Electronic Supplementary Information

A rearrangement of saccharin-derived cyclic ketimines with

3-chlorooxindoles leading to spiro-1,3-benzothiazine oxindoles

Rui-Li Li, Qing-Yun Fang, Mei-Yuan Li, Xiang-Shan Wang and Li-Ming Zhao*

School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116,

Jiangsu, China

*Email: lmzhao@jsnu.edu.cn

Table of Contents

1. General Methods	S3
2. General Procedure for the Synthesis of Compounds 3 and Characterization Da	ataS3-S11
3. 2.0 mmol Scale Synthesis of 3aa	S11
4. Procedure for the Synthesis of Compound 4 and Characterization Data	S11-S12
5. References	
6. Copies of ¹ H and ¹³ C NMR Spectra for Compounds 3	S13-S35
7. Copies of ¹ H and ¹³ C NMR Spectra for Compound 4	
8. Crystal Structure of Compound 3aa	

General Methods. Solvents and reagents were used as purchased without further purification. Reaction progress was monitored by thin-layer chromatography (TLC) on silica gel GF₂₅₄ precoated plates. Visualization of developed plates was performed under a UV lamp. Chromatographic purification was performed with silica gel. Melting points were uncorrected. Nuclear magnetic resonance spectra (¹H and ¹³C NMR) were recorded on Bruker DPX 400 MHz and 100 MHz spectrometers in CDCl₃ or DMSO-*d*₆ with chemical shift (δ) given in parts per million (ppm). Multiplicities were indicated as followed: s (singlet), d (doublet), t (triplet), m (multiplet), dd (doublet of doublets), and so forth; the coupling constant (*J*) was given in hertz (Hz). High-resolution mass spectra (HRMS) were recorded on a Thermo Fisher Scientific Q-Exactive Focus Orbitrap mass spectrometer. Saccharin-derived cyclic ketimines **1** and 3-chlorooxindoles **2** were prepared following the literature procedures.^{1,2}

General Procedure for the Synthesis of Product 3. To a solution of saccharin-derived cyclic ketimines 1 (0.1 mmol) and 3-chlorooxindoles 2 (0.2 mmol) in DME (1 mL) were added $C_{s_2}CO_3$ (0.2 mmol). The reaction mixture was stirred at room temperature for 1 h. Upon completion of the reaction, the solid was filtered and washed with acetone, and the combined filtrate was concentrated under reduced pressure. The residue was purified using column chromatography to afford the product 3.

4-Phenylspiro[benzo[e][1,3]thiazine-2,3'-indolin]-2'-one 1,1-dioxide (**3aa**). White solid (34 mg, 90% yield), ethyl acetate/petroleum ether = 1:5. mp 255-257 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 11.25 (s, 1H), 8.09-8.07 (m, 1H), 7.92-7.86 (m, 2H), 7.63-7.58 (m, 3H), 7.54-7.47 (m, 5H), 7.16 (t, J = 7.6 Hz, 1H), 7.05 (d, J = 8.0 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 168.8, 167.5, 144.0, 137.8, 134.9, 134.0, 133.6, 132.4, 131.6, 131.4, 130.6,

129.7, 129.1, 128.3, 124.9, 123.3, 120.9, 111.3, 81.1. HRMS (ESI) m/z: $[M + H]^+$ calcd for $C_{21}H_{15}N_2O_3S$ 375.0803; found 375.0787.

4-(2-*Methoxyphenyl*)*spiro*[*benzo*[*e*][1,3]*thiazine-2,3'-indolin*]-2'-*one* 1,1-*dioxide* (**3***ba*). White solid (36 mg, 89% yield), ethyl acetate/petroleum ether = 1:5. mp 239-241°C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.24 (s, 1H), 8.07 (d, *J* = 6.8 Hz, 1H), 7.91-7.85 (m, 2H), 7.55-7.48 (m, 3H), 7.44 (t, *J* = 8.0 Hz, 1H), 7.18-7.11 (m, 3H), 7.07-7.04 (m, 2H), 3.78 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.6, 167.5, 159.7, 144.0, 139.1, 134.9, 133.9, 133.6, 132.4, 131.5, 130.6, 130.3, 128.3, 124.9, 1234, 122.1, 120.8, 117.6, 114.4, 111.3, 81.1, 55.9. HRMS (ESI) m/z: $[M + H]^+$ calcd for C₂₂H₁₇N₂O₄S 405.0909; found 405.0905.

