Supporting Information for

FeCl₃-Promoted Regioselective Synthesis of BODIPY Dimers through Oxidative Aromatic Homocoupling Reactions

Zhengxin Kang,^a Qinghua Wu,^{a,b}* Xing Guo,^a Long Wang,^a Yin Ye,^a Changjiang Yu,^a Hua Wang,^a

Erhong Hao,^a* and Lijuan Jiao^a*

^a Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.

^b School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei, 230012, China.

*To whom correspondence should be addressed.

E-mail: wu900801@ahnu.edu.cn, haoehong@ahnu.edu.cn, jiao421@ahnu.edu.cn

Contents

1. General information	S1
2. Synthesis and characterization	S3
3. Crystal data	S7
4. Photophysical data	S10
5. Electrochemical date	S14
6. DFT calculation	S15
7. Cellular study	S22
8. ¹ H and ¹³ C NMR for all new compounds	S23
9. High resolution mass spectroscopes for all new compounds	S30
10. References	S37

1. Experimental details

General information. Reagents and solvents were used as received from commercial suppliers (Energy Chemicals, Shanghai, China) unless noted otherwise. All reactions were performed in oven-dried or flame-dried glassware unless stated otherwise and were monitored by TLC using 0.25 mm silica gel plates with UV indicator (60F-254). ¹H and ¹³Cspectra were recorded on a 300 or 400 or 500 MHz NMR spectrometer at room temperature. Chemical shifts (δ) are given in ppm relative to CDCl₃ (7.26 ppm for ¹H and 77 ppm for ¹³C) or to internal TMS. High-resolution mass spectra (HRMS) were obtained using APCI-TOF or ESI-TOF in positive mode.

Absorption and emission measurements. UV-visible absorption and fluorescence emission spectra were recorded on commercial spectrophotometers (Shimadzu UV-2450 and Edinburgh FS5 spectrometers). All measurements were made at 25 °C, using 5 × 10 mm cuvettes. Relative fluorescence quantum efficiencies of BODIPY derivatives were obtained by comparing the areas under the corrected emission spectrum of the test sample in various solvents with 1,7-diphenyl-3,5-di(4-methoxyphenyl)-azadipyrromethene ($\Phi = 0.36$ in chloroform)¹ and Indocyanine Green ($\Phi = 0.12$ in DMSO).² Non-degassed, spectroscopic grade solvents and a 10 mm quartz cuvette were used. Dilute solutions (0.01<A<0.05) were used to minimize the reabsorption effects. Quantum yields were determined using the following equation²:

Where Φ_S stands for the reported quantum yield of the standard, I stands for the integrated emission spectra, A stands for the absorbance at the excitation wavelength and *n* stands for the refractive index of the solvent being used. X subscript stands for the test sample, and S subscript stands for the standard.

X-ray structure analysis. Crystals of compounds **2c** and **2e** suitable for X-ray analysis were obtained *via* the slow diffusion of petroleum ether into their dichloromethane solutions. The vial containing this solution was placed, loosely capped, to promote the crystallization. A suitable crystal was chosen and mounted on a glass fiber using grease. Data were collected using a diffractometer equipped with a graphite crystal monochromator situated in the incident beam for data collection at room temperature. Cell parameters were retrieved using SMART⁴ software and refined using SAINT on all observed reflections. The determination of unit cell parameters and data collections were performed with Mo $K\alpha$ radiation (λ) at 0.71073 Å. Data reduction was performed using the SAINT software,⁵ which corrects for Lp and decay. The structure was solved by the direct method using the

SHELXS-97⁴ program and refined by least squares method on F^2 , SHELXL-2018/3,⁶ incorporated in SHELXTL V5.10.⁷ CCDC-2053912 (**2c**) and CCDC-2095140 (**2e**) containing the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

Electrochemical measurements. Cyclic voltammograms of 1 mM **M**, **1a** and **2a** were measured in dichloromethane solution, containing 0.1 M TBAPF₆ as the supporting electrolyte, glassy carbon electrode as a working electrode, Pt wire as a counter electrode, and saturated calomel electrode (SCE) as reference electrode at 100 mV s⁻¹ of scanning rate at room temperature.

Cell culture. HeLa cells (human cervical cancer cells) were cultured in culture media (RPMI-1640, supplemented with 10% FBS and 1% penicillin/streptomycin solution) at 37 °C in an atmosphere of 5% CO₂ and 95% humidified atmosphere for 24 h.

Cell incubation and colocalization imaging. A total of 30000 HeLa cells were seeded into a glass bottom dish and were cultured in culture media (RPMI-1640, supplemented with 10% FBS and 1% penicillin and streptomycin) at 37 °C in an atmosphere of 5% CO₂ and 95% humidified atmosphere for 24 h. HeLa cells were first stained with **2g** micelles (3 μ M) and LysoTrackerTM Green DND-26 (1 μ M) at 37 °C in an atmosphere of 5% CO₂ for 2 h. After washing the plates two times with PBS, the cells were fixed by 4% formaldehyde for 20 min. The organelle tracer 4,6-diamidino-2-phenylindole (DAPI, 0.08 μ g/mL) was added subsequently and was incubated for 30 min to stain the nucleus. Finally, the plates were washed again with PBS and the morphologies of the HeLa cells were observed using a confocal fluorescence microscope (Leica Microsystems SP8 MP).

Cytotoxicity determined by the CCK-8 method. The cytotoxicity of the 2g was evaluated on Hela cells. These cells were seeded into 96-well plates with a density of 5000 cells per well and cultured overnight. Then, solutions of 2g with a serious of different concentrations were added and incubated with cells for 24 h. Every experiment was performed for at least six times. The working solutions were then removed, and the cells were washed with PBS buffer for one times. A total of 10 μ L of CCK-8 (Cell Counting Kit-8, BIOMIKY) was added into each well, and the cells were further incubated at 37 °C for 40 min. Then the plate was shaken for 5 min (protect from light), and the absorbance at 450 nm was measured with a microplate reader (Multiskan Sky).

2. Synthesis and characterization

BODIPYs 1a-d and 1e were synthesized according to our previously reported literature.^{8,9}

Synthesis of dimers 2a-d.

