SUPPLEMENTARY INFORMATION

A simple one-pot route to stable formamidinatoiodidolanthanoid(III)

complexes from lanthanoid metals

Zhifang Guo, ${ }^{\text {a, }}$ b Victoria L. Blair, ${ }^{\text {a }}$ Glen B. Deacon, ${ }^{\text {a* }}$ and Peter C. Junk ${ }^{\text {b* }}$
${ }^{a}$ School of Chemistry, Monash University, Clayton, VIC, 3800, Australia.
${ }^{b}$ College of Science \& Engineering, James Cook University, Townsville, QLD, 4811, Australia.
*Corresponding author: peter.junk@jcu.edu.au; glen.deacon@monash.edu

Contents

1. Syntheses
2. ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra of complexes
3. X-ray crystallography
4. Selected bond angles $\left({ }^{\circ}\right)$ and lengths (\AA)
5. References

1. Syntheses

General

The lanthanoid compounds described here are highly air and moisture sensitive, and were prepared and handled with vacuum-nitrogen line techniques and in a dry box in an atmosphere of purified nitrogen. N, N '-bis(2,6-difluorophenyl)formamidinine and N, N '-bis(diisopropylphenyl)formamidinate were prepared by the literature method. ${ }^{1}$ Lanthanoid metals were from Santoku/Molycorp/Eutectix. Large chunks were filed in the drybox before use. All other chemicals were purchased from Sigma Aldrich. Solvents (thf, $\mathrm{C}_{6} \mathrm{D}_{6}$) were pre-dried by distillation over sodium or sodium benzophenone ketyl before being stored under an atmosphere of nitrogen. Pyridine was distilled over potassium hydroxide, degassed and stored over dried $4 \AA$ molecular sieves. IR spectra were recorded as Nujol mulls between NaCl plates using an Agilent Technologies Cary 630 FTIR instrument within the range 4000-700 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR and proton decoupled ${ }^{19} \mathrm{~F}$ NMR spectra were recorded with a Bruker DPX 300 MHz spectrometer or a Bruker 400 MHz instrument. Chemical shifts were referenced to the residual ${ }^{1} \mathrm{H}$ resonances of the deuterated solvents $\left({ }^{1} \mathrm{H}\right)$ or external $\mathrm{CCl}_{3} \mathrm{~F}\left({ }^{19} \mathrm{~F}\right)$. Microanalyses were determined by the Elemental Analysis Service, London Metropolitan University, and all the samples were sealed in tubes under nitrogen. Melting points were determined in sealed glass capillaries under nitrogen and are uncalibrated. Crystals were immersed in crystallography oil, and were measured on a Bruker X8 APEXII SCXRD or the MX1 beamline at the Australian Synchrotron. Crystal data and refinement details are given in Table S1. CCDC 2082902-2082907 for compound 1-6, CCDC 2082909-2082911 for compound 9-11, 2099468 for compound 12, 2099469-2099470 for compound 14-15, 2082912 for compound 16, CCDC 2082913 for compound 18, CCDC 2082914 for compound 18a contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

General procedure for 1-11

Lanthanoid metal powder (1.0 mmol), iodine ($0.1 \mathrm{mmol}, 0.025 \mathrm{~g}$), DFFormH (0.4 mmol , $0.107 \mathrm{~g})(\mathbf{1 - 7}) /$ iodine ($0.5 \mathrm{mmol}, 0.127 \mathrm{~g}$), DFFormH ($0.5 \mathrm{mmol}, 0.134 \mathrm{~g}$) (8-11) and dry THF (10 ml) were stirred under nitrogen for three days at room temperature. After filtration of the reaction mixture, a small (0.3 ml) aliquot was monitored by ${ }^{19} \mathrm{~F}$ NMR, and ${ }^{19} \mathrm{~F}$ NMR
showed characteristic one resonance of $\left[\operatorname{Ln}(D F F o r m) \mathrm{nI}_{3-\mathrm{n}}\right](\mathrm{n}=1,2)$, which confirmed the consumption of DFFormH and formation of $\left[\mathrm{Ln}\left(\mathrm{DFForm}^{2} \mathrm{nI}_{3-\mathrm{n}}\right](\mathrm{n}=1,2)\right.$ on completion. The filtrates were evaporated to half volume under vacuum, and the crystals were obtained. Yields were calculated based on the DFFormH ligand.

$\left[\mathrm{Lu}(\text { DFForm })_{2} \mathbf{I}(\text { thf })_{2}\right] \mathbf{1}$

Yellow crystals ($0.149 \mathrm{~g}, 76 \%$), M.p. $148-150{ }^{\circ} \mathrm{C}$, (Found: C, 41.80; H, 2.93; N, 5.66; $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~F}_{8} \mathrm{ILuN}_{4} \mathrm{O}_{2}(980.49)$ requires $\mathrm{C}, 41.65 ; \mathrm{H}, 3.08 ; \mathrm{N}, 5.71 \%$). IR (Nujol): 1667m, 1586w, 1297m, 1261s, 1208m, 1092s, 1016s, $950 \mathrm{~m}, 916 \mathrm{~m}, 865 \mathrm{~m}, 800 \mathrm{~s}, 780 \mathrm{~s}, 718 \mathrm{~m} \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$): 9.04 (s, 2H, NCHN), 6.48 (m, 8H, H(3,5)), 6.30 (m, 4H, H(4)), 3.83 (m, 8H, thf), 1.45 (m, 8H, thf). ${ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}, \mathrm{ppm}\right): \delta=-123.8(\mathrm{~s})$.

$\left.[\text { Tm(DFForm) })_{2} \mathbf{I}(\text { thf })_{2}\right] 2$

Yellow crystals ($0.160 \mathrm{~g}, 82 \%$), M.p. 202-204 ${ }^{\circ} \mathrm{C}$, (Found: C, 41.71; H, 3.09; N, 5.42; $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~F}_{8} \mathrm{IN}_{4} \mathrm{O}_{2} \mathrm{Tm}$ (974.45) requires C, $41.91 ; \mathrm{H}, 3.10 ; \mathrm{N}, 5.75 \%$). IR (Nujol): 1665m, $1562 \mathrm{~s}, 1291 \mathrm{~s}, 1265 \mathrm{~s}, 1222 \mathrm{~s}, 1064 \mathrm{~s}, 1008 \mathrm{~s}, 953 \mathrm{~m}, ~ 918 \mathrm{~m}, 864 \mathrm{~s}, 800 \mathrm{~s}, 777 \mathrm{~s}, 720 \mathrm{~s} \mathrm{~cm}{ }^{-1} .{ }^{19} \mathrm{~F}$ NMR (thf, ext. $\mathrm{CFCl}_{3}, \mathrm{ppm}$): $\delta=-124.8$ (s).