4-(3-Methoxyphenyl)spiro[benzo[e][1,3]thiazine-2,3'-indolin]-2'-one 1,1-dioxide (**3**ca). White solid (36 mg, 90% yield), ethyl acetate/petroleum ether = 1:5. mp 241-242 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 11.24 (s, 1H), 8.08-8.06 (m, 1H), 7.92-7.85 (m, 2H), 7.56-7.48 (m, 3H), 7.44 (t, J = 8.0 Hz, 1H), 7.19-7.11 (m, 3H), 7.08-7.04 (m, 2H), 3.78 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 168.5, 167.4, 159.7, 143.9, 139.1, 134.8, 133.8, 133.5, 132.3, 131.4, 130.5, 130.2, 128.2, 124.8, 123.2, 122.0, 120.7, 117.5, 114.4, 111.2, 81.0, 55.8. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₁₇N₂O₄S 405.0909; found 405.0905.

4-(4-Methoxyphenyl)spiro[benzo[e][1,3]thiazine-2,3'-indolin]-2'-one 1,1-dioxide (**3da**). White solid (34 mg, 83% yield), ethyl acetate/petroleum ether = 1:5. mp 225-227 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.06-8.04 (m, 1H), 7.76 (s, 1H), 7.73-7.67 (m, 3H), 7.60 (d, *J* = 8.8 Hz, 2H), 7.57-7.54 (m, 1H), 7.38 (t, *J* = 8.0 Hz, 1H), 7.17 (t, *J* = 7.6 Hz, 1H), 6.95 (d, *J* = 8.8 Hz, 2H), 6.86 (d, *J* = 7.6 Hz, 1H), 3.86 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 167.7, 161.9, 141.7, 134.1, 133.5, 132.1, 131.6, 131.3, 131.0, 130.2, 128.6, 124.9, 123.9, 120.7, 113.8, 110.5, 80.7, 55.5. HRMS (ESI) m/z: $[M + H]^+$ calcd for $C_{22}H_{17}N_2O_4S$ 405.0909; found 405.0902.

4-(4-(*Tert-butyl*)*phenyl*)*spiro*[*benzo*[*e*][1,3]*thiazine-2*,3'-*indolin*]-2'-*one* 1,1-*dioxide* (*3ea*). White solid (37 mg, 86% yield), ethyl acetate/petroleum ether = 1:5. mp 264-266 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.07-8.05 (m, 1H), 7.96-7.93 (m, 1H), 7.73-7.67 (m, 3H), 7.58-7.55 (m, 3H), 7.46 (d, *J* = 8.0 Hz, 2H), 7.35 (t, *J* = 8.0 Hz, 1H), 7.15 (t, *J* = 7.6 Hz, 1H), 6.82 (dd, *J* = 7.8, 2.8 Hz, 1H), 1.35 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 167.7, 154.4, 141.9, 135.0, 134.1, 133.6, 132.2, 131.7, 131.3, 131.2, 129.3, 128.6, 125.5, 124.8, 123.9, 120.6, 110.7, 80.9, 35.0, 31.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₅H₂₃N₂O₃S 431.1429; found 431.1423.