Syntheses of BODIPY **2a**: To **1a** (77 mg, 0.2 mmol) in 10 mL of freah dried dichloromethane was drop wisely added FeCl₃ (194 mg, 1.2 mmol, 6.0 eq) in 1 mL of CH₃NO₂. The reaction mixture was stirred at -5 °C for 30 minute, and was quenched by adding saturated aqueous solution of NaHCO₃. The reaction mixture was diluted with dichloromethane, washed twice with water, dried over anhydrous Na₂SO₄, and evaporated under vacuum. The residue was purified by column chromatography on silica gel with CH₂Cl₂/petroleum ether as eluent to give the desired **2a** in 63% isolated yield (49 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.91 – 7.88 (m, 4H), 7.42 (d, *J* = 3.9 Hz, 8H), 6.97 (s, 4H), 6.68 (d, *J* = 4.2 Hz, 2H), 6.58 (d, *J* = 3.6 Hz, 4H), 2.37 (s, 6H), 2.19 (s, 12H).¹³C NMR (125 MHz, CDCl₃) δ 160.2, 147.3, 143.7, 138.6, 137.8, 137.4, 136.9, 132.4, 130.3, 130.2, 129.8, 129.6, 128.2, 128.1, 128.0, 124.5, 121.7, 21.7, 20.3. HRMS (APCI) m/z: Calcd for C₄₈H₄₁N₄B₂F₄⁺ [M+H]⁺ 771.3448, Found 771.3449.

Syntheses of BODIPY **2b**: BODIPY **2b** was prepared in 72% yield (64 mg) from BODIPY **1b** (83 mg, 0.2 mmol) using the same procedure described for **2a**. ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, *J* = 8.5 Hz, 4H), 7.44 (d, *J* = 8.5 Hz, 4H), 7.40 (d, *J* = 4.5 Hz, 2H), 6.97 (s, 4H), 6.67 (d, *J* = 4.5 Hz, 2H), 6.59 (d, *J* = 4.5 Hz, 2H), 6.58 (d, *J* = 4.5 Hz, 2H), 2.37 (s, 6H), 2.20 (s, 12H), 1.33 (s, 18H).¹³C NMR (125 MHz, CDCl₃) δ 160.5, 153.1, 147.0, 142.9, 138.5, 137.9, 137.2, 136.9, 130.4, 130.2, 129.4, 128.2, 128.1, 127.5, 125.3, 124.3, 121.9, 34.8, 31.1, 21.2, 20.4. HRMS (APCI) m/z: Calcd for

 $C_{56}H_{57}B_2F_4N_4^+$ [M+H]⁺ 883.4700, Found 883.4711.

Syntheses of BODIPY **2c**: BODIPY **2c** was prepared in 67% yield (56 mg) from BODIPY **1c** (88 mg, 0.2 mmol) using the same procedure described for **2a**. ¹H NMR (500 MHz, CDCl₃) δ 7.91 (d, *J* = 8.5 Hz, 4H), 7.38 (d, *J* = 4.0 Hz, 2H), 6.97 (s, 4H), 6.94 (d, *J* = 9.0 Hz, 4H), 6.66 (d, *J* = 4.5 Hz, 2H), 6.58 (d, *J* = 4.5 Hz, 2H), 6.55 (d, *J* = 4.5 Hz, 2H), 3.84 (s, 6H), 2.37 (s, 6H), 2.19 (s, 12H).¹³C NMR (125 MHz, CDCl₃) δ 161.7, 161.1, 144.7, 141.4, 138.9, 138.1, 137.0, 134.4, 131.9, 131.7, 130.6, 128.5, 127.6, 124.8, 121.4, 117.9, 114.3, 55.7, 21.5, 20.4. HRMS (APCI) m/z: Calcd for C₅₀H₄₅O₂N₄B₂F₄⁺ [M+H]⁺ 831.3659, Found 831.3648.

Syntheses of BODIPY **2d**: BODIPY **2d** was prepared in 68% yield (57 mg) from BODIPY **1d** (84 mg, 0.2 mmol) using the same procedure described for **2a**. ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, *J* = 8.5 Hz, 4H), 7.39 (d, *J* = 8.5 Hz, 4H), 7.37 (d, *J* = 4.5 Hz, 2H), 6.98 (s, 4H), 6.69 (d, *J* = 4.3 Hz, 2H), 6.62 (d, *J* = 4.5 Hz, 2H), 6.56 (d, *J* = 4.3 Hz, 2H), 2.38 (s, 6H), 2.19 (s, 12H).¹³C NMR (125 MHz, CDCl₃) δ 158.9, 148.0, 144.5, 139.2, 138.2, 137.9, 137.2, 136.4, 131.3, 131.2, 130.6, 130.5, 128.9, 128.8, 128.6, 125.1, 121.8, 21.6, 20.7. HRMS (APCI) m/z: Calcd for C₄₈H₃₉N4B₂Cl₂F₄⁺ [M+H]⁺ 839.2674, Found 839.2673

Syntheses of dimer 2e.

Syntheses of BODIPY **2e**: A solution of BODIPY **1e** (52 mg, 0.15 mmol) was dissolved in fresh and dried CH₂Cl₂ (10 mL) and stirred at -5 °C, then the excess FeCl₃ (1.46-1.94 g, 9-12 mmol) was added into the mixture and continued to stir at -5 °C for 25-30 min, and was quenched by adding saturated aqueous solution of NaHCO₃. The reaction mixture was diluted with dichloromethane, washed twice with water, dried over anhydrous Na₂SO₄, and evaporated under vacuum. The residue

was purified by column chromatography on silica gel with CH₂Cl₂/petroleum ether (1/2, v/v) as eluent to give the desired **2e** in 71% isolated yield (37 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, *J* = 4.5 Hz, 2H), 6.97 (s, 4H), 6.70 (d, *J* = 4.5 Hz, 2H), 6.63 (d, *J* = 4.0 Hz, 2H), 6.37 (d, *J* = 4.5 Hz, 2H), 2.37 (s, 6H), 2.15 (s, 12H). ¹³C NMR (125 MHz, CDCl₃) δ 148.2, 144.8, 144.4, 139.1, 137.9, 136.67, 134.8, 129.9, 129.7, 129.1, 128.2, 124.6, 119.3, 21.1, 20.1. HRMS (APCI) m/z: Calcd for C₃₆H₃₀B₂Cl₂F₃N₄⁺ [M-F]⁺ 667.1986, Found 667.2034.