$\left[\operatorname{Er}(\text { DFForm })_{2} \mathbf{I}(\text { thf })_{2}\right] \mathbf{3}$

Pink crystals ($0.138 \mathrm{~g}, 71 \%$), M.p.198-200 ${ }^{\circ} \mathrm{C}$, (Found: C, 41.79; H, 3.28; N 5.54; $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{ErF}_{8} \mathrm{IN}_{4} \mathrm{O}_{2}(972.78)$ requires C, 41.98; H, 3.11; N, 5.76 \%). IR (Nujol): 1668m, 1579s, 1296s, 1264s, 1219s, 1098s, 1014s, $952 \mathrm{~m}, 918 \mathrm{~m}, 865 \mathrm{~s}, 801 \mathrm{~s}, 770 \mathrm{~s}, 718 \mathrm{~s} \mathrm{~cm}^{-1} .{ }^{19} \mathrm{~F}$ NMR (thf, ext. $\mathrm{CFCl}_{3}, \mathrm{ppm}$): $\delta=-123.9$ (s).

[Ho(DFForm) $\left.\mathbf{2}_{\mathbf{I}} \mathbf{I}(\text { (thf })_{2}\right] \mathbf{4}$

Pink crystals ($0.172 \mathrm{~g}, 95 \%$), M.p.180-182 ${ }^{\circ} \mathrm{C}$, (Found: C, 41.84; H, 3.27; N, 5.48; $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~F}_{8} \mathrm{HoIN}_{4} \mathrm{O}_{2}$ (970.45) requires C, $42.08 ; \mathrm{H}, 3.12 ; \mathrm{N}, 5.77$ \%). IR (Nujol): 1667m, 1566s, 1294s, 1265s, 1218m, 1074s, 1013s, 952m, 918m, 863s, 802s, 777s, 721s cm ${ }^{-1} .{ }^{19}$ F NMR (thf, ext. $\mathrm{CFCl}_{3}, \mathrm{ppm}$): $\delta=-124.5$ (s).

$\left[\mathrm{Dy}(\mathrm{DFForm})_{2} \mathbf{I}(\text { (thf })_{2}\right] \mathbf{5}$

Colourless crystals (0.158 g, 81\%), M.p.196-198 ${ }^{\circ} \mathrm{C}$, (Found: C, 42.15; H, 3.07; N, 5.77; $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{DyF}_{8} \mathrm{~N}_{4} \mathrm{O}_{2}$ (968.02) requires $\mathrm{C}, 42.19 ; \mathrm{H}, 3.12 ; \mathrm{N}, 5.79 \%$). IR (Nujol): 1667 m , $1579 \mathrm{vs}, 1294 \mathrm{~s}, 1261 \mathrm{vs}, 1217 \mathrm{~m}, 1095 \mathrm{~m}, 1013 \mathrm{~s}, 947 \mathrm{~m}, 916 \mathrm{~m}, 864 \mathrm{~s}, 800 \mathrm{~s}, 773 \mathrm{~s}, 718 \mathrm{~s} \mathrm{~cm}{ }^{-1}$. ${ }^{19}$ F NMR (thf, ext. $\mathrm{CFCl}_{3}, \mathrm{ppm}$): $\delta=-124.2(\mathrm{~s})$.

$\left[\operatorname{Gd}(\text { DFForm })_{2} \mathbf{I}(\text { thf })_{2}\right] \mathbf{6}$

Colourless crystals ($0.165 \mathrm{~g}, 85 \%$), M.p. $188-190{ }^{\circ} \mathrm{C}$, (Found: C, 42.29 ; H, 3.09; N, 5.90; $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~F}_{8} \mathrm{GdIN}_{4} \mathrm{O}_{2}(962.77)$ requires C, $42.42 ; \mathrm{H}, 3.14 ; \mathrm{N}, 5.82 \%$). IR (Nujol): $1667 \mathrm{w}, 1568 \mathrm{~s}$, $1294 \mathrm{~s}, 1262 \mathrm{~s}, 1217 \mathrm{~m}, 1072 \mathrm{~s}, 1011 \mathrm{~s}, 952 \mathrm{~m}, 915 \mathrm{~m}, 858 \mathrm{~s}, 802 \mathrm{~s}, 778 \mathrm{~s}, 719 \mathrm{~s} \mathrm{~cm}{ }^{-1} .{ }^{19} \mathrm{~F}$ NMR (thf, ext. $\mathrm{CFCl}_{3}, \mathrm{ppm}$): $\delta=-128.6$ (s).

$\left[\mathbf{N d}(\text { DFForm })_{2} \mathbf{I}(\text { thf })_{2}\right] \mathbf{7}$

Purple crystals of 7 crystallized in the monoclinic space group $\mathrm{C} 2 / \mathrm{c}$, $\mathrm{a}=16.3338(6) \AA, \mathrm{b}=$ $11.8553(3) \AA, c=19.2719(6) \AA, \beta=107.258(4)^{\circ}, \mathrm{V}=3563.8(2) \AA^{3}$, which had unit cell parameters in agreement with those of the other $\left[\operatorname{Ln}(\mathrm{DFForm})_{2} \mathrm{I}(\mathrm{thf})_{2}\right]$ complexes (Table S1). The poor quality of the crystals precluded a structure determination.

$\left[\operatorname{Lu}(\right.$ DFForm $\left.) \mathbf{I}_{\mathbf{2}}\left(\text { thf }^{\prime}\right)_{3}\right] \mathbf{8}$

Colourless crystals ($0.344 \mathrm{~g}, 75 \%$), M.p.192-194 ${ }^{\circ} \mathrm{C}$, (Found: C, 32.67; H, 3.31; N, 3.20; $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~F}_{4} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{LuO}_{3}$ (912.29) requires C, 32.91 ; $\mathrm{H}, 3.42$; N, 3.07 \%). IR (Nujol): 1666m, $1616 \mathrm{~s}, 1564 \mathrm{~s}, 1297 \mathrm{~s}, 1270 \mathrm{~s}, 1217 \mathrm{~s}, 1100 \mathrm{~m}, 1065 \mathrm{~s}, 1006 \mathrm{~s}, 959 \mathrm{~m}, ~ 912 \mathrm{~m}, ~ 882 \mathrm{~s}, 854 \mathrm{~s}, 780 \mathrm{~s}$, $741 \mathrm{~s}, 720 \mathrm{~s} \mathrm{~cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$): 9.03 (s, 1H, NCHN), 6.43 (m, 4H, H(3,5)), 6.31 (m, 2H, H(4)), 3.65 (m, 12H, thf), 1.43 (m, 12H, thf). ${ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}, \mathrm{ppm}\right)$: $\delta=-123.8(\mathrm{~s})$.

