SUPPLEMENTARY INFORMATION

A simple one-pot route to stable formamidinatoiodidolanthanoid(III)

complexes from lanthanoid metals

Zhifang Guo, ^{a, b} Victoria L. Blair, ^a Glen B. Deacon, ^{a*} and Peter C. Junk^{b*}

"School of Chemistry, Monash University, Clayton, VIC, 3800, Australia.

^bCollege of Science & Engineering, James Cook University, Townsville, QLD, 4811, Australia.

*Corresponding author: peter.junk@jcu.edu.au; glen.deacon@monash.edu

Contents

- 1. Syntheses
- 2. ¹H and ¹⁹F NMR Spectra of complexes
- 3. X-ray crystallography
- 4. Selected bond angles (°) and lengths (Å)
- 5. References

1. Syntheses

General

The lanthanoid compounds described here are highly air and moisture sensitive, and were prepared and handled with vacuum-nitrogen line techniques and in a dry box in an atmosphere of purified nitrogen. N,N'-bis(2,6-difluorophenyl)formamidinine and N,N'-bis(diisopropylphenyl)formamidinate were prepared by the literature method.¹ Lanthanoid metals were from Santoku/Molycorp/Eutectix. Large chunks were filed in the drybox before use. All other chemicals were purchased from Sigma Aldrich. Solvents (thf, C₆D₆) were pre-dried by distillation over sodium or sodium benzophenone ketyl before being stored under an atmosphere of nitrogen. Pyridine was distilled over potassium hydroxide, degassed and stored over dried 4Å molecular sieves. IR spectra were recorded as Nujol mulls between NaCl plates using an Agilent Technologies Cary 630 FTIR instrument within the range 4000-700 cm⁻¹. ¹H NMR and proton decoupled ¹⁹F NMR spectra were recorded with a Bruker DPX 300MHz spectrometer or a Bruker 400MHz instrument. Chemical shifts were referenced to the residual ¹H resonances of the deuterated solvents (¹H) or external CCl₃F (¹⁹F). Microanalyses were determined by the Elemental Analysis Service, London Metropolitan University, and all the samples were sealed in tubes under nitrogen. Melting points were determined in sealed glass capillaries under nitrogen and are uncalibrated. Crystals were immersed in crystallography oil, and were measured on a Bruker X8 APEXII SCXRD or the MX1 beamline at the Australian Synchrotron. Crystal data and refinement details are given in Table S1. CCDC 2082902-2082907 for compound 1-6, CCDC 2082909-2082911 for compound 9-11, 2099468 for compound 12, 2099469-2099470 for compound 14-15, 2082912 for compound 16, CCDC 2082913 for compound 18, CCDC 2082914 for compound 18a contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

General procedure for 1-11

Lanthanoid metal powder (1.0 mmol), iodine (0.1 mmol, 0.025 g), DFFormH (0.4 mmol, 0.107 g) (1-7) / iodine (0.5 mmol, 0.127 g), DFFormH (0.5 mmol, 0.134 g) (8-11) and dry THF (10ml) were stirred under nitrogen for three days at room temperature. After filtration of the reaction mixture, a small (0.3 ml) aliquot was monitored by ¹⁹F NMR, and ¹⁹F NMR

showed characteristic one resonance of $[Ln(DFForm)nI_{3-n}]$ (n = 1, 2), which confirmed the consumption of DFFormH and formation of $[Ln(DFForm)nI_{3-n}]$ (n = 1, 2) on completion. The filtrates were evaporated to half volume under vacuum, and the crystals were obtained. Yields were calculated based on the DFFormH ligand.

[Lu(DFForm)₂I(thf)₂] 1

Yellow crystals (0.149 g, 76%), M.p. 148-150 °C, (Found: C, 41.80; H, 2.93; N, 5.66; $C_{34}H_{30}F_8ILuN_4O_2$ (980.49) requires C, 41.65; H, 3.08; N, 5.71 %). IR (Nujol): 1667m, 1586w, 1297m, 1261s, 1208m, 1092s, 1016s, 950m, 916m, 865m, 800s, 780s, 718m cm ⁻¹. ¹H NMR (C₆D₆, 300 MHz): 9.04 (s, 2H, NCHN), 6.48 (m, 8H, H(3,5)), 6.30 (m, 4H, H(4)), 3.83 (m, 8H, thf), 1.45 (m, 8H, thf). ¹⁹F NMR (C₆D₆, 300MHz, ppm): δ = -123.8 (s).

[Tm(DFForm)₂I(thf)₂] 2

Yellow crystals (0.160 g, 82%), M.p. 202-204 °C, (Found: C, 41.71; H, 3.09; N, 5.42; $C_{34}H_{30}F_8IN_4O_2Tm$ (974.45) requires C, 41.91; H, 3.10; N, 5.75 %). IR (Nujol): 1665m, 1562s, 1291s, 1265s, 1222s, 1064s, 1008s, 953m, 918m, 864s, 800s, 777s, 720s cm ⁻¹. ¹⁹F NMR (thf, ext. CFCl₃, ppm): δ = -124.8 (s).

[Er(DFForm)₂I(thf)₂] 3

Pink crystals (0.138 g, 71%), M.p.198-200 °C, (Found: C, 41.79; H, 3.28; N 5.54; $C_{34}H_{30}ErF_8IN_4O_2$ (972.78) requires C, 41.98; H, 3.11; N, 5.76 %). IR (Nujol): 1668m, 1579s, 1296s, 1264s, 1219s, 1098s, 1014s, 952m, 918m, 865s, 801s, 770s, 718s cm ⁻¹. ¹⁹F NMR (thf, ext. CFCl₃, ppm): δ = -123.9 (s).

