Supporting Information

Late-Stage Construction of Stapled Peptides through Fujiwara-Moritani Reaction between Tryptophan and Olefins

Jiang Liu,^a Peng Wang,^a Wei Zeng,^a Qi Lu,^a and Qing Zhu*^a

Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China E-mail: zhuq@zjut.edu.cn

Table of Contents

1. General Information
2. Experiment Section
A. General procedure for the synthesis of dipeptides and tripeptides
B. General procedure for the synthesis of dipeptides and tripeptides
C. General procedure for the subtrates which modification with acryloyl chloride
D. General procedure for Pd-catalyzed olefination of dipeptides and tripeptides
E. General procedure of stapled peptide precursor
F. General procedure of Pd-catalyzed olefination of stapled peptides
G. General procedure of remove the peptides protecting groups.
H. General procedure of construction stapled peptide with solid phase peptide synthesis (SPPS).
I. Structural characterization of amino acids, peptides and stapled peptides
J. ¹ H NMR and ¹³ C NMR of products

1. General Information

All the reagents are obtained from commercial sources without further purification unless indicated. The water used in the laboratory comes from the Milli-Q reference system. Thin-layer chromatography (TLC) and silica gel for column chromatography comes from Qingdao Marine chemical plant (200-300 mesh). The peptide substrates and stapled peptide precursors were synthesized by traditional methods including liquid phase synthesis of peptides and solid synthesis of peptides. The spectra of absorption and fluorescence were analyzed using Molecular Devices SpectraMax M5. ¹HNMR spectra were obtained on AVANCE III 500 (500 MHz), WNMR-I 400MHZ and AVANCE III HD 600 instrument (600 MHz). ¹³CNMR spectra were obtained on AVANCE III 500 (126 MHz), WNMR-I 400MHZ (101 MHz) and AVANCE III HD 600 instrument (151 MHz). ¹HNMR spectrum multiplicities as following: s (singlet), br (broad), d (doublet), t (triplet), q (quadruplet), m (multiplet). Cell imaging was performed using Leica TCS SP8. Reactions were detected by thin layer chromatography (TLC) under 254 nm or 365 nm with portable UV lamp and 2% ninhydrin stains in ethanol. Liquid chromatography-mass spectrometry (LC-MS) with Thermo Fisher.

2. Experimental Section

A. General procedure for the synthesis of dipeptides and tripeptides

Scheme S1. Preparation of linear peptides through solution-phase peptide synthesis.

Boc-Trp-OH (304 mg, 1 mmol), EDCI (290 mg, 1.5 mmol), HOBT (202 mg, 1.5 mmol) and H-AA-OMe.HCl (1 mmol) were dissolved in 10mL DMF, then DIEA (390 mg, 3 mmol) was added, stirred in room temperature overnight. Upon completion, 30 mL EtOAc and 30 mL H₂O were added, the organic layer was separated and washed with 30 mL 1N HCl, 30 mL saturated sodium bicarbonate, 30 mL saturated sodium chloride and dried with anhydrous sodium sulfate, filtered, concentrated in vacuum to get dipeptides Boc-Trp-AA-OMe. Next, the Boc-Trp-AA-OMe (1 mmol) was dissolved in 10 mL 4M HCl/dioxane for 30 min, then concentrated in vacuum, diluting with ice ether, a lot of solid form, dried in vacuum to get H-Trp-AA-OMeHCl for the next step. R₃-AA-OH (1 mmol), EDCI (290 mg, 1.5 mmol), HOBT (202 mg, 1.5 mmol) and H-Trp-AA-OMeHCl (1 mmol) were dissolved in 10 mL DMF, then DIEA (390 mg, 3 mmol) was added, stirred in room temperature overnight. Upon completion, 30 mL EtOAc and 30 mL H₂O were added, the organic layer was separated and washed with 30 mL 1N HCl, 30 mL saturated sodium bicarbonate, 30 mL EtOAc and 30 mL H₂O were added, the organic layer was separated and washed with 30 mL 1N HCl, 30 mL saturated sodium bicarbonate, 30 mL saturated sodium bicarbonate, 30 mL HCl, 30 mL saturated sodium bicarbonate, 30 mL saturated sodium bicarbonate, 30 mL tripeptides R₃-AA-Trp-AA-OMe without further

purified for the next step.

B. General procedure for the synthesis of dipeptides.

Scheme S2. Preparation of dipeptides through solution-phase peptide synthesis.