$\left[\operatorname{Gd}(\right.$ DFForm $\left.) \mathbf{I}_{2}(\text { (thf })_{3}\right] \mathbf{9}$

Colourless crystals ($0.358 \mathrm{~g}, 80 \%$), M.p.172-174 ${ }^{\circ} \mathrm{C}$, (Found: C, 33.33; H, 3.24; N, 3.01; $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~F}_{4} \mathrm{GdI}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$ (894.57) requires C, 33.57; H, 3.49; N, 3.13%). IR (Nujol): 1669s, 1615s, 1566s, 1298m, 1264s, 1214m, 1096m, 1067s, 1016s, 959w, 914m, 878s, 856s, 780s, 741m, $719 \mathrm{~s} \mathrm{~cm}{ }^{-1}$. ${ }^{19} \mathrm{~F}$ NMR (thf, ext. $\mathrm{CFCl}_{3}, \mathrm{ppm}$): $\delta=-124.5$ (s).

$\left[\mathbf{S m}(\right.$ DFForm $) \mathbf{I}_{2}\left(\right.$ (thf $\left._{3}\right] \mathbf{1 0}$

Colourless crystals ($0.352 \mathrm{~g}, 79 \%$, M.p. $134-136{ }^{\circ} \mathrm{C}$, (Found: C, 34.02; H, 3.26; N, 3.21; $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~F}_{4} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Sm}$ (887.67) requires C, 33.83; H, 3.52; N, 3.16 \%). IR (Nujol): 1666m, $1616 \mathrm{~s}, 1559 \mathrm{~m}, 1297 \mathrm{~s}, 1270 \mathrm{w}, 1216 \mathrm{~m}, 1108 \mathrm{~m}, 1072 \mathrm{~s}, 1030 \mathrm{~s}, 954 \mathrm{w}, 915 \mathrm{~m}, ~ 871 \mathrm{~s}, 856 \mathrm{~s}, 776 \mathrm{~m}$, $739 \mathrm{w}, 721 \mathrm{~m} \mathrm{~cm}{ }^{-1} .{ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}, \mathrm{ppm}\right): \delta=-125.2(\mathrm{~s})$.

$\left[\mathbf{N d}(\right.$ DFForm $) \mathbf{I}_{\mathbf{2}}\left(\right.$ (thf $_{3} \mathbf{3}_{3} \mathbf{1 1}$

Purple crystals ($0.389 \mathrm{~g}, 88 \%$), M.p.146-148 ${ }^{\circ} \mathrm{C}$, (Found: C, 33.89; H, 3.62; N, 2.86; $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~F}_{4} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{NdO}_{3}$ (881.56) requires C, 34.06; H, 3.54; N, 3.18 \%). IR (Nujol): 1668s,
$1614 \mathrm{~m}, 1556 \mathrm{w}, 1311 \mathrm{~s}, 1263 \mathrm{~s}, 1205 \mathrm{~m}, 1096 \mathrm{~m}, 1063 \mathrm{~s}, 1002 \mathrm{~s}, 956 \mathrm{w}, 914 \mathrm{~m}, 875 \mathrm{~s}, 856 \mathrm{~s}, 775 \mathrm{~s}$, $740 \mathrm{w}, 722 \mathrm{~m} \mathrm{~cm}{ }^{-1} .{ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}, \mathrm{ppm}\right): \delta=-124.5$ (s).

General procedure for 12-14

Lanthanoid metal powder (1.0 mmol), iodine ($0.5 \mathrm{mmol}, 0.127 \mathrm{~g}$), DippFormH (0.5 mmol , 0.182) and dry THF (10 ml) were placed in a Schlenk flask in a nitrogen-filled dry box. The mixture was ultrasonicated for one week. The reaction mixture was filtered. Crystals were obtained after the filtrates were evaporated to half volume under vacuum. Yields were calculated based on the DippFormH ligand.

$\left[\mathrm{Lu}(\right.$ DippForm $) \mathbf{I}_{\mathbf{2}}\left(\right.$ thf $_{3} \mathbf{3}^{\mathbf{]}} \cdot \mathbf{2 t h f} \mathbf{1 2}$

Colourless crystals (0.403 g, 70%), M.p. $252-254{ }^{\circ} \mathrm{C}$, (Found: C, 46.80 ; H, 6.92; N, 3.17; Lu, 15.04; $\mathrm{C}_{45} \mathrm{H}_{75} \mathrm{I}_{2} \mathrm{LuN}_{2} \mathrm{O}_{5}$ (1152.84) requires $\mathrm{C}, 46.88 ; \mathrm{H}, 6.56 ; \mathrm{N}, 2.43 ; \mathrm{Lu}, 15.18 \%$). IR (Nujol): 1666m, 1591w, 1524m, 1323w, 1272s, 1189m, 1100m, 1067s, 1018s, 935m, 915w, $865 \mathrm{~m}, 803 \mathrm{~s}, 756 \mathrm{w}, 722 \mathrm{~s} \mathrm{~cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}$): 8.32 (s, 1H, NCHN), 7.18-7.09 (m, 6H, H(3,4,5)), $4.30(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}), 3.54$ (m, 20H, thf), 1.47-1.26 (m, 24H, CH3 $), 1.18$ (m, 20 H , thf).

[Dy(DippForm)I $\left.\mathbf{I}_{2}(\text { thf })_{3}\right] \mathbf{1 3}$

Colourless crystals (0.388g, 78\%), M.p. 208-210 ${ }^{\circ} \mathrm{C}$, (Found: C, 44.71; H, 6.15; N, 2.67; $\mathrm{C}_{37} \mathrm{H}_{59} \mathrm{DyI}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$ (996.18) requires C, $44.61 ; \mathrm{H}, 5.97$; N, 2.81 \%). IR (crystal oil): 1666 m , $1589 \mathrm{~m}, ~ 1528 \mathrm{~s}, 1325 \mathrm{~s}, 1276 \mathrm{~s}, 1181 \mathrm{~s}, 1106 \mathrm{~s}, 1062 \mathrm{~s}, 1018 \mathrm{vs}, 936 \mathrm{~s}, 911 \mathrm{~s}, 885 \mathrm{~s}, 801 \mathrm{~s}, 770 \mathrm{~s}$, $716 \mathrm{~m} \mathrm{~cm}^{-1} .13$ crystallized in the orthorhombic space group Pbca, $a=19.469(4) \AA$, $b=18.915(4) \quad \AA, \quad c=24.240(5) \quad \AA, \quad V=8927(3) \quad \AA^{3}$, which is similar to other $\left[\mathrm{Ln}(\right.$ DippForm $\left.) \mathrm{I}_{2}(\text { (hf })_{3}\right]$ complexes.

