SUPPROTING INFORMATION

Carbonylative Coupling of Simple Alkanes and Alkenes Enabled by

Organic Photoredox Catalysis

Ling Chen, Jing Hou,* Ming Zheng, Le-Wu Zhan, Wan-Ying Tang,* Bin-dong Li* College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

E-mail: libindong@njust.edu.cn; chmhouj@njust.edu.cn

Contents

1. General Information	S2
2. General Procedures	S2
3. Complementary Reaction Optimization Data	S3
4. Mechanistic Studies	S5
5. Analytical Data of the Products	S6
6. Reference	S15
7. NMR Spectra of Products	S16

1. General Information

Chemicals and solvents were purchased from commercial suppliers and used as received. ¹H NMR, ¹³C NMR spectra were recorded on a Bruker AVANCEIII-500 (500 MHz) spectrometer. Chemical shifts were calibrated using residual undeuterated solvent as an internal reference (CDCl₃: 7.26 ppm ¹H NMR, 77.16 ppm ¹³C NMR). Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), brs (broad singlet). All high resolution mass spectra (HRMS) were obtained on a AB Sciex TripieTOF 4600 spectrometer. Column chromatography was carried out over 200-300 mesh silica gel. Blue LED (40 W, λ_{max} = 440 nm) purchased from Kessil was used for blue light irradiation. Alkenes (1b¹, 1c², 1d², 1e², 1f³, 1g¹, 1h¹, 1i⁴, 1j⁵, 1k⁶, 1l², 1m¹, 1n³, 1o⁴, 1p¹, 1q⁷, 1r⁸) and *N*-alkoxyazinium salts (A⁹, B¹⁰, C¹⁰, D¹⁰) were all prepared following reported literature protocols.

Figure S1. Devices for the photocatalytic reactions

2. General procedures

General procedure for carbonylation of alkanes: a 5 mL vial equipped with a magnetic stir bar was added 4CzIPN (3.2 mg, 0.004 mmol, 2 mol%), 4-cyano-1isopropoxypyridin-1-ium trifluoromethanesulfonate (93.6 mg, 0.3 mmol, 1.5 equiv). Subsequently, corresponding alkene (0.2 mmol, 1.0 equiv), cyclohexane (1.5 mL) and 1,2-dichloromethane (1.5 mL) was added through injection port. The vials were placed into an autoclave with one inserted quartz-glass windows. After the autoclave was flushed three times, it was filled with 20 atm of CO and then irradiated with blue LED (40 W, $\lambda_{max} = 440$ nm) at rt for 12 h. Upon completion of the reaction, the pressure was carefully released and the solvent was removed under reduced pressure. The products were purified by flash chromatography (hexanes/EtOAc = 50/1).

3. Complementary Reaction Optimization Data

	Ph + CO Photocat. (2 mol%) A (1.5 equiv) DCE (2.0 mL) DCE (2.0 mL) Blue LED, rt, 12 h	O Ph Ph 3a
entry	Photocat.	Yield (%) ^{b}
1	4CzIPN	55
2	EosinY	13
3	$Ru(bpy)_3Cl_2$	16
4	$Ru(bpy)_3[PF_6]_2$	16
5	$Ir(ppy)_2(dtbpy)PF_6$	33
6	Ir(ppy) ₃	28
7	$[Ir(dF(CF_3)ppy)_2)(dtbbpy)]PF_6$	37

Table S1 Photocat. evaluation^a

^{*a*}Standard conditions: **1a** (0.2 mmol), **A** (1.5 equiv), Photocat. (2 mol%), **2a** (1 mL), DCE (2 mL) and CO (50 bar) at rt under LED irradiation, 12 h. ^{*b*}Isolated yields.

Table S2 Screening of solvent^a

Ph Ph + Ph 1a 2a	+ CO 4CzIPN (2 mol%) A (1.5 equiv) Solvent (2.0 mL) Blue LED, rt, 12 h	O Ph Ph 3a
entry	Solvent	Yield (%) ^b
1	EA	24
2	MeCN	10
3	Acetone	30
4	DCE	55
5	DMSO	3
6	DCM	50
7	CHCl ₃	14

^{*a*}Standard conditions: **1a** (0.2 mmol), **A** (1.5 equiv), 4CzIPN (2 mol%), **2a** (1 mL), Solvent (2 mL) and CO (50 bar) at rt under LED irradiation, 12 h. ^{*b*}Isolated yields.

	Ph + Ph + Ph + $1a$ 2a	CO 50 bar	4CzIPN (2 mol%) A (1.5 equiv) DCE (m mL) Blue LED, rt, 12 h	O Ph Ph 3a
entry	2a (n mL)		DCE (m mL)	Yield (%) ^{b}
1	1		3	38
2	0.5		2.5	21
3	1		2	55
4	1.5		1.5	71
5	2		1	54

Table S3 Screening of the solvent ratio^a

^{*a*}Standard conditions: **1a** (0.2 mmol), **A** (1.5 equiv), 4CzIPN (2 mol%), **2a** (n mL), DCE (m mL) and CO (50 bar) at rt under LED irradiation, 12 h. ^{*b*}Isolated yields.

Table S4 Screening of the oxidant^a

Ph + Ph + 1a	+ 2a	CO 50 bar	4CzIPN (2 mol%) Oxidant (1.5 equiv) DCE (1.5 mL) Blue LED, rt, 12 h	→ ()	O Ph Ph Bh
	CN TfO ⁻ N O ⁱ Pr	COOMe	↓ N O [/] Pr	CN ↓↓ TfO ⁻ Ň OMe	
	Α	В	С	D	
entry		Ox	kidant		Yield $(\%)^b$
1			Α		71
2			B		47
3			С		32
4	D				53
5	K ₂ S ₂ O ₈ (NH ₄) ₂ S ₂ O ₈				NR
6		(NH	$_{4})_{2}S_{2}O_{8}$		NR

^{*a*}Standard conditions: **1a** (0.2 mmol), Oxidant (1.5 equiv), 4CzIPN (2 mol%), **2a** (1.5 mL), DCE (1.5 mL) and CO (50 bar) at rt under LED irradiation, 12 h. ^{*b*}Isolated yields. NR= no reaction.

Table S5 Screening of the temperature^a

Ph Ph + 1a	+ CO 2a 50 bar	4CzIPN (2 mol%) ▲ (1.5 equiv) DCE (1.5 mL) Blue LED, n °C, 12 h	O Ph Ph 3a
entry	Temperat	ure (°C)	Yield $(\%)^b$
1	r		71
2	50		67
3	70)	65

^aStandard conditions: 1a (0.2 mmol), A (n equiv), 4CzIPN (2 mol%), 2a (1.5 mL),

DCE (1.5 mL) and CO (50 bar) at n °C under LED irradiation, 12 h. ^bIsolated yields.

Ph Ph 1a	\checkmark	CO b) bar 4CzIPN (2 mol%) A (n equiv) DCE (1.5 mL) Blue LED, rt, 12 h	\rightarrow \bigcirc $\overset{O}{} \overset{Ph}{} $
entry		A (n equiv)	Yield $(\%)^b$
1		1.0	69
2		1.5	71
3		2.0	60

^{*a*}Standard conditions: **1a** (0.2 mmol), **A** (n equiv), 4CzIPN (2 mol%), **2a** (1.5 mL), DCE (1.5 mL) and CO (50 bar) at rt under LED irradiation, 12 h. ^{*b*}Isolated yields.

	Ph Ph Ph 1a	+ + + + 2a	CO 50 bar	4CzIPN (2 mol%) A (1.5 equiv) DCE (1.5 mL) Blue LED, rt, 12 h	- O Ph Ph 3a
entry			1a (mn	nol)	Yield $(\%)^b$
1			0.1		69
2			0.2		71
3		0.3			60

Table S7 Screening of the concentration^a

^{*a*}Standard conditions: **1a** (n mmol), **A** (1.5 equiv), 4CzIPN (2 mol%), **2a** (1.5 mL), DCE (1.5 mL) and CO (50 bar) at rt under LED irradiation, 12 h. ^{*b*}Isolated yields.

Table S8 Screening of the CO pressure^a

Ph	+ - +	со	4CzIPN (2 mol%) A (1.5 equiv)	→ O Ph Ph
Ph 1a	2a	<mark>n</mark> bar	DCE (1.5 mL) Blue LED, rt, 12 h	Ja 3a
entry	CO) pressu	re (bar)	Yield (%) ^{b}
1		10		55
2		20		72
3		50		71

^{*a*}Standard conditions: **1a** (0.2 mmol), **A** (1.5 equiv), 4CzIPN (2 mol%), **2a** (1.5 mL), DCE (1.5 mL) and CO (n bar) at rt under LED irradiation, 12 h. ^{*b*}Isolated yields.

4. Mechanistic Studies

In a typical experiment, a solution of 4CzIPN in anhydrous DCE (0.125 mM) was added with an appropriate amount of quencher in a quartz cuvette. Then the emission of the sample was collected. The emission intensity at 538 nm was collected with excited wavelength of 380 nm.

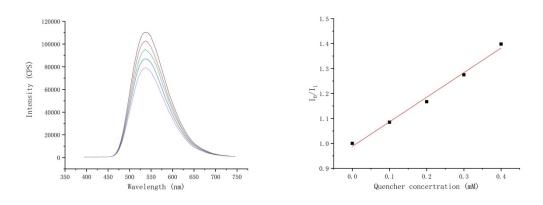


Figure S2. Luminescence quenching of 4CzIPN by A

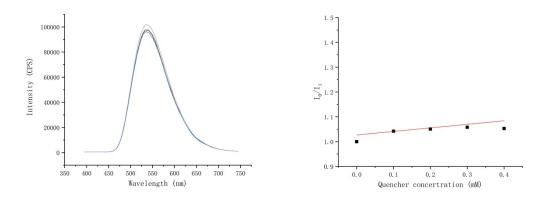
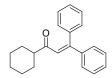
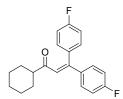
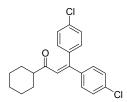
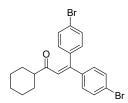
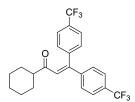
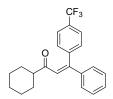




Figure S3. Luminescence quenching of 4CzIPN by 2a

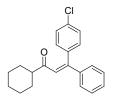

5. Analytical Data of the Products


1-cyclohexyl-3,3-diphenylprop-2-en-1-one (**3a**): The compound was purified by flash column chromatography (petroleum ether/EtOAc =50:1) to give the product as a yellow oil, 41.8 mg, 72% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.40 – 7.27 (m, 8H), 7.22 – 7.14 (m, 2H), 6.62 (s, 1H), 2.25 (tt, *J* = 11.6, 3.5 Hz, 1H), 1.84 – 1.68 (m, 4H), 1.62 (d, *J* = 10.7 Hz, 1H), 1.35 – 1.27 (m, 2H), 1.19 – 1.08 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 204.9, 153.5, 141.3, 139.2, 129.4, 129.3, 128.4, 128.4, 128.4, 128.2, 125.5, 50.9, 28.8, 25.9, 25.8. The data consistent with previously reported literature.¹¹

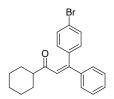

1-cyclohexyl-3,3-bis(4-fluorophenyl)prop-2-en-1-one (**3b**): The compound was purified by flash column chromatography (petroleum ether/EtOAc =50:1) to give the product as a yellow oil, 45.8 mg, 70% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.28 – 7.24 (m, 2H), 7.17 – 7.11 (m, 2H), 7.04 (dt, J = 20.5, 8.6 Hz, 4H), 6.59 (s, 1H), 2.31 (tt, J = 11.5, 3.4 Hz, 1H), 1.86 – 1.72 (m, 4H), 1.68 – 1.59 (m, 1H), 1.36 – 1.30 (m, 2H), 1.22 – 1.15 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 204.1, 163.5 (d, J = 250.5 Hz), 162.8 (d, J = 248.3 Hz), 151.7, 137.4 (d, J = 3.5 Hz), 134.8 (d, J = 3.3 Hz), 131.3 (d, J = 8.3 Hz), 130.3 (d, J = 8.4 Hz), 125.0, 115.5 (d, J = 21.7 Hz), 115.3 (d, J = 21.5 Hz), 51.2, 28.7, 25.8, 25.8. ¹⁹F NMR (470 MHz, CDCl₃) δ -111.47, -112.81. HRMS ESI [M + H]⁺ Calcd for C₂₁H₂₁F₂O 327.1555, found 327.1546.