Syntheses of dimer 2f.

Syntheses of BODIPY **2f**: BODIPY **2e** (137 mg, 0.2 mmol) was dissolved in pyrrole (2.0 mL) and stirred under argon at 120 °C for 12 hours. After cooling down to room temperature, the excess pyrrole was removed under reduced pressure. The residue was purified through column chromatography on silica using CH₂Cl₂/petroleum (1:2, v/v) as eluent, from which the desired product **2f** was obtained in 59% yield (88 mg). ¹H NMR (400 MHz, CDCl₃) δ 10.51 (brs, 2H), 7.34 (d, *J* = 4.0 Hz, 2H), 7.13 (s, 2H), 6.98 (s, 6H), 6.85 (d, *J* = 4.4 Hz, 2H), 6.64 (d, *J* = 4.8 Hz, 2H), 6.49 (d, *J* = 4.4 Hz, 2H), 6.34 (s, 2H), 2.38 (s, 6H), 2.20 (s, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 150.8, 143.8, 138.3, 138.0, 137.3, 137.1, 136.3, 130.6, 130.4, 128.1, 126.1, 124.5, 123.9, 122.5, 121.4, 118.1, 111.4, 21.2, 20.3. HRMS (ESI) m/z calcd for C₄₄H₃₉B₂F₄N₆⁺ [M+H]⁺ 749.3353, found 749.3356.

Synthesis of dimer 2g.

Syntheses of 2g: In a 10 mL flask, a solution of **2e** (69 mg, 0.1 mmol) was dissolved in 1,2-dichloroethane (3.0 mL) and 4-(2-aminoethyl)morpholine (78 μ L, 0.6 mmol) was added to the mixture and stirred at room temperature for 2.5 hours. The solvent was concentrated under reduced pressure and the residue was purified by silica-gel column chromatography (eluent: ethyl acetate/n-hexane = 1/3). Recrystallization from CH₂Cl₂/ petroleum afforded pure dye **2g** as dark green powder (81 mg, 93%). ¹H NMR (400 MHz, CDCl₃) δ 7.16 (d, *J* = 4.0 Hz, 2H), 6.93 (s, 4H), 6.78 (s, 2H), 6.60 (d, *J* = 4.8 Hz, 2H), 6.24 (d, *J* = 4.0 Hz, 2H), 6.04 (d, *J* = 4.8 Hz, 2H), 3.71 – 3.67 (m, 8H), 3.41 (d, *J* = 5.6 Hz, 4H), 2.61 (t, *J* = 6.2 Hz, 4H), 2.49 (s, 8H), 2.35 (s, 6H), 2.16 (s, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 160.8, 139.9, 137.7, 137.5, 134.6, 133.2, 131.2, 130.7, 127.9, 120.4, 118.7, 109.4, 66.8, 57.0, 53.3, 41.1, 21.1, 20.1. HRMS (ESI) m/z calcd for C₄₈H₅₇B₂F₄N₈O₂⁺ [M+H]⁺ 875.4721, found 875.4727.

3. Crystal data

Figure S1. The packing of dimer 2c: C, gray; N, purple; B, pink; F, yellow; O, red. Hydrogen atoms were removed for clarity. Thermal ellipsoids are shown at the 50% probability level.

Figure S2. The packing of dimer **2e**: C, gray; N, purple; B, pink; F, yellow; Cl, green. Hydrogen atoms were removed for clarity. Thermal ellipsoids are shown at the 50% probability level.

Table S1. Selected geometrical parameters of compound 2c and 2e obtained from crystallography

$B_1 \longrightarrow C_1 + F + C_{10} + F + B_2$ $A_1 \longrightarrow C_1 + F + C_{10} + B_1 + B_2$ $B_1 \longrightarrow B_1 + B_2$ $B_1 \longrightarrow B_2 + B_2$ $B_1 \longrightarrow B_2 + B_2$	CI F F C10 N B N 2e	B_2
	2c	2e
the C_1 - C_1 ' bond length (Å)	1.46(4)	/
the C ₉ -C ₁₀ bond length (Å)	1.4(5)	1.45(8)
the C O hand length $(Å)$	1.36(6)	/
the C-O bond length (A)	1.36(6)	1
the C-Cl bond length (Å)	/	1.69(8), 1.69(8)
the D. N. handlangth (Å)	1.58(5), 1.56(9)	1.56(9), 1.56(2)
the B-IN bond length (A)	1.56(9), 1.58(5)	1.56(9), 1.56(2)
	1.39(1), 1.37(4)	1.37(9), 1.36(9)
the B-F bond length (A)	1.39(1), 137(4)	1.37(9), 1.36(9)
dihedral angles between <i>meso</i> -aryl and	89.53	89.00
dipyrrin core in B_1 (deg) dihedral angles between <i>meso</i> -aryl and dipyrrin core in B_2 (deg)	89.53	89.00
dihedral angles of two dipyrrin cores in B_1 and B_2 (deg)	52.67	57.21
dihedral angles between α -benzene ring and dipyrrin core in B ₁ (deg)	43.00	/

