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Experimental section

Materials

All chemicals were analytical grade and were used as purchased without further 

purification. Solutions were prepared using high purity water (Millipore Milli-Q 

purification system, resistivity > 18 MΩ·cm).

Synthesis of SBA-15 and mesoporous cobalt-iron oxides

Synthesis of SBA-15

SBA-15 was prepared according to the literature.1 In a typical synthesis, Pluronic 

P123 (2 g) was first dissolved in 15 mL of H2O and 60 mL of 2 M HCl, and then 4.68 

mL (0.02 mol) of TEOS was added under stirring at 40 °C. The molar composition of 

the mixture, TEOS/P123/HCl/H2O, was 1/0.017/6/192. Thereafter, the mixture was 
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maintained under stirring at 40 °C for 24 h and then it was transferred into an 

autoclave to age for 24 h at 100 °C under static conditions. Finally, the sample was 

filtered, washed with distilled water thoroughly, air-dried, and calcined at 550 °C to 

remove the template. The dry white solid was denoted as SBA-15.

Synthesis of mesoporous cobalt-iron oxides

0.5 g of SBA-15 was dispersed in 50 mL of toluene at 65 °C. Then, 0.68 g of 

cobalt nitrate hexahydrate and 0.047 g of iron nitrate nonahydrate were added into this 

mixture along with forceful stirring for 3 h. After filtrating, the obtained pink powders 

were calcined at 400 °C for 2 h. The SBA-15 template was removed by washing with 

2 M of hot NaOH solution, and mesoporous CoFe0.05Ox without template was finally 

obtained, which was denoted as meso-CoFe0.05Ox.

For comparison, mesoporous iron-cobalt oxides with different Fe/Co ratios (i.e. 

0.01/1, 0.025/1, 0.05/1, 0.075/1, and 0.1/1) were prepared by a similar synthetic 

procedure with the above synthesis except different Fe/Co ratios.

Material characterizations

X-ray diffraction (XRD) was carried out on a RIGAKU D/MAX2550/PC 

diffractometer at 40 kV and 100 mA with copper filtered Kα radiation (λ = 1.5406 Å). 

The specific surface areas of the catalysts were measured based on the adsorption 

isotherms of N2 at −196 ºC using the BET method (Micromeritics ASAP2010). 

Transmission electron microscope (TEM) images were observed by a Hitachi HT7700. 
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The valence state of rhodium was determined using XPS recorded on a Thermo 

ESCALAB 250Xi. The X-ray source selected was monochromatized Al Kα source 

(15 kV, 10.8 mA). Region scans were collected using 20 eV pass energy.

Electrochemical activity characterizations

All electrochemical measurements were performed in a three-electrode system 

with a glassy carbon electrode (GCE) as the substrate for the working electrode, a 

graphite rod as the counter electrode and a saturated calomel electrode as the 

reference electrode. The reference electrode was calibrated with respect to a reversible 

hydrogen electrode before each experiment. The glassy carbon electrode was pre-

polished using 0.05 μm alumina and distilled water. To prepare the working electrode, 

2 mg of the catalyst was dispersed in a 0.2 mL mixed solvent of ethanol and Nafion (1 

wt%) and sonicated to obtain a homogeneous ink. 8 μL of the catalyst ink was drop-

casted on the glassy carbon electrode and dried at room temperature (catalyst loading: 

1.127 mg·cm-2 ).

For OER, the working electrode was first activated by steady-state cyclic 

voltammetry (CV) performed in the potential range from 1.0 to 1.6 V vs RHE at a 

scan rate of 50 mV s-1 for 50 cycles. Linear scan voltammetry (LSV) curves were then 

collected at a scan rate of 5 mV s-1. All of the potentials in the LSV polarization 

curves were with 90% iR compensation unless specifically illustrated. The 

measurement error was within 10%.