3,3-bis(4-chlorophenyl)-1-cyclohexylprop-2-en-1-one (**3c**): The compound was purified by flash column chromatography (petroleum ether/EtOAc =50:1) to give the product as a yellow oil, 49.5 mg, 69% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.32 (dd, J = 21.1, 8.5 Hz, 4H), 7.20 (d, J = 8.6 Hz, 2H), 7.09 (d, J = 8.4 Hz, 2H), 6.63 (s, 1H), 2.34 (tt, J = 11.4, 3.4 Hz, 1H),1.85 – 1.73 (m, 4H), 1.68 – 1.61 (m, 1H), 1.36 – 1.27 (m, 2H), 1.25 – 1.15 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 203.8, 151.4, 139.4, 137.1, 135.6, 134.6, 130.7, 129.7, 128.8, 128.5, 125.4, 51.3, 28.6, 25.8, 25.7. HRMS ESI [M + H]⁺ Calcd for C₂₁H₂₁Cl₂O 359.0964, found 359.0963.

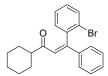
3,3-bis(4-bromophenyl)-1-cyclohexylprop-2-en-1-one (**3d**): The compound was purified by flash column chromatography (petroleum ether/EtOAc =50:1) to give the product as a colorless oil, 53.6 mg, 60% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.48 (dd, J = 20.2, 8.5 Hz, 4H), 7.13 (d, J = 8.5 Hz, 2H), 7.02 (d, J = 8.4 Hz, 2H), 6.64 (s, 1H), 2.34 (tt, J = 11.4, 3.4 Hz, 1H), 1.88 – 1.73 (m, 4H), 1.68 – 1.61 (m, 1H), 1.35 – 1.29 (m, 2H), 1.25 – 1.16 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 203.8, 151.5, 139.8, 137.5, 131.7, 131.5, 131.0, 129.9, 125.4, 124.0, 122.8, 51.3, 28.6, 25.8, 25.7. HRMS ESI [M + H]⁺ Calcd for C₂₁H₂₁Br₂O 446.9954, found 446.9960.


1-cyclohexyl-3,3-bis(4-(trifluoromethyl)phenyl)prop-2-en-1-one (**3e**): The compound was purified by flash column chromatography (petroleum ether/EtOAc =50:1) to give the product as a yellow oil, 54.8 mg, 64% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.65 (t, J = 9.0 Hz, 2H), 7.57 (s, 1H), 7.50 (dt, J = 26.5, 7.8 Hz, 2H), 7.43 – 7.34 (m, 3H), 6.74 (s, 1H), 2.36 (tt, J = 11.4, 3.4 Hz, 1H), 1.90 – 1.73 (m, 4H), 1.68 – 1.60 (m, 1H), 1.38 – 1.27 (m, 2H), 1.27 – 1.16 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 203.46, 150.47, 141.45, 139.12, 132.71, 131.73, 131.23 (q, J = 32.8 Hz), 130.85 (q, J = 32.8 Hz), 129.22, 128.85, 127.17, 126.19 (q, J = 3.7 Hz), 126.03 (q, J = 3.8 Hz), 125.40 (q, J = 3.4 Hz), 123.93 (q, J = 272.3 Hz), 123.81 (q, J = 272.6 Hz), 124.62 (q, J = 3.8 Hz), 51.28, 28.48, 25.78, 25.67. ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -62.60, -62.68. HRMS ESI [M + H]⁺ Calcd for C₂₃H₂₁F₆O 427.1491, found 427.1493.

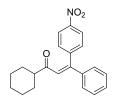
cyclohexyl-3-phenyl-3-(4-(trifluoromethyl)phenyl)prop-2-en-1-one (**3f**): The compound was purified by flash column chromatography (petroleum ether/EtOAc =50:1) to give the product as a yellow oil, 47.0 mg, 66% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.61 (dd, J = 24.7, 7.9 Hz, 2H), 7.43 – 7.32 (m, 4H), 7.31 – 7.27 (m, 2H), 7.20 – 7.13 (m, 1H), 6.76 (s, 0.64H), 6.64 (s, 0.36H), 2.38 (tt, J = 11.4, 3.5 Hz, 0.68H), 2.26 (tt, J = 11.7, 3.5 Hz, 0.42H), 1.90 – 1.73 (m, 4H), 1.68 – 1.60 (m, 1H), 1.35 – 1.23 (m, 3H), 1.22 – 1.12 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 204.8, 203.4, 152.6, 151.6, 144.9, 143.1, 140.5, 138.4, 131.1, 130.8, 130.2, 130.0, 129.7, 129.6, 129.4, 128.7, 128.7, 128.6, 128.4, 128.3, 127.2, 125.4 (q, J = 3.7 Hz), 125.3, 125.1 (q, J = 3.6 Hz), 125.0, 123.1, 51.4, 50.9, 28.7, 28.6, 25.9, 25.8, 25.7. ¹⁹F NMR (470 MHz, CDCl₃) δ -62.49, -62.66. The data consistent with previously reported literature.¹¹

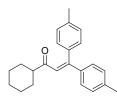


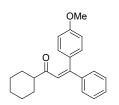
1-cyclohexyl-3-(4-fluorophenyl)-3-phenylprop-2-en-1-one (**3g**): The compound was purified by flash column chromatography (petroleum ether/EtOAc =50:1) to give the product as a yellow oil, 47.9 mg, 78% yield (*E*:*Z* isomer: 55:45 based on crude product's NMR). ¹H NMR (500 MHz, CDCl₃) δ 7.41 – 7.32 (m, 3H), 7.30 – 7.26 (m, 2H), 7.20 – 7.13 (m, 2H), 7.09 – 6.98 (m, 2H), 6.64 (s, 0.17H), 6.57 (s, 0.83H), 2.32 (tt, *J* = 11.5, 3.4 Hz, 0.18H), 2.23 (tt, *J* = 11.6, 3.4 Hz, 0.84H), 1.84 – 1.69 (m, 4H), 1.64 – 1.59 (m, 1H), 1.34 – 1.25 (m, 2H), 1.19 – 1.07 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 204.7, 204.3, 163.4 (d, *J* = 249.5 Hz), 162.8 (d, *J* = 247.6 Hz), 152.8, 152.4, 141.3, 139.0, 137.4 (d, *J* = 3.4 Hz), 135.0 (d, *J* = 3.2 Hz), 131.3 (d, *J* = 8.1 Hz), 130.3 (d, *J* = 8.5 Hz), 129.4 (d, *J* = 10.9 Hz), 128.5 (d, *J* = 9.7 Hz), 128.3, 125.3, 115.4 (d, *J* = 29.0 Hz), 115.2 (d, *J* = 29.2 Hz), 51.2, 50.8, 28.7 (d, *J* = 9.0 Hz), 25.8 (d, *J* = 9.3 Hz). ¹⁹F NMR (470 MHz, CDCl₃) δ -111.87, -113.17. The data consistent with previously reported literature.¹¹



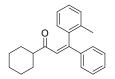
3-(4-chlorophenyl)-1-cyclohexyl-3-phenylprop-2-en-1-one (**3h**): The compound was purified by flash column chromatography (petroleum ether/EtOAc =50:1) to give the


product as a yellow oil, 50.0 mg, 77% yield (*E:Z* isomer: 54:46 based on crude product's NMR). ¹H NMR (500 MHz, CDCl₃) δ 7.41 – 7.31 (m, 4H), 7.31 – 7.26 (m, 2H), 7.23 (d, *J* = 8.6 Hz, 1H), 7.19 – 7.08 (m, 2H), 6.63 (d, *J* = 37.1 Hz, 1H), 2.29 (dtt, *J* = 57.7, 11.5, 3.4 Hz, 1H), 1.86 – 1.70 (m, 4H), 1.67 – 1.59 (m, 1H), 1.36 – 1.26 (m, 2H), 1.19 – 1.10 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 204.7, 203.9, 152.7, 152.1, 141.0, 139.8, 138.7, 137.6, 135.3, 134.3, 130.8, 129.7, 129.5, 129.4, 128.6, 128.6, 128.5, 128.4, 128.3, 125.7, 125.2, 51.3, 50.8, 28.7, 28.6, 25.9, 25.8, 25.8. The data consistent with previously reported literature.¹¹

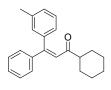

(4-bromophenyl)-1-cyclohexyl-3-phenylprop-2-en-1-one (**3i**): The compound was purified by flash column chromatography (petroleum ether/EtOAc =50:1) to give the product as a yellow oil, 56.0 mg, 76% yield (*E:Z* isomer: 53:47 based on crude product's NMR).¹H NMR (500 MHz, CDCl₃) δ 7.48 (dd, J = 22.7, 8.5 Hz, 2H), 7.38 (dd, J = 5.1, 2.2 Hz, 2H), 7.34 – 7.26 (m, 1H), 7.18 – 7.03 (m, 4H), 6.67 (s, 0.27H), 6.59 (s, 0.73H), 2.35 (tt, J = 11.4, 3.4 Hz, 0.30H), 2.23 (tt, J = 11.6, 3.3 Hz, 0.78H), 1.87 – 1.70 (m, 4H), 1.67 – 1.60 (m, 1H), 1.37 – 1.24 (m, 3H), 1.20 – 1.10 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 204.8, 203.9, 152.8, 152.2, 140.9, 140.2, 138.7, 138.1, 131.6, 131.3, 131.1, 123.0, 129.6, 129.4, 128.6, 128.5, 128.4, 128.3, 125.8, 125.1, 123.7, 122.5, 51.3, 50.8, 28.7, 28.6, 25.9, 25.9, 25.8. The data consistent with previously reported literature.¹¹