4-(3-Fluorophenyl)spiro[benzo[e][1,3]thiazine-2,3'-indolin]-2'-one 1,1-dioxide (**3fa**). White solid (33 mg, 83% yield), ethyl acetate/petroleum ether = 1:5. mp 240-241 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.09-8.07 (m, 1H), 7.76-7.73 (m, 3H), 7.67 (s, 1H), 7.52-7.49 (m, 1H), 7.47-7.36 (m, 4H), 7.26-7.19 (m, 2H), 6.93 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 167.6 (*J* = 2.6 Hz), 167.3, 162.5 (*J* = 244 Hz), 144.0, 139.9 (*J* = 7.7 Hz), 135.0, 133.9, 133.8, 132.5, 131.4, 131.3 (*J* = 8.3 Hz), 130.2, 128.3, 126.0 (*J* = 2.8 Hz), 125.0, 123.4, 120.7, 118.6 (*J* = 20.9 Hz), 116.5 (*J* = 22.9 Hz), 111.4, 81.2. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₄FN₂O₃S 393.0709 ; found 393.0703.

4-(4-Chlorophenyl)spiro[benzo[e][1,3]thiazine-2,3'-indolin]-2'-one 1,1-dioxide (**3ga**). White solid (33 mg, 82% yield), ethyl acetate/petroleum ether = 1:8. mp 252-254 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.08-8.06 (m, 1H), 7.89-7.88 (m, 2H), 7.64-7.54 (m, 5H), 7.51-7.46 (m, 2H), 7.13 (t, J = 7.6 Hz, 1H), 7.04 (d, J = 7.6 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 167.8, 167.4, 145.3, 136.6, 136.4, 134.9, 134.1, 133.6, 132.4, 131.6, 131.3, 130.3, 129.2, 128.1, 124.9, 122.9, 121.1, 111.6, 81.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₄ClN₂O₃S 409.0414; found 409.0408.

4-(3,5-Dimethylphenyl)spiro[benzo[e][1,3]thiazine-2,3'-indolin]-2'-one 1,1-dioxide (3ha). White solid (35 mg, 86% yield), ethyl acetate/petroleum ether = 1:5. mp 278-280 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 11.22 (s, 1H), 8.06 (dd, J = 8.4, 1.6 Hz, 1H), 7.91-7.85 (m, 2H), 7.52-7.47 (m, 3H), 7.23 (s, 1H), 7.17-7.14 (m, 3H), 7.04 (d, J = 8.0 Hz, 1H), 2.32 (s, 6H). ¹³C NMR (100 MHz, DMSO- d_6) δ 168.9, 167.6, 144.0, 138.4, 137.8, 134.9, 134.0, 133.5, 132.9, 132.4, 131.5, 130.8, 128.3, 127.3, 124.8, 123. 3, 120.9, 111.3, 81.0, 21.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₃H₁₉N₂O₃S 403.1116 ; found 403.1109.

4-(*Naphthalen-2-yl*)*spiro[benzo[e][1,3]thiazine-2,3'-indolin]-2'-one* 1,1-*dioxide* (**3ia**). White solid (36 mg, 84% yield), ethyl acetate/petroleum ether = 1:5. mp 236-238 °C. ¹H NMR (400 MHz, DMSO-*d*₆ & CDCl₃) δ 11.28 (s, 1H), 8.24 (s, 1H), 8.12-8.01 (m, 4H), 7.92-7.90 (m, 2H), 7.70 (d, *J* = 8.4 Hz, 1H), 7.66-7.58 (m, 3H), 7.54-7.49 (m, 2H), 7.16 (t, *J* = 7.6 Hz, 1H), 7.07 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆ & CDCl₃) δ 168.2, 167.0, 143.5 134.6, 134.4, 133.9, 133.5, 133.0, 132.2, 131.9, 131.1, 130.2, 129.6, 128.9, 128.2, 127.8, 127.7, 127.6 126.9, 125.9 124.4 122.8, 120.4, 110.8, 80.7. HRMS (ESI) m/z: [M - H]⁻ calcd for C₂₅H₁₅N₂O₃S 423.0803; found 423.0804.