[Ho(DFForm)₂I(thf)₂] 4

Pink crystals (0.172 g, 95%), M.p.180-182 °C, (Found: C, 41.84; H, 3.27; N, 5.48; $C_{34}H_{30}F_8HoIN_4O_2$ (970.45) requires C, 42.08; H, 3.12; N, 5.77 %). IR (Nujol): 1667m, 1566s, 1294s, 1265s, 1218m, 1074s, 1013s, 952m, 918m, 863s, 802s, 777s, 721s cm ⁻¹. ¹⁹F NMR (thf, ext. CFCl₃, ppm): δ = -124.5 (s).

[Dy(DFForm)₂I(thf)₂] 5

Colourless crystals (0.158 g, 81%), M.p.196-198 °C, (Found: C, 42.15; H, 3.07; N, 5.77; $C_{34}H_{30}DyF_8IN_4O_2$ (968.02) requires C, 42.19; H, 3.12; N, 5.79 %). IR (Nujol): 1667m, 1579vs, 1294s, 1261vs, 1217m, 1095m, 1013s, 947m, 916m, 864s, 800s, 773s, 718s cm ⁻¹. ¹⁹F NMR (thf, ext. CFCl₃, ppm): δ = -124.2 (s).

[Gd(DFForm)₂I(thf)₂] 6

Colourless crystals (0.165 g, 85%), M.p.188-190 °C, (Found: C, 42.29; H, 3.09; N, 5.90; $C_{34}H_{30}F_8GdIN_4O_2$ (962.77) requires C, 42.42; H, 3.14; N, 5.82 %). IR (Nujol): 1667w, 1568s, 1294s, 1262s, 1217m, 1072s, 1011s, 952m, 915m, 858s, 802s, 778s, 719s cm ⁻¹. ¹⁹F NMR (thf, ext. CFCl₃, ppm): δ = -128.6 (s).

[Nd(DFForm)₂I(thf)₂] 7

Purple crystals of 7 crystallized in the monoclinic space group C2/c, a = 16.3338(6) Å, b = 11.8553(3) Å, c = 19.2719(6) Å, $\beta = 107.258(4)$ °, V = 3563.8(2) Å³, which had unit cell parameters in agreement with those of the other [Ln(DFForm)₂I(thf)₂] complexes (Table S1). The poor quality of the crystals precluded a structure determination.

[Lu(DFForm)I₂(thf)₃] 8

Colourless crystals (0.344 g, 75%), M.p.192-194 °C, (Found: C, 32.67; H, 3.31; N, 3.20; $C_{25}H_{31}F_4I_2N_2LuO_3$ (912.29) requires C, 32.91; H, 3.42; N, 3.07 %). IR (Nujol): 1666m, 1616s, 1564s, 1297s, 1270s, 1217s, 1100m, 1065s, 1006s, 959m, 912m, 882s, 854s, 780s, 741s, 720s cm ⁻¹. ¹H NMR (C₆D₆, 300 MHz): 9.03 (s, 1H, NCHN), 6.43 (m, 4H, H(3,5)), 6.31 (m, 2H, H(4)), 3.65 (m, 12H, thf), 1.43 (m, 12H, thf). ¹⁹F NMR (C₆D₆, 300MHz, ppm): δ = -123.8 (s).

[Gd(DFForm)I₂(thf)₃] 9

Colourless crystals (0.358 g, 80%), M.p.172-174 °C, (Found: C, 33.33; H, 3.24; N, 3.01; $C_{25}H_{31}F_4GdI_2N_2O_3$ (894.57) requires C, 33.57; H, 3.49; N, 3.13 %). IR (Nujol): 1669s, 1615s, 1566s, 1298m, 1264s, 1214m, 1096m, 1067s, 1016s, 959w, 914m, 878s, 856s, 780s, 741m, 719s cm ⁻¹. ¹⁹F NMR (thf, ext. CFCl₃, ppm): δ = -124.5 (s).

[Sm(DFForm)I₂(thf)₃] 10

Colourless crystals (0.352 g, 79%, M.p.134-136 °C, (Found: C, 34.02; H, 3.26; N, 3.21; $C_{25}H_{31}F_4I_2N_2O_3Sm$ (887.67) requires C, 33.83; H, 3.52; N, 3.16 %). IR (Nujol): 1666m, 1616s, 1559m, 1297s, 1270w, 1216m, 1108m, 1072s, 1030s, 954w, 915m, 871s, 856s, 776m, 739w, 721m cm ⁻¹. ¹⁹F NMR (C_6D_6 , 300MHz, ppm): δ = -125.2 (s).

[Nd(DFForm)I₂(thf)₃] 11

Purple crystals (0.389 g, 88%), M.p.146-148 °C, (Found: C, 33.89; H, 3.62; N, 2.86; $C_{25}H_{31}F_4I_2N_2NdO_3$ (881.56) requires C, 34.06; H, 3.54; N, 3.18 %). IR (Nujol): 1668s,

1614m, 1556w, 1311s, 1263s, 1205m, 1096m, 1063s, 1002s, 956w, 914m, 875s, 856s, 775s, 740w, 722m cm ⁻¹. ¹⁹F NMR (C₆D₆, 300MHz, ppm): δ = -124.5 (s).

General procedure for 12-14

Lanthanoid metal powder (1.0 mmol), iodine (0.5 mmol, 0.127 g), DippFormH (0.5 mmol, 0.182) and dry THF (10ml) were placed in a Schlenk flask in a nitrogen-filled dry box. The mixture was ultrasonicated for one week. The reaction mixture was filtered. Crystals were obtained after the filtrates were evaporated to half volume under vacuum. Yields were calculated based on the DippFormH ligand.