H-Trp-OMe·HCl (254 mg, 1 mmol), R₂-AA-OH (1 mmol), EDCI (290 mg, 1.5 mmol) and HOBT (202 mg, 1.5 mmol) were dissolved in 10 mL DMF, then DIEA (390 mg, 3 mmol) was added, stirred in room temperature overnight. Upon completion, 30 mL EtOAc and 30 mL H₂O were added, the organic layer was separated and washed with 30 mL 1N HCl, 30 mL saturated sodium bicarbonate, 30 mL saturated sodium chloride and dried with anhydrous sodium sulfate, filtered, concentrated in vacuum to get dipeptides R₂-AA-Trp-OMe without further purified for the next step.

C. General procedure for the subtrates which modification with acryloyl chloride

Scheme S3. Preparation of acrylic modification substrates.

Typically, the biomolecule compound (1 mmol) were dissolved in 5mL THF, Et_3N (150 mg, 1.5 mmol) was added, then cooled to 0 °C. Acryloyl chloride (108 mg, 1.2 mmol) dissolved in 2mL THF was dropwisesd to the reaction mixture, then removed to room temperature overnight. The reaction mixture was diluted with 5 mL EtOAc and 5 mL H₂O. The organic layer was washed with 5 mL 1N HCl, 5 mL saturated sodium bicarbonate, 5 mL saturated sodium chloride and dried with anhydrous sodium sulfate, filtered, concentrated in vacuum to get the crude product further purified by flash column to get **6a-6h**.

D. General procedure for Pd-catalyzed olefination of Trp containing amino acids, dipeptides and tripeptides

Typically, the Trp containing amino acid and peptide substrate (0.2 mmol), $Pd(OAc)_2$ (9 mg, 0.02 mmol) were suspened in 2 mL dioxane/AcOH=3:1, then alkene (0.4 mmol) and 1,4-Benzoquinone (43.2 mg, 0.4 mmol) were added. The tube was fitted with a septum and the mixture was heated to 80 °C for 24 h. The reaction mixture was diluted with 5 mL EtOAc and 5 mL H₂O. The organic layer was washed with 5 mL 1N HCl, 5 mL saturated sodium bicarbonate, 5 mL saturated sodium chloride and dried with anhydrous sodium sulfate, filtered, concentrated in vacuum to get the crude product further purified by flash column or PTLC.

E. General procedure of stapled peptide precursor

Scheme S3a. Procedure for stapled peptide precursor 8a-8i

The CTC Resin (300 mg, 0.3 mmol) was suspended in 5mL DCM, then Fmoc-AA-OH (0.9 mmol) and DIEA (154.8 mg, 1.2 mmol) were added, reacted in the shaker, after 2 h, 300 μ l MeOH was added for 10 min, then the Fmoc-AA-CTC Resin washed with DMF for three times. Fmoc-AA-CTC Resin deprotect the Fmoc with 20% piperidine/DMF for 30 min. After reaction, the H-AA-CTC Resin washed with DMF for four times. Subsequent amino acids coupling using standard solution-phase peptide synthesis (SPPS). The peptides were cut from CTC Resin using 25% HFIP/DCM for 1 h, filtered, the resins were washed DCM for three times, combined the filtrate and concentrated in vacuum to get peptides. Finally the linear peptides (0.2 mmol) 1A (44 mg, 0.2 mmol) which was prepared according to literature report,¹ EDCI (60 mg, 0.3 mmol) and HOBT (40 mg, 0.3 mmol) were dissolved in 3 mL DMF, then DIEA (78 mg, 0.6 mmol) was added, stirred in room temperature for 12 h. Upon completion, 10 mL EtOAc and 10 mL H₂O were added, the organic layer was separated and washed with 10 mL 1N HCl, 10 mL saturated sodium bicarbonate, 10 mL saturated sodium chloride and dried with anhydrous sodium sulfate, filtered, concentrated in vacuum to get the linear peptides **8a-8i** without purified for the next step.