5'-Methyl-4-phenylspiro[benzo[e][1,3]thiazine-2,3'-indolin]-2'-one 1,1-dioxide (**3ab**). White solid (33 mg, 84% yield), ethyl acetate/petroleum ether = 1:8. mp 209-210 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.08-8.03 (m, 1H), 7.95 (s, 1H), 7.72-7.67 (m, 2H), 7.61 (d, *J* = 7.6 Hz, 2H), 7.55-7.43 (m, 5H), 7.15 (d, *J* = 8.0 Hz, 1H), 6.72 (d, *J* = 8.0 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 167.7, 139.4, 137.9, 134.1, 133.7, 133.6, 132.3, 132.2, 131.3, 131.1, 130.9, 129.5, 129.1, 128.5, 124.8, 120.3, 110.5, 81.0, 21.2. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₁₇N₂O₃S 389.0960; found 389.0952.

6'-Methyl-4-phenylspiro[benzo[e][1,3]thiazine-2,3'-indolin]-2'-one 1,1-dioxide (**3ac**). White solid (33 mg, 86% yield), ethyl acetate/petroleum ether = 1:5. mp 239-241 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.07-8.05 (m, 1H), 8.03 (s, 1H), 7.71-7.68 (m, 2H), 7.61 (d, J =7.2 Hz, 2H), 7.55 (s, 1H), 7.53-7.43 (m, 4H), 7.15 (d, J = 7.6 Hz, 1H), 6.72 (d, J = 8.0 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6 & CDCl₃) δ 168.6, 167.4, 141.4, 137.7, 134.7, 134.0, 133.4, 132.5, 132.4, 131.5, 131.3, 130.5, 129.6, 129.0, 128.7, 124.8, 120.8, 111.0, 81.1, 21.0. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₁₇N₂O₃S 389.0960; found 389.0952.

5'-*Methoxy-4-phenylspiro[benzo[e][1,3]thiazine-2,3'-indolin]-2'-one 1,1-dioxide* (**3***ad*). White solid (31 mg, 76% yield), ethyl acetate/petroleum ether = 1:8. mp 215-216 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.06-8.00 (m, 2H), 7.71-7.68 (m, 2H), 7.62 (d, *J* = 7.6 Hz, 2H), 7.54-7.43 (m, 4H), 7.29 (d, *J* = 1.6 Hz, 1H), 6.88 (d, *J* = 7.6 Hz, 1H), 6.73-6.69 (m, 1H), 3.77 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 167.5, 156.5, 137.8, 135.1, 134.1, 133.6, 132.3, 131.2, 131.1, 130.9, 129.4, 128.5, 124.7, 121.3, 117.8, 114.0, 111.4, 81.3, 55.9. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₁₇N₂O₄S 405.0909; found 405.0904.

5'-Fluoro-4-phenylspiro[benzo[e][1,3]thiazine-2,3'-indolin]-2'-one 1,1-dioxide (**3ae**). White solid (22 mg, 57% yield), acetone/petroleum ether = 1:8. mp 212-213 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 8.07-8.03 (m, 1H), 7.73-7.69 (m, 2H), 7.61 (d, *J* = 8.0 Hz, 2H), 7.55-7.44 (m, 5H), 7.04 (td, *J* = 8.4, 2.4 Hz, 1H), 6.72 (dd, *J* = 8.4, 4.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 167.7, 159.5 (J = 241.9 Hz), 137.9 (J = 2.6 Hz), 137.7, 133.8, 132.5, 131.3, 131.1, 131.1, 129.4, 128.6, 124.9, 122.0 (J = 8.9 Hz), 118.4 (J = 23.8 Hz), 116.5 (J = 25.6 Hz), 111.5 (J = 8.0 Hz), 81.1 (J = 2.2 Hz). HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₄FN₂O₃S 393.0709 ; found 393.0705.