Crystal data	2c	2e
CCDC number	2053912	2095140
Empirical formula	$C_{50}H_{44}B_2F_4N_4O_2$	$C_{36}H_{30}B_2Cl_2F_4N_4$
Formula weight	830.51	687.16
Temperature/K	298	298
Crystal system	orthorhombic	orthorhombic
Space group	Pbcn	Pbcn
<i>a</i> (Å)	15.4942(8)	15.1048(5)
b (Å)	12.4379(8)	12.2629(4)
<i>c</i> (Å)	25.9022(17)	18.3629(6)
α (°)	90	90
eta (°)	90	90
γ (°)	90	90
Volume (Å ³⁾	4991.8(5)	3401.34(2)
Z	4	4
$ ho_{ m calc}{ m g/cm^3}$	1.105	1.342
μ (mm ⁻¹⁾	0.077	0.245
F(000)	1736.0	1416.0
Crystal size (mm ³⁾	$0.21 \times 0.22 \times 0.19$	$0.18 \times 0.20 \times 0.21$
Radiation	MoK α , ($\lambda = 0.71073$)	MoK α , ($\lambda = 0.71073$)
2θ range for data collection/°	3.144 to 55.096	6.164 to 55.07
Index ranges	$-17 \le h \le 19, -16 \le k \le 16,$ $-33 \le 1 \le 33$	$-19 \le h \le 18, -15 \le k \le 15,$ $-23 \le 1 \le 23$
Reflections collected	131551	39671
Independent reflections	5589 [$R_{int} = 0.1002$, $R_{sigma} =$	3874 [$R_{int} = 0.1094$, $R_{sigma} =$
independent reflections	0.0271]	0.0394]
Data/restraints/parameters	5589/0/284	3874/0/220
Goodness-of-fit on F ²	1.103	1.110
Final R indexes $[I \ge 2\sigma (I)]$	$R_1 = 0.0846$	$R_1 = 0.0713$
$\frac{1}{1} = \frac{1}{20} (1)$	$wR_2 = 0.2539$	$wR_2 = 0.1365$
Final R indexes [all data]	$R_1 = 0.1135$	$R_1 = 0.0892$
	$wR_2 = 0.2974$	$wR_2 = 0.1492$
Largest diff. peak/hole / e Å ⁻³	0.60/-0.49	0.32/-0.35

 Table S2. Crystal data and structure refinement for 2c and 2e.

4. Photophysical properties

dyes	solvent	$\lambda_{abs}^{max}(nm)$	ε	λ_{em}^{max} (nm)	Φ^{b}	Stokes shift (cm ⁻¹)
	Toluene	531	62000	552	0.85	720
1a	CH ₂ Cl ₂	527	66300	549	0.87	760
	Cyclohexane	723	56600	752	0.30	530
	Toluene	718	57100	776	0.33	1040
2a	THF	717	59700	773	0.30	1010
	CHCl ₃	717	51400	768	0.37	930
	CH ₃ CN	693	49100	772	0.31	1480
	Cyclohexane	735	59500	789	0.13	930
	Toluene	726	60000	784	0.21	1020
2b	THF	729	64600	780	0.15	900
	CHCl ₃	726	51200	789	0.16	1100
	CH ₃ CN	699	53300	767	0.13	1270
	Cyclohexane	739	58400	797	0.21	990
	Toluene	736	57300	799	0.19	1070
2c	THF	738	62800	797	0.14	1000
	CHCl ₃	736	46600	797	0.19	1040
	CH ₃ CN	715	50300	782	0.15	1200
	Cyclohexane	726	46500	777	0.23	900
	Toluene	723	47100	777	0.25	960
2d	THF	722	49800	778	0.25	1000
	CHCl ₃	719	40200	780	0.24	1090
	CH ₃ CN	698	41000	785	0.20	1590
	Cyclohexane	687	78900	729	0.45	840
	Toluene	688	74900	732	0.51	870
2e	THF	680	76700	725	0.42	910
	CHCl ₃	685	68300	729	0.54	880
	CH ₃ CN	663	63600	713	0.30	1060
	Cyclohexane	796	58700	834	0.02	570
	Toluene	773	55000	827	0.03	850
2f	THF	785	70600	829	0.01	680
	CHCl ₃	784	51800	829	0.02	700
	CH ₃ CN	760	55800	821	0.02	980

Table S3. Spectroscopic and photophysical properties of BODIPYs in different solvents.

	Cyclohexane	667	51900	740	0.17	1480
	Toluene	673	51200	736	0.21	1270
2g	THF	649	52300	724	0.18	1600
	CHCl ₃	656	45500	734	0.20	1620
	CH ₃ CN	615	46800	710	0.17	2180
^a Data c	^a Data corresponding to the strongest absorption maximum, the unit for ε is M ⁻¹ cm ⁻¹ .					
^b Fluore:	scence quantum	yields	of 2a-e	and 2g	were calcula	ated using
1,7-dipl	nenyl-3,5-di(4-meth	oxypheny	yl)-azadipyrrome	ethene ($\Phi = 0$.36 in chlorof	form) as the
reference. Fluorescence quantum yields of 2f was calculated using Indocyanine Green (Φ =						
0.12 in DMSO) as the reference. The standard errors are less than 5% from three independent						
measure	measurements.					

Absorption and emission spectra of BODIPY 1a and all BODIPY dimers at different solvents

Figure S3. Absorption (left) and emission (right) spectra of compound **1a** recorded in different solvents. Excited at 500 nm.

Figure S4. Absorption (left) and emission (right) spectra of compound 2a recorded in different solvents. Excited at 655 nm.

Figure S5. Absorption (left) and emission (right) spectra of compound 2b recorded in different solvents. Excited at 655 nm.

Figure S6. Absorption (left) and emission (right) spectra of compound **2c** recorded in different solvents. Excited at 655 nm.

Figure S7. Absorption (left) and emission (right) spectra of compound **2d** recorded in different solvents. Excited at 655 nm.

Figure S8. Absorption (left) and emission (right) spectra of compound 2e recorded in different solvents. Excited at 640 nm.

Figure S9. Absorption (left) and emission (right) spectra of compound **2f** recorded in different solvents, excited at 760 nm.

Figure S10. Absorption (left) and emission (right) spectra of compound 2g recorded in different solvents. Excited at 640 nm.