3-(2-bromophenyl)-1-cyclohexyl-3-phenylprop-2-en-1-one (**3j**): The compound was purified by flash column chromatography (petroleum ether/EtOAc =50:1) to give the product as a yellow oil, 29.3 mg, 40% yield (*E*:*Z* isomer: 88:12 based on crude product's NMR). ¹H NMR (500 MHz, CDCl₃) δ 7.63 (d, *J* = 8.0 Hz, 1H), 7.35 (d, *J* = 8.5 Hz, 6H), 7.26 – 7.22 (m, 1H), 7.15 (d, *J* = 7.9 Hz, 1H), 6.88 (s, 0.95H), 6.31 (s, 0.05H), 2.39 (tt, *J* = 11.4, 3.4 Hz, 0.96H), 2.30 (tt, *J* = 11.6, 3.5 Hz, 0.05H), 1.93 – 1.72 (m, 4H), 1.66 – 1.60 (m, 1H), 1.38 – 1.24 (m, 3H), 1.23 – 1.14 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 202.8, 151.9, 140.4, 139.0, 132.8, 130.4, 129.5, 129.2, 128.6, 127.6, 127.3, 125.1, 122.4, 51.3, 51.0, 29.8, 28.7, 28.3, 25.9, 25.9, 25.8. The data consistent with previously reported literature.¹¹

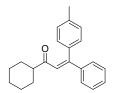
1-cyclohexyl-3-(4-nitrophenyl)-3-phenylprop-2-en-1-one (**3k**): The compound was purified by flash column chromatography (petroleum ether/EtOAc =50:1) to give the product as a yellow oil, 20.6 mg, 31% yield (*E:Z* isomer: 52:48 based on crude product's NMR). ¹H NMR (500 MHz, CDCl₃) δ 8.15 (dd, *J* = 29.5, 8.3 Hz, 2H), 7.37 (dd, *J* = 23.6, 7.5 Hz, 4H), 7.29 (dd, *J* = 16.9, 8.1 Hz, 1H), 7.22 – 7.07 (m, 2H), 6.76(s,0.27H), 6.61 (s, 0.73H), 2.38 (tt, *J* = 11.1, 3.5 Hz, 0.28H), 2.20 (tt, *J* = 11.7, 3.5 Hz, 0.77H), 1.86 – 1.64 (m, 4H), 1.64 – 1.55 (m, 1H), 1.29 – 1.20 (m, 3H), 1.11 – 1.02 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 204.7, 202.9, 150.4, 148.0, 147.6, 146.6 139.8, 137.9, 130.0, 130.0, 129.3, 129.2, 129.0, 128.8, 128.6, 128.3, 128.2, 125.1, 123.7, 123.4, 51.6, 50.9, 28.6, 28.4, 25.8, 25.8, 25.7, 25.7. HRMS ESI [M + H]⁺ Calcd for C₂₁H₂₂NO₃ 336.1594, found 336.1597.



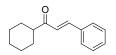
¹⁻cyclohexyl-3,3-di-p-tolylprop-2-en-1-one (**3**I): The compound was purified by flash column chromatography (petroleum ether/EtOAc =50:1) to give the product as a yellow oil, 26.3 mg, 41% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.22 – 7.10 (m, 6H), 7.06 (d, *J* = 7.8 Hz, 2H), 6.56 (s, 1H), 2.38 (s, 3H), 2.36 (s, 3H), 2.26 (tt, *J* = 11.7, 3.4 Hz, 1H), 1.83 – 1.69 (m, 4H), 1.63 – 1.58 (m, 1H), 1.36 – 1.29 (m, 3H), 1.18 – 1.07 (m, 2H). 13C NMR (126 MHz, CDCl₃) δ 204.9, 154.0, 139.5, 138.8, 138.2, 136.4, 129.5, 129.1, 128.8, 128.5, 124.3, 50.9, 28.8, 25.9, 25.8, 21.4, 21.3. The data consistent with previously reported literature.¹¹



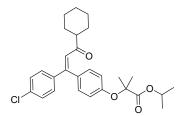
1-cyclohexyl-3-(4-methoxyphenyl)-3-phenylprop-2-en-1-one (**3m**): The compound was purified by flash column chromatography (petroleum ether/EtOAc =50:1) to give the product as a yellow oil, 22.5 mg, 35% yield (*E*:*Z* isomer: 63:37 based on crude product's NMR). ¹H NMR (500 MHz, CDCl₃) δ 7.40 – 7.29 (m, 3H), 7.27 – 7.22 (m, 2H), 7.20 – 7.09 (m, 2H), 6.87 (dd, *J* = 23.4, 8.4 Hz, 2H), 6.56 (d, *J* = 25.2 Hz, 1H), 3.83 (d, *J* = 11.6 Hz, 3H), 2.36 – 2.17 (m, 1H), 1.84 – 1.69 (m, 4H), 1.64 – 1.59 (m, 1H), 1.34 – 1.24 (m, 3H), 1.15 – 1.10 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 204.6, 160.7, 153.5, 139.5, 133.6, 131.2, 129.9, 129.4, 128.7, 128.3, 128.2, 128.1, 125.0,


123.6, 113.8, 113.5, 55.4, 55.3, 50.9, 50.8, 29.7, 28.8, 25.9, 25.8. The data consistent with previously reported literature.¹¹

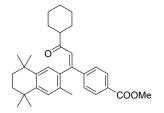
cyclohexyl-3-phenyl-3-(o-tolyl)prop-2-en-1-one (**3n**): The compound was purified by flash column chromatography (petroleum ether/EtOAc =50:1) to give the product as a yellow oil, 40.0 mg, 66% yield (*E*:*Z* isomer: 83:17 based on crude product's NMR). ¹H NMR (500 MHz, CDCl₃) δ 7.34 – 7.28 (m, 5H), 7.26 – 7.15 (m, 3H), 7.04 (dd, *J* = 7.4, 1.4 Hz, 1H), 6.80 (s, 0.76H), 6.25 (s, 0.24H), 2.33 – 2.20(m, 1H), 2.07 (d, *J* = 11.5 Hz, 3H), 1.88 – 1.68 (m, 4H), 1.64 – 1.60 (m, 1H), 1.42 – 1.24 (m, 3H), 1.16 – 1.10 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 204.0, 153.0, 139.9, 138.8, 135.7, 130.7, 130.1, 129.7, 129.3, 129.2, 128.8, 128.6, 128.6, 128.3, 128.2, 128.0, 128.0, 127.5, 125.7, 125.2, 51.1, 50.7, 29.7, 28.8, 25.9, 25.9, 25.8, 20.4, 19.7. The data consistent with previously reported literature.¹¹

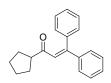


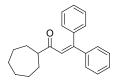
1-cyclohexyl-3-phenyl-3-(m-tolyl)prop-2-en-1-one (**30**): The compound was purified by flash column chromatography (petroleum ether/EtOAc =50:1) to give the product as a yellow oil, 45.4 mg, 75% yield (*E*:*Z* isomer: 50:50 based on crude product's NMR). ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.29 (m, 4H), 7.25 – 7.15 (m, 3H), 7.13 – 7.05 (m, 1H), 6.98 (d, *J* = 7.2 Hz, 1H), 6.59 (d, *J* = 8.2 Hz, 1H), 2.34 (d, *J* = 6.9 Hz, 3H), 2.23 (tdd, *J* = 11.6, 6.4, 3.2 Hz, 1H), 1.82 – 1.69 (m, 4H), 1.64 – 1.58 (m, 1H), 1.36 – 1.24 (m, 3H), 1.15 – 1.08 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 205.2, 204.9, 153.7, 153.6, 141.4, 141.3, 139.3, 139.2, 138.0, 137.8, 130.1, 130.0, 129.4, 129.2, 129.1, 129.0, 128.4, 128.4, 128.3, 128.3, 128.1, 128.0, 126.6, 125.7, 125.6, 125.4, 50.8, 50.7, 28.8, 28.8, 25.9, 25.8, 21.4. The data consistent with previously reported literature.¹¹

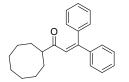


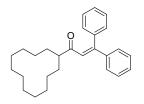
cyclohexyl-3-phenyl-3-(p-tolyl)prop-2-en-1-one (**3p**): The compound was purified by flash column chromatography (petroleum ether/EtOAc =50:1) to give the product as a yellow oil, 36.2 mg, 60% yield (*E*:*Z* isomer: 58:42 based on crude product's NMR). ¹H NMR (500 MHz, CDCl₃) δ 7.43 – 7.29 (m, 4H), 7.20 – 7.16 (m, 3H), 7.14 – 7.06 (m, 2H), 6.60 (d, *J* = 14.0 Hz, 1H), 2.38 (d, *J* = 15.1 Hz, 3H), 2.27 (dtt, *J* = 23.6, 11.5,

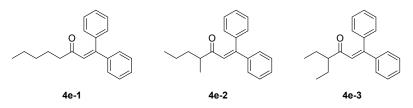

3.5 Hz, 1H), 1.84 - 1.70 (m, 4H), 1.65 - 1.59 (m, 1H), 1.36 - 1.27 (m, 2H), 1.15 - 1.10 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 204.8, 153.6, 141.6, 139.5, 139.4, 138.5, 138.3, 136.2, 129.5, 129.4, 129.2, 129.1, 128.8, 128.5, 128.4, 128.3, 128.3, 128.1, 125.2, 124.6, 50.9, 50.8, 28.8, 28.8, 25.9, 25.8, 21.4, 21.3. The data consistent with previously reported literature.¹¹

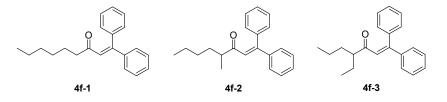

(*E*)-1-cyclohexyl-3-phenylprop-2-en-1-one (**3q**): The compound was purified by flash column chromatography (petroleum ether/EtOAc =50:1) to give the product as a yellow oil, 11.0 mg, 26% yield (*E*:*Z* isomer: 92:8 based on crude product's NMR). ¹H NMR (500 MHz, CDCl₃) δ 7.64 – 7.50 (m, 3H), 7.42 – 7.34 (m, 3H), 6.82 (d, *J* = 16.0 Hz, 1H), 2.66 (tt, *J* = 11.4, 3.4 Hz, 1H), 1.95 – 1.80 (m, 4H), 1.75 – 1.67 (m, 1H), 1.48 – 1.37 (m, 2H), 1.37 – 1.24 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 203.2, 142.2, 134.8, 130.3, 128.9, 128.3, 124.8, 49.5, 28.8, 25.9, 25.8. The data consistent with previously reported literature.¹²


isopropyl -2-(4-(1-(4-chlorophenyl)-3-cyclohexyl-3-oxoprop-1-en-1-yl)phenoxy)-2methylpropanoate (**3r**): The compound was purified by flash column chromatography (petroleum ether/EtOAc =50:1) to give the product as a yellow oil, 46.9 mg, 50% yield (*E*:*Z* isomer: 61:39 based on crude product's NMR). ¹H NMR (500 MHz, CDCl₃) δ 7.31 (dd, *J* = 23.4, 8.2 Hz, 2H), 7.17 (dd, *J* = 19.6, 8.6 Hz, 2H), 7.06 (dd, *J* = 22.4, 8.2 Hz, 2H), 6.79 (dd, *J* = 29.4, 8.6 Hz, 2H), 6.61 (s, 0.62H), 6.45 (s, 0.38H), 5.07 (tq, *J* = 12.5, 6.2 Hz, 1H), 2.32 (tt, *J* = 11.5, 3.4 Hz, 0.58H), 2.20 (tt, *J* = 11.8, 3.2 Hz, 0.4H), 1.86 – 1.67 (m, 4H), 1.61 (d, *J* = 8.9 Hz, 7H), 1.36 – 1.24 (m, 3H), 1.22 (dd, *J* = 11.3, 6.2 Hz, 6H), 1.19 – 1.15 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 205.5, 203.7, 173.6, 173.3, 157.0, 156.2, 152.4, 151.5, 150.1, 142.9, 140.2, 137.8, 135.2, 134.2, 134.0, 131.8, 130.8, 130.7, 129.8, 129.4, 128.5, 128.3, 125.8, 123.4, 118.2, 118.1, 79.2, 79.2, 69.2, 69.1, 51.3, 50.6, 28.9, 28.7, 25.9, 25.8, 25.8, 25.4, 25.4, 25.4, 21.6. HRMS ESI [M + H]⁺ Calcd for C₂₈H₃₄ClO₄ 469.2140, found 469.2140.