5'-Chloro-4-phenylspiro[benzo[e][1,3]thiazine-2,3'-indolin]-2'-one 1,1-dioxide (**3af**). White solid (23 mg, 56% yield), acetone/petroleum ether = 1:8. mp 237-238 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.09 (d, J = 8.0 Hz, 1H), 7.94-7.87 (m, 2H), 7.64-7.51 (m, 7H), 7.49 (s, 1H), 7.10 (d, J = 8.4 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 169.0, 167.2, 143.0, 137.6, 135.1, 133.7, 133.6, 132.4, 131.8, 131.6, 130.5, 129.8, 129.1, 127.8, 127.2, 125.0, 122.8, 113.0, 81.1. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₄ClN₂O₃S 409.0414 ; found 409.0409.

5'-Bromo-4-phenylspiro[benzo[e][1,3]thiazine-2,3'-indolin]-2'-one 1,1-dioxide (**3ag**). White solid (28 mg, 63% yield), acetone/petroleum ether = 1:8. mp 235-237 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.09 (d, J = 6.8 Hz, 1H), 7.93-7.89 (m, 2H), 7.69 (d, J = 8.4 Hz, 1H), 7.63-7.53 (m, 7H), 7.06 (d, J = 8.4 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 168.9, 167.2, 144.0, 137.6, 135.2, 135.1, 133.7, 133.6, 131.7, 131.6, 130.6, 130.4, 129.7, 129.1, 125.0, 123.3, 114.5, 113.6, 81.1. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₄BrN₂O₃S 452.9909 ; found 452.9905.

6'-*Chloro-4-phenylspiro[benzo[e][1,3]thiazine-2,3'-indolin]-2'-one* 1,1-*dioxide* (**3***ah*). White solid (31 mg, 75% yield), ethyl acetate/petroleum ether = 1:5. mp 251-253 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03-8.00 (m, 1H), 7.71-7.66 (m, 2H), 7.57 (d, *J* = 7.6 Hz, 2H), 7.52-7.40 (m, 5H), 7.06 (d, *J* = 8.0 Hz, 1H), 6.79 (s, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.9, 167.6, 145.9, 137.7, 136.9, 135.0, 133.7, 133.6, 131.7, 131.5, 130.6, 129.7, 129.6, 129.1, 125.0, 123.1, 119.8, 111.6, 80.9. HRMS (ESI) m/z: $[M + H]^+$ calcd for $C_{21}H_{14}CIN_2O_3S$ 409.0414; found 409.0409.

6'-Bromo-4-phenylspiro[benzo[e][1,3]thiazine-2,3'-indolin]-2'-one 1,1-dioxide (**3ai**). White solid (32 mg, 70% yield), ethyl acetate/petroleum ether = 1:5. mp 253-255 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 11.43 (s, 1H), 8.08 (d, J = 8.0 Hz, 1H), 7.93-7.87 (m, 2H), 7.63-7.58 (m, 3H), 7.54-7.51 (m, 3H), 7.45 (d, J = 8.0 Hz, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.23 (s, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 168.9, 167.3, 145.4, 137.5, 135.0, 133.6, 133.5, 131.7, 131.5, 130.4, 129.8, 129.6, 129.1, 126.1, 125.3, 124.9, 120.1, 114.2, 80.8. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₄BrN₂O₃S 452.9909; found 452.9905.

l'-Methyl-4-phenylspiro[benzo[e][1,3]thiazine-2,3'-indolin]-2'-one 1,1-dioxide (**3***a***j**) White solid (17 mg, 43% yield), ethyl acetate/petroleum ether = 1:8. mp 244-246 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.08-8.04 (m, 1H), 7.78 (d, J = 7.6 Hz, 1H), 7.74-7.69 (m, 2H), 7.62 (d, J = 7.6 Hz, 2H), 7.54-7.43 (m, 5H), 7.23 (t, J = 7.6 Hz, 1H), 6.96 (d, J = 7.6 Hz, 1H), 3.19 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 166.7, 144.9, 138.0, 134.3, 133.6, 132.3, 131.9, 131.3, 131.1, 130.9, 129.5, 128.5, 128.3, 124.8, 124.2, 120.1, 109.1, 80.6, 27.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₁₇N₂O₃S 389.0960; found 389.0956.