$\left[\mathbf{G d}(\right.$ DippForm $\left.) \mathbf{I}_{\mathbf{2}}(\text { thf })_{3}\right] \cdot$ thf $\mathbf{1 4}$

Colourless crystals ($0.355 \mathrm{~g}, 72 \%$), M.p. $208-210{ }^{\circ} \mathrm{C}$, (Found: C, 44.70; H, 6.18; N, 2.71; $\mathrm{C}_{37} \mathrm{H}_{59} \mathrm{GdI}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$ (990.91, loss of one thf in lattice) requires C, $44.80 ; \mathrm{H}, 6.10 ; \mathrm{N}, 2.82 \%$). IR (Nujol): 1666m, 1592m, 1525s, 1320s, 1272s, 1192s, 1102s, 1067s, 1019vs, $935 \mathrm{~s}, 916 \mathrm{~s}$, $864 \mathrm{~s}, 805 \mathrm{~s}, 762 \mathrm{~s}, 724 \mathrm{~m} \mathrm{~cm}^{-1}$.

$\left[\mathbf{N d}(\right.$ DippForm $\left.) \mathbf{I}_{\mathbf{2}}(\text { thf })_{3}\right] \cdot$ thf $\mathbf{1 5}$

Purple crystals (0.412 g, 81%), M.p. $226-228^{\circ} \mathrm{C}$. (Found: C, 46.19; H, 6.42; N, 3.97; Nd, 14.45; $\mathrm{C}_{41} \mathrm{H}_{67} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{NdO}_{4}$ (1050.00) requires C, $46.90 ; \mathrm{H}, 6.43 ; \mathrm{N}, 2.67$; Nd, 13.74 \%). IR (Nujol): 1667m, 1592w, 1534w, 1319w, 1260s, 1182m, 1102s, 1072s, 1021s, 937w, 916w,
$861 \mathrm{~m}, 804 \mathrm{~s}, 763 \mathrm{~s}, 724 \mathrm{~m} \mathrm{~cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right): 30.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHN}), 10.13$ (m, $4 \mathrm{H}, \mathrm{CH}), 8.45(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}(3,4,5)), 4.67\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{CH}_{3}\right), 3.06\left(\mathrm{~m}, 12 \mathrm{H}\right.$, thf), $1.32\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$, $-2.01(\mathrm{~m}, 12 \mathrm{H}$, thf), the solvated thf lost.

Attempted reaction to obtain [Ln(DippForm) $\left.)_{2} \mathbf{I}\right](\mathbf{L n}=\mathbf{G d}, \mathrm{Dy})$

Lanthanoid metal powder (1.0 mmol), iodine ($0.1 \mathrm{mmol}, 0.025 \mathrm{~g}$), DippFormH (0.4 mmol , 0.146) and dry THF (10 ml) were placed in a Schlenk flask in a nitrogen-filled dry box. The mixture was ultrasonicated for one week. The reaction mixture was filtered. Crystals were obtained both $\left[\operatorname{Ln}(\right.$ DippForm $\left.) I_{2}(\text { (thf })_{3}\right]$ and DippFormH were obtained after the filtrates were evaporated to half volume under vacuum, which were checked by the unit cell.

$\left[\mathbf{N d}(\text { DFForm })_{2} \mathbf{C p}(\text { thf })_{2}\right] \cdot$ thf 16

The crystals of $7(0.1 \mathrm{mmol}, 0.09 \mathrm{~g})$ were directly reacted with TlCp ($0.1 \mathrm{mmol}, 0.03 \mathrm{~g}$), the reaction mixture was stirred in thf for three days. The resulting mixture was filtered and the filtrate was concentrated under vacuum. Purple crystals of $\left[\mathrm{Nd}(\mathrm{DFForm})_{2} \mathrm{Cp}(\mathrm{thf})_{2}\right]$ thf were obtained after stored at $-20^{\circ} \mathrm{C}$ for one week, and identified by X-ray crystallography.

$\left[\mathbf{Y b}(\mathbf{D F F o r m})_{2}\left(\right.\right.$ (thf $\left._{3}\right] \mathbf{1 7}$ and $\left[\mathrm{YbI}_{2}(\text { (thf })_{4}\right] \mathbf{1 7 a}$

Ytterbium powder (2.00 mmol), iodine ($0.5 \mathrm{mmol}, 0.127 \mathrm{~g}$), DFFormH ($1.0 \mathrm{mmol}, 0.134 \mathrm{~g}$) and dry thf $(10 \mathrm{ml})$ were stirred for two days. The resulting mixture was filtered and the filtrate was concentrated under vacuum. Red crystals of a mixture of 17 and 17a were obtained at $-20{ }^{\circ} \mathrm{C}$ overnight. For 17 the unit cell is $a=10.975$ (2) $\AA, b=13.271$ (3) \AA, $c=13.973$ (3) $\AA, \alpha=90.98(3)^{\circ}, \beta=109.30(3)^{\circ}, \gamma=103.50(3)^{\circ}, V=1857.8(8) \AA^{3}$, which similar to the one reported in 2016, unit cell is $a=10.8778$ (8) $\AA, b=13.7732$ (6) $\AA, c=13.7857$ (6) \AA, $\alpha=88.907(4)^{\circ}, \beta=71.716(5)^{\circ}, \gamma=72.277(5)^{\circ}, V=1861.36(18) \AA^{3} .^{2}$ For 17a the unit cell is $a=8.3890(17) \AA, b=9.829(2) \AA, c=13.697(3) \AA, \alpha=80.08(3)^{\circ}, \beta=87.72(3)^{\circ}, \gamma=86.99(3)^{\circ}$, $V=1110.4(4) \AA^{3}$. Reported unit cell is $a=8.444(1) \AA, b=9.810(<1) \AA, c=13.618(1) \AA$, $\alpha=79.67(<1)^{\circ}, \beta=87.99(<1)^{\circ}, \gamma=87.36(<1)^{\circ}, V=1108.199 \AA^{3} .{ }^{3}{ }^{19} \mathrm{~F}$ NMR (thf, $\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$, $\mathrm{ppm})$ of the reaction mixture: $\delta=-122.8,123.4$.

$\left[\mathbf{E u}(\text { DFForm })_{2}(\mathbf{p y})_{3}\right] \mathbf{1 8}$ and $\left.\left[\mathrm{EuI}_{\mathbf{2}}(\text { (thf })_{2}(\mathbf{p y})_{3}\right]\right] \cdot 0.5$ thf 18a

Europium powder (2.00 mmol), iodine ($0.5 \mathrm{mmol}, 0.127 \mathrm{~g}$), DFFormH ($1.0 \mathrm{mmol}, 0.134 \mathrm{~g}$) and dry py (10 ml) were stirred under nitrogen for two days. The resulting mixture was filtered and the filtrate was concentrated under vacuum. Orange crystals of $\mathbf{1 8}$ were obtained after evaporation of the reaction mixture under vacuum, and identified by X-ray
crystallography. 18a was obtained after the filtrate (which did not deposit crystals) was evaporated and the residua was recrystallized from thf. ${ }^{19} \mathrm{~F}$ NMR (thf, $\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}, \mathrm{ppm}$) of the reaction mixture: $\delta=-115.9,121.4$.

2. ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra of complexes

Fig. S1 Typical ${ }^{19}$ F $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the reaction mixtures giving $\left.\operatorname{Ln}(\mathrm{DFForm})_{2} \mathrm{I}(\mathrm{thf})_{2}\right]$ $(\operatorname{Ln}=\mathrm{Lu}, \mathbf{1}, \mathrm{Gd}, \mathbf{6})$ and $\left[\mathrm{Ln}(\right.$ DFForm $\left.) \mathrm{I}_{2}(\mathrm{thf})_{3}\right](\mathrm{Ln}=\mathrm{Lu}, \mathbf{8}, \mathrm{Gd}, \mathbf{9})$

Fig. S2 ${ }^{1} \mathrm{H}$ NMR spectra of (up) $\left[\mathrm{Lu}(\text { DFForm })_{2} \mathrm{I}(\text { thf })_{2}\right](\mathbf{1})$; (down) $\left[\mathrm{Lu}(\right.$ DFForm $\left.) \mathrm{I}_{2}(\text { (hff })_{3}\right](\mathbf{8})$

Fig. S3 ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{Lu}(\right.$ DippForm $\left.) \mathrm{I}_{2}(\text { (hf })_{3}\right] \cdot 2 \operatorname{thf}(\mathbf{1 2)}$

Fig. S4 ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{Nd}(\right.$ DippForm $\left.) \mathrm{I}_{2}(\text { (thf })_{3}\right] \cdot 0.5$ thf (15)

b Reaction mixture of 18

Fig. S5. ${ }^{19} \mathrm{~F}$ NMR spectra of the reaction mixture of $(\mathbf{a}) \mathrm{Yb}$ with I_{2} and DFFormH; (b) Eu with I_{2} and DFFormH.
a Reaction mixture of 17

b Standard $\mathbf{Y b I}_{2}\left(\right.$ (hf) $_{4}$

569.1

Fig. S6. ${ }^{171} \mathrm{Yb}$ NMR spectra of (a) the reaction mixture of Yb with I_{2} and DFFormH; (b)

Standard $\mathrm{YbI}_{2}(\text { (thf })_{4}$; (c) $\mathrm{Yb}(\text { DFForm })_{2}(\text { (thf })_{3}$

Fig. S7. ${ }^{1} \mathrm{H}$ NMR spectrum of the NMR tube scale reaction mixture of $\mathrm{Lu}, \mathrm{I}_{2}$ and DFFormH in d_{8}-thf

Fig. S8. ${ }^{1} \mathrm{H}$ NMR spectrum of reaction mixture of $\mathrm{Nd}(\text { (DFForm })_{2} \mathrm{I}$ and NaCp

3. X-ray crystallography

Single crystals coated with viscous hydrocarbon oil were mounted on glass fibres or loops. Complexes 3, $\mathbf{5}$ and $\mathbf{1 1}$ were measured on a "Bruker APEX-II CCD' diffractometer equipped with graphite-monochromated Mo-K radiation $(\lambda=0.71073 \AA)$ at 123 K , mounted on a fibre loop in crystallography oil. Absorption corrections were completed using Apex II program suite using SADABS. ${ }^{4}$ Complexes 2, 12 and 15 were measured on a Rigaku SynergyS diffractometer. The SynergyS operated using microsource Mo-K α radiation ($\lambda=0.71073 \AA$) at 123 K . Data processing was conducted using CrysAlisPro. 55 software suite. ${ }^{5}$ Others were measured at the Australian Synchrotron on the MX1 (1, 4, 6, 9-10, 14, 16, 18, 18a) macromolecular beamlines, data integration was completed using Blue-ice ${ }^{6}$ and XDS ${ }^{7}$ software programs. Structural solutions were obtained by either direct methods ${ }^{8}$ or charge flipping ${ }^{9}$ methods and refined using full-matrix least-squares methods against F^{2} using SHELX2015, ${ }^{10}$ in conjunction with the X-Seed ${ }^{11}$ or Olex $2{ }^{9}$ graphical user interface. All hydrogen atoms were placed in calculated positions using the riding model. Crystal data and refinement details are given in Table S1. contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

The crystal structure of $\mathbf{1 6}$ is reported for connectivity only, as we collected 6 datasets of the crystal data by different diffractometers (both synchrotron and Rigaku). The same problems continually arose, viz, there is a large residual peak near to one of the THF molecules. We attempted to find a suitable twin law in PLATON, but no sensible result was obtained. This could be an artefact of twinning.

Table S1 Crystal data and structural refinement for lanthanoid complexes 1-18

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Formula	$\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~F}_{8} \mathrm{ILuN}_{4} \mathrm{O}_{2}$	$\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~F}_{8} \mathrm{IN}_{4} \mathrm{O}_{2} \mathrm{Tm}$	$\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{ErF}_{8} \mathrm{IN}_{4} \mathrm{O}_{2}$	$\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~F}_{8} \mathrm{HoIN}_{4} \mathrm{O}_{2}$
M_{r}	980.49	974.45	972.78	970.45
Crystal System	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	$\boldsymbol{C} 2 / \boldsymbol{c}$			
$a(\AA)$	$15.937(3)$	$15.9539(4)$	$15.9339(5)$	$15.929(3)$
$b(\AA)$	$11.807(2)$	$11.8143(3)$	$11.8086(3)$	$11.845(2)$