[Lu(DippForm)I₂(thf)₃]·2thf 12

Colourless crystals (0.403 g, 70%), M.p. 252-254 °C, (Found: C, 46.80; H, 6.92; N, 3.17; Lu, 15.04; $C_{45}H_{75}I_2LuN_2O_5$ (1152.84) requires C, 46.88; H, 6.56; N, 2.43; Lu, 15.18 %). IR (Nujol): 1666m, 1591w, 1524m, 1323w, 1272s, 1189m, 1100m, 1067s, 1018s, 935m, 915w, 865m, 803s, 756w, 722s cm ⁻¹. ¹H NMR (C_6D_6 , 400 MHz): 8.32 (s, 1H, NCHN), 7.18-7.09 (m, 6H, H(3,4,5)), 4.30 (m, 4H, CH), 3.54 (m, 20H, thf), 1.47-1.26 (m, 24H, CH₃), 1.18 (m, 20H, thf).

[Dy(DippForm)I₂(thf)₃] 13

Colourless crystals (0.388g, 78%), M.p. 208-210 °C, (Found: C, 44.71; H, 6.15; N, 2.67; $C_{37}H_{59}DyI_2N_2O_3$ (996.18) requires C, 44.61; H, 5.97; N, 2.81 %). IR (crystal oil): 1666m, 1589m, 1528s, 1325s, 1276s, 1181s, 1106s, 1062s, 1018vs, 936s, 911s, 885s, 801s, 770s, 716m cm ⁻¹. **13** crystallized in the orthorhombic space group *Pbca*, *a*=19.469(4) Å, *b*=18.915(4) Å, *c*=24.240(5) Å, *V*=8927(3) Å³, which is similar to other [Ln(DippForm)I₂(thf)₃] complexes.

[Gd(DippForm)I₂(thf)₃]·thf 14

Colourless crystals (0.355 g, 72%), M.p. 208-210 °C, (Found: C, 44.70; H, 6.18; N, 2.71; $C_{37}H_{59}GdI_2N_2O_3$ (990.91, loss of one thf in lattice) requires C, 44.80; H, 6.10; N, 2.82 %). IR (Nujol): 1666m, 1592m, 1525s, 1320s, 1272s, 1192s, 1102s, 1067s, 1019vs, 935s, 916s, 864s, 805s, 762s, 724m cm⁻¹.

[Nd(DippForm)I₂(thf)₃]·thf 15

Purple crystals (0.412 g, 81%), M.p. 226-228 °C. (Found: C, 46.19; H, 6.42; N, 3.97; Nd, 14.45; C₄₁H₆₇I₂N₂NdO₄ (1050.00) requires C, 46.90; H, 6.43; N, 2.67; Nd, 13.74 %). IR (Nujol): 1667m, 1592w, 1534w, 1319w, 1260s, 1182m, 1102s, 1072s, 1021s, 937w, 916w,

861m, 804s, 763s, 724m cm⁻¹. ¹H NMR (C₆D₆, 400 MHz): 30.04 (s, 1H, NCHN), 10.13 (m, 4H, CH), 8.45 (m, 6H, H(3,4,5)), 4.67 (m, 18H, CH₃), 3.06 (m, 12H, thf), 1.32 (m, 6H, CH₃), -2.01 (m, 12H, thf), the solvated thf lost.

Attempted reaction to obtain [Ln(DippForm)₂I] (Ln = Gd, Dy)

Lanthanoid metal powder (1.0 mmol), iodine (0.1 mmol, 0.025 g), DippFormH (0.4 mmol, 0.146) and dry THF (10ml) were placed in a Schlenk flask in a nitrogen-filled dry box. The mixture was ultrasonicated for one week. The reaction mixture was filtered. Crystals were obtained both $[Ln(DippForm)I_2(thf)_3]$ and DippFormH were obtained after the filtrates were evaporated to half volume under vacuum, which were checked by the unit cell.

[Nd(DFForm)₂Cp(thf)₂]·thf 16

The crystals of 7 (0.1 mmol, 0.09 g) were directly reacted with TlCp (0.1 mmol, 0.03 g), the reaction mixture was stirred in thf for three days. The resulting mixture was filtered and the filtrate was concentrated under vacuum. Purple crystals of $[Nd(DFForm)_2Cp(thf)_2]$ thf were obtained after stored at -20 °C for one week, and identified by X-ray crystallography.

[Yb(DFForm)₂(thf)₃] 17 and [YbI₂(thf)₄] 17a

Ytterbium powder (2.00 mmol), iodine (0.5 mmol, 0.127 g), DFFormH (1.0 mmol, 0.134 g) and dry thf (10ml) were stirred for two days. The resulting mixture was filtered and the filtrate was concentrated under vacuum. Red crystals of a mixture of **17** and **17a** were obtained at -20 °C overnight. For **17** the unit cell is a=10.975 (2) Å, b=13.271(3) Å, c=13.973 (3) Å, $\alpha =90.98(3)^{\circ}$, $\beta =109.30(3)^{\circ}$, $\gamma =103.50(3)^{\circ}$, V=1857.8 (8) Å³, which similar to the one reported in 2016, unit cell is a=10.8778 (8) Å, b=13.7732 (6) Å, c=13.7857 (6) Å, $\alpha =88.907(4)^{\circ}$, $\beta =71.716(5)^{\circ}$, $\gamma =72.277(5)^{\circ}$, V=1861.36(18) Å^{3.2} For **17a** the unit cell is a=8.3890(17) Å, b=9.829(2) Å, c=13.697(3) Å, $\alpha=80.08(3)^{\circ}$, $\beta=87.72(3)^{\circ}$, $\gamma=86.99(3)^{\circ}$, V=1110.4(4) Å³. Reported unit cell is a=8.444(1) Å, b=9.810(<1) Å, c=13.618(1) Å, $\alpha=79.67(<1)^{\circ}$, $\beta=87.99(<1)^{\circ}$, $\gamma=87.36(<1)^{\circ}$, V=1108.199 Å^{3.3} ¹⁹F NMR (thf, C₆D₆, 300 MHz, ppm) of the reaction mixture: $\delta=-122.8$, 123.4.