1,1-dioxide (**3***cd*). White solid (32 mg, 73% yield), ethyl acetate/petroleum ether = 1:5. mp 147-149 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (s, 1H), 8.05-8.02 (m, 1H), 7.71-7.67 (m, 2H), 7.52-7.47 (m, 1H), 7.35 (t, *J* = 7.6 Hz, 1H), 7.29 (d, *J* = 2.0 Hz, 1H), 7.17-7.14 (m, 2H), 7.06 (dd, *J* = 8.0, 2.0 Hz, 1H), 6.88 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.70 (d, *J* = 8.4 Hz, 1H), 3.79 (s,

5'-Methoxy-4-(3-methoxyphenyl)spiro[benzo[e][1,3]thiazine-2,3'-indolin]-2'-one

3H), 3.77 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 167.6, 159.6, 156.5, 139.1, 135.1, 134.0, 133.6, 132.3, 131.2, 131.1, 129.5, 124.7, 121.8, 121.3, 117.8, 117.1, 114.3, 114.0, 111.4, 81.3, 55.9, 55.5. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₃H₁₉N₂O₅S 435.1015; found 435.1009.

4-(4-(Tert-butyl)phenyl)-6'-methylspiro[benzo[e][1,3]thiazine-2,3'-indolin]-2'-one

1,1-dioxide (*3ec*). White solid (39 mg, 87% yield), ethyl acetate/petroleum ether = 1:5. mp 251-253°C. ¹H NMR (400 MHz, CDCl₃) δ 8.07-8.05 (m, 1H), 7.76 (s, 1H), 7.72-7.68 (m, 2H), 7.58-7.54 (m, 4H), 7.46 (d, *J* = 8.0 Hz, 2H), 7.18 (d, *J* = 8.0 Hz, 1H), 6.76 (d, *J* = 8.0 Hz, 1H), 2.33 (s, 3H), 1.35 (s, 9H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.3, 167.6, 154.5, 141.4, 135.1, 134.8, 134.1, 133.4, 132.6, 132.4, 131.4, 130.7, 129.6, 128.7, 125.9, 124.8, 121.1, 111.0, 81.1, 35.2, 31.5, 21.1. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₆H₂₅N₂O₃S 445.1586 ; found 445.1579.

6'-Chloro-4-(3-methoxyphenyl)spiro[benzo[e][1,3]thiazine-2,3'-indolin]-2'-one

1,1-dioxide (*3bh*). White solid (38 mg, 86% yield), ethyl acetate/petroleum ether = 1:5. mp 213-215 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.05-8.06 (m, 1H), 7.92-7.86 (m, 2H), 7.55 (d, *J* = 8.0 Hz, 1H), 7.51 (d, *J* = 8.0 Hz, 1H), 7.44 (t, *J* = 8.0 Hz, 1H), 7.21 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.17 (dd, *J* = 8.0, 2.4 Hz, 1H), 7.13-7.08 (m, 3H), 3.78 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.7, 167.5, 159.7, 145.8, 139.0, 136.9, 135.0, 133.7, 133.6, 131.6, 130.6, 130.3, 129.6, 124.9, 123.1, 122.1, 119.8, 117.7, 114.5, 111.6, 80.8, 55.9. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₁₆ClN₂O₄S 439.0519 ; found 439.0514.