me S3b. Procedure for stapled peptide precursor 8j

The CTC Resin (300 mg, 0.3 mmol) was suspended in 5mL DCM, then Fmoc-Gly-OH (267 mg, 0.9 mmol) and DIEA (154.8 mg, 1.2 mmol) were added, reacted in the shaker, after 2 h, 300 μ l MeOH was added for 10 min, then the Fmoc-Gly-CTC Resin washed with DMF for three times. Fmoc-Gly-CTC Resin deprotect the Fmoc with 20% piperidine/DMF for 30 min. After reaction, the H-Gly-CTC Resin washed with DMF for four times. Subsequent amino acids coupling using standard solution-phase peptide synthesis (SPPS) until all the amino acid was incorporated. The peptides were cut from CTC Resin using 25% HFIP/DCM for 1 h, filtered, the resins were washed DCM for three times, combined the filtrate and concentrated in vacuum to get peptide. Finally the linear peptide (88.6 mg, 0.2 mmol) H-Trp-OMe.HCl (66.2 mg, 0.2 mmol), EDCI (58 mg, 0.3 mmol) and HOBT (40 mg, 0.3 mmol) were dissolved in 3 mL DMF, then DIEA (78 mg, 0.6 mmol) was added, stirred in room temperature for 12 h. Upon completion, 10 mL EtOAc and 10 mL H₂O were added, the organic layer was separated and washed with 10 mL 1N HCl, 10 mL saturated sodium bicarbonate, 10 mL saturated sodium chloride and dried with anhydrous sodium sulfate, filtered, concentrated in vacuum to get the linear peptide soliton chloride and dried with anhydrous sodium sulfate, filtered, concentrated in vacuum to get the linear peptide soliton chloride and dried with anhydrous solium sulfate, filtered, concentrated in vacuum to get the linear peptide **8** without purified for the next step.

Scheme S3c. Procedure for stapled peptide precursor 8k

The CTC Resin (300 mg, 0.3 mmol) was suspended in 5mL DCM, then Fmoc-Trp-OH (383 mg, 0.9

mmol) and DIEA (154.8 mg, 1.2 mmol) were added, reacted in the shaker, after 2 h, 300 µl MeOH was added for 10 min, then the Fmoc-Trp-CTC Resin washed with DMF for three times. Fmoc-Trp-CTC Resin deprotect the Fmoc with 20% piperidine/DMF for 30 min. After reaction, the H-Trp-CTC Resin washed with DMF for four times. Subsequent amino acids coupling using standard solution-phase peptide synthesis (SPPS) until all the amino acid was incorporated. The peptide were cut from CTC Resin using 25% HFIP/DCM for 1 h, filtered, the resins were washed DCM for three times, combined the filtrate and concentrated in vacuum to get peptide **8k** without purified for the next step.

F. General procedure of Pd-catalyzed olefination stapled peptides

Typically, the Trp containing stapled peptide precursor (0.2 mmol), Pd(OAc)₂ (9 mg, 0.02 mmol) were suspened in 10 mL dioxane/AcOH=3:1, then 1,4-Benzoquinone (43.2 mg, 0.4 mmol) were added. The tube was fitted with a septum and the mixture was heated to 80 °C for 24 h. The reaction mixture was diluted with EtOAc (40 mL) and H₂O (30 mL). The organic layer was washed with 20 mL 1N HCl, 20 mL saturated sodium bicarbonate, 20 mL saturated sodium chloride and dried with anhydrous sodium sulfate, filtered, concentrated in vacuum to get the crude product further purified by flash column or PTLC.

G. General procedure of remove the peptides protecting groups.

A: According to the previous experience, the stapled peptide 9g (100 mg, 0.1 mmol) was added to 2 mL 95% TFA/H₂O (v/v) under 0 °C, then removed to room temperature for 1h. The ice ether 10 mL was added, a lot of solid form, filtered, washed with ether for three times, dried in vacuum to get 68 mg white solid 10a in 85% yield.

B: According to the previous experience, the stapled peptide 9k (60 mg, 0.1 mmol) was added to 2 mL 4M HCl/dioxane solution under 0 °C, then removed to room temperature for 1h. The ice ether 10 mL was added, a lot of solid form, filtered, washed with ether for three times, dried in vacuum to get 51 mg white solid 10b in 95% yield.