5. Electrochemical spectra

dyes	$E_{1/2}^{\mathrm{red}}$ (V)	E _{red} ^{onest} (V)	$E_{\rm p}^{\rm ox}$ (V)	E _{ox} ^{onest} (V)	LUMO (eV)	HOMO (eV)	E_{g}^{e} (eV)	$E_{\rm g}^{\rm o}$ (eV)
Μ	-0.93	-0.86	1.71	1.46	-3.94	-6.26	2.32	2.38
1a	-0.93	-0.74	1.51	1.31	-4.06	-6.11	2.05	2.23
2a	-0.59; -1.08	-0.51	1.09	1.05	-4.29	-5.85	1.56	1.55

Table S4. Electrochemical data acquired at 100 mV/s, and HOMO-LUMO Gaps determined from spectroscopy of dyes M, 1a and $2a^a$

 ${}^{a}E_{1/2}{}^{red}$ = reversible reduction peak potentials; $E_{p}{}^{ox}$ = oxidation peak potentials; $E_{red}{}^{onset}$ = the onset reduction potentials; $E_{ox}{}^{onset}$ = the onset oxidation potentials; E_{LUMO} = -e($E_{red}{}^{onset}$ + 4.8); E_{HOMO} = -e($E_{ox}{}^{onset}$ + 4.8); $E_{g}{}^{e}$ = bandgap, obtained from the intercept of the electrochemical data; $E_{g}{}^{e}$ = E_{LUMO} - E_{HOMO} ; $E_{g}{}^{o}$ = bandgap, obtained from the intercept of the absorption spectra.

6. DFT calculation

The ground state geometry was optimized by using DFT method at B3LYP/6-31G(d, p) level. The same method was used for vibrational analysis to verify that the optimized structures correspond to local minima on the energy surface. TD-DFT computations were used the optimized ground state geometries under the B3LYP/6-31G (d, p) theoretical level. The calculated molecules in dichloromethane were done using the Self-Consistent Reaction Field (SCRF) method and Polarizable Continuum Model (PCM). All of the calculations were carried out by the methods implemented in Gaussian 09 package¹⁰.

The Mulliken spin density calculations and the natural population analysis were performed at the B3LYP/6-311G(d, p) level on the basis of the optimized structures.¹¹ The natural population analysis values cation radical **M** and **1a** are presented in Figure S11.

Figure S11. The natural population analysis values (charge density distributions) for cation radicals of **M** and **1a**.

Table S5. Selected electronic excitation energies (eV) and oscillator strengths (*f*), configurations of the low-lying excited states of **M**, **1a** and **2a** calculated by TDDFT//B3LYP/6–31+G(d,p), based on the optimized ground state geometries.

	Electronic	TD//B3LYP/6-31G(d, p)				
	transition					
	transition	Energy/ eV ^[a]	f ^[b]	Composition ^[c]	CI ^[d]	
М	S0→S1	2.9248 eV 423.90 nm	0.0000	HOMO \rightarrow LUMO +1	0.7050	
	S0→S2	3.0107 eV 411.81 nm	0.4328	$HOMO \rightarrow LUMO$	0.6710	
				$HOMO \leftarrow LUMO$	0.1013	
	S0→S3	3.0719 eV 403.61 nm	0.0206	$HOMO \rightarrow LUMO$	0.1300	
				HOMO $-2 \rightarrow$ LUMO	0.6935	
1a	S0→S1	2.7165 eV 456.41 nm	0.6870	$HOMO \rightarrow LUMO$	0.7023	
	S0→S2	2.9416 eV 421.49 nm	0.0017	HOMO $-1 \rightarrow$ LUMO	0.7046	
	S0→S3	3.0824 eV 402.24 nm	0.0007	HOMO $-2 \rightarrow$ LUMO	0.7064	
2a	S0→S1	1.8995 eV 652.72 nm	1.0060	$HOMO \rightarrow LUMO$	0.7078	
	S0→S2	2.4164 eV 513.09 nm	0.0001	HOMO $-1 \rightarrow$ LUMO	0.4812	
				HOMO \rightarrow LUMO +1	0.5154	
	S0→S3	2.7480 eV 451.19 nm	0.0005	HOMO $-2 \rightarrow$ LUMO	0.6765	
				HOMO $-3 \rightarrow$ LUMO $+1$	0.1943	

[a] Only the selected low-lying excited states are presented. [b] Oscillator strength. [c] Only the main configurations are presented. [d] The CI coefficients are in absolute values.

Optimized Geometries of the Compounds

M, optimized S₀ state Geometry.

· 1	•		
В	-14.90043263	9.54503278	8.96819373
С	-12.38363263	8.78123278	9.38569373
С	-11.31223263	8.37723278	8.57089373
С	-11.76183263	8.36403278	7.27739373
С	-13.09453263	8.79003278	7.28749373
С	-13.93833263	9.01853278	6.19809373
С	-15.20683263	9.53733278	6.38869373
С	-16.24083263	9.85193278	5.48189373
С	-17.30593263	10.29893278	6.22349373
С	-16.91523263	10.24823278	7.57609373
С	-13.47733263	8.65543278	4.82039373
С	-13.83513263	7.40703278	4.29449373
С	-13.35433263	7.06923278	3.02979373
С	-12.55663263	7.92143278	2.29739373
С	-12.27263263	9.16753278	2.81599373
С	-12.69673263	9.55503278	4.08979373
С	-14.67243263	6.41583278	5.05579373
С	-11.96703263	7.46663278	0.97959373
С	-12.27323263	10.88513278	4.64939373
F	-15.60783263	8.51413278	9.61579373
F	-14.89513263	10.58043278	9.75829373
Ν	-13.47153263	9.03623278	8.60639373
Ν	-15.66123263	9.81113278	7.67209373

Н	-10.45473263	8.15983278	8.85749373			
Н	-11.27003263	8.11453278	6.52829373			
Н	-16.20733263	9.77243278	4.55689373			
Н	-18.12843263	10.58153278	5.89589373			
Н	-17.45433263	10.48443278	8.29639373			
Н	-13.57893263	6.24253278	2.66889373			
Н	-11.78383263	9.76913278	2.30189373			
Н	-14.92673263	5.69723278	4.47199373			
Н	-15.46033263	6.85183278	5.38789373			
Н	-14.16503263	6.06593278	5.79129373			
Н	-12.01633263	8.18193278	0.34269373			
Н	-12.46093263	6.71163278	0.65199373			
Н	-11.04943263	7.21603278	1.10849373			
Н	-13.01703263	11.29683278	5.09369373			
Н	-11.97423263	11.45133278	3.93359373			
Н	-11.55763263	10.75593278	5.27569373			
Н	-12.35014323	8.87400022	10.45113855			
SCF done: -1030.41688463 Hartree						

No imaginary Frequency.

