Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Supplementary Information for

Fluxionality by Quantum Tunnelling:

Nonclassical 21-Homododecahedryl Cation Rearrangement Re-Revisited

Minima according to the exact exchange

We computed the energy difference between **M** and **TS1** with 23 functionals of different characteristics with the 6-31g(d) basis set and the error with reference to the G4 electronic energy (in the M06-2x/def2-TZVP geometry). G4 gives an energy of 5.15 kJ mol⁻¹ for this reaction (**M** being the lower energy state), which compared well with the DLPNO-CCSD(T)/cc-pVQZ with tightPNO results of 7.3 kJ mol⁻¹.

As we can see in Table S1 and Fig. S1, there is a correlation between the activation energy and the exact exchange of the functional (with some variability because they are entirely different functionals). Although accurate activation energies in main group chemistry are known to require large HF-exchange, in this particular low-barrier reaction, the effect is exacerbated, completely switching the minimum-transition state character of **M** and **TS1**. Without G4 and DLPNO-CCSD(T) results to confirm the nature of these states, it would not be easy to define which is which.

The selection of the functional was made accordingly, not only based on the error but also considering that any method giving **TS1** as a minimum (with all its frequencies being real) and **M** as a transition state (one imaginary frequency) should be discarded. According to this criterion, most of the functionals were inappropriate for this particular project, especially all the pure GGAs. We finally decided to use M06-2x, which also compared well with the G4 activation energy for **TS2**. As a note, we used a very small basis set due to the cost of the SCT tunnelling computations, which compute first and second derivatives all along the minimum energy pathway (it took more than a week on 32 cores). However, triple zeta basis sets provided similar results.

Table S1. Amount of exact exchange of different functionals (RS is for "range separated", with variable exact exchange), their **M** to **TS1** reaction error with the 6-31g(d) basis set compared to G4 in kJ mol⁻¹, and the reaction frequency at **TS1** in cm⁻¹ (in red the imaginary frequencies).

	Functional	Ex.Exch.	Error	freq
GGA	B97D3	0	-6.0	160
	BB95	0	-6.9	119
	MN15L	0	-8.1	109
	PBE	0	-8.9	139
	M06-L	0	-9.4	142
	mPW-PW91	0	-9.1	144
Hybrid	TPSSh	0.1	-5.1	104
	auHCTHhyb	0.15	-8.0	133
	B3LYP	0.2	-7.5	142
	B98	0.22	-6.5	115
	PBEO	0.25	-4.7	95
	mPW1PW91	0.25	-5.1	100
	TPSS0	0.25	-5.2	75
	M06	0.27	-5.0	68
	B1B95	0.28	-1.7	12i
	PW6B95	0.28	-2.5	49
	ВМК	0.42	-0.6	13
	MN15	0.44	-1.5	65i
	M06-2X	0.54	1.7	60i
	M06-HF	1	12.4	176i
RS	M11		4.6	108i
	ωB97X		-3.5	110
	ωB97XD		-3.7	97

Example of Polyrate input files

.dat:

*GENEBAL	OPTTS chock	7	17	PRDELG
TTTLE	*REACT1	8	18	PRPART rtp
DHnlus m062x 001	INITGEO books	9	19	TEMP
FND	GEOM	10	20	8
DI. ISPF	1	11	20	10
	± 2	10	22	12 5
ATOMS	3	13	22	13
1 C	5	14	25	12 5
2 0	4 E	15	24	14 1
2 0	5	15	25	14.1
3 (0	10	26	14./
4 0	/	1/	27	15.4
5 0	8	18	28	16.1
6 C	9	19	29	16.9
/ C	10	20	30	17.9
8 C	11	21	31	18.9
9 C	12	22	32	20
10 C	13	23	33	21.3
11 C	14	24	34	22.7
12 C	15	25	35	24.4
13 C	16	26	36	26.3
14 C	17	27	37	28.6
15 C	18	28	38	31.3
16 C	19	29	39	34.5
17 C	20	30	40	38.5
18 C	21	31	41	43.5
19 C	22	32	42	50
20 C	23	33	END	58.8
21 H	24	34	SPECIES nonlints	77.36
22 Н	25	35	PROJECT	END
23 Н	26	36		ANALYSIS
24 H	2.7	37	*РАТН	8
2.5 H	2.8	38	SYMMETRY	10
26 H	2.9	39	INTMU 3	12.5
27 н	30	40	SSTEP 0.001	13
28 H	31	41	RPM pagem	13 5
20 H	32	42	SPANCE	14 1
30 H	32	FND	SID A 24	14 7
30 II 31 U	34	SPECIES nonlinen	SIL -1.24	15 /
32 H	35	*START	FND	16 1
23 U	36	INITCEO books	DDDATU	16 9
24 u	27	CEOM	accord 1 2	17 0
34 H 35 H	37	1 GEOM		10.0
35 H	30	1	XIIIOI fino m 120	10.9
30 H	10	2	IIEq IZU	20
37 H	40	3	END *TUDDIDI	21.3
30 H	41	4	~ I UNNEL	22.1
39 H	42	5	201	24.4
40 H	END	6	SCT	26.3
41 C	SPECIES nonlinrp	/	QRST	28.6
42 H	*PRODI	8	harmonic	31.3
END	INITGEO hooks	9	mode 120	34.5
NOSUPERMOL	GEOM	10	states all	38.5
*SECOND	1	11	END	43.5
HESSCAL hhook	0	12	*RATE	50
FPRINT	2	12		
1111111	2 3	13	FORWARDK	58.8
*OPTIMIZATION	2 3 4	13 14	FORWARDK SIGMAF 1	58.8 77.36
*OPTIMIZATION PRINT	2 3 4 5	12 13 14 15	FORWARDK SIGMAF 1 TST	58.8 77.36 END

.70:

*GRGENERAL GRRESTART *GRSTART CHARGE 1 MULTIPLICITY 1 *GRCOMMON GRENER %mem=16gb %nproc=8 #n m062x/6-31g(d) units(au) fchk nosymm END GRFIRST %mem=16gb %nproc=8 #n m062x/6-31g(d) units(au) fchk nosymm force END

.51:

*ISPEGEN ENERXN -0. ENESAD 1.23 MEPTYPER one MEPTYPEP one RCINFO SRC -8.0106 END PCINFO SPC 8.0106 END

XYZ geometries

ΤS	1		ΤS	2	SS	
С	0.771681 -0.247467	2.066714	С	-0.771368 2.070918 -0.189076	С	-0.260337 -0.912240 2.053552
С	-0.769479 -0.108430	2.066985	С	0.771368 2.070918 -0.189076	С	-1.585231 -0.889438 1.250639
С	-1.172996 1.195966	1.335001	С	1.260468 1.335962 1.083703	С	-1.846489 0.566548 0.778689
С	0.248250 2.025320	1.242748	С	-0.000000 1.240242 2.049149	С	-0.820552 1.459950 1.520448
С	1.369509 0.982443	1.337118	С	-1.260468 1.335962 1.083703	С	0.268439 0.536182 2.129370
С	1.140195 -1.509235	1.253540	С	-1.254188 1.254498 -1.411106	С	0.767345 -1.751154 1.254143
С	-1.359240 -1.287454	1.254583	С	1.254188 1.254498 -1.411106	С	-1.405012 -1.780447 0.000000
С	-1.867645 0.825809	0.00000	С	1.918860 -0.000000 0.661680	С	-1.846489 0.566548 -0.778689
С	0.248250 2.025320	-1.242748	С	-0.000000 -1.240242 2.049149	С	-0.084699 2.456485 -0.689338
С	1.993729 0.496188	0.000000	С	-1.918860 0.000000 0.661680	С	1.555605 0.624600 1.265902
С	-0.769479 -0.108430	-2.066985	С	0.771368 -2.070918 -0.189076	С	0.268439 0.536182 -2.129370
С	-1.359240 -1.287454	-1.254583	С	1.254188 -1.254498 -1.411106	С	-0.260337 -0.912240 -2.053552
С	-0.177832 -2.169535	-0.774955	С	0.000000 -0.774779 -2.185802	С	0.767345 -1.751154 -1.254143
С	1.140195 -1.509235	-1.253540	С	-1.254188 -1.254498 -1.411106	С	1.895608 -0.803404 -0.772291
С	0.771681 -0.247467	-2.066714	С	-0.771368 -2.070918 -0.189076	С	1.555605 0.624600 -1.265902
С	-1.172996 1.195966	-1.335001	С	1.260468 -1.335962 1.083703	С	-0.820552 1.459950 -1.520448
С	-2.059993 -0.712645	-0.000000	С	1.995732 -0.000000 -0.888260	С	-1.585231 -0.889438 -1.250639
С	-0.177832 -2.169535	0.774955	С	0.000000 0.774779 -2.185802	С	0.051466 -2.313191 0.000000
С	1.926388 -1.054883	-0.000000	С	-1.995732 0.000000 -0.888260	С	1.895608 -0.803404 0.772291
С	1.369509 0.982443	-1.337118	С	-1.260468 -1.335962 1.083703	С	1.442168 1.524634 -0.000000
Н	1.148454 -0.304503	3.089904	Н	-1.161911 3.090756 -0.203675	Н	-0.416081 -1.320244 3.054041
Н	-1.158080 -0.081159	3.087610	Н	1.161911 3.090756 -0.203675	Н	-2.414377 -1.238864 1.869187
Н	-1.838381 1.818408	1.934428	Н	1.994503 1.934149 1.627550	Н	-2.839353 0.887474 1.099640
Н	0.224077 2.706916	2.094716	Н	-0.000000 2.098003 2.722327	Н	-1.323063 2.015934 2.317963
Н	2.162781 1.431760	1.939726	Н	-1.994503 1.934149 1.627550	Н	0.496312 0.833603 3.154900
Н	1.730965 -2.202584	1.855065	Н	-1.905630 1.854946 -2.048747	Н	1.178968 -2.554495 1.868166
Н	-2.060594 -1.861769	1.862776	Н	1.905630 1.854946 -2.048747	Н	-2.121278 -2.604195 0.000000
Н	-2.841451 1.324008	0.000000	Н	2.927693 -0.000000 1.084598	Н	-2.839353 0.887474 -1.099640
Н	0.224077 2.706916	-2.094716	Н	-0.000000 -2.098003 2.722327	Н	0.417988 3.268346 -1.213120
Н	3.036607 0.820253	0.00000	Н	-2.927693 0.000000 1.084598	Н	2.368558 1.044126 1.864154
Н	-1.158080 -0.081159	-3.087610	Н	1.161911 -3.090756 -0.203675	Н	0.496312 0.833603 -3.154900
Н	-2.060594 -1.861769	-1.862776	Η	1.905630 -1.854946 -2.048747	Н	-0.416081 -1.320244 -3.054041
Н	-0.270010 -3.183794	-1.168343	Н	0.000000 -1.168103 -3.204293	Н	1.178968 -2.554495 -1.868166
Н	1.730965 -2.202584	-1.855065	Н	-1.905630 -1.854946 -2.048747	Н	2.865984 -1.112377 -1.165584
Н	1.148454 -0.304503	-3.089904	Н	-1.161911 -3.090756 -0.203675	Н	2.368558 1.044126 -1.864154
Н	-1.838381 1.818408	-1.934428	Н	1.994503 -1.934149 1.627550	Н	-1.323063 2.015934 -2.317963
Н	-3.124269 -0.955023	-0.000000	Н	3.039071 -0.000000 -1.209526	Н	-2.414377 -1.238864 -1.869187
Н	-0.270010 -3.183794	1.168343	Н	0.000000 1.168103 -3.204293	Н	0.065061 -3.404876 0.000000
Н	2.934792 -1.473589	-0.00000	Н	-3.039071 0.000000 -1.209526	Н	2.865984 -1.112377 1.165584
Н	2.162781 1.431760	-1.939726	Η	-1.994503 -1.934149 1.627550	Н	2.178354 2.325726 -0.000000
С	0.018304 2.685584	0.00000	С	0.000000 0.000000 2.767947	С	-0.084699 2.456485 0.689338
Н	-0.549843 3.618186	0.000000	Н	0.000000 0.000000 3.859870	Н	0.417988 3.268346 1.213120