H. General procedure of construction stapled peptide with solid phase peptide synthesis (SPPS).

Scheme S4. Procedure for stapled peptide 10c

The Fmoc-Trp-Wang resin (0.2 mmol) soak in DMF for 0.5 h, then deprotect the Fmoc with 20% piperidine/DMF for 30 min. After reaction, the H-Trp-Wang Resin washed with DMF for four times. Subsequent amino acids coupling using standard solution-phase peptide synthesis (SPPS) until all the amino acid was incorporated. The peptide resin was suspended in 10 mL dioxane/AcOH=3:1, Pd(OAc)₂ (9 mg, 0.02 mmol) and 1,4-Benzoquinone (43.2 mg, 0.4 mmol) were added. The tube was fitted with a septum and the mixture was heated to 80 °C for 24 h. After reaction, the mixture was washed with DMF three times, H₂O two times and MeOH three times then dried in vacuum. After dried, the resin was added to 5 mL 95% TFA/H₂O (v/v) under 0 °C, then shook in room temperature for 1h. filtered, washed with TFA for two times. Combined the filtrate and 20 mL ice ether was added , a lot of solid form, filtered, the solid washed with ether for three times, dried in vacuum to get crude **10c**. The crude **10c** was further purified by reverse preparative chromatography and freeze-drying to get 51 mg white solid **10c** in **40**% yield.

K. Experimental Tables and figures

Table S1 Optimization of reaction conditions.^[a]

	Boc−NH CO₂Me Oxidant							
	× H	+ CO ₂ Et Pe	d(OAc) ₂					
	ŇH	za ado	NH					
	- 1a		3a					
Entry	Oxidant	Additive	Solvent	T (℃)	Y (%) ^b			
1	O ₂ ^c	AcOH ^d	para-xylene	100	15			
2	<i>t</i> BuOOBz	-	DMF	80	10			
3	<i>t</i> BuOOBz	-	toluene	80	5			
4	<i>t</i> BuOOBz	-	AcOH	80	35			
5	<i>t</i> BuOOBz	-	MeCN	80	10			
6	<i>t</i> BuOOBz	-	МеОН	80	Trace			
7	<i>t</i> BuOOBz	-	DMSO	80	12			
8	<i>t</i> BuOOBz	-	CHCI3	80	13			
9	<i>t</i> BuOOBz	-	DCE	80	8			
10	<i>t</i> BuOOBz	-	dioxane	80	17			
11	<i>t</i> BuOOBz	-	THF	80	15			
12	<i>t</i> BuOOBz	-	THF/AcOH=3:1	80	38			
13	<i>t</i> BuOOBz	-	dioxane/AcOH=3:1	80	48			
14	<i>t</i> BuOOBz	-	dioxane/AcOH=1:1	80	43			
15	<i>t</i> BuOOBz	-	dioxane/AcOH=5:1	80	40			
16	H ₂ O ₂	-	dioxane/AcOH=3:1	80	16			
17	ТВНР	-	dioxane/AcOH=3:1	80	35			
18	1,4-Benzoquinone	-	dioxane/AcOH=3:1	80	78			
19	Cu(OAc) ₂	-	dioxane/AcOH=3:1	80	23			
20	AgOAc	-	dioxane/AcOH=3:1	80	20			
21	K ₂ S ₂ O ₈	-	dioxane/AcOH=3:1	80	Trace			
22	1,4-Benzoquinone	AgOAc	dioxane/AcOH=3:1	80	70			
23	1,4-Benzoquinone	AgBF ₄	dioxane/AcOH=3:1	80	75			
24	1,4-Benzoquinone	Ag ₂ CO ₃	dioxane/AcOH=3:1	80	72			
25	1,4-Benzoquinone	Ag ₂ O	dioxane/AcOH=3:1	80	66			
26	1,4-Benzoquinone	AgSbF6	dioxane/AcOH=3:1	80	62			
27	1,4-Benzoquinone	-	dioxane/AcOH=3:1	60	50			
28	1,4-Benzoquinone	-	dioxane/AcOH=3:1	100	68			
^[a] React	^[a] Reaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), oxidant (0.2 mmol), Pd(OAc) ₂ (0.02 mmol), additive (0.2 mmol), solvent (2							
mL), 24 h. ^[b] Isolated yields. ^c O ₂ 1 atm. ^[d] AcOH (1.2 mmol).								