S4

200 400 600 800 1000

A1g

F2g F2g

Fg

F2g

meso-CoFe0.05Ox

meso-Co3O4

In
te

ns
ity

 (a
.u

.)

Raman shift (cm-1)

Fig. S1. Raman spectra of meso-Co3O4 and meso-CoFe0.05Ox.
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Fig. S2. HRTEM image of meso-CoFe0.05Ox.
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Fig. S3. (a) OER polarization curves. (b) Tafel plots.
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Fig. S4. (a) CVs of meso-CoFe0.05Ox and meso-Co3O4, (b) CVs of meso-CoFenOx.
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Fig. S5. (a) CVs of the meso-CoFe0.05Ox measured in a non-Faradaic region at 

different scan rate. (b) The cathodic and anodic currents measured as a function of the 

scan rate.
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Fig. S6. (a) CVs of the commercial Co3O4 measured in a non-Faradaic region at 

different scan rate. (b) The cathodic and anodic currents measured as a function of the 

scan rate.
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Fig. S7. (a) CVs of the meso-Co3O4 measured in a non-Faradaic region at different 

scan rate. (b) The cathodic and anodic currents measured as a function of the scan rate.
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Fig. S8. (a) CVs of the meso-CoFe0.01Ox measured in a non-Faradaic region at 

different scan rate. (b) The cathodic and anodic currents measured as a function of the 

scan rate.
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Fig. S9. (a) CVs of the meso-CoFe0.025Ox measured in a non-Faradaic region at 

different scan rate. (b) The cathodic and anodic currents measured as a function of the 

scan rate.
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Fig. S10. (a) CVs of the meso-CoFe0.075Ox measured in a non-Faradaic region at 

different scan rate. (b) The cathodic and anodic currents measured as a function of the 

scan rate.
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Fig. S11. (a) CVs of the meso-CoFe0.1Ox measured in a non-Faradaic region at 

different scan rate. (b) The cathodic and anodic currents measured as a function of the 

scan rate.
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Fig. S12. (a) Nyquist plots of the EIS test. (b) The equivalent circuit used for fitting 

the Nyquist plots.
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Fig. S13. OER polarization curves of the meso-CoFe0.05Ox before and after stability 

test in 1 M KOH.
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Fig. S14. (a) SEM image and (b) TEM image of meso-CoFe0.05Ox after OER.
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Fig. S15. XRD patterns of meso-CoFe0.05Ox after OER.
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Fig. S16. XPS survey spectrum (a), and high-resolution XPS spectra of Fe 2p (b), Co 

2p (c), and O 1s (d) of after the OER meso-CoFe0.05Ox.
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Table S1. Comparison of OER performance of meso-CoFe0.05Ox with results in 

recent literature

Catalyst Electrolyte η@10 mA cm−2 

(mV)

Tafel slope

(mV 

dec−1)

Ref.

meso-CoFe0.05Ox 1 M KOH 280 72 This work

NiFe@C 1 M KOH 345 57 2

CoFeP 1 M KOH 350 59 3

Fe-Co3O4/CNTs 1 M KOH 300 54 4

Fe-MoO2/MoO3 /ENF 1 M KOH 310 84.2 5

FCPS-1:2 1 M KOH 365 92 6

Co0.17Fe0.79P/NC 1 M KOH 299 44 7

P8.6-Co3O4/NF 1 M KOH 400 60 8

NiFeOP 1 M KOH 310 43.1 9

FeNi3/NiFeOx 1 M KOH 246 - 10

FeCo/Co2P@NPCF 1 M KOH 330 61 11

NiCo2O4 1 M KOH 420 - 12

BC/Co3O4 1 M KOH 310 56.8 13

PS@Co(OH)2 1 M KOH 352 80 14

CoFeBO NS. 1 M KOH 240 53 15

Pt–αFe2O3/NF 1 M KOH - 50.3 16

CuCo2S4/CC 1 M KOH 280 143 17
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FeCoOOH/NF 1 M KOH 390 33 18
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