methyl -4-(3-cyclohexyl-3-oxo-1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)prop-1-en-1-yl)benzoate (**3s**): The compound was purified by flash column chromatography (petroleum ether/EtOAc =50:1) to give the product as a yellow oil, 38.9 mg, 41% yield (*E:Z* isomer: 66:34 based on crude product's NMR). ¹H NMR (500 MHz, CDCl₃) δ 7.97 (t, *J* = 8.8 Hz, 2H), 7.31 (dd, *J* = 69.5, 8.2 Hz, 2H), 7.15 – 6.95 (m, 2H), 6.67 (s, 0.72H), 6.35 (s, 0.28H), 3.90 (d, *J* = 3.0 Hz, 3H), 2.34 (tt, *J* = 11.7, 3.6 Hz, 0.33H), 2.00 (dt, *J* = 11.4, 3.0 Hz, 0.71H), 1.96 (d, *J* = 6.7 Hz, 3H), 1.92 – 1.72 (m, 2H), 1.71 – 1.49 (m, 8H), 1.33 – 1.18 (m, 16H). ¹³C NMR (126 MHz, CDCl₃) δ 206.1, 204.8, 166.8, 166.7, 153.6, 151.3, 145.5, 145.5, 144.6, 144.3, 142.5, 142.5, 138.8, 134.8, 132.8, 132.7, 130.4, 129.8, 129.6, 129.2, 129.2, 128.8, 128.4, 128.3, 128.0, 127.9, 127.4, 52.2, 52.1, 51.3, 49.4, 35.2, 35.1, 35.1, 34.1, 33.9, 33.9, 31.9, 31.8, 29.7, 28.7, 25.8, 25.7, 20.3, 19.5. HRMS ESI [M + H]⁺ Calcd for C₃₃H₄₁O₃ 473.3050, found 473.3043.


1-cyclopentyl-3,3-diphenylprop-2-en-1-one (**4a**): The compound was purified by flash column chromatography (petroleum ether/EtOAc =50:1) to give the product as a yellow oil, 31.8 mg, 58% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.43 – 7.28 (m, 8H), 7.23 – 7.14 (m, 2H), 6.64 (s, 1H), 2.83 (p, *J* = 7.9 Hz, 1H), 1.80 – 1.67 (m, 4H), 1.62 (td, *J* = 10.5, 9.8, 4.5 Hz, 2H), 1.54 – 1.48 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 204.2, 153.3, 141.4, 139.2, 129.5, 129.3, 128.4, 128.4, 128.3, 128.1, 125.9, 51.8, 29.4, 26.2. HRMS ESI [M + H]⁺ Calcd for C₂₀H₂₁O 277.1587, found 277.1583.


1-cycloheptyl-3,3-diphenylprop-2-en-1-one (**4b**): The compound was purified by flash column chromatography (petroleum ether/EtOAc =50:1) to give the product as a yellow oil, 33.1 mg, 54% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.41 – 7.28 (m, 8H), 7.18 (dd, *J* = 6.6, 3.0 Hz, 2H), 6.61 (s, 1H), 2.43 (tt, *J* = 9.8, 3.9 Hz, 1H), 1.82 (ddt, *J* = 14.2, 7.2, 3.8 Hz, 2H), 1.71 – 1.63 (m, 2H), 1.53 (dtd, *J* = 13.7, 10.0, 3.5 Hz, 2H), 1.46 (p, *J* = 2.9 Hz, 4H), 1.33 – 1.26 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 205.5, 153.4, 141.3, 139.2, 129.4, 129.2, 128.4, 128.4, 128.2, 125.8, 52.0, 30.2, 28.2, 26.8. HRMS ESI [M + H]⁺ Calcd for C₂₂H₂₅O 305.1900, found 305.1894.


1-cyclooctyl-3,3-diphenylprop-2-en-1-one (**4c**): The compound was purified by flash column chromatography (petroleum ether/EtOAc =50:1) to give the product as a yellow oil, 26.1 mg, 41% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.41 – 7.35 (m, 4H), 7.36 – 7.28 (m, 5H), 7.21 – 7.17 (m, 2H), 6.59 (s, 1H), 2.49 (tt, *J* = 9.4, 3.5 Hz, 1H), 1.76 (ddt, *J* = 14.9, 7.7, 3.6 Hz, 2H), 1.67 – 1.59 (m, 3H), 1.56 – 1.49 (m, 2H), 1.42 (dq, *J* = 8.1, 3.7 Hz, 3H), 1.37 – 1.26 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 206.0, 153.1, 141.3, 139.3, 129.5, 129.2, 128.4, 128.4, 128.3, 126.1, 50.1, 28.7, 26.4, 26.4, 25.6. HRMS ESI [M + H]⁺ Calcd for C₂₃H₂₇O 319.2056, found 319.2053.

1-cyclododecyl-3,3-diphenylprop-2-en-1-one(**4d**): The compound was purified by flash column chromatography (petroleum ether/EtOAc =50:1) to give the product as a yellow oil, 18.3 mg, 25% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.40 – 7.27 (m, 8H), 7.20 – 7.15 (m, 2H), 6.59 (s, 1H), 2.54 (p, *J* = 6.4 Hz, 1H), 1.58 – 1.53 (m, 2H), 1.47 (dq, *J* = 13.6, 6.7 Hz, 2H), 1.32 – 1.20 (m, 14H), 1.20 – 1.16 (m, 2H), 1.10 (dt, *J* = 13.2, 6.6 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 206.0, 152.6, 141.4, 139.2, 129.6, 129.2, 128.5, 128.4, 128.4, 128.3, 126.5, 47.1, 29.8, 26.4, 23.7, 23.7, 23.1, 22.8. HRMS ESI [M + H]⁺ Calcd for C₂₇H₃₅O 375.2682, found 375.2678.

1,1-diphenyloct-1-en-3-one (**4e-1**), 4-methyl-1,1-diphenylhept-1-en-3-one (**4e-2**), 4ethyl-1,1-diphenylhex-1-en-3-one (**4e-3**): The compound was purified by flash column chromatography (petroleum ether/EtOAc =50:1) to give the product as a yellow oil, 30.0 mg, 54% total yield (Isomer: 28:61:11 based on crude product's NMR). ¹H NMR (500 MHz, CDCl₃) δ 7.40 – 7.29 (m, 8H), 7.19 (dt, *J* = 7.4, 3.3 Hz, 2H), 6.67 – 6.57 (m, 1H), 2.52 – 2.20 (m, 1H), 1.69 – 1.61 (m, 1H), 1.54 – 1.38 (m, 1H), 1.29 – 1.21 (m, 2H), 1.11 – 0.99 (m, 2H), 0.84 (dt, *J* = 14.4, 7.2 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 205.8, 204.7, 202.6, 153.6, 141.4, 141.4, 139.2, 139.2, 129.6, 129.5, 129.5, 129.3, 129.3, 128.5, 128.4, 128.4, 128.3, 128.3, 128.2, 128.1, 127.0, 125.8, 125.6, 55.2, 46.0, 43.2, 35.6, 31.4, 24.2, 20.5, 16.3, 14.1, 14.0, 11.9. HRMS ESI [M + H]⁺ Calcd for C₂₀H₂₃O 279.1743, found 279.1743.

S14

1,1-diphenylnon-1-en-3-one (**4f-1**), 4-methyl-1,1-diphenyloct-1-en-3-one (**4f-2**), 4ethyl-1,1-diphenylhept-1-en-3-one (**4f-3**): The compound was purified by flash column chromatography (petroleum ether/EtOAc =50:1) to give the product as a yellow oil, 41.5 mg, 71% total yield (Isomer: 7:47:46 based on crude product's NMR). ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.29 (m, 8H), 7.18 (dd, *J* = 6.6, 3.0 Hz, 2H), 6.64 (s, 0.49H), 6.62 (s, 0.49H), 6.58 (s, 0.02H), 2.45 (h, *J* = 6.9 Hz, 0.48H), 2.36 (tt, *J* = 7.6, 5.7 Hz, 0.47H), 2.23 (t, *J* = 7.5 Hz, 0.03H), 1.68 – 1.54 (m, 2H), 1.49 – 1.30 (m, 1H), 1.30 – 1.18 (m, 3H), 1.02 (d, *J* = 6.9 Hz, 1H), 0.91 – 0.79 (m, 5H). ¹³C NMR (126 MHz, CDCl₃) δ 205.5, 204.8, 153.7, 153.6, 141.4, 141.4, 139.2, 139.2, 129.5, 129.3, 129.3, 128.4, 128.4, 128.4, 128.3, 128.2, 128.1, 125.7, 125.6, 53.5, 46.2, 33.5, 33.1, 29.5, 24.6, 22.8, 20.7, 16.4, 14.3, 14.0, 11.9. HRMS ESI [M + H]⁺ Calcd for C₂₁H₂₅O 293.1900, found 293.1903.

6. Reference

(1) Zhang, G.; Bai, R. X.; Li, C. H.; Feng, C. G.; Lin, G. Q. *Tetrahedron* **2019**, *72*, 1658-1662.

(2) Liu, W. Q.; Lei, T.; Zhou, S.; Yang, X. L.; Li, J.; Chen, B.; Wu, L. Z. J. Am. Chem. Soc. **2019**, *141*, 13941-13947.

(3) Cheng, H. C.; Lam, T. L.; Liu, Y.; Tang, Z.; Che, C. M. Angew. Chem. Int. Ed. **2021**, 60, 1383-1389.

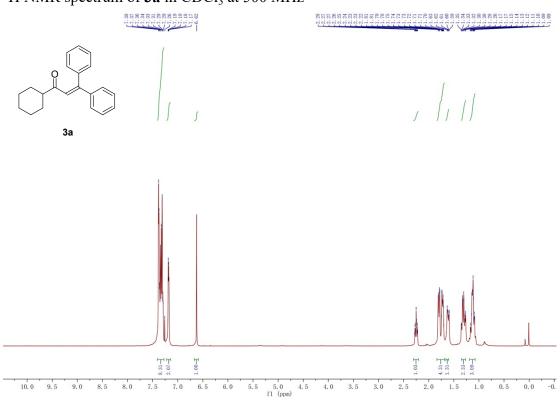
(6) Zhang, H. R.; Xiao, C.; Zhang, S. L.; Zhang, X. Adv. Synth. Catal. 2019, 361, 5305-5310.