Rate constant and KIE tables at different temperatures

TS1	т	k(CVT)	k(SCT)	t1/2	KIE(A)	KIE(B)	KIE(C)	KIE(D)	KIE(E)	KIE(F)	KIE(H/D)
	8	2.41E-06	6.78E+05	1.02E-06	1.34	1.44	1.52	1.15	0.86	1.17	8.33
	10	7.03E-03	6.78E+05	1.02E-06	1.34	1.44	1.52	1.15	0.86	1.17	8.33
	12.5	4.35E+00	6.78E+05	1.02E-06	1.34	1.44	1.52	1.15	0.86	1.17	8.33
	13	1.17E+01	6.78E+05	1.02E-06	1.34	1.44	1.52	1.15	0.86	1.17	8.33
	13.5	2.95E+01	6.79E+05	1.02E-06	1.34	1.44	1.52	1.15	0.86	1.17	8.33
	14.1	8.20E+01	6.80E+05	1.02E-06	1.34	1.44	1.52	1.15	0.86	1.17	8.33
	14.7	2.10E+02	6.81E+05	1.02E-06	1.34	1.43	1.52	1.15	0.85	1.17	8.33
	15.4	5.74E+02	6.86E+05	1.01E-06	1.33	1.43	1.52	1.15	0.85	1.17	8.34
	16.1	1.44E+03	6.94E+05	9.99E-07	1.33	1.43	1.52	1.14	0.85	1.17	8.34
	16.9	3.76E+03	7.11E+05	9.75E-07	1.32	1.42	1.51	1.14	0.85	1.16	8.35
	17.9	1.11E+04	7.54E+05	9.19E-07	1.31	1.41	1.51	1.14	0.84	1.16	8.40
	18.9	2.94E+04	8.37E+05	8.28E-07	1.28	1.38	1.49	1.12	0.82	1.15	8.47
	20	7.66E+04	1.01E+06	6.86E-07	1.25	1.35	1.48	1.11	0.80	1.13	8.56
	21.3	2.10E+05	1.41E+06	4.92E-07	1.21	1.31	1.45	1.08	0.78	1.11	8.70
	22.7	5.50E+05	2.24E+06	3.09E-07	1.17	1.26	1.42	1.07	0.76	1.09	8.62
	24.4	1.53E+06	4.23E+06	1.64E-07	1.13	1.23	1.39	1.05	0.75	1.07	8.28
	26.3	4.14E+06	8.73E+06	7.94E-08	1.11	1.21	1.36	1.04	0.75	1.06	7.66
	28.6	1.16E+07	1.99E+07	3.48E-08	1.09	1.18	1.33	1.03	0.76	1.05	6.86
	31.3	3.24E+07	4.74E+07	1.46E-08	1.08	1.17	1.30	1.03	0.77	1.04	5.95
	34.5	8.96E+07	1.16E+08	5.98E-09	1.06	1.15	1.27	1.03	0.79	1.04	5.07
	38.5	2.54E+08	2.99E+08	2.32E-09	1.06	1.13	1.24	1.02	0.81	1.04	4.26
	43.5	7.24E+08	7.91E+08	8.76E-10	1.05	1.11	1.20	1.02	0.83	1.03	3.56
	50	2.09E+09	2.17E+09	3.19E-10	1.04	1.09	1.17	1.02	0.85	1.03	2.98
	58.8	6.17E+09	6.17E+09	1.12E-10	1.03	1.08	1.14	1.01	0.87	1.02	2.49
	77.36	2.80E+10	2.72E+10	2.55E-11	1.02	1.06	1.10	1.01	0.91	1.02	1.97
	100	8.52E+10	8.78E+10	7.89E-12	1.01	1.04	1.07	1.01	0.94	1.01	1.61
	125	1.86E+11	1.89E+11	3.67E-12	1.01	1.03	1.05	1.01	0.95	1.01	1.45
	150	3.15E+11	3.19E+11	2.17E-12	1.01	1.03	1.05	1.01	0.96	1.01	1.36
	175	4.61E+11	4.65E+11	1.49E-12	1.01	1.02	1.04	1.00	0.97	1.01	1.30
	200	6.16E+11	6.20E+11	1.12E-12	1.01	1.02	1.03	1.00	0.97	1.01	1.25
	225	7.72E+11	7.76E+11	8.93E-13	1.01	1.02	1.03	1.00	0.98	1.00	1.21
	250	9.27E+11	9.30E+11	7.45E-13	1.01	1.02	1.03	1.00	0.98	1.00	1.18
	275	1.08E+12	1.08E+12	6.42E-13	1.01	1.01	1.02	1.00	0.98	1.00	1.16
	300	1.22E+12	1.22E+12	5.68E-13	1.00	1.01	1.02	1.00	0.98	1.00	1.14