Table S2 Optimization of reaction conditions.[a]

Entry	Pd catalyst	Oxidant	Olefination reagent 2a	Т(℃)	Y (%) ^b			
1	10% mol Pd(OAc) ₂	0.4 mmol 1,4-Benzoquinone	0.4 mmol 2a	80	47°			
2	10% mol Pd(OAc) ₂	0.4 mmol 1,4-Benzoquinone	0.4 mmol 2a	80	71 ^d			
3	20% mol Pd(OAc) ₂	0.4 mmol 1,4-Benzoquinone	0.4 mmol 2a	80	76			
4	5% mol Pd(OAc) ₂	0.4 mmol 1,4-Benzoquinone	0.4 mmol 2a	80	56			
5	1% mol Pd(OAc) ₂	0.4 mmol 1,4-Benzoquinone	0.4 mmol 2a	80	Trace			
6	10% mol Pd(OAc) ₂	0.5 mmol 1,4-Benzoquinone	0.4 mmol 2a	80	72			
7	10% mol Pd(OAc) ₂	0.3 mmol 1,4-Benzoquinone	0.4 mmol 2a	80	62			
8	10% mol Pd(OAc) ₂	0.2 mmol 1,4-Benzoquinone	0.4 mmol 2a	80	45			
9	10% mol Pd(OAc) ₂	0.4 mmol 1,4-Benzoquinone	0.5 mmol 2a	80	74			
10	10% mol Pd(OAc) ₂	0.4 mmol 1,4-Benzoquinone	0.3 mmol 2a	80	58			
11	10% mol Pd(OAc) ₂	0.4 mmol 1,4-Benzoquinone	0.2 mmol 2a	80	45			
^[a] Reaction conditions: 1a (0.2 mmol), dioxane/AcOH=3:1 (2 mL), 24 h. ^[b] Isolated yields. ^[c] 12 h. ^[d] 48 h								

Fig S1. TLC show the result of the reaction between 1a and 2a under 254nm

Fig S2. Determination of the configuration of double bond in product **3a** by ¹H-NMR (600 MHz, DMSO). The coupling constant was J_{ab} =16.2 Hz, and therefore the double bond is in *E*-configuration.

b: HPLC spectra of 3a

ig S3. HPLC spectra of a) racemate and b) 3a. Chromatographic column: Daicel Chiralpak AD-H 5µm, solvent: *n*-hexane/PrOH, wavelength: 254.

F

Fig S4. Determination of the configuration of double bond in product **9b** by ¹H-NMR (600 MHz, DMSO). The coupling constant was J_{ab} =15.6 Hz, and therefore the double bond is in *E*-configuration.

Fig S5. a), b) Two different methods removal of the peptides protecting groups.

Fig S6. a) Construction of stapled peptide with solid phase peptide synthesis (SPPS). b) Gram scale synthesis of 9g.

L. Structural characterization of amino acids, peptides and stapled peptides

Chemical Formula: C₂₂H₂₈N₂O₆ Exact Mass: 416.1947

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 1:4; $R_f = 0.4$) to yield compound **3a** (64.9 mg, 78% yield). ¹H NMR (600 MHz, DMSO) δ 11.47 (s, 1H), 7.68 (d, J = 15.8 Hz, 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.34 (d, J = 8.2 Hz, 1H), 7.30 (d, J = 8.0 Hz, 1H), 7.21 (t, J = 7.5 Hz, 1H), 7.03 (t, J = 7.5 Hz, 1H), 6.54 (d, J = 15.8 Hz, 1H), 4.26 – 4.14 (m, 3H), 3.55 (s, 3H), 3.27 (dd, *J* = 14.4, 6.5 Hz, 1H), 3.21 (dd, *J* = 14.4, 8.0 Hz, 1H), 1.31 (s, 6H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, DMSO) δ 172.60, 166.87, 155.65, 137.93, 132.50, 131.66, 128.22, 124.82, 119.96, 119.84, 117.13, 115.66, 111.85, 78.81, 60.35, 55.33, 52.25, 28.53, 26.42, 14.72. MS (ESI) m/z (relative intensity) 417.34 (100) [M+H]+, 317.36 (40)

[M-Boc+H]⁺. HRMS (ESI) *m/z* calcd for C₂₂H₂₈N₂O₆Na (M + Na)⁺ 439.1840, found 439.1844.