(4) Pei, C., Yang, Z.; Koenigs, R. M. Org. Lett. 2020, 22, 18, 7300-7304.

(5) Pagire, S. K.; Kumagai, N.; Shibasaki, M. Org. Lett. 2020, 22, 7853-7858.

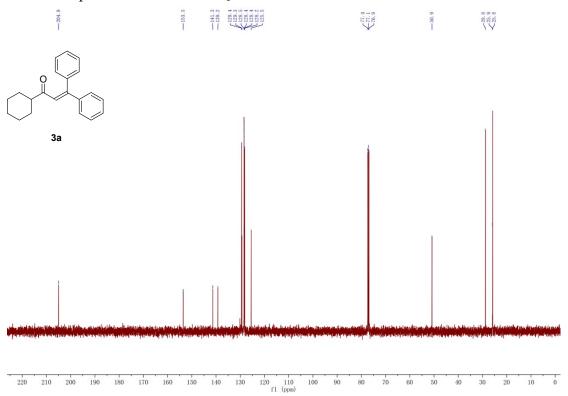
(7) Ritz, M. D.; Parsons, A. M.; Palermo, P. N.; Jones, W. D. *Polyhedron* **2020**, *180*, 114416.

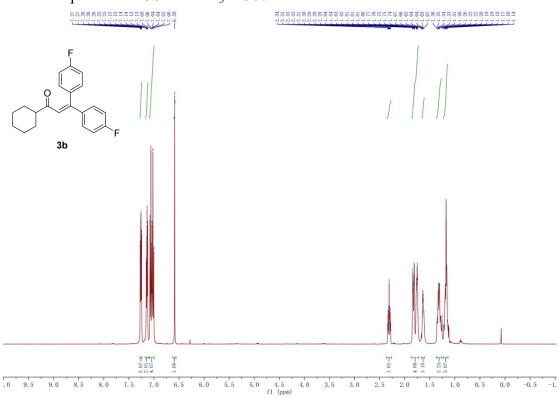
(8) Wagner, C. E.; Jurutka, P. W.; Marshall, P. A.; Groy, T. L.; Van Der Vaart, A.; Ziller, J. W.; Furmick, J. K.; Graeber, M. E.; Matro, E.; Miguel, B. V.; Tran, I. T.; Kwon, J.; Tedeschi, J. N.; Moosavi, S.; Dansihyar, A.; Philp, J. S.; Khamees, R. O.; Jackson, J. N.; Grupe, D. K.; Badshah, S. L.; Hart, J. W. *J. Med. Chem.* **2009**, *52*, 5950-5966.


(9) Barthelemy, A. L.; Tuccio, B.; Magnier, E.; Dagousset, G. Angew. Chem. Int. Ed. **2019**, *57*, 13790-13794.

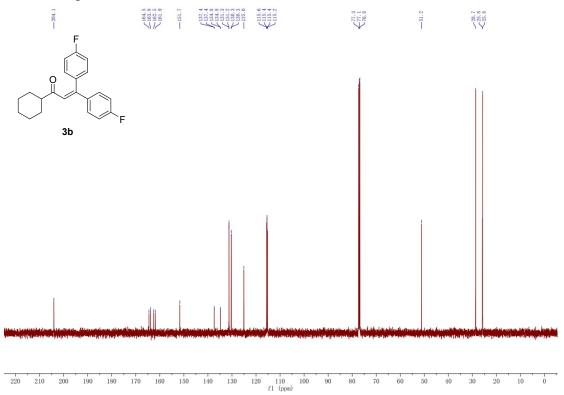
(10) Tang, W. Y.; Chen, L.; Zheng, Z.; Zhan, L. W.; Hou, J.; Li, B. D. Org. Lett. 2021, 23, 3939-3943.

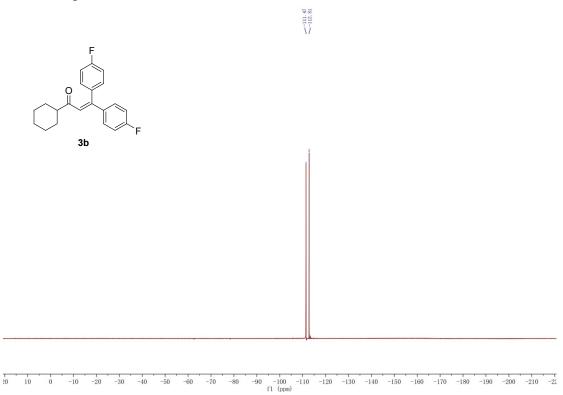
(11) Zhao, F.; Li, C. L.; Wu, X. F. Chem. Commun. 2020, 56, 9182-9185.


(12) Kerr, W. J.; Mudd, R. J.; Brown, J. A. Chem. Eur. J. 2016, 22, 4738-4742.

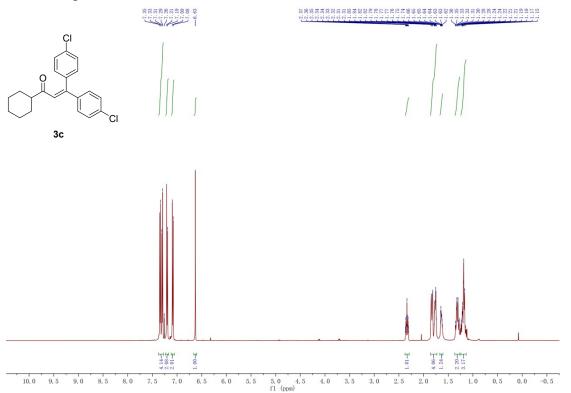

7. NMR Spectra of New Compounds and Products

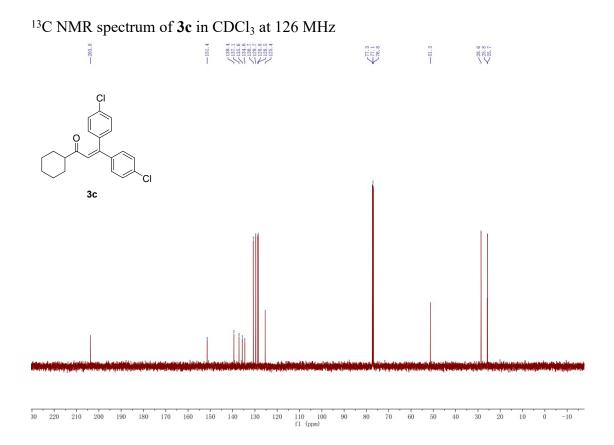
¹H NMR spectrum of 3a in CDCl₃ at 500 MHz


$^{13}\mathrm{C}$ NMR spectrum of 3a in CDCl3 at 126 MHz

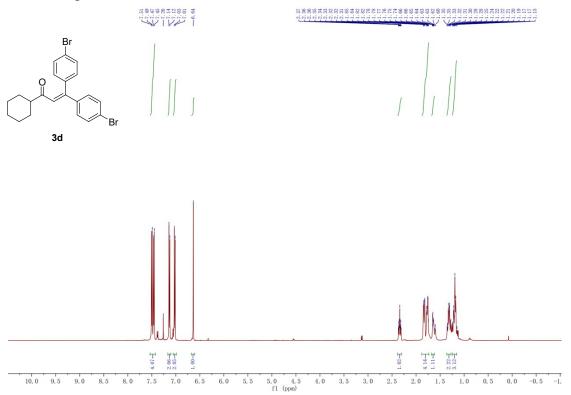


¹H NMR spectrum of **3b** in CDCl₃ at 500 MHz

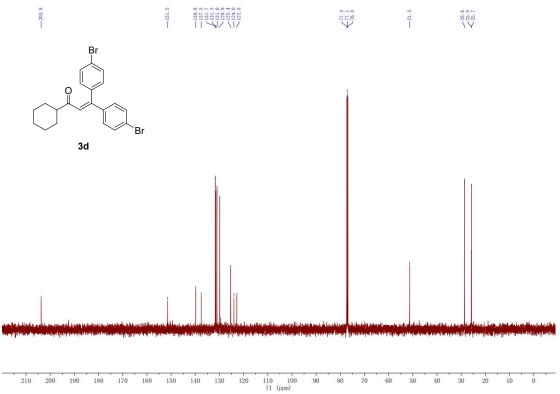

$^{13}\mathrm{C}$ NMR spectrum of 3b in CDCl3 at 126 MHz

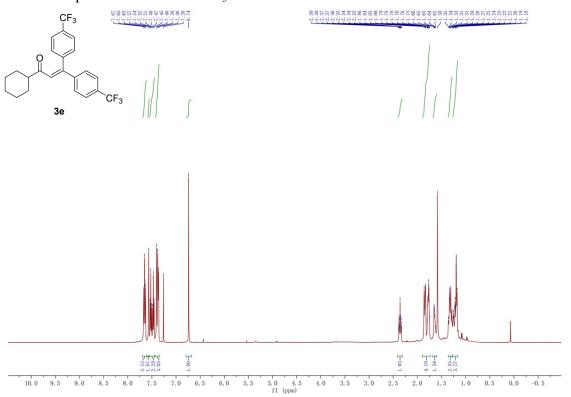


^{19}F NMR spectrum of 3b in CDCl3 at 470 MHz

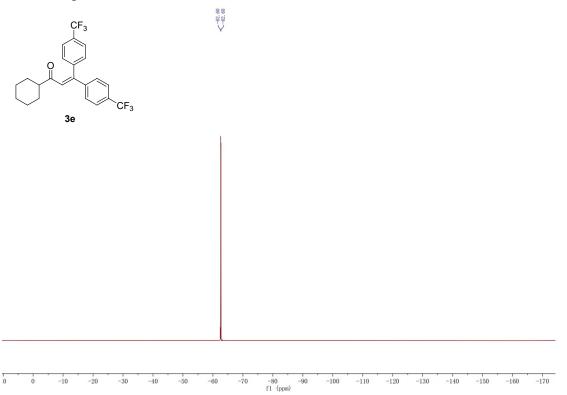


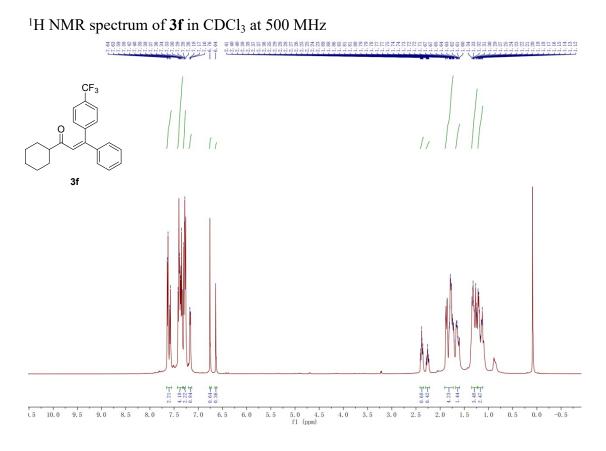
 ^1H NMR spectrum of 3c in CDCl3 at 500 MHz