TS2	т	СVТ	SCT	t1/2	KIE(A)	KIE(B)	KIE(C)	KIE(D)	KIE(E)	KIE(F)	KIE(H/D)
	8	5.58E-90	1.17E-12	5.92E+11	1.68	1.45	1.00	0.90	1.13	0.89	1.03E+05
	10	8.70E-70	1.17E-12	5.92E+11	1.68	1.45	1.00	0.90	1.13	0.89	1.03E+05
	12.5	1.30E-53	1.22E-12	5.68E+11	1.69	1.44	1.00	0.89	1.12	0.89	9.76E+04
	13	4.01E-51	1.29E-12	5.37E+11	1.70	1.44	1.00	0.89	1.11	0.89	9.15E+04
	13.5	8.12E-49	1.45E-12	4.78E+11	1.73	1.43	1.00	0.90	1.10	0.90	8.06E+04
	14.1	2.90E-46	1.90E-12	3.65E+11	1.71	1.39	0.98	0.88	1.08	0.90	5.96E+04
	14.7	6.42E-44	3.20E-12	2.17E+11	1.66	1.35	0.95	0.87	1.06	0.92	4.19E+04
	15.4	2.06E-41	7.98E-12	8.69E+10	1.54	1.30	0.93	0.87	1.04	0.93	3.08E+04
	16.1	4.00E-39	2.38E-11	2.91E+10	1.47	1.29	0.91	0.86	1.03	0.94	2.58E+04
	16.9	9.69E-37	8.55E-11	8.11E+09	1.43	1.28	0.91	0.86	1.03	0.94	2.25E+04
	17.9	4.66E-34	3.90E-10	1.78E+09	1.42	1.28	0.90	0.86	1.03	0.94	1.88E+04
	18.9	1.17E-31	1.57E-09	4.41E+08	1.43	1.29	0.90	0.87	1.03	0.94	1.48E+04
	20	2.70E-29	6.27E-09	1.11E+08	1.43	1.29	0.91	0.87	1.04	0.94	1.06E+04
	21.3	8.17E-27	2.74E-08	2.53E+07	1.43	1.29	0.91	0.87	1.04	0.95	6.68E+03
	22.7	1.85E-24	1.13E-07	6.13E+06	1.41	1.29	0.91	0.87	1.03	0.95	4.02E+03
	24.4	5.83E-22	5.35E-07	1.30E+06	1.39	1.27	0.92	0.88	1.03	0.95	2.33E+03
	26.3	1.51E-19	2.57E-06	2.70E+05	1.35	1.24	0.93	0.90	1.02	0.96	1.41E+03
	28.6	4.71E-17	1.45E-05	4.78E+04	1.28	1.20	0.95	0.92	1.01	0.96	9.12E+02
	31.3	1.37E-14	9.10E-05	7.62E+03	1.23	1.16	0.97	0.94	1.00	0.97	6.55E+02
	34.5	3.63E-12	6.30E-04	1.10E+03	1.19	1.14	0.99	0.96	0.99	0.98	5.16E+02
	38.5	1.07E-09	5.05E-03	1.37E+02	1.17	1.13	1.00	0.98	0.99	0.99	4.11E+02
	43.5	3.02E-07	4.46E-02	1.55E+01	1.17	1.13	1.01	0.99	0.98	0.99	3.01E+02
	50	8.73E-05	4.64E-01	1.49E+00	1.16	1.13	1.01	0.99	0.98	0.99	1.68E+02
	58.8	2.59E-02	6.70E+00	1.03E-01	1.13	1.12	1.02	1.00	0.98	0.99	57.3
	77.36	6.31E+01	7.52E+02	9.22E-04	1.08	1.11	1.02	1.00	0.98	1.00	9.31
	100	1.75E+04	6.28E+04	1.10E-05	1.03	1.07	1.02	1.00	0.98	1.00	4.55
	125	8.37E+05	1.78E+06	3.89E-07	1.02	1.05	1.02	1.00	0.98	1.00	2.98
	150	1.12E+07	1.85E+07	3.75E-08	1.01	1.04	1.02	1.00	0.98	1.00	2.37
	175	7.14E+07	1.03E+08	6.73E-09	1.01	1.04	1.02	1.00	0.99	1.00	2.05
	200	2.89E+08	3.81E+08	1.82E-09	1.01	1.03	1.01	1.00	0.99	1.00	1.85
	225	8.60E+08	1.07E+09	6.48E-10	1.01	1.03	1.01	1.00	0.99	1.00	1.72
	250	2.06E+09	2.45E+09	2.83E-10	1.01	1.03	1.01	1.00	0.99	1.00	1.62
	275	4.23E+09	4.88E+09	1.42E-10	1.01	1.02	1.01	1.00	0.99	1.00	1.56
	300	7.70E+09	8.68E+09	7.99E-11	1.01	1.02	1.01	1.00	0.99	1.00	1.51