1a, optimized S_0 state Geometry.

В	-1.63866900	1.52017400	-0.12607000
С	-0.14387100	3.59890200	0.23405800
С	1.24610500	3.95841800	0.27631300
С	1.95865400	2.79366400	0.16240100
С	0.99975000	1.72292000	0.06296000
С	1.18156400	0.34812700	-0.01151800
С	0.03624900	-0.49206500	-0.02638300
С	0.02085500	-1.92288800	0.08686100
С	-1.28664100	-2.29782800	0.16238500
С	-2.10131200	-1.09968600	0.04965800
С	2.54907900	-0.25061000	-0.02745500
С	3.25885600	-0.41503600	1.18300700
С	4.53262800	-0.98747900	1.13040200
С	5.12150000	-1.38603200	-0.07412200
С	4.39181800	-1.21020300	-1.25454100
С	3.11162300	-0.65108200	-1.26023600
С	2.67205600	-0.01029100	2.51840100
С	6.51356100	-1.96817500	-0.10151200
С	2.37195400	-0.47149500	-2.56802100
F	-2.52558000	1.84546800	0.86412100
F	-2.09116300	1.84066600	-1.39173500
Ν	-0.28165700	2.28378700	0.10845000
Ν	-1.26768200	-0.02243200	-0.06068100
Н	1.62644400	4.96521900	0.37873200
Н	3.03146800	2.66136700	0.15532300
Н	0.90214700	-2.54747600	0.11616200
Н	-1.67382600	-3.30359400	0.23530800
Н	5.07848000	-1.12911400	2.06015900
Н	4.83077300	-1.51651800	-2.20104800
Н	3.31929700	-0.33483800	3.33708400
Н	1.68211100	-0.45163600	2.68577800
Н	2.55663700	1.07707800	2.60616000
Н	6.64227300	-2.66247700	-0.93755100
Н	6.74387000	-2.50156400	0.82589600
Н	7.26457000	-1.17595200	-0.21708800
Н	1.43660700	-1.04438700	-2.59668900

Н	2.98537900	-0.80690700	-3.40801800
Н	2.10993200	0.57807500	-2.74945900
Н	-1.01026800	4.24701100	0.28302100
С	-3.54039900	-1.10044000	0.02949400
С	-4.31394500	-0.08661700	-0.59663500
С	-4.21576400	-2.19438700	0.64160400
С	-5.69695600	-0.16673600	-0.59206600
Н	-3.82382300	0.72339600	-1.11847900
С	-5.59830700	-2.24950900	0.65909300
Н	-3.64727100	-2.97047700	1.14180600
С	-6.34484300	-1.23696100	0.03955600
Н	-6.27929100	0.60292200	-1.08832600
Н	-6.10169300	-3.07557300	1.15089700
Н	-7.42970300	-1.28717100	0.04261000
	1201 40202202 11		

SCF done: -1261.48392383 Hartree

No imaginary Frequency.

2a, optimized S_0 state Geometry.

В	1.98130200	-1.84158100	0.18692000
С	0.66094800	0.30354700	1.00823900
С	0.99315900	1.61721900	1.43215000
С	2.36664100	1.74017200	1.36072700
С	2.87226900	0.51013300	0.87187400
С	4.18615200	0.17417200	0.50702100
С	4.45011100	-1.05105700	-0.11052000
С	5.65772800	-1.52150000	-0.68846200
С	5.37281200	-2.73080500	-1.28794500
С	3.99759600	-3.01650800	-1.05862200
С	5.29437300	1.15518800	0.73212400
С	6.01271100	1.12418400	1.94656900
С	7.04346600	2.04865500	2.14119600
С	7.37835300	2.99975100	1.17208400
С	6.65347100	3.00524500	-0.02292200
С	5.61329900	2.10088400	-0.26483200
С	5.69054600	0.11500500	3.02543200
С	8.47553800	4.00703500	1.42171700
С	4.86195000	2.15169400	-1.57607600
F	1.82000400	-2.69865500	1.29402600
F	1.06793000	-2.13062600	-0.81001300
Ν	1.80784100	-0.36299600	0.67527200
Ν	3.44711100	-1.99516200	-0.34690000
В	-1.98130100	1.84157900	0.18692300
С	-0.66095100	-0.30355000	1.00824200
С	-0.99316400	-1.61721700	1.43216500
С	-2.36664600	-1.74017000	1.36073900
С	-2.87227200	-0.51013300	0.87187900
С	-4.18615400	-0.17417100	0.50702100
С	-4.45011000	1.05105600	-0.11052300
С	-5.65772500	1.52149900	-0.68846900
С	-5.37280600	2.73080400	-1.28795200
С	-3.99759000	3.01650400	-1.05862900
С	-5.29437800	-1.15518500	0.73212500
С	-6.01272200	-1.12417200	1.94656400
С	-7.04348200	-2.04864000	2.14118900
С	-7.37836600	-2.99973900	1.17208100
С	-6.65347600	-3.00524100	-0.02292200
С	-5.61330000	-2.10088600	-0.26482900