[Eu(DFForm)₂(py)₃] 18 and [EuI₂(thf)₂(py)₃]] ·0.5thf 18a

Europium powder (2.00 mmol), iodine (0.5 mmol, 0.127 g), DFFormH (1.0 mmol, 0.134 g) and dry py (10ml) were stirred under nitrogen for two days. The resulting mixture was filtered and the filtrate was concentrated under vacuum. Orange crystals of **18** were obtained after evaporation of the reaction mixture under vacuum, and identified by X-ray

crystallography. **18a** was obtained after the filtrate (which did not deposit crystals) was evaporated and the residua was recrystallized from thf. ¹⁹F NMR (thf, C₆D₆, 300 MHz, ppm) of the reaction mixture: δ = -115.9, 121.4.

2. ¹H and ¹⁹F NMR Spectra of complexes

Fig. S1 Typical ¹⁹F{¹H} NMR spectra of the reaction mixtures giving Ln(DFForm)₂I(thf)₂] (Ln=Lu, 1, Gd, 6) and [Ln(DFForm)I₂(thf)₃] (Ln=Lu, 8, Gd, 9)

Fig. S2 ¹H NMR spectra of (up) $[Lu(DFForm)_2I(thf)_2]$ (1); (down) $[Lu(DFForm)I_2(thf)_3]$ (8)

Fig. S4 ¹H NMR spectrum of $[Nd(DippForm)I_2(thf)_3]$ ·0.5thf (15)

Fig. S5. ¹⁹F NMR spectra of the reaction mixture of (a)Yb with I_2 and DFFormH; (b) Eu with I_2 and DFFormH.

Fig. S6. 171 Yb NMR spectra of (a) the reaction mixture of Yb with I₂ and DFFormH; (b)

Fig. S7. ¹H NMR spectrum of the NMR tube scale reaction mixture of Lu, I_2 and DFFormH in d_8 -thf

gzf-19-9-8.1.fid Nd(DFForm)2Cp

> -50 -60 -70 f1 (ppm) 50 40 30 20 10 0 -10 -20 -30 -40 -100 -110 -120 -130 -140 -150 -160 -170 -80 -90

Fig. S8. ¹H NMR spectrum of reaction mixture of Nd(DFForm)₂I and NaCp

3. X-ray crystallography

Single crystals coated with viscous hydrocarbon oil were mounted on glass fibres or loops. Complexes 3, 5 and 11 were measured on a "Bruker APEX-II CCD' diffractometer equipped with graphite-monochromated Mo-K radiation ($\lambda = 0.71073$ Å) at 123 K, mounted on a fibre loop in crystallography oil. Absorption corrections were completed using Apex II program suite using SADABS.⁴ Complexes 2, 12 and 15 were measured on a Rigaku SynergyS diffractometer. The SynergyS operated using microsource Mo-K α radiation ($\lambda = 0.71073$ Å) at 123 K. Data processing was conducted using CrysAlisPro.55 software suite.⁵ Others were measured at the Australian Synchrotron on the MX1 (1, 4, 6, 9-10, 14, 16, 18, 18a) macromolecular beamlines, data integration was completed using Blue-ice ⁶ and XDS ⁷ software programs. Structural solutions were obtained by either direct methods ⁸ or charge flipping ⁹ methods and refined using full-matrix least-squares methods against F² using SHELX2015,¹⁰ in conjunction with the X-Seed ¹¹ or Olex2 ⁹ graphical user interface. All hydrogen atoms were placed in calculated positions using the riding model. Crystal data and refinement details are given in Table S1. contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

The crystal structure of **16** is reported for connectivity only, as we collected 6 datasets of the crystal data by different diffractometers (both synchrotron and Rigaku). The same problems continually arose, viz, there is a large residual peak near to one of the THF molecules. We attempted to find a suitable twin law in PLATON, but no sensible result was obtained. This could be an artefact of twinning.

	1	2	3	4
Formula	C ₃₄ H ₃₀ F ₈ ILuN ₄ O ₂	$C_{34}H_{30}F_8IN_4O_2Tm$	$C_{34}H_{30}ErF_8IN_4O_2$	C ₃₄ H ₃₀ F ₈ HoIN ₄ O ₂
M_r	980.49	974.45	972.78	970.45
Crystal System	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	<i>C</i> 2/ <i>c</i>	<i>C</i> 2/ <i>c</i>	<i>C</i> 2/ <i>c</i>	<i>C</i> 2/ <i>c</i>
a (Å)	15.937(3)	15.9539(4)	15.9339(5)	15.929(3)
b (Å)	11.807(2)	11.8143(3)	11.8086(3)	11.845(2)