4-(3-Fluorophenyl)-5'-methylspiro[benzo[e][1,3]thiazine-2,3'-indolin]-2'-one 1,1-dioxide (**3fb**). White solid (35 mg, 87% yield), ethyl acetate/petroleum ether = 1:5. mp

185-187 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 11.15 (s, 1H), 8.09-8.07 (m, 1H), 7.92-7.87 (m, 2H), 7.60-7.54 (m, 2H), 7.48-7.41 (m, 3H), 7.35 (s, 1H), 7.30 (d, J = 8.0 Hz, 1H), 6.94 (d, J = 8.0 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 167.4 (J = 2.4 Hz), 167.2, 162.4 (J = 243.8 Hz), 141.4, 139.9 (J = 7.5 Hz), 134.9, 133.9, 133.7, 132.6, 132.5, 131.3, 131.2, 130.2, 128.6, 125.9 (J = 2.5 Hz), 124.9, 120.6, 118.5 (J = 20.9 Hz), 116.3 (J = 22.9 Hz), 111.0, 81.2, 21.0. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₁₆FN₂O₃S 407.0866; found 407.0860.

6'-*Chloro-4-(3-fluorophenyl)spiro[benzo[e]*[1,3]*thiazine-2,3'-indolin]-2'-one* 1,1-*dioxide* (*3fh*). White solid (32 mg, 74% yield), ethyl acetate/petroleum ether = 1:5. mp 255-257 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.47 (s, 1H), 8.10-8.07 (m, 1H), 7.94-7.88 (m, 2H), 7.61-7.56 (m, 2H), 7.52 (d, J = 8.0 Hz, 1H), 7.49-7.43 (m, 3H), 7.24 (d, J = 8.0 Hz, 1H), 7.10 (s, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 167.8 (J = 2.7 Hz), 167.3, 162.5 (J = 244.1 Hz), 145.4, 139.8 (J = 7.6 Hz), 137.0, 135.2, 133.9, 133.6, 131.5, 131.3 (J = 8.3 Hz), 130.2, 129.6, 126.0 (J = 3.3 Hz), 125.1, 123.3, 119.5, 118.7 (J = 20.8 Hz), 116.5 (J = 22.9 Hz), 111.6, 80.8. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₃CIFN₂O₃S 427.0319; found 427.0314.

2.0 mmol Scale Synthesis of 3aa. To a solution of compound **1a** (486 mg, 2.0 mmol) and 3-chlorooxindole **2a** (668 mg, 4.0 mmol) in DME (15 mL) were added Cs_2CO_3 (1.30 g, 4.0 mmol). The reaction mixture was stirred at room temperature for 1 h. Upon completion of the reaction, the solid was filtered and washed with acetone, and the combined filtrate was concentrated under reduced pressure. The residue was purified using column chromatography to afford the compound **3aa** as a white solid (598 mg, 80% yield).

Procedure for the Synthesis of Compound 4. To a solution of compound **3aa** (37 mg, 0.1 mmol) in THF (1 mL) was added NaH (3.6 mg, 0.15 mmol). After stirring at 0 °C for 40

minutes, prenyl bromide (20 μ L, 0.15 mmol) was added at 0 °C and the reaction mixture was warmed slowly to room temperature and stirred for additional 1 h. Then, the resulting mixture was quenched by water and extracted with DCM. The combined organic layers were dried and concentrated under reduced pressure followed by chromatography on silica gel to afford the compound **4**.

l'-(3-Methylbut-2-en-1-yl)-4-phenylspiro[benzo[e][1,3]thiazine-2,3'-indolin]-2'-one l,1-dioxide (**4**). White solid (30 mg, 68% yield), ethyl acetate/petroleum ether = 1:8. mp 244-246 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.09-8.05 (m, 1H), 7.77 (d, J = 7.6 Hz, 1H), 7.74-7.69 (m, 2H), 7.63 (d, J = 7.6 Hz, 2H), 7.54-7.43 (m, 5H), 7.21 (t, J = 7.6 Hz, 1H), 6.92 (d, J = 8.0 Hz, 1H), 5.17 (t, J = 6.4 Hz, 1H), 4.27 (d, J = 6.4 Hz, 2H), 1.77 (s, 3H), 1.72 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 166.2, 144.3, 138.0, 137.5, 134.3, 133.4, 132.2, 131.6, 131.3, 131.0, 130.8, 129.4, 128.4, 128.3, 124.7, 123.8, 120.2, 117.5, 109.8, 80.7, 39.3, 25.6, 18.2. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₆H₂₃N₂O₃S 443.1429; found 443.1423.