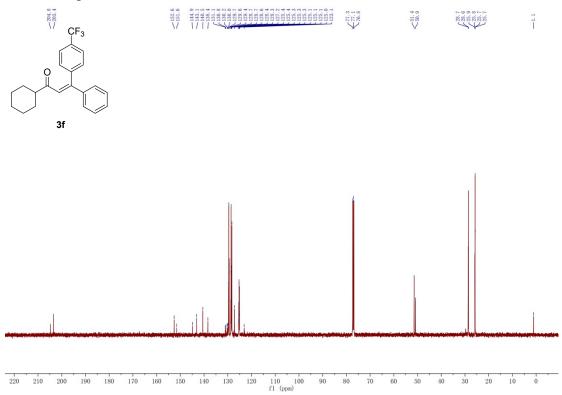


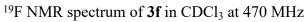

 $^1\mathrm{H}$ NMR spectrum of 3d in CDCl3 at 500 MHz

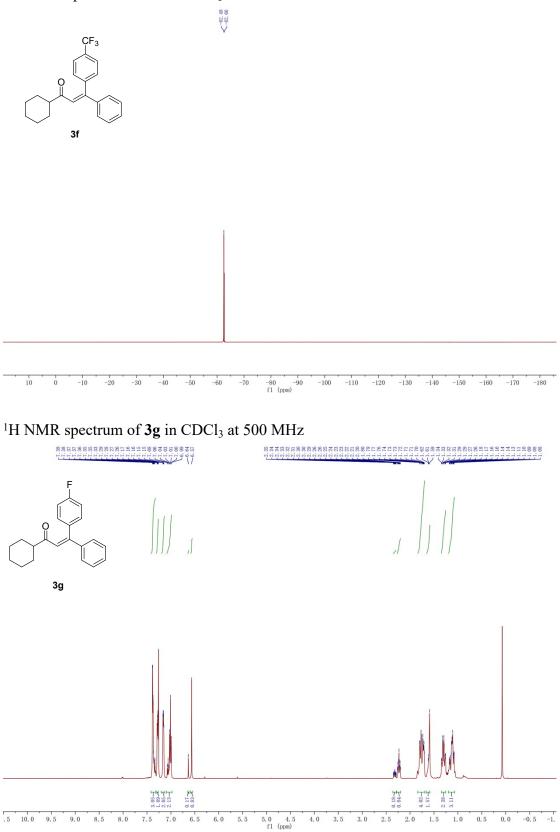
$^{13}\mathrm{C}$ NMR spectrum of 3d in CDCl3 at 126 MHz

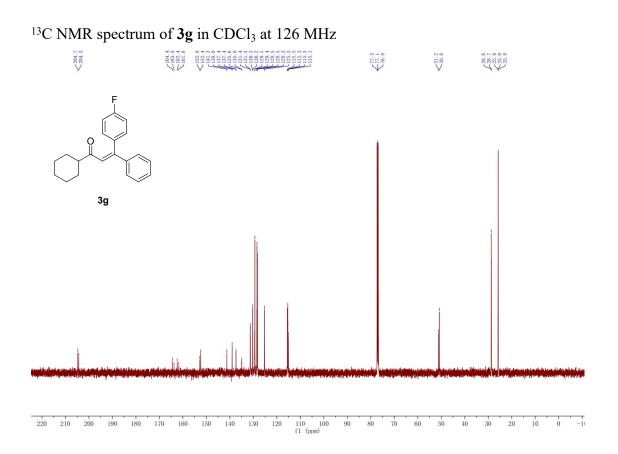



 $^1\mathrm{H}$ NMR spectrum of 3e in CDCl3 at 500 MHz

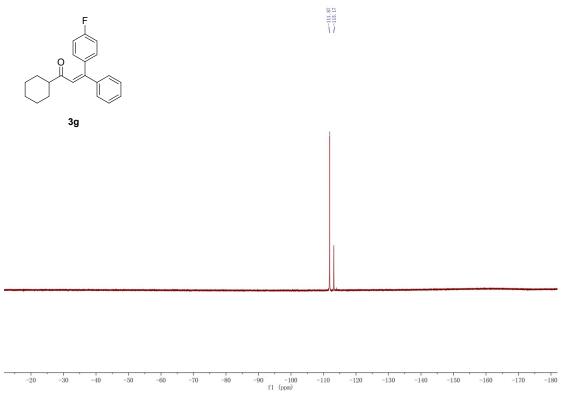


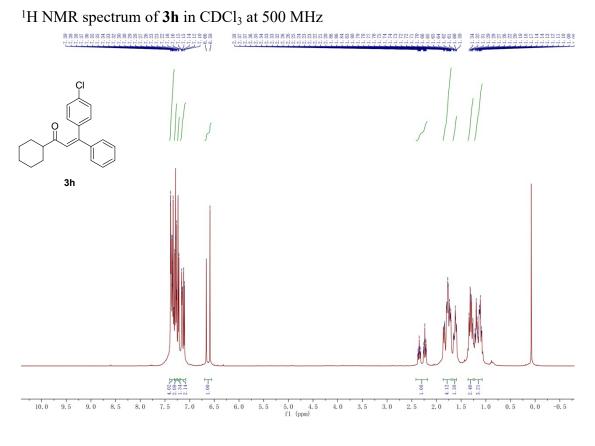

 ^{19}F NMR spectrum of 3e in CDCl3 at 470 MHz

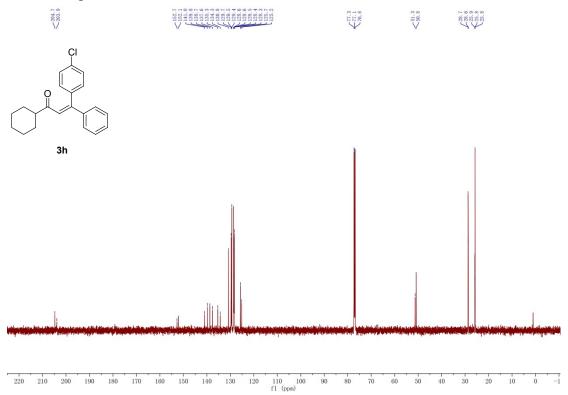


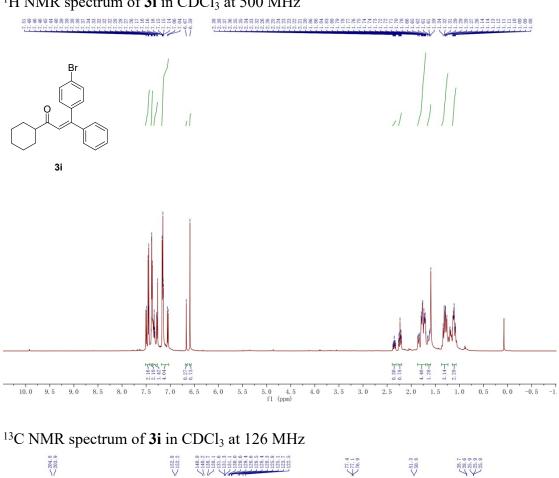


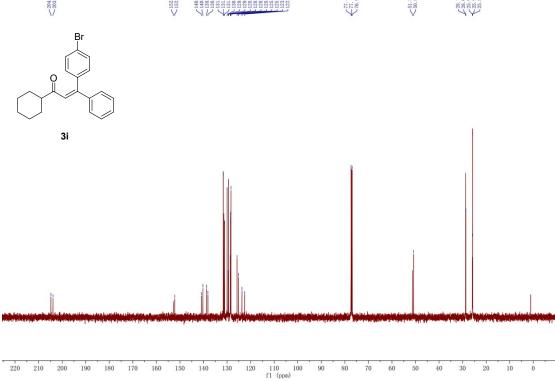
^{13}C NMR spectrum of 3f in CDCl3 at 126 MHz

