.18, 127.10, 81.7, 54.9, 54.3, 53.6, 40.84, 40.56, 40.28, 40.00, 39.72, 39.44, 39.17, 37.48, 37.37, 37.17, 27.0.
Figure S7. 1H NMR (300 MHz, d$_6$-DMSO) spectra of the decayed organogel (A) and tBuOAc solvent (B); 13C NMR (75 MHz, d$_6$-DMSO) spectrum of the decayed organogel (C).
S4.3 NMR analysis of the swollen organogels

Gel samples (20 days and 7 months old) were transferred on a glass slide and left to dry in the open air overnight. No further purification was performed on the obtained xerogels before NMR analysis. The xerogels consist only of compound Phe-Phe-OrBu 2. The amine group of compound 2 is protonated.

Figure S8. 1H NMR (300 MHz, d$_6$-DMSO) spectra of swollen organogels after twenty days (A) and after seven months (B).
Figure S9. 13C NMR (75 MHz, d$_6$-DMSO) spectra of swollen organogels after twenty days (A) and after seven months (B).
High-resolution mass spectrometry experiments were performed to confirm the presence of 2 and 3 in the xerogel sample (I). The mass spectrometry experiments were performed with Agilent 6560 Ion mobility Q-TOF mass spectrometer equipped with a dualESI ion source. The samples of 1, 2 and xerogel I, were separately dissolved in DCM (1 mg/ml), diluted in MeOH (5 μl/ml) and measured using direct infusion (5 μl/min flowrate). Data were analyzed using MassHunter B.08.00 software (Agilent Technologies, USA).

Figure S10. HR-MS analysis of: (A) Boc-Phe-Phe-OrBu 1 (m/z for C_{27}H_{36}N_{2}O_{5} \[1 + H]\) calculated 469.2697, found 469.2675; (B) Phe-Phe-OrBu 2 (m/z for C_{22}H_{28}N_{2}O_{3} \[2 + H]\) calculated 369.2173, found 369.2164; (C) xerogel I (both compounds Phe-Phe-OrBu 2 and Phe-Phe 3 were found (m/z for C_{18}H_{20}N_{2}O_{3} \[2 + H]\) calculated 369.2173 found 369.2164; m/z for C_{18}H_{20}N_{2}O_{3} \[3 + H]\) calculated 313.1547, found 313.1536).
Table S3. m/z values, mass accuracies and molecular formulas.

<table>
<thead>
<tr>
<th>sample</th>
<th>molecular formula</th>
<th>ion</th>
<th>m/z (theor)</th>
<th>m/z (exp)</th>
<th>mass accuracy (mDa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C_{27}H_{36}N_{2}O_{3}</td>
<td>[1+H]^+</td>
<td>469.2697</td>
<td>469.2675</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[1+Na]^+</td>
<td>491.2516</td>
<td>491.2495</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[1+K]^+</td>
<td>507.2256</td>
<td>507.2236</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>C_{22}H_{28}N_{2}O_{3}</td>
<td>[2+H]^+</td>
<td>369.2173</td>
<td>369.2161</td>
<td>1.2</td>
</tr>
<tr>
<td>Xerogel I</td>
<td>C_{22}H_{28}N_{2}O_{3}</td>
<td>[2+H]^+</td>
<td>369.2173</td>
<td>369.164</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>C_{18}H_{20}N_{2}O_{3}</td>
<td>[3+H]^+</td>
<td>313.1547</td>
<td>313.1536</td>
<td>1.1</td>
</tr>
</tbody>
</table>

S6 FT-IR ANALYSIS

![FT-IR spectra](image)

Figure S11. Infrared analysis of organogelator Phe-Phe-OtBu 2 and xerogel I. (A) Amide A and B regions; (B) Amide I, II and III regions.

To probe the supramolecular interactions responsible for gelation, we analyzed the Fourier transform infrared (FT-IR) spectra of organogelator 2 and the corresponding xerogel I. In the amide A region, the NH stretching vibration gives rise to two bands in the neat Phe-Phe-OtBu 2 spectrum at 3339 and 3345 cm\(^{-1}\), while xerogel I shows only one broad peak shifted at a lower frequency (3295 cm\(^{-1}\)). Additionally, the NH bending band of xerogel I appears upshifted from 1602 to 1610 cm\(^{-1}\). Both observations suggest the involvement of the amine group in H-bond formation.\(^5\) The peak at 1732 cm\(^{-1}\) of neat Phe-Phe-OtBu 2 is due to the C=O stretching vibration of the ester group. Xerogel I, however, absorbs lower at 1712 cm\(^{-1}\) due to the carboxyl group (COOH) of Phe-Phe 3, which appears to be H-bonded. According to the literature, Phe-Phe 3 and its corresponding analogues adopt \(\beta\)-sheet conformations when assembled, as per the amide I band's reported position (1623-1643 cm\(^{-1}\) and 1666-1698 cm\(^{-1}\)).\(^6\) Here, the xerogel shows a peak at 1661 cm\(^{-1}\) suggesting the potential formation of 3_{10}-helices\(^9\) rather than a parallel or antiparallel \(\beta\)-sheet secondary structure. The amide I band of pure Phe-Phe-OtBu 2 at 1650 cm\(^{-1}\) is assigned to aperiodic secondary structures.\(^10\) The amide II (1538 cm\(^{-1}\)) peak of the xerogel is due to the combination of the NH out-of-phase and in-plane bends with the C-N stretching vibration. The signal at 1494 cm\(^{-1}\) is assigned to the aromatic C=C stretching vibration of the side
chains and is characteristic of the phenylalanine amino acid. Finally, the C-H bend at 1366 cm\(^{-1}\) is missing from the xerogel spectrum, while the C-O/ C-N stretching peaks of neat dipeptide 2 at 1252 and 1152 cm\(^{-1}\) are merged in a broad peak centered at 1162 cm\(^{-1}\). These spectral differences corroborate the participation of the dipeptide backbone in supramolecular interactions.

S7 RHEOLOGICAL CHARACTERIZATION

Rheology measurements were performed using a Malvern Kinexus Pro+ rheometer, fitted with an 8 mm parallel plate upper geometry. Strain amplitude measurements were performed within the linear viscoelastic region (LVR), where the elastic \(G'\) and loss \(G''\) moduli are independent of the strain amplitude. All measurements were taken at a temperature of 25 °C.

![Rheology studies. Amplitude sweep measurements under the constant frequency of 1 Hz (A); Frequency sweep measurements under constant strain (\(\gamma\%\)) of 0.01 % (B). The organogel was prepared using 0.05 M of Boc-Phe-Phe-OtBu 1.](image)

S8 REFERENCES

6. Reches, M.; Gazit, E. Self-assembly of peptide nanotubes and amyloid-like structures by charged-termini