Table S1 Crystal data and structural refinement for lanthanoid complexes 1-18

<i>c</i> (Å)	18.619(4)	18.6508(4)	18.6639(5)	18.679(4)
α (°)	90	90	90	90
β (°)	106.55(3)	106.585(1)	106.344(2)	106.19(3)
γ (°)	90	90	90	90
$V(Å^3)$	3358.2(13)	3369.13(14)	3369.83 (17)	3384.5(13)
Z	4	4	4	4
$ ho_{\rm calc}, {\rm g \ cm^{-3}}$	1.939	1.921	1.917	1.905
μ , mm ⁻¹	3.942	3.632	3.489	3.332
$N_{ au}$	30283	13890	13071	38696
$N(R_{int})$	4760(0.0198)	4056(0.0143)	3847(0.0321)	2988(0.0380)
$R_1(I > 2 \sigma(I))$	0.0251	0.0161	0.0205	0.0201
wR_2 (all data)	0.0694	0.0380	0.0445	0.0505
GOF	1.091	1.153	1.015	1.102
	5	6	9	10
Formula	C ₃₄ H ₃₀ DyF ₈ IN ₄ O ₂	$C_{34}H_{30}F_8GdIN_4O_2$	$C_{25}H_{31}F_4GdI_2N_2O_3$	$C_{25}H_{31}F_4I_2N_2O_3Sm$
Mr	968.02	962.77	894.57	887.67
Crystal System	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Crystal System Space group	Monoclinic C2/c	Monoclinic C2/c	Monoclinic $P2_1/c$	Monoclinic $P2_1/n$
Crystal System Space group <i>a</i> (Å)	Monoclinic <i>C</i> 2/ <i>c</i> 15.9491(4)	Monoclinic C2/c 16.009(3)	Monoclinic P 2 ₁ / c 12.811(3)	Monoclinic P 2 ₁ / n 9.6230(19)
Crystal System Space group <i>a</i> (Å) <i>b</i> (Å)	Monoclinic C2/c 15.9491(4) 11.8365(3)	Monoclinic C2/c 16.009(3) 11.879(2)	Monoclinic P 2 ₁ / c 12.811(3) 9.4750(19)	Monoclinic P 2 ₁ / n 9.6230(19) 23.486(5)
Crystal System Space group <i>a</i> (Å) <i>b</i> (Å) <i>c</i> (Å)	Monoclinic C2/c 15.9491(4) 11.8365(3) 18.7114(6)	Monoclinic C2/c 16.009(3) 11.879(2) 18.931(4)	Monoclinic P 2 ₁ / c 12.811(3) 9.4750(19) 23.728(5)	Monoclinic P 2 ₁ / n 9.6230(19) 23.486(5) 12.883(3)
Crystal System Space group <i>a</i> (Å) <i>b</i> (Å) <i>c</i> (Å) α (°)	Monoclinic C2/c 15.9491(4) 11.8365(3) 18.7114(6) 90	Monoclinic C2/c 16.009(3) 11.879(2) 18.931(4) 90	Monoclinic P21/c 12.811(3) 9.4750(19) 23.728(5) 90	Monoclinic P 2 ₁ / n 9.6230(19) 23.486(5) 12.883(3) 90
Crystal System Space group a (Å) b (Å) c (Å) α (°) β (°)	Monoclinic C2/c 15.9491(4) 11.8365(3) 18.7114(6) 90 106.203 (2)	Monoclinic C2/c 16.009(3) 11.879(2) 18.931(4) 90 106.04(3)	Monoclinic P21/c 12.811(3) 9.4750(19) 23.728(5) 90 91.79(3)	Monoclinic P 2 ₁ / n 9.6230(19) 23.486(5) 12.883(3) 90 92.89(3)
Crystal System Space group a (Å) b (Å) c (Å) α (°) β (°) γ (°)	Monoclinic C2/c 15.9491(4) 11.8365(3) 18.7114(6) 90 106.203 (2) 90	Monoclinic C2/c 16.009(3) 11.879(2) 18.931(4) 90 106.04(3) 90	Monoclinic P21/c 12.811(3) 9.4750(19) 23.728(5) 90 91.79(3) 90	Monoclinic P 2 ₁ / n 9.6230(19) 23.486(5) 12.883(3) 90 92.89(3) 90
Crystal System Space group a (Å) b (Å) c (Å) α (°) β (°) γ (°) V (Å ³)	Monoclinic C2/c 15.9491(4) 11.8365(3) 18.7114(6) 90 106.203 (2) 90 3392.06 (17)	Monoclinic C2/c 16.009(3) 11.879(2) 18.931(4) 90 106.04(3) 90 3460.1(13)	Monoclinic P21/c 12.811(3) 9.4750(19) 23.728(5) 90 91.79(3) 90 2878.8(10)	Monoclinic P 2 ₁ / n 9.6230(19) 23.486(5) 12.883(3) 90 92.89(3) 90 2907.9(10)
Crystal System Space group a (Å) b (Å) c (Å) α (°) β (°) γ (°) V (Å ³) Z	Monoclinic C2/c 15.9491(4) 11.8365(3) 18.7114(6) 90 106.203 (2) 90 3392.06 (17) 4	Monoclinic C2/c 16.009(3) 11.879(2) 18.931(4) 90 106.04(3) 90 3460.1(13) 4	Monoclinic P21/c 12.811(3) 9.4750(19) 23.728(5) 90 91.79(3) 90 2878.8(10) 4	Monoclinic P 2 ₁ / n 9.6230(19) 23.486(5) 12.883(3) 90 92.89(3) 90 2907.9(10) 4
Crystal System Space group a (Å) b (Å) c (Å) α (°) β (°) γ (°) V (Å ³) Z ρ_{calc} , g cm ⁻³	Monoclinic C2/c 15.9491(4) 11.8365(3) 18.7114(6) 90 106.203 (2) 90 3392.06 (17) 4 1.896	Monoclinic C2/c 16.009(3) 11.879(2) 18.931(4) 90 106.04(3) 90 3460.1(13) 4 1.848	Monoclinic P21/c 12.811(3) 9.4750(19) 23.728(5) 90 91.79(3) 90 2878.8(10) 4 2.064	Monoclinic P 2 ₁ / n 9.6230(19) 23.486(5) 12.883(3) 90 92.89(3) 90 2907.9(10) 4 2.028
Crystal System Space group a (Å) b (Å) c (Å) α (°) β (°) γ (°) V (Å ³) Z ρ_{calc} , g cm ⁻³ μ , mm ⁻¹	Monoclinic C2/c 15.9491(4) 11.8365(3) 18.7114(6) 90 106.203 (2) 90 3392.06 (17) 4 1.896 3.195	Monoclinic C2/c 16.009(3) 11.879(2) 18.931(4) 90 106.04(3) 90 3460.1(13) 4 1.848 2.890	Monoclinic P21/c 12.811(3) 9.4750(19) 23.728(5) 90 91.79(3) 90 2878.8(10) 4 2.064 4.503	Monoclinic P 2 ₁ / n 9.6230(19) 23.486(5) 12.883(3) 90 92.89(3) 90 2907.9(10) 4 2.028 4.197
Crystal System Space group a (Å) b (Å) c (Å) α (°) β (°) γ (°) V (Å ³) Z ρ_{calc} , g cm ⁻³ μ , mm ⁻¹ N_{τ}	Monoclinic C2/c 15.9491(4) 11.8365(3) 18.7114(6) 90 106.203 (2) 90 3392.06 (17) 4 1.896 3.195 31166	Monoclinic C2/c 16.009(3) 11.879(2) 18.931(4) 90 106.04(3) 90 3460.1(13) 4 1.848 2.890 19110	Monoclinic P21/c 12.811(3) 9.4750(19) 23.728(5) 90 91.79(3) 90 2878.8(10) 4 2.064 4.503 32403	Monoclinic P 2 ₁ / n 9.6230(19) 23.486(5) 12.883(3) 90 92.89(3) 90 2907.9(10) 4 2.028 4.197 33855
Crystal System Space group a (Å) b (Å) c (Å) α (°) β (°) γ (°) V (Å ³) Z ρ_{calc} , g cm ⁻³ μ , mm ⁻¹ N_{τ} $N(R_{int})$	Monoclinic C2/c 15.9491(4) 11.8365(3) 18.7114(6) 90 106.203 (2) 90 3392.06 (17) 4 1.896 3.195 31166 3480(0.0526)	Monoclinic C2/c 16.009(3) 11.879(2) 18.931(4) 90 106.04(3) 90 3460.1(13) 4 1.848 2.890 19110 2861(0.0577)	Monoclinic P21/c 12.811(3) 9.4750(19) 23.728(5) 90 91.79(3) 90 2878.8(10) 4 2.064 4.503 32403 5045(0.0392)	Monoclinic P 2 ₁ / n 9.6230(19) 23.486(5) 12.883(3) 90 92.89(3) 90 2907.9(10) 4 2.028 4.197 33855 4978(0.0405)
Crystal System Space group a (Å) b (Å) c (Å) α (°) β (°) γ (°) V (Å ³) Z ρ_{calc} , g cm ⁻³ μ , mm ⁻¹ N_{τ} $N(R_{int})$ $R_1(I > 2 \sigma (I))$	Monoclinic C2/c 15.9491(4) 11.8365(3) 18.7114(6) 90 106.203 (2) 90 3392.06 (17) 4 1.896 3.195 31166 3480(0.0526) 0.0225	Monoclinic C2/c 16.009(3) 11.879(2) 18.931(4) 90 106.04(3) 90 3460.1(13) 4 1.848 2.890 19110 2861(0.0577) 0.0323	Monoclinic P21/c 12.811(3) 9.4750(19) 23.728(5) 90 91.79(3) 90 2878.8(10) 4 2.064 4.503 32403 5045(0.0392) 0.0335	Monoclinic P 2 ₁ / n 9.6230(19) 23.486(5) 12.883(3) 90 92.89(3) 90 2907.9(10) 4 2.028 4.197 33855 4978(0.0405) 0.0271