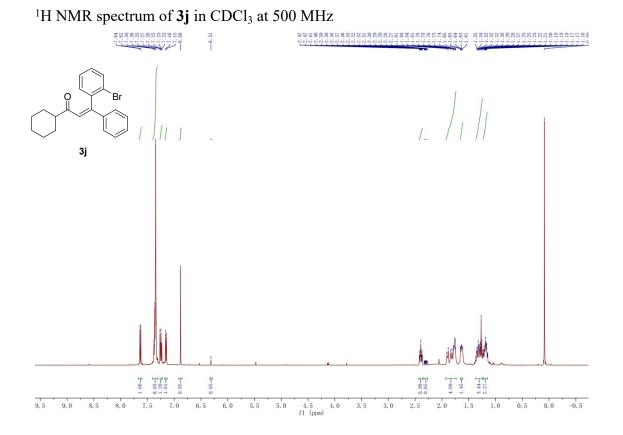


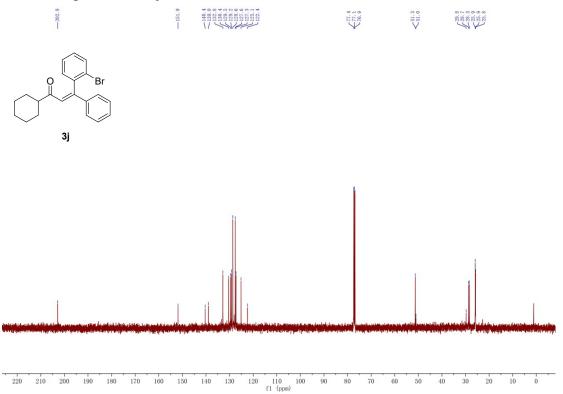


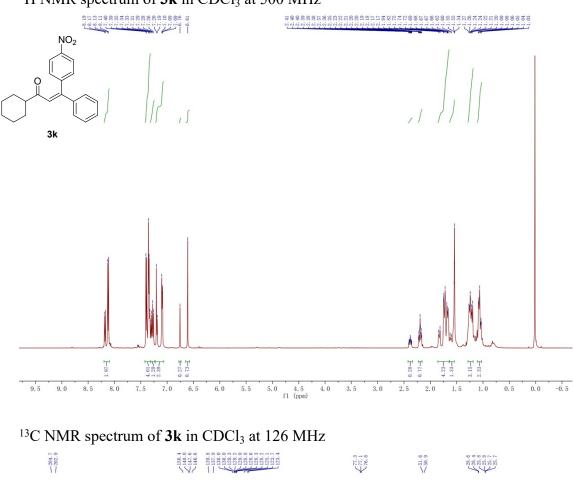


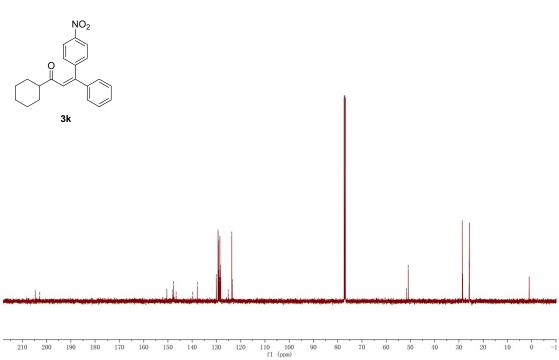

 ^{19}F NMR spectrum of 3g in CDCl3 at 470 MHz

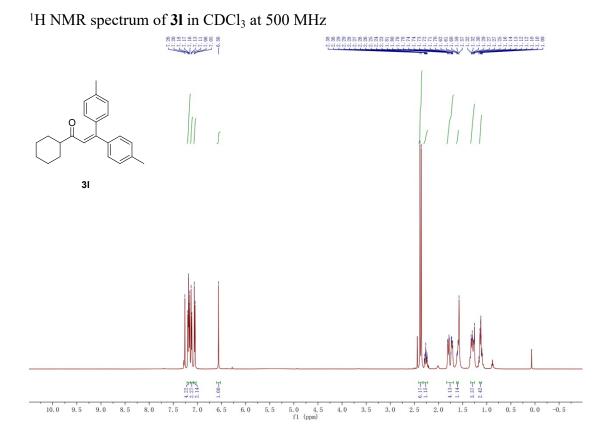



$^{13}\mathrm{C}$ NMR spectrum of 3h in CDCl3 at 126 MHz

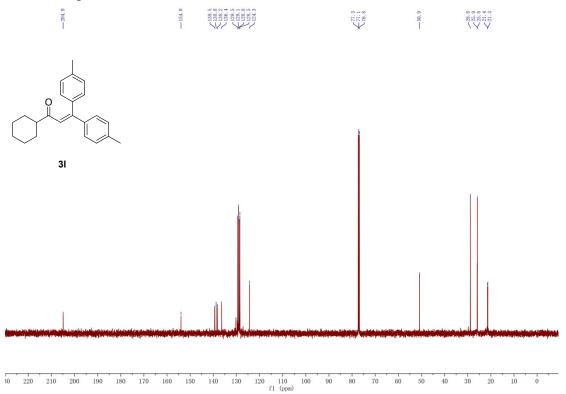


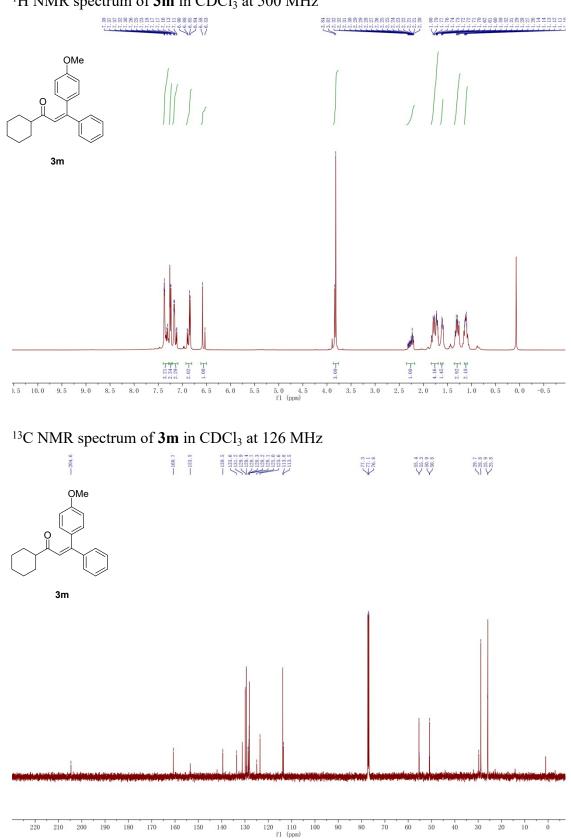


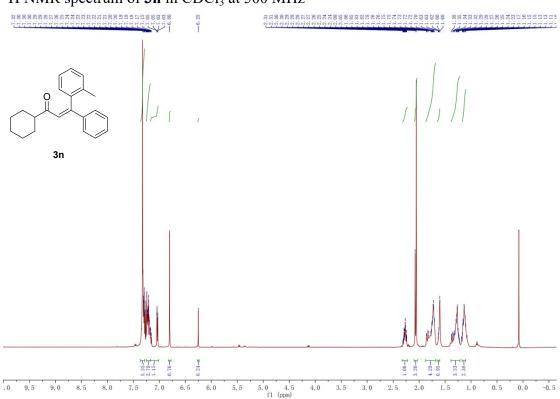

¹H NMR spectrum of **3i** in CDCl₃ at 500 MHz



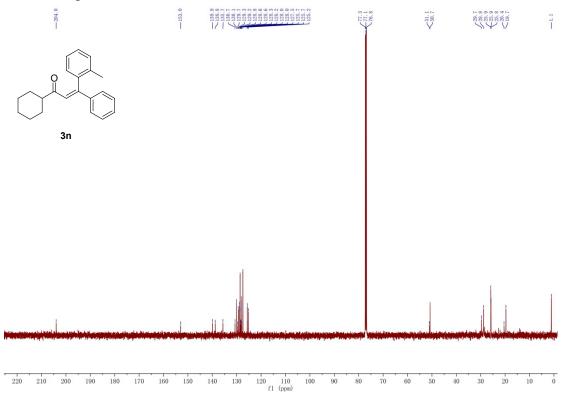
$^{13}\mathrm{C}$ NMR spectrum of 3j in CDCl3 at 126 MHz



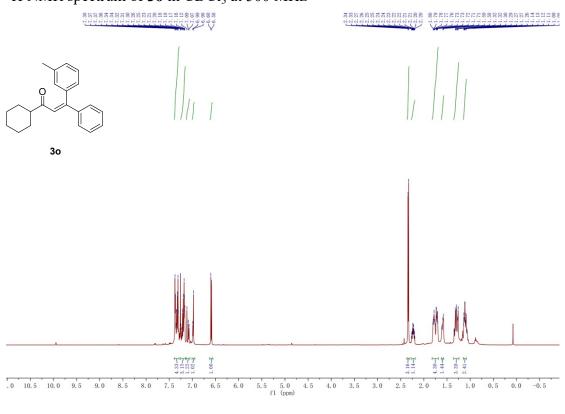




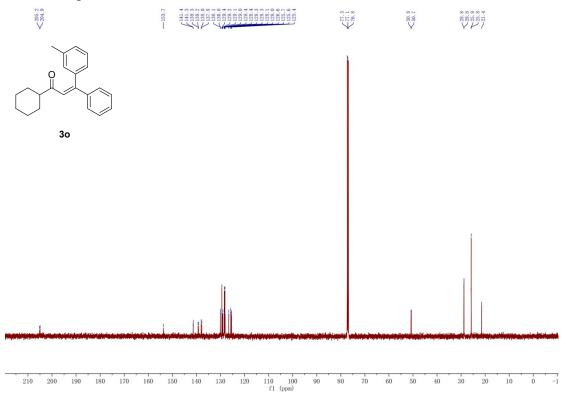
$^{13}\mathrm{C}$ NMR spectrum of 3l in CDCl3 at 126 MHz

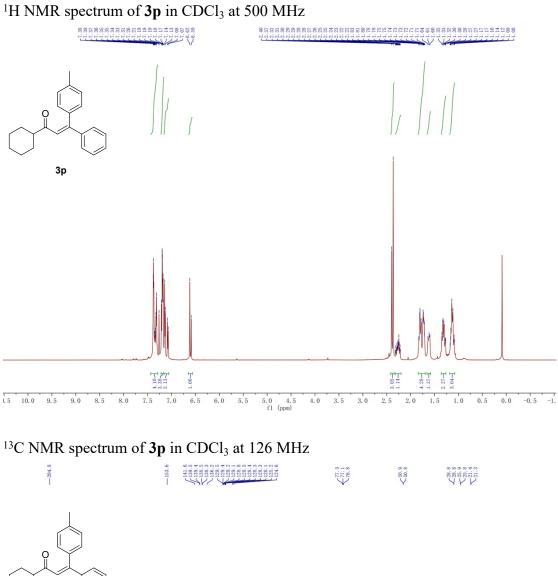


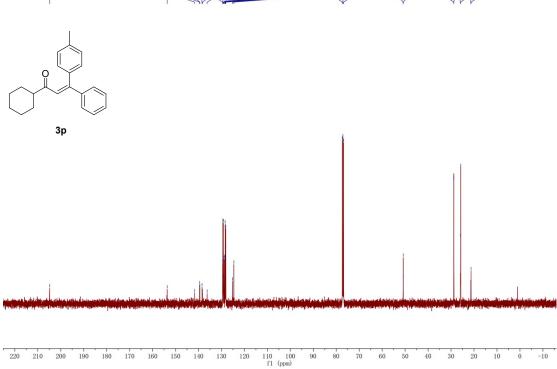
¹H NMR spectrum of 3m in CDCl₃ at 500 MHz

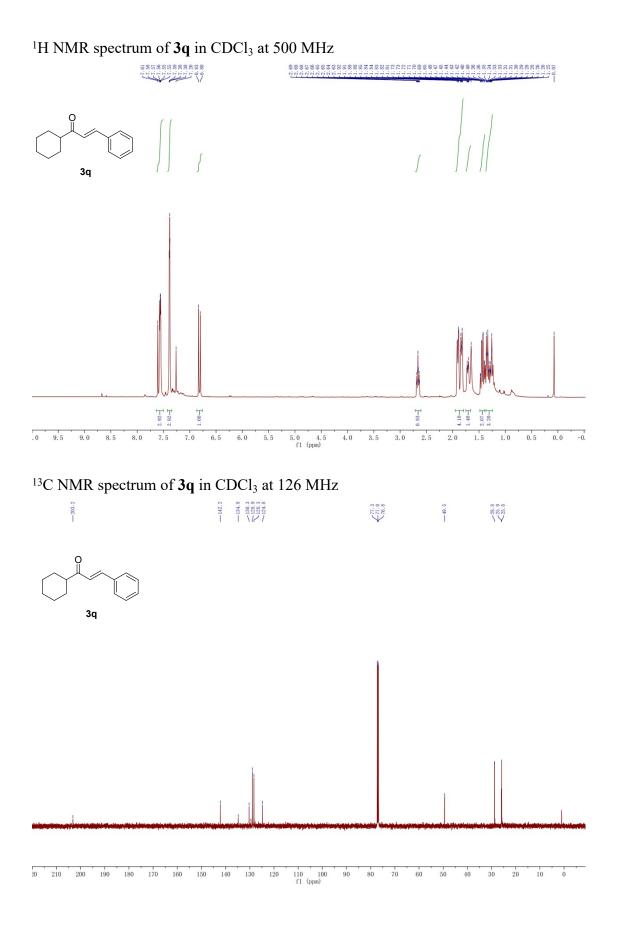


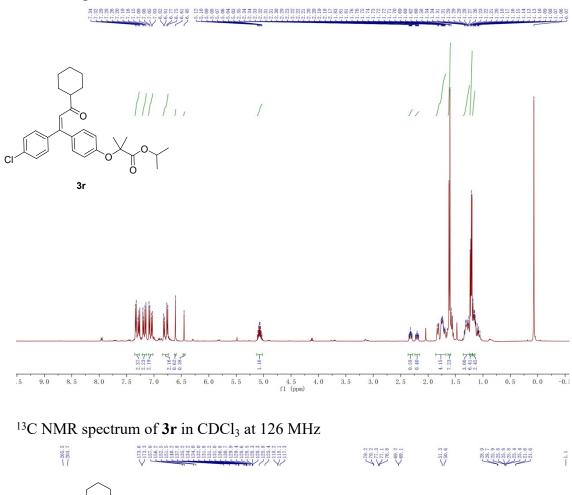
¹H NMR spectrum of 3n in CDCl₃ at 500 MHz