$c(\AA)$	18.619(4)	18.6508(4)	18.6639(5)	18.679(4)
$\alpha\left({ }^{\circ}\right)$	90	90	90	90
$\beta\left({ }^{\circ}\right)$	106.55(3)	106.585(1)	106.344(2)	106.19(3)
$\gamma\left({ }^{\circ}\right)$	90	90	90	90
$V\left(\AA^{3}\right)$	3358.2(13)	3369.13(14)	3369.83 (17)	3384.5(13)
Z	4	4	4	4
$\rho_{\text {calc }}, \mathrm{g} \mathrm{cm}^{-3}$	1.939	1.921	1.917	1.905
μ, mm^{-1}	3.942	3.632	3.489	3.332
N_{τ}	30283	13890	13071	38696
$N\left(R_{\text {int }}\right)$	4760(0.0198)	4056(0.0143)	3847(0.0321)	2988(0.0380)
$R_{1}(I>2 \sigma(I))$	0.0251	0.0161	0.0205	0.0201
$w R_{2}$ (all data)	0.0694	0.0380	0.0445	0.0505
GOF	1.091	1.153	1.015	1.102
	5	6	9	10
Formula	$\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{DyF}_{8} \mathrm{IN}_{4} \mathrm{O}_{2}$	$\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~F}_{8} \mathrm{GdIN}_{4} \mathrm{O}_{2}$	$\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~F}_{4} \mathrm{GdI}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$	$\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~F}_{4} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Sm}$
M_{r}	968.02	962.77	894.57	887.67
Crystal System	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	C2/c	C2/c	$\boldsymbol{P} 2_{1} / \boldsymbol{c}$	$\boldsymbol{P 2}{ }_{1} / \boldsymbol{n}$
$a(\AA)$	15.9491(4)	16.009(3)	12.811(3)	9.6230(19)
b (\AA)	11.8365(3)	11.879(2)	9.4750(19)	23.486(5)
$c(\AA)$	18.7114(6)	18.931(4)	23.728(5)	12.883(3)
$\alpha\left({ }^{\circ}\right)$	90	90	90	90
$\beta\left({ }^{\circ}\right)$	106.203 (2)	106.04(3)	91.79(3)	92.89(3)
$\gamma\left({ }^{\circ}\right)$	90	90	90	90
$V\left(\AA^{3}\right)$	3392.06 (17)	3460.1(13)	2878.8(10)	2907.9(10)
Z	4	4	4	4
$\rho_{\text {calc }}, \mathrm{g} \mathrm{cm}^{-3}$	1.896	1.848	2.064	2.028
μ, mm^{-1}	3.195	2.890	4.503	4.197
N_{τ}	31166	19110	32403	33855
$N\left(R_{\text {int }}\right)$	3480(0.0526)	2861(0.0577)	5045(0.0392)	4978(0.0405)
$R_{1}(I>2 \sigma(I))$	0.0225	0.0323	0.0335	0.0271
$w R_{2}$ (all data)	0.0413	0.0921	0.0797	0.0687

GOF	1.070	1.103	1.183	1.057
	11	12	14	15
Formula	$\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~F}_{4} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{NdO}_{3}$	$\mathrm{C}_{45} \mathrm{H}_{75} \mathrm{I}_{2} \mathrm{LuN}_{2} \mathrm{O}_{5}$	$\mathrm{C}_{41} \mathrm{H}_{67} \mathrm{GdI}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$	$\mathrm{C}_{41} \mathrm{H}_{67} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{NdO}_{4}$
M_{r}	881.56	1152.84	1063.01	1050.00
Crystal System	Monoclinic	Triclinic	Orthorhombic	Orthorhombic
Space group	$\boldsymbol{P} 2_{1} / \boldsymbol{c}$	P-1	Pbca	Pbca
$a(\AA)$	12.8662(9)	11.6323(3)	18.831(4)	19.6958(3)
$b(\AA)$	9.4950(6)	13.4896(3)	19.561(4)	18.9803(3)
$c(\AA)$	23.7380(16)	16.2376(5)	24.134(5)	24.0171(5)
$\alpha\left({ }^{\circ}\right)$	90	99.391(2)	90	90
$\beta\left({ }^{\circ}\right)$	91.727(3)	106.182(3)	90	90
$\gamma\left({ }^{\circ}\right)$	90	97.937(2)	90	90
$V\left(\AA^{3}\right)$	2898.6(3)	2368.45(12)	8890(3)	8978.4(3)
Z	4	2	8	8
$\rho_{\text {calc, }}, \mathrm{g} \mathrm{cm}^{-3}$	2.020	1.617	1.588	1.554
μ, mm^{-1}	3.976	3.431	2.920	2.570
N_{τ}	22302	42943	93420	53865
$N\left(R_{\text {int }}\right)$	7251(0.0150)	8330(0.1019)	7576(0.0651)	7909(0.0435)
$R_{1}(I>2 \sigma(I))$	0.0153	0.0492	0.0679	0.0309
$w R_{2}$ (all data)	0.0320	0.1391	0.1490	0.0750
GOF	1.117	1.062	1.137	1.071
	16	18	18a	
Formula	$\mathrm{C}_{43} \mathrm{H}_{43} \mathrm{~F}_{8} \mathrm{~N}_{4} \mathrm{NdO}_{3}$	$\mathrm{C}_{41} \mathrm{H}_{29} \mathrm{EuF}_{8} \mathrm{~N}_{7}$	$\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{EuI}_{2} \mathrm{~N}_{3} \mathrm{O}_{2.5}$	
M_{r}	960.05	923.67	823.32	
Crystal System	Monoclinic	Monoclinic	Trigonal	
Space group	$\boldsymbol{P} 2_{1} / \boldsymbol{c}$	C2/c	\boldsymbol{R}-3c	
$a(\AA)$	19.141(4)	12.8569 (3)	18.997(3)	
b (\AA)	10.909(2)	17.2704 (4)	18.997(3)	
$c(\AA)$	38.732(8)	18.0267(5)	43.447(9)	
$\alpha\left({ }^{\circ}\right)$	90	90	90	
$\beta\left({ }^{\circ}\right)$	92.82(3)	107.775(1)	90	
$\gamma\left({ }^{\circ}\right)$	90	90	120	

$V\left(\AA^{3}\right)$	$8078(3)$	$3811.64(17)$	$13578(5)$	
Z	8	4	18	
$\rho_{\text {calc, },} \mathrm{g} \mathrm{cm}^{-3}$	1.579	1.610	1.812	
$\mu, \mathrm{~mm}^{-1}$	1.368	1.725	4.150	
N_{τ}	94237	42811	51472	
$N\left(R_{\text {int }}\right)$	$15170(0.0569)$	$5362(0.0459)$	$2669(0.0582)$	
$R_{1}(I>2 \sigma(I))$	0.0802	0.0229	0.0339	
$w R_{2}($ all data $)$	0.2256	0.0464	0.1009	
GOF	1.056	1.058	1.063	