References

(1) T. Nishimura, A. Noishiki, G. Chit Tsui and T. Hayashi, J. Am. Chem. Soc., 2012, **134**, 5056-5059.

(2) V. Lakshmi Reddy, P. S. Prathima, V. J. Rao and R. Bikshapathi, *New J. Chem.*, 2018,42, 20152-20155.

¹³C NMR Spectrum (100 MHz, DMSO-*d*₆) of Compound **3aa**

¹³C NMR Spectrum (100 MHz, DMSO-*d*₆) of Compound **3ba**

¹H NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound **3ca**

¹³C NMR Spectrum (100 MHz, DMSO-*d*₆) of Compound **3ca**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3da**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3ea**

¹³C NMR Spectrum (100 MHz, DMSO-*d*₆) of Compound **3fa**

¹³C NMR Spectrum (100 MHz, DMSO-*d*₆) of Compound **3ga**

¹³C NMR Spectrum (100 MHz, DMSO-*d*₆) of Compound **3ha**

¹³C NMR Spectrum (100 MHz, DMSO-d₆ & CDCl₃) of Compound **3ia**

 ^1H NMR Spectrum (400 MHz, CDCl₃) of Compound **3ab**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3ab**

¹³C NMR Spectrum (100 MHz, DMSO-*d*₆ & CDCl₃) of Compound **3ac**

---0.000

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3ad**

-0.000

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 3ae

¹³C NMR Spectrum (100 MHz, DMSO-d₆) of Compound **3af**

¹³C NMR Spectrum (100 MHz, DMSO-*d*₆) of Compound **3ag**

3ag S27

¹³C NMR Spectrum (100 MHz, DMSO-*d*₆) of Compound **3ah**

¹H NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound **3ai**

¹³C NMR Spectrum (100 MHz, DMSO-*d*₆) of Compound **3ai**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 3aj

100 90 f1 (ppm) -10

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 3cd

¹³C NMR Spectrum (100 MHz, DMSO-*d*₆) of Compound **3ec**

¹³C NMR Spectrum (100 MHz, DMSO-*d*₆) of Compound **3bh**

¹³C NMR Spectrum (100 MHz, DMSO-d₆) of Compound **3fb**

¹H NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound **3fh**

¹³C NMR Spectrum (100 MHz, DMSO-*d*₆) of Compound **3fh**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 4

Figure S1. Crystal Structure of 3aa (35% probability level for the thermal ellipsoids).

Formula	$C_{24}H_{20}N_2O_4S$
Formula weight	432.48
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	$P2_1/n$
Unit cell dimensions	$a = 8.7954(13)$ Å, $\alpha = 90$ deg.
	$b = 19.899(3)$ Å, $\beta = 108.107(16)$ deg.
	$c = 13.0118(18)$ Å, $\gamma = 90$ deg.
Volume	2164.5(6)
Ζ	4
Density (calculated)	$1.327 \text{ g} / \text{cm}^3$
Absorption coefficient	0.183 mm ⁻¹
F(000)	904.0
Crystal	$0.2 \times 0.18 \times 0.15 \text{ mm}$
Theta range for data collection	3.878 to 48.988 deg
Limiting indices	$-10 \le h \le 9, -23 \le k \le 19, -15 \le l \le 14$
Reflections collected	10380
Independent reflections	3596 [Rint = 0.0598, Rsigma = 0.0940]
Data / restraints / parameters	3596/0/282
Goodness-of-fit on F^2	1.027
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0675, wR_2 = 0.1257$
<i>R</i> indices (all data)	$R_1 = 0.1297, wR_2 = 0.1544$
Largest diff. peak and hole	0.47 and -0.32 e. Å ⁻³

Table S1. Crystal Data for Compound 3aa