GOF	1.070	1.103	1.183	1.057
	11	12	14	15
Formula	$C_{25}H_{31}F_4I_2N_2NdO_3$	C45H75I2LuN2O5	$C_{41}H_{67}GdI_2N_2O_4$	$C_{41}H_{67}I_2N_2NdO_4$
M _r	881.56	1152.84	1063.01	1050.00
Crystal System	Monoclinic	Triclinic	Orthorhombic	Orthorhombic
Space group	P 2 ₁ / c	P-1	Pbca	Pbca
<i>a</i> (Å)	12.8662(9)	11.6323(3)	18.831(4)	19.6958(3)
b (Å)	9.4950(6)	13.4896(3)	19.561(4)	18.9803(3)
c (Å)	23.7380(16)	16.2376(5)	24.134(5)	24.0171(5)
α (°)	90	99.391(2)	90	90
β (°)	91.727(3)	106.182(3)	90	90
γ (°)	90	97.937(2)	90	90
$V(Å^3)$	2898.6(3)	2368.45(12)	8890(3)	8978.4(3)
Ζ	4	2	8	8
$\rho_{\rm calc}, {\rm g \ cm^{-3}}$	2.020	1.617	1.588	1.554
μ , mm ⁻¹	3.976	3.431	2.920	2.570
$N_{ au}$	22302	42943	93420	53865
$N(R_{int})$	7251(0.0150)	8330(0.1019)	7576(0.0651)	7909(0.0435)
$R_1(I > 2 \sigma(I))$	0.0153	0.0492	0.0679	0.0309
wR_2 (all data)	0.0320	0.1391	0.1490	0.0750
GOF	1.117	1.062	1.137	1.071
	16	18	18a	
Formula	$C_{43}H_{43}F_8N_4NdO_3$	C ₄₁ H ₂₉ EuF ₈ N ₇	C ₂₅ H ₃₅ EuI ₂ N ₃ O _{2.5}	
M _r	960.05	923.67	823.32	
Crystal System	Monoclinic	Monoclinic	Trigonal	
Space group	P 2 ₁ / c	<i>C</i> 2/ <i>c</i>	R- 3c	
<i>a</i> (Å)	19.141(4)	12.8569 (3)	18.997(3)	
b (Å)	10.909(2)	17.2704 (4)	18.997(3)	
<i>c</i> (Å)	38.732(8)	18.0267(5)	43.447(9)	
α (°)	90	90	90	
β (°)	92.82(3)	107.775(1)	90	
γ (°)	90	90	120	