С	-5.69056200	-0.11498900	3.02542400
С	-8.47554800	-4.00702700	1.42170800
С	-4.86194600	-2.15170200	-1.57606900
F	-1.82000600	2.69865500	1.29402700
F	-1.06792500	2.13062000	-0.81000700
Ν	-1.80784300	0.36299400	0.67527800
N	-3.44710900	1.99515900	-0.34690300
н	0 27479800	2 35268300	1 75532300
н	2 96673600	2.55200500	1.61023000
II U	6 60406400	1.00117600	0.65722300
11 U	6.05741700	-1.00117000	-0.03722300
п	0.03741700	-3.38133000	-1.81230000
Н	7.59905100	2.02241000	3.07573700
H	6.901/3600	3./3256500	-0./9219500
H	6.34706500	0.24734100	3.88854500
Н	5.81016800	-0.91204900	2.66420900
Н	4.65559200	0.21170600	3.37056100
Н	8.89266900	4.38426000	0.48387900
Н	9.28997000	3.57343900	2.00976800
Н	8.09667100	4.87073800	1.98197000
Н	4.95084200	1.20995800	-2.12790000
Н	5.24742400	2.95189400	-2.21210300
Н	3.79266000	2.32985500	-1.42089100
Н	-0.27480600	-2.35268000	1.75534400
Н	-2.96674300	-2.60321200	1.61024500
Н	-6.60406200	1.00117600	-0.65723100
Н	-6.05741000	3.38133000	-1.81236800
Н	-7.59907400	-2.02238700	3.07572600
Н	-6.90173900	-3.73256300	-0.79219400
Н	-6.34708600	-0.24732000	3.88853300
Н	-5.81018000	0.91206400	2.66419600
Н	-4.65561100	-0.21169000	3.37056000
Н	-8.89294600	-4.38395700	0.48386800
Н	-9.28979900	-3.57355400	2.01009700
Н	-8.09658600	-4.87092100	1.98160300
Н	-4.95083800	-1.20997000	-2.12790000
Н	-5.24741300	-2.95190700	-2.21209300
Н	-3.79265500	-2.32985800	-1.42087800
С	3.31722500	-4.23320700	-1.52598500
С	2.35924100	-4.92291400	-0.76021000
С	3.69440600	-4.76691900	-2.77427600
C	1,79367900	-6.10280700	-1.23883400
Н	2.07506900	-4.54112800	0.21143600
C	3 12023900	-5 94308000	-3 24980200
н	4 42354200	-4 24124900	-3 38233600
C	2 16702100	-6 61680400	-2 48275300
н	1.06084800	-6 62683900	-0.63255700
п u	3 41505100	6 33 11 4000	4 22004500
11 U	1 72044000	7 53560100	-4.22004500
II C	2 21721700	4 22220200	-2.85055000
C	-3.31721700	4.23320200	-1.32399200
C C	-2.35923700	4.92291200	-0.76021400
C C	-3.09438900	4.70091000	-2.77428700
U U	-1./936/200	6.10280300	-1.23883800
п	-2.0/50/100	4.54113000	0.21143600
L H	-3.12021800	5.94306800	-3.24981400
н	-4.42352100	4.24123700	-3.38235000
U H	-2.16700500	6.616/9500	-2.48276200
Н	-1.06084400	6.62683700	-0.63255900
Н	-3.41502500	6.33112400	-4.22006100

Н	-1.72043100	7.53568000	-2.85056600
SCF done: -2521.7751	5860 Hartree		
No imaginary Frequen	icy.		

$\mathbf{M}^{+.}$			
В	-3.16168800	0.00258500	0.14080900
С	-2.55903400	2.51517500	-0.14497300
С	-1.39851900	3.37709600	-0.19809700
С	-0.30212800	2.56344400	-0.13539400
С	-0.78939400	1.20742500	-0.05322500
С	-0.07161500	0.00024400	-0.02705600
С	-0.79103100	-1.20611300	-0.04888700
С	-0.30553900	-2.56312000	-0.12556500
С	-1.40301200	-3.37552700	-0.18530100
С	-2.56239100	-2.51185600	-0.13570500
С	1.42110600	-0.00065600	0.00136100
С	2.08562500	0.00151800	1.24782700
С	3.48267000	-0.00388500	1.24860200
С	4.22908100	-0.00838700	0.06506000
С	3.53798900	-0.01397700	-1.15146300
С	2.14240600	-0.00883700	-1.21328700
С	1.32668700	0.00517300	2.55678900
С	5.73733000	0.01594300	0.09998600
С	1.44242200	-0.01555100	-2.55438700
F	-3.64389300	0.00507000	1.41797400
F	-4.12065000	0.00160500	-0.82723100
Ν	-2.19273000	1.24529500	-0.05685600
Ν	-2.19440400	-1.24211400	-0.05256400
Н	-1.42837000	4.45507200	-0.27771600
Н	0.74247200	2.84044100	-0.15632800
Н	0.73869100	-2.84167500	-0.14500600
Н	-1.43428200	-4.45377400	-0.26060100
Н	-3.61002900	-2.78859100	-0.15686600
Н	4.00237700	-0.00595200	2.20364400
Н	4.10054300	-0.02389200	-2.08185100
Н	2.01730100	0.00685000	3.40349900
Н	0.68161000	-0.87608000	2.66310900
Н	0.68299800	0.88795100	2.65859000
Н	6.16724900	-0.47929900	-0.77592100
Н	6.12571700	-0.47514600	0.99737000
Н	6.10912700	1.04870700	0.10634900
Н	0.80269400	-0.89809600	-2.68253200
Н	2.16912600	-0.01919600	-3.37032500
Н	0.80242900	0.86555800	-2.69065800
Н	-3.60630300	2.79321100	-0.16724300

SCF done: -1030.36192126 Hartree

No imaginary Frequency.

1a ^{+.}			
В	1.63866900	1.52017400	0.12607000
С	0.14387100	3.59890200	-0.23405800
С	-1.24610500	3.95841800	-0.27631300
С	-1.95865400	2.79366400	-0.16240100
С	-0.99975000	1.72292000	-0.06296000
С	-1.18156400	0.34812700	0.01151800
С	-0.03624900	-0.49206500	0.02638300
С	-0.02085500	-1.92288800	-0.08686100