4. Selected bond angles $\left({ }^{\circ}\right)$ and lengths (\AA)

4.1 The complexes $\left[\mathrm{Ln}(\mathrm{DFForm})_{2} \mathbf{I}(\text { (thf })_{2}\right]$ (1-6)

$1 \mathrm{Lu}-\mathrm{N}(1)$ 2.363(3), $\mathrm{Lu}-\mathrm{N}(2) 2.410(3), \mathrm{Lu}-\mathrm{O}(1)$ 2.272(3), Lu-I(1) 2.9754(7), O(1)-Lu-O(1)\# 171.45(11), O(1)-Lu-I(1) 94.28(6), C(7)-Lu-O(1) 86.29(3), C(7)-Lu-I(1) 107.39(6), C(7)-Lu$\mathrm{C}(7) \# 145.22(13) ; \mathbf{2} \mathrm{Tm}-\mathrm{N}(1) 2.3821(16), \mathrm{Tm}-\mathrm{N}(2) 2.4129(17), \mathrm{Tm}-\mathrm{O}(1) 2.2923(14), \mathrm{Tm}-$ $\mathrm{I}(1) 2.9808(2), \mathrm{O}(1)-\mathrm{Tm}-\mathrm{O}(1) \# 170.83(8), \mathrm{O}(1)-\mathrm{Tm}-\mathrm{I}(1) 94.59(4), \mathrm{C}(7)-\mathrm{Tm}-\mathrm{O}(1) 86.77(5)$, C(7)-Tm-I(1) 107.41(4), C(7)-Tm-C(7)\# 145.18(8); 3 Er-N(1) 2.432(2), Er-N(2) 2.392(2), $\mathrm{Er}-\mathrm{O}(1) 2.3010(17), \mathrm{Er}-\mathrm{I}(1) 2.9879(3), \mathrm{O}(1)-\mathrm{Er}-\mathrm{O}(1) \# 171.26(9), \mathrm{O}(1)-\mathrm{Er}-\mathrm{I}(1)$ 94.37(5), $\mathrm{C}(7)-\mathrm{Er}-\mathrm{O}(1) \quad 90.98(7), \mathrm{C}(7)-\mathrm{Er}-\mathrm{I}(1)$ 107.31(5), C(7)-Er-C(7)\# 145.39(11); $4 \mathrm{Ho}-\mathrm{N}(1)$ 2.402(3), Ho-N(2) 2.450(3), Но-O(1) 2.321(2), Ho-I(1) 3.0012(7), O(1)-Ho-O(1)\# 170.91(11), O(1)-Ho-I(1) 94.55(5), C(7)-Ho-O(1) 86.05(9), C(7)-Ho-I(1) 107.47(6), C(7)-Ho-C(7)\# 145.07(13); 5 Dy-N(1) 2.407(2), Dy-N(2) 2.449(2), Dy-O(1) 2.3292(19), Dy-I(1) $3.0038(3), \mathrm{O}(1)-\mathrm{Dy}-\mathrm{O}(1) \# 170.79(10), \mathrm{O}(1)-\mathrm{Dy}-\mathrm{I}(1) 94.61(5), \mathrm{C}(7)-\mathrm{Dy}-\mathrm{O}(1) 91.19(7), \mathrm{C}(7)-$ Dy-I(1) 107.49(6), C(7)-Dy-C(7)\# 145.02(12); 6 Gd-N(1) 2.485(4), Gd-N(2) 2.459(4), Gd$\mathrm{O}(1)$ 2.367(4), Gd-I(1) 3.0307(7), O(1)-Gd-O(1)\# 170.82(14), O(1)-Gd-I(1) 94.59(7), C(7)-Gd-O(1) 91.37(13), C(7)-Gd-I(1) 107.20(9), C(7)-Gd-C(7)\# 145.59(18).

4.2 The complexes $\left[\mathbf{L n}(\mathbf{D F F o r m}) \mathbf{I}_{2}(\text { (thf })_{3}\right]$ (9-11)

$9 \mathrm{Gd}-\mathrm{N}(1) 2.399(5), \mathrm{Gd}-\mathrm{N}(2) 2.499(6), \mathrm{Gd}-\mathrm{O}(1) 2.390(4), \mathrm{Gd}-\mathrm{O}(2) 2.427(4), \mathrm{Gd}-\mathrm{O}(3)$ 2.460(5), $\mathrm{Gd}-\mathrm{I}(1) 3.0343(7), \mathrm{Gd}-\mathrm{I}(2) 3.0401(8), \mathrm{O}(1)-\mathrm{Gd}-\mathrm{O}(2) 71.42(16), \mathrm{O}(1)-\mathrm{Gd}-\mathrm{O}(3)$ 145.65(16), O(2)-Gd-O(3) 74.34(16), I(1)-Gd-I(2) 172.242(11), C(7)-Gd-I(1) 98.67(14), $\mathrm{C}(7)-\mathrm{Gd}-\mathrm{I}(2) 89.07(14) ; 10 \mathrm{Sm}-\mathrm{N}(1) 2.430(3), \mathrm{Sm}-\mathrm{N}(2) 2.500(3), \mathrm{Sm}-\mathrm{O}(1) 2.420(3), \mathrm{Sm}-$ O(2) 2.434(3), Sm-O(3) 2.492(3), Sm-I(1) 3.0512(6), Sm-I(2) 3.0553(6), O(1)-Sm-O(2) 71.78(10), O(1)-Sm-O(3) 145.94(10), O(2)-Sm-O(3) 74.16(10), I(1)-Sm-I(2) 170.351(11), C(7)-Sm-I(1) 99.96(8), C(7)-Sm-I(2) 89.47(8); 11 Nd-N(1) 2.435(2), Nd-N(2) 2.542(2), Nd$\mathrm{O}(1) 2.4339(17), \mathrm{Nd}-\mathrm{O}(2) 2.4669(17), \mathrm{Nd}-\mathrm{O}(3) 2.5086(18), \mathrm{Nd}-\mathrm{I}(1) 3.0796(3), \mathrm{Nd}-\mathrm{I}(2)$ $3.0870(3), \mathrm{O}(1)-\mathrm{Nd}-\mathrm{O}(2) 71.47(6), \mathrm{O}(1)-\mathrm{Nd}-\mathrm{O}(3) 145.53(6), \mathrm{O}(2)-\mathrm{Nd}-\mathrm{O}(3) 74.17(6), \mathrm{I}(1)-$ Nd-I(2) 171.046(7), C(7)-Nd-I(1) 99.41(5), C(7)-Nd-I(2) 89.54(5).