$V(Å^3)$	8078(3)	3811.64 (17)	13578(5)	
Ζ	8	4	18	
$\rho_{\rm calc}, {\rm g \ cm^{-3}}$	1.579	1.610	1.812	
μ , mm ⁻¹	1.368	1.725	4.150	
N_{τ}	94237	42811	51472	
$N(R_{int})$	15170(0.0569)	5362(0.0459)	2669(0.0582)	
$R_1(I > 2 \sigma(I))$	0.0802	0.0229	0.0339	
wR_2 (all data)	0.2256	0.0464	0.1009	
GOF	1.056	1.058	1.063	

4. Selected bond angles (°) and lengths (Å)

4.1 The complexes [Ln(DFForm)₂I(thf)₂] (1-6)

1 Lu-N(1) 2.363(3), Lu-N(2) 2.410(3), Lu-O(1) 2.272(3), Lu-I(1) 2.9754(7), O(1)-Lu-O(1)# 171.45(11), O(1)-Lu-I(1) 94.28(6), C(7)-Lu-O(1) 86.29(3), C(7)-Lu-I(1) 107.39(6), C(7)-Lu-C(7)# 145.22(13); **2** Tm-N(1) 2.3821(16), Tm-N(2) 2.4129(17), Tm-O(1) 2.2923(14), Tm-I(1) 2.9808(2), O(1)-Tm-O(1)# 170.83(8), O(1)-Tm-I(1) 94.59(4), C(7)-Tm-O(1) 86.77(5), C(7)-Tm-I(1) 107.41(4), C(7)-Tm-C(7)# 145.18(8); **3** Er-N(1) 2.432(2), Er-N(2) 2.392(2), Er-O(1) 2.3010(17), Er-I(1) 2.9879(3), O(1)-Er-O(1)# 171.26(9), O(1)-Er-I(1) 94.37(5), C(7)-Er-O(1) 90.98(7), C(7)-Er-I(1) 107.31(5), C(7)-Er-C(7)# 145.39(11); **4** Ho-N(1) 2.402(3), Ho-N(2) 2.450(3), Ho-O(1) 2.321(2), Ho-I(1) 3.0012(7), O(1)-Ho-O(1)# 170.91(11), O(1)-Ho-I(1) 94.55(5), C(7)-Ho-O(1) 86.05(9), C(7)-Ho-I(1) 107.47(6), C(7)-Ho-C(7)# 145.07(13); **5** Dy-N(1) 2.407(2), Dy-N(2) 2.449(2), Dy-O(1) 2.3292(19), Dy-I(1) 3.0038(3), O(1)-Dy-O(1)# 170.79(10), O(1)-Dy-I(1) 94.61(5), C(7)-Dy-O(1) 91.19(7), C(7)-Dy-I(1) 107.49(6), C(7)-Dy-C(7)# 145.02(12); **6** Gd-N(1) 2.485(4), Gd-N(2) 2.459(4), Gd-O(1) 2.367(4), Gd-I(1) 3.0307(7), O(1)-Gd-O(1)# 170.82(14), O(1)-Gd-I(1) 94.59(7), C(7)-Gd-O(1) 91.37(13), C(7)-Gd-I(1) 107.20(9), C(7)-Gd-C(7)# 145.59(18).

4.2 The complexes [Ln(DFForm)I₂(thf)₃] (9-11)

9 Gd-N(1) 2.399(5), Gd-N(2) 2.499(6), Gd-O(1) 2.390(4), Gd-O(2) 2.427(4), Gd-O(3) 2.460(5), Gd-I(1) 3.0343(7), Gd-I(2) 3.0401(8), O(1)-Gd-O(2) 71.42(16), O(1)-Gd-O(3) 145.65(16), O(2)-Gd-O(3) 74.34(16), I(1)-Gd-I(2) 172.242(11), C(7)-Gd-I(1) 98.67(14), C(7)-Gd-I(2) 89.07(14); **10** Sm-N(1) 2.430(3), Sm-N(2) 2.500(3), Sm-O(1) 2.420(3), Sm-O(2) 2.434(3), Sm-O(3) 2.492(3), Sm-I(1) 3.0512(6), Sm-I(2) 3.0553(6), O(1)-Sm-O(2) 71.78(10), O(1)-Sm-O(3) 145.94(10), O(2)-Sm-O(3) 74.16(10), I(1)-Sm-I(2) 170.351(11), C(7)-Sm-I(1) 99.96(8), C(7)-Sm-I(2) 89.47(8); **11** Nd-N(1) 2.435(2), Nd-N(2) 2.542(2), Nd-O(1) 2.4339(17), Nd-O(2) 2.4669(17), Nd-O(3) 2.5086(18), Nd-I(1) 3.0796(3), Nd-I(2) 3.0870(3), O(1)-Nd-O(2) 71.47(6), O(1)-Nd-O(3) 145.53(6), O(2)-Nd-O(3) 74.17(6), I(1)-Nd-I(2) 171.046(7), C(7)-Nd-I(1) 99.41(5), C(7)-Nd-I(2) 89.54(5).