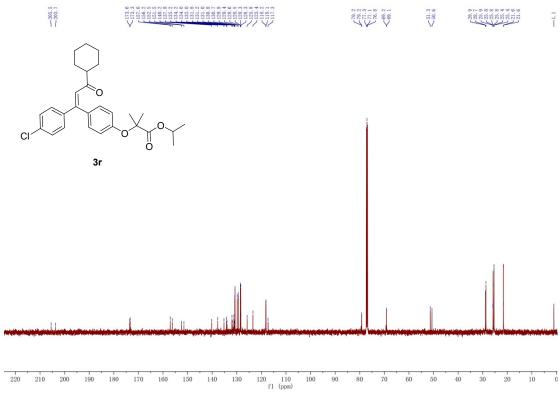

$^{13}\mathrm{C}$ NMR spectrum of 3n in CDCl3 at 126 MHz

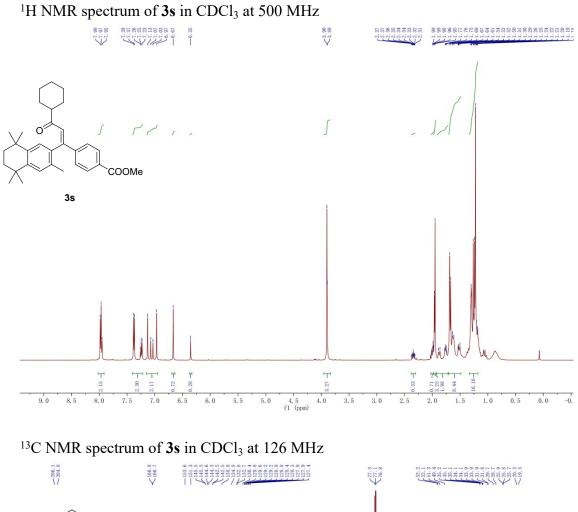


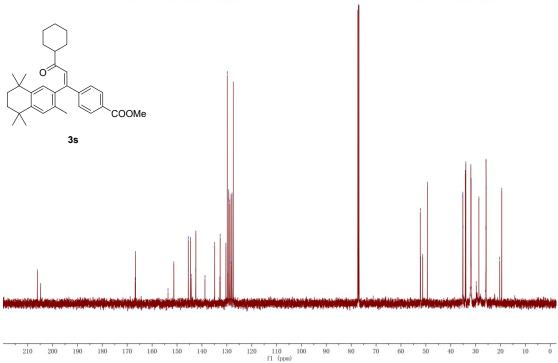

¹H NMR spectrum of **30** in CDCl₃ at 500 MHz

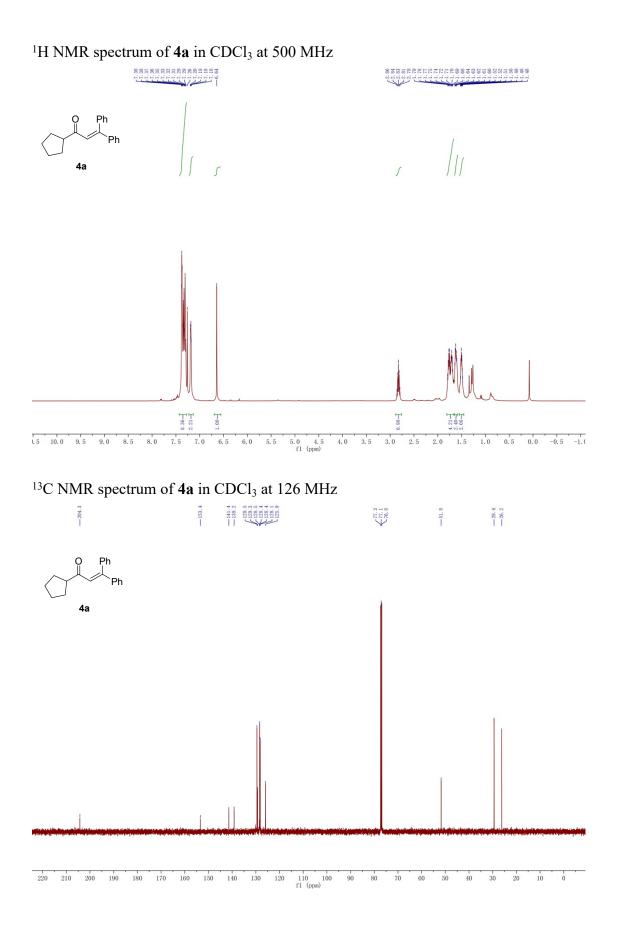



$^{13}\mathrm{C}$ NMR spectrum of 30 in CDCl3 at 126 MHz

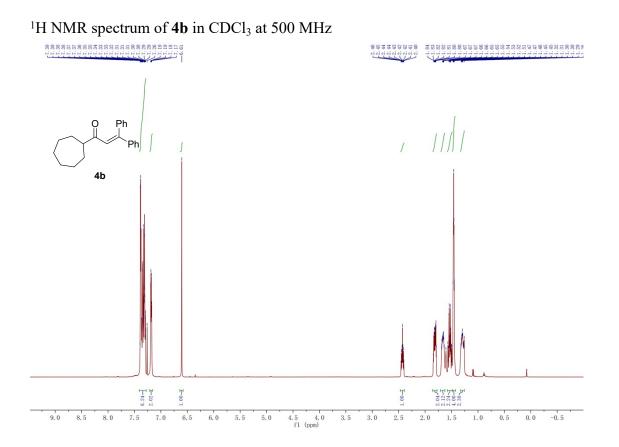


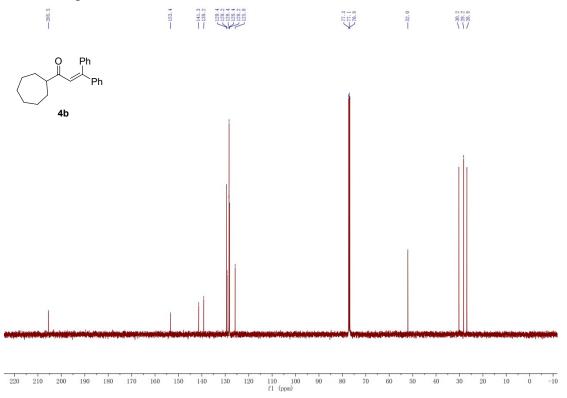


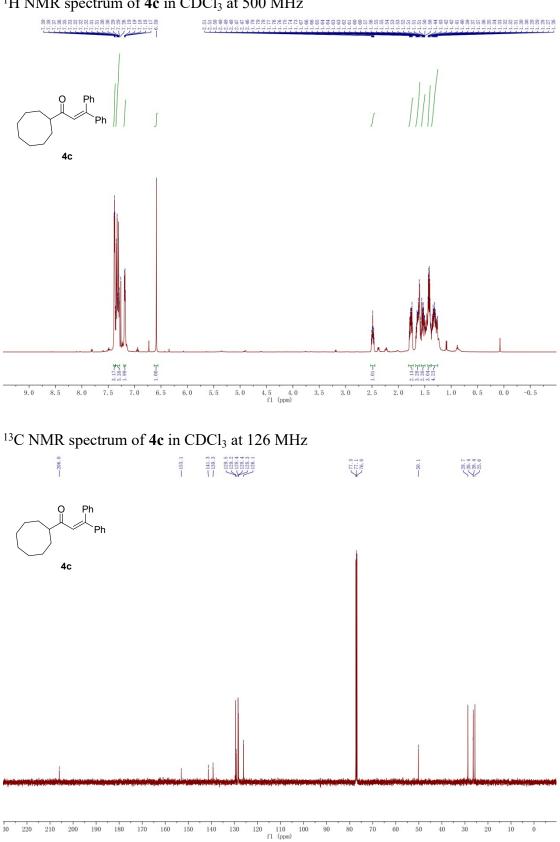




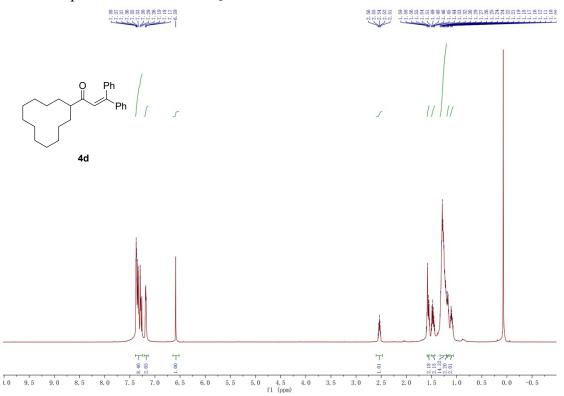
¹H NMR spectrum of 3r in CDCl₃ at 500 MHz

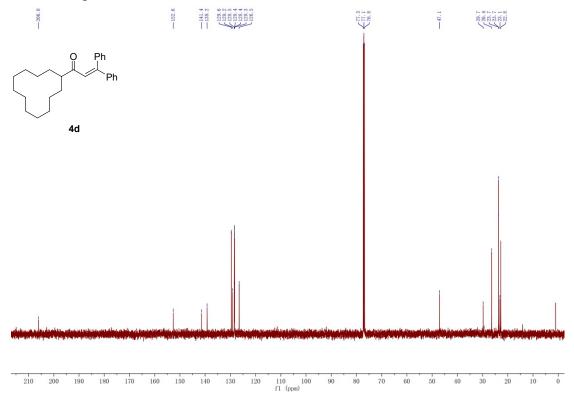






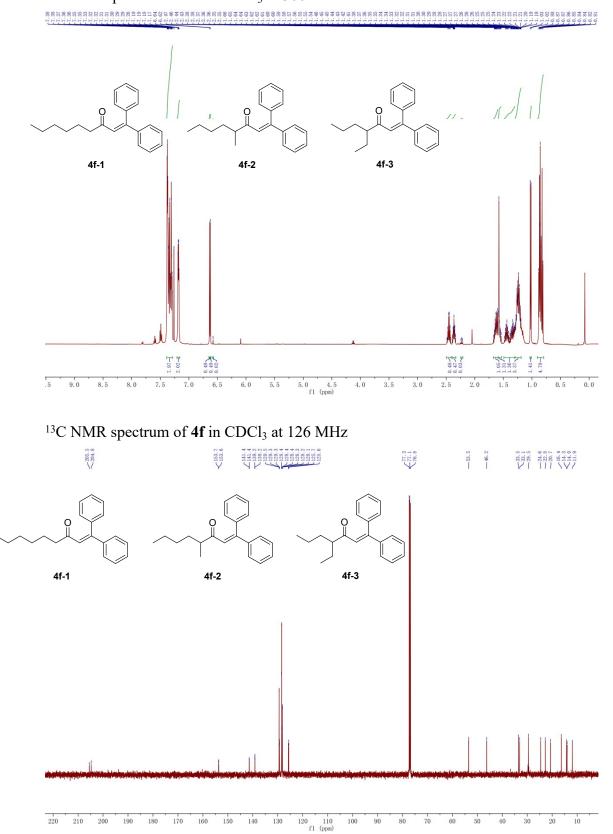
S37


 $^{13}\mathrm{C}$ NMR spectrum of 4b in CDCl3 at 126 MHz



¹H NMR spectrum of 4c in CDCl₃ at 500 MHz

1 H NMR spectrum of **4d** in CDCl₃ at 500 MHz



$^{13}\mathrm{C}$ NMR spectrum of 4d in CDCl3 at 126 MHz

1 H NMR spectrum of **4e** in CDCl₃ at 500 MHz

¹H NMR spectrum of 4f in CDCl₃ at 500 MHz