4.3 The complex $\left[\mathrm{Ln}(\mathrm{DippForm})_{2} \mathbf{I}_{2}(\mathrm{thf})_{3}\right](12,14,15)$

Fig. S9. Molecular diagram of $\left[\mathrm{Lu}(\right.$ DippForm $\left.) \mathrm{I}_{2}(\mathrm{thf})_{3}\right] \cdot 2 \mathrm{thf}(\mathbf{1 2)}$ (representative of $\mathrm{Lu}, \mathbf{1 2}$, $\mathrm{Gd}, \mathbf{1 4}, \mathrm{Nd}, 15)$ with non-hydrogen atoms represented by 50% thermal ellipsoids. The lattice thf molecules and hydrogen atoms have been omitted for clarity.
$12 \mathrm{Lu}-\mathrm{N}(1)$ 2.366(6), Lu-N(2) 2.330(6), Lu-O(1) 2.363(5), Lu-O(2) 2.422(5), Lu-O(3) 2.358(5), Lu-I(1) 2.9695(5), Lu-I(2) 2.9765(5), O(1)-Lu-O(2) 73.60(17), O(1)-Lu-O(3) 146.53(17), O(2)-Lu-O(3) 73.13(17), I(1)-Lu-I(2) 166.075(18), C(13)-Lu-I(1) 99.51(13), $\mathrm{C}(13)-\mathrm{Lu}-\mathrm{I}(2) 94.40(13) ; 14 \mathrm{Gd}-\mathrm{N}(1) 2.420(8), \mathrm{Gd}-\mathrm{N}(2) 2.433(9)$, $\mathrm{Gd}-\mathrm{O}(1) 2.421(7)$, Gd$\mathrm{O}(2) 2.474(8), \mathrm{Gd}-\mathrm{O}(3) 2.425(9), \mathrm{Gd}-\mathrm{I}(1) 3.0596(10), \mathrm{Gd}-\mathrm{I}(2) 3.068(8), \mathrm{O}(1)-\mathrm{Gd}-\mathrm{O}(2)$ 74.5(4), O(1)-Gd-O(3) 148.2(3), O(2)-Gd-O(3) 73.7(3), I(1)-Gd-I(2) 167.34(17), C(13)-GdI(1) 96.11(8), C(13)-Gd-I(2) 96.47(10); $\mathbf{1 5} \mathrm{Nd}-\mathrm{N}(1) 2.462(4), \mathrm{Nd}-\mathrm{N}(2) 2.477(4), \mathrm{Nd}-\mathrm{O}(1)$ 2.472(3), Nd-O(2) 2.547(3), Nd-O(3) 2.478(4), Nd-I(1) 3.1115(4), Nd-I(2) 3.1155(4), O(1)-$\mathrm{Nd}-\mathrm{O}(2) \quad 73.86(12), \quad \mathrm{O}(1)-\mathrm{Nd}-\mathrm{O}(3)$ 147.58(12), $\mathrm{O}(2)-\mathrm{Nd}-\mathrm{O}(3) 73.79(11), \quad \mathrm{I}(1)-\mathrm{Nd}-\mathrm{I}(2)$ 167.663(12), C(13)-Nd-I(1) 95.5008(12), C(13)-Nd-I(2) 96.8340(12).

4.4 The complex $\left[\mathrm{Nd}(\mathrm{DFForm})_{2} \mathrm{Cp}(\text { thf })_{2}\right] \cdot$ thf 16

We do not provide detailed bond lengths and angles for this compound as it is only submitted for connectivity only. As stated above there were issues in the refinement of this compound.

4.5 The complexes $\left[\mathrm{Eu}(\mathrm{DFForm})_{2}(\mathrm{py})_{3}\right] 18$ and $\left.\left[\mathrm{EuI}_{2}(\text { thf })_{3}(\mathrm{py})_{2}\right]\right] \cdot 0.5$ thf 18a

$\left[\operatorname{EuI}_{2}(\operatorname{thf})_{2}(\mathrm{py})_{3}\right] \cdot 0.5$ thf 18 a crystallized in the trigonal space group $R-3 c$. The Eu atom is seven coordinates with two trans iodide ligands (I1-Eu-I1\# 177.47(3) ${ }^{\circ}$), three mer py ligands
[N1-Eu-N1\# 76.9(3), N1-Eu-N2 141.54(13)], and two transoid thf ligands [O-Eu-O1\# 139.2(3)] (Fig. S10). The average bond distance for 18a [Eu-O 2.629(6), Eu-I 3.2561(6), EuN 2.675(2)] is a little longer than the pentagonal bipyramid coordinated Eu complex $\left[\mathrm{EuI}_{2}(\mathrm{thf})_{5}\right]$ [Eu-O 2.598(14), Eu-I 3.234(2)], and the two iodide ligands are also in trans position [I1-Eu-I1\# $\left.177.83(6)^{\circ}\right]$ in $\left[\mathrm{EuI}_{2}(\text { thf })_{5}\right] .{ }^{11}$

Fig. S10 Molecular structure of $\left[\mathrm{EuI}_{2}(\operatorname{thf})_{2}(\mathrm{py})_{3}\right] \cdot 0.5$ thf 18 a represented by 50% thermal ellipsoids. Hydrogen atoms and the lattice thf molecular have been omitted for clarity.

18 Eu-N1 2.6072(14), Eu-N2 2.7329(14), Eu-N3 2.7023(16), Eu-N4 2.705(2), C7-Eu-C7\#: 130.085; 18a Eu-N1 2.672(6), Eu-N2 2.677(11), Eu-O1 2.629(6), Eu-I1 3.2561(6), I1-Eu-I1\# 177.45(3), O1-Eu-O1\# 139.2(3), N1-Eu-N2 141.53(13), N1-Eu-N1\# 76.9(3).

Fig. S11 ${ }^{1} \mathrm{H}$ NMR spectra of (up) $\left[\mathrm{Nd}(\text { DFForm })_{2} \mathrm{I}(\text { thf })_{2}\right](7)$; (down) $\left[\mathrm{Nd}(\right.$ DFForm $\left.) \mathrm{I}_{2}(\text { (hf })_{3}\right]$ (10)

Fig. S12 ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{Sm}(\right.$ DFForm $\left.) \mathrm{I}_{2}(\mathrm{thf})_{3}\right]$ (11)

5. References

[1]. R. M. Roberts, J. Org. Chem., 1949, 14, 277.
[2]. G. B. Deacon, P. C. Junk and D. Werner, Chem. Eur. J., 2016, 22, 160.
[3]. S. Hamidi, G. B. Deacon, P. C. Junk and P. Neumann, Dalton Trans., 2012, 41, 3541.
[4]. Sheldrick, G. M. SADABS; University of Gottingen, Gcottingen (Germany), 1996.
[5]. CrysAlisPRO v.39. Agilent Technologies Ltd., Yarnton, Oxfordshire, England.
[6]. T. M. McPhillips, S. E. McPhillips, H. J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis and J. P. Kuhn, J. Synchrotron Radiat., 2002, 9, 401.
[7]. W. Kabsch, J. Appl. Crystallogr., 1993, 26, 795.
[8]. G. M. Sheldrick, Acta Crystallogr. Sect. A., 2008, 64, 112.
[9]. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339.
[10]. G. M. Sheldrick, Acta Cryst., 2015, C71, 3.
[11]. L. J. Barbour, J. Supramol. Chem., 2001, 1, 189.
[12]. G. Heckmann and M. Niemeyer, J. Am. Chem. Soc., 2000, 122, 4227.