4.3 The complex [Ln(DippForm)₂I₂(thf)₃] (12, 14, 15)

Fig. S9. Molecular diagram of $[Lu(DippForm)I_2(thf)_3]$ ·2thf (12) (representative of Lu, 12, Gd, 14, Nd, 15) with non-hydrogen atoms represented by 50% thermal ellipsoids. The lattice thf molecules and hydrogen atoms have been omitted for clarity.

12 Lu-N(1) 2.366(6), Lu-N(2) 2.330(6), Lu-O(1) 2.363(5), Lu-O(2) 2.422(5), Lu-O(3) 2.358(5), Lu-I(1) 2.9695(5), Lu-I(2) 2.9765(5), O(1)-Lu-O(2) 73.60(17), O(1)-Lu-O(3) 146.53(17), O(2)-Lu-O(3) 73.13(17), I(1)-Lu-I(2) 166.075(18), C(13)-Lu-I(1) 99.51(13), C(13)-Lu-I(2) 94.40(13); **14** Gd-N(1) 2.420(8), Gd-N(2) 2.433(9), Gd-O(1) 2.421(7), Gd-O(2) 2.474(8), Gd-O(3) 2.425(9), Gd-I(1) 3.0596(10), Gd-I(2) 3.068(8), O(1)-Gd-O(2) 74.5(4), O(1)-Gd-O(3) 148.2(3), O(2)-Gd-O(3) 73.7(3), I(1)-Gd-I(2) 167.34(17), C(13)-Gd-I(1) 96.11(8), C(13)-Gd-I(2) 96.47(10); **15** Nd-N(1) 2.462(4), Nd-N(2) 2.477(4), Nd-O(1) 2.472(3), Nd-O(2) 2.547(3), Nd-O(3) 2.478(4), Nd-I(1) 3.1115(4), Nd-I(2) 3.1155(4), O(1)-Nd-O(2) 73.86(12), O(1)-Nd-O(3) 147.58(12), O(2)-Nd-O(3) 73.79(11), I(1)-Nd-I(2) 167.663(12), C(13)-Nd-I(1) 95.5008(12), C(13)-Nd-I(2) 96.8340(12).

4.4 The complex [Nd(DFForm)₂Cp(thf)₂]·thf 16

We do not provide detailed bond lengths and angles for this compound as it is only submitted for connectivity only. As stated above there were issues in the refinement of this compound.

4.5 The complexes [Eu(DFForm)₂(py)₃] 18 and [EuI₂(thf)₃(py)₂]]·0.5thf 18a

 $[EuI_2(thf)_2(py)_3]$ ·0.5thf **18a** crystallized in the trigonal space group *R*-3*c*. The Eu atom is seven coordinates with two *trans* iodide ligands (I1-Eu-I1# 177.47(3)°), three *mer* py ligands

[N1-Eu-N1# 76.9(3), N1-Eu-N2 141.54(13)], and two *transoid* thf ligands [O-Eu-O1# 139.2(3)] (**Fig. S10**). The average bond distance for **18a** [Eu-O 2.629(6), Eu-I 3.2561(6), Eu-N 2.675(2)] is a little longer than the pentagonal bipyramid coordinated Eu complex $[EuI_2(thf)_5]$ [Eu-O 2.598(14), Eu-I 3.234(2)], and the two iodide ligands are also in *trans* position [I1-Eu-I1# 177.83(6)°] in $[EuI_2(thf)_5]$.¹¹

Fig. S10 Molecular structure of $[EuI_2(thf)_2(py)_3] \cdot 0.5thf$ **18a** represented by 50% thermal ellipsoids. Hydrogen atoms and the lattice thf molecular have been omitted for clarity.

18 Eu-N1 2.6072(14), Eu-N2 2.7329(14), Eu-N3 2.7023(16), Eu-N4 2.705(2), C7-Eu-C7#: 130.085; **18a** Eu-N1 2.672(6), Eu-N2 2.677(11), Eu-O1 2.629(6), Eu-I1 3.2561(6), I1-Eu-I1# 177.45(3), O1-Eu-O1# 139.2(3), N1-Eu-N2 141.53(13), N1-Eu-N1# 76.9(3).

Fig. S11 ¹H NMR spectra of (up) $[Nd(DFForm)_2I(thf)_2]$ (7); (down) $[Nd(DFForm)I_2(thf)_3]$ (10)

Fig. S12 ¹H NMR spectrum of $[Sm(DFForm)I_2(thf)_3]$ (11)

5. References

- [1]. R. M. Roberts, J. Org. Chem., 1949, 14, 277.
- [2]. G. B. Deacon, P. C. Junk and D. Werner, Chem. Eur. J., 2016, 22, 160.
- [3]. S. Hamidi, G. B. Deacon, P. C. Junk and P. Neumann, Dalton Trans., 2012, 41, 3541.
- [4]. Sheldrick, G. M. SADABS; University of Gottingen, Gcottingen (Germany), 1996.
- [5]. CrysAlisPRO v.39. Agilent Technologies Ltd., Yarnton, Oxfordshire, England.
- [6]. T. M. McPhillips, S. E. McPhillips, H. J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis and J. P. Kuhn, *J. Synchrotron Radiat.*, 2002, 9, 401.
- [7]. W. Kabsch, J. Appl. Crystallogr., 1993, 26, 795.
- [8]. G. M. Sheldrick, Acta Crystallogr. Sect. A., 2008, 64, 112.
- [9]. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339.
- [10]. G. M. Sheldrick, Acta Cryst., 2015, C71, 3.
- [11]. L. J. Barbour, J. Supramol. Chem., 2001, 1, 189.
- [12]. G. Heckmann and M. Niemeyer, J. Am. Chem. Soc., 2000, 122, 4227.