1.28664100	-2.29782800	-0.16238500
2.10131200	-1.09968600	-0.04965800
-2.54907900	-0.25061000	0.02745500
-3.25885600	-0.41503600	-1.18300700
-4.53262800	-0.98747900	-1.13040200
-5.12150000	-1.38603200	0.07412200
-4.39181800	-1.21020300	1.25454100
-3.11162300	-0.65108200	1.26023600
-2.67205600	-0.01029100	-2.51840100
-6.51356100	-1.96817500	0.10151200
-2.37195400	-0.47149500	2.56802100
2.52558000	1.84546800	-0.86412100
2.09116300	1.84066600	1.39173500
0.28165700	2.28378700	-0.10845000
1.26768200	-0.02243200	0.06068100
-1.62644400	4.96521900	-0.37873200
-3.03146800	2.66136700	-0.15532300
-0.90214700	-2.54747600	-0.11616200
1.67382600	-3.30359400	-0.23530800
-5.07848000	-1.12911400	-2.06015900
-4.83077300	-1.51651800	2.20104800
-3.31929700	-0.33483800	-3.33708400
-1.68211100	-0.45163600	-2.68577800
-2.55663700	1.07707800	-2.60616000
-6.64227300	-2.66247700	0.93755100
-6.74387000	-2.50156400	-0.82589600
-7.26457000	-1.17595200	0.21708800
-1.43660700	-1.04438700	2.59668900
-2.98537900	-0.80690700	3.40801800
-2.10993200	0.57807500	2.74945900
1.01026800	4.24701100	-0.28302100
3.54039900	-1.10044000	-0.02949400
4.31394500	-0.08661700	0.59663500
4.21576400	-2.19438700	-0.64160400
5.69695600	-0.16673600	0.59206600
3.82382300	0.72339600	1.11847900
5.59830700	-2.24950900	-0.65909300
3.64727100	-2.97047700	-1.14180600
6.34484300	-1.23696100	-0.03955600
6.27929100	0.60292200	1.08832600
6.10169300	-3.07557300	-1.15089700
7.42970300	-1.28717100	-0.04261000
	1.28664100 2.10131200 -2.54907900 -3.25885600 -4.53262800 -4.53262800 -4.39181800 -3.11162300 -2.67205600 -6.51356100 -2.37195400 2.52558000 2.09116300 0.28165700 1.26768200 -1.62644400 -3.03146800 -0.90214700 1.67382600 -5.07848000 -4.83077300 -3.31929700 -1.68211100 -2.55663700 -6.64227300 -6.64227300 -6.64227300 -6.64227300 -1.43660700 -2.98537900 -2.10993200 1.01026800 3.54039900 4.31394500 4.21576400 5.69695600 3.82382300 5.59830700 3.64727100 6.34484300 6.27929100 6.10169300 7.42970300	1.28664100 -2.29782800 2.10131200 -1.09968600 -2.54907900 -0.25061000 -3.25885600 -0.41503600 -4.53262800 -0.98747900 -5.12150000 -1.38603200 -4.39181800 -1.21020300 -3.11162300 -0.65108200 -2.67205600 -0.01029100 -6.51356100 -1.96817500 2.52558000 1.84546800 2.09116300 1.84066600 0.28165700 2.28378700 1.26768200 -0.02243200 -1.62644400 4.96521900 -3.03146800 2.66136700 -0.90214700 -2.54747600 1.67382600 -3.30359400 -5.07848000 -1.12911400 -4.83077300 -1.51651800 -3.31929700 -0.33483800 -1.68211100 -0.45163600 -2.55663700 1.07707800 -6.74387000 -2.66247700 -7.26457000 -1.17595200 -1.43660700 -1.04438700 -2.98537900 -0.86697500 1.01026800 4.24701100 3.54039900 -1.10044000 4.21576400 -2.19438700 5.69695600 -0.16673600 3.82382300 0.72339600 5.9830700 -2.24950900 3.64727100 -2.8717100 6.34484300 -1.23696100 6.27929100 0.60292200 6.10169300 -3.07557300 7.42970300 -1.28717100

SCF done: -1261.49370053 Hartree

No imaginary Frequency.

7. Cellular study

Darkcytotoxicity of 2g

Figure S12. Cytotoxicity of HeLa cells treated with different concentrations of 2g for 24 h as demonstrated by CCK-8 assay.

8. ¹H and ¹³C NMR spectra for all new compounds

¹H NMR (300 MHz) spectrum of **2a** in CDCl₃

 ^{13}C NMR (125 MHz) spectrum of **2a** in CDCl₃

¹H NMR (500 MHz) spectrum of 2b in CDCl₃

¹³C NMR (125 MHz) spectrum of **2b** in CDCl₃

¹H NMR (500 MHz) spectrum of **2c** in CDCl₃

¹H NMR (500 MHz) spectrum of 2d in CDCl₃

¹³C NMR (125 MHz) spectrum of **2d** in CDCl₃

¹H NMR (500 MHz) spectrum of **2e** in CDCl₃

 ^{13}C NMR (125 MHz) spectrum of 2e in CDCl_3

¹H NMR (400 MHz) spectrum of **2f** in CDCl₃

13 C NMR (100 MHz) spectrum of **2f** in CDCl₃

¹H NMR (400 MHz) spectrum of 2g in CDCl₃

9. HRMS spectra for all new compounds

HRMS for 2a

HRMS for 2b

HRMS for 2c

HRMS for 2d

HRMS for 2e

HRMS for 2f

HRMS of 2g

References:

- 1. S. J. Isak, and E. M. Eyring, J. Phys. Chem. 1992, 96, 1738.
- 2. R. Benson, and H. Kues, Phys. Med. Biol., 1978, 23, 159.
- 3. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, 2006.
- SAINT V 6.01 (NT) Software for the CCD Detector System, Bruker Analytical X-ray Systems, Madison, WI 1999.
- 5. G. M. Sheldrick, SHELXS-90, *Program for the Solution of Crystal Structure*, University of Göttingen, Germany, 1990.
- 6. G. M. Sheldrick, Acta Cryst. 2015, 71, 3.
- 7. SHELXTL 5.10 (PC/NT-Version), *Program library for Structure Solution and Molecular Graphics*, Bruker Analytical X-ray Systems, Madison, WI 1998.
- 8. X. Zhou, Q. Wu, Y. Yu, C. Yu, E. Hao, Y. Wei, X. Mu, and L. Jiao, Org. Lett. 2016, 18, 736.
- Q. Wu, Z. Kang, Q. Gong, X. Guo, H. Wang, D. Wang, L. Jiao, and E. Hao, E. Org. Lett. 2020, 22, 7513.
- Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
- 11. T. Wang, H. Ma, S. Zhang, Z. Li, M. Zhang, F. Li, F. Sun, J. Xiang, M. Ke and Q. Wang, *Org. Lett.*, 2018, **20**, 3591.