ZPE and symmetry corrected concentration percentage at 4 K for ¹³C and D substituted HDC at different positions.

As explained in the main text, the energy differences for the ¹³C monosubstituted cases is almost negligible, and we would probably see a complete scrambling of the marked carbon position. However, with deuteration there is a larger ZPE differences, and at liquid He conditions most of the deuterium will be bonded to the equivalent carbons 3 and 8, and to 20 (see numeration in the figure). At least that would be in gas phase, where anisotropies of the medium will not affect the results.

		¹³ C			D	
C position	ZPE (Ha)	Rel. ZPE (kJ mol-1)	%	ZPE (Ha)	Rel. ZPE (kJ mol-1)	%
9/41	0.381403	0.058	2	0.378211	0.396	0
4/16	0.381383	0.005	11	0.378132	0.189	0
7	0.381381	0.000	6	0.378113	0.139	1
18	0.381382	0.003	6	0.378111	0.134	1
1/12	0.381381	0.000	12	0.378114	0.142	1
14/19	0.381382	0.003	11	0.378113	0.139	1
6/13	0.381382	0.003	11	0.378112	0.137	1
5/11	0.381383	0.005	11	0.378109	0.129	1
10/15	0.381388	0.018	7	0.378108	0.126	2
2/17	0.381381	0.000	12	0.378108	0.126	2
20	0.381423	0.110	0	0.378060	0.000	35
3/8	0.381384	0.008	10	0.378063	0.008	56

Full Ref. 22:

Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.