Chemical Formula: C21H26N2O6

Exact Mass: 402.1791

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 1:4; $R_f = 0.35$) to yield compound **3b** (64.8 mg, 80% yield). ¹H NMR (500 MHz, DMSO) δ 11.45 (s, 1H), 11.45 (s, 1H), 7.67 (d, J = 15.8 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.34 (d, J = 8.2 Hz, 1H), 7.27 – 7.18 (m, 2H), 7.03 (dd, J = 11.1, 3.9 Hz, 1H), 6.49 (d, J = 15.8 Hz, 1H), 3.72 (s, 3H), 3.53 (s, 3H), 3.26 (dd, J = 14.3, 6.5 Hz, 1H), 3.20 (dd, J = 14.4, 7.9 Hz, 1H), 1.29 (s, 9H). ¹³C NMR (126 MHz, DMSO) & 172.41 (s),

167.20 (s), 155.47 (s), 137.72 (s), 132.46 (s), 131.33 (s), 127.94 (s), 124.75 (s), 119.72 (s), 117.02 (s), 114.91 (s), 111.66 (s), 55.05 (s), 52.08 (s), 51.71 (s), 28.27 (s), 26.17 (s). MS (ESI) m/z (relative intensity) 403.32 (100) $[M+H]^+$. HRMS (ESI) m/z calcd for $C_{21}H_{26}N_2O_6Na$ (M + Na)⁺ 425.1683, found 425.1681.

Chemical Formula: C₂₄H₃₂N₂O₆ Exact Mass: 444.2260

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 1:4; $R_f = 0.38$) to yield compound **3c** (63.6 mg, 72% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.72 (d, J = 4.4 Hz, 1H), 7.91 (t, J = 7.6 Hz, 1H), 7.72 (d, J = 16.2 Hz, 1H), 7.67 (d, *J* = 7.9 Hz, 1H), 7.40 (dd, *J* = 7.1, 5.2 Hz, 1H), 7.36 (d, *J* = 8.2 Hz, 1H), 7.31 (d, *J* = 7.8 Hz, 1H), 7.28 (d, *J* = 7.7 Hz, 1H), 7.21 (t, J = 7.3 Hz, 1H), 5.63 (d, J = 16.2 Hz, 1H), 5.16 (d, J = 8.0 Hz, 1H), 4.74 (d, J = 6.9 Hz, 1H), 4.14 (t, J = 6.7 Hz, 2H), 3.67 (s,

3H), 3.60 – 3.43 (m, 2H), 1.68 – 1.61 (m, 2H), 1.42 (s, 7H), 1.40 – 1.36 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 172.31, 167.15, 155.10, 137.41, 131.55, 131.22, 128.73, 125.07, 120.24, 119.84, 116.10, 115.21, 111.13, 80.03, 64.53, 54.46, 52.56, 30.79, 28.33, 27.21, 19.18, 13.76. MS (ESI) m/z (relative intensity) 445.83 (100) [M +H⁺], 889.35 (60) [2M+H]⁺. HRMS (ESI) m/z calcd for $C_{37}H_{51}N_5O_9Na (M + Na)^+ 467.2153$, found 467.2152.

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 1:4; R_f =0.36) to yield compound **3d** (65.7 mg, 74% yield). ¹H NMR (600 MHz, CDCl₃) δ 9.07 (s, 1H), 7.60 (d, *J* = 15.9 Hz, 1H), 7.57 (d, *J* = 8.0 Hz, 1H), 7.28 (d, *J* = 8.6 Hz, 1H), 7.22 (t, *J* = 7.5 Hz, 1H), 7.09 (t, *J* = 7.4 Hz, 1H), 6.25 (d, *J* = 15.9 Hz, 1H), 5.17 (d, *J* = 8.2 Hz, 1H), 4.71 (dt, *J* = 7.8, 5.3 Hz, 1H), 3.70 (s, 3H), 3.44 (dd, *J* = 14.6, 5.7 Hz, 1H), 3.39 (dd, *J* = 14.5, 4.7 Hz, 1H), 1.58 (s, 9H), 1.45 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 172.22, 166.48, 155.08, 137.37, 131.41, 130.80, 128.80, 124.87, 120.15, 119.86, 117.19, 115.71, 111.14, 80.72, 79.96, 54.49, 53.45, 52.48, 28.34, 28.27, 27.30. MS (ESI) *m/z* (relative intensity) 445.65 (100) [M+H⁺], 345.76 (80) [M-Boc+H]⁺. HRMS (ESI) *m/z* calcd for C₂₄H₃₂N₂O₆Na (M + Na)⁺ 467.2153, found 467.2150.

Chemical Formula: C₂₁H₂₆N₂O₆ Exact Mass: 402.1791

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (DCM: MeOH= 20:1; R_f =0.23) to yield compound **3e** (42.3 mg, 65% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.92 (s, 1H), 7.75 (d, *J* = 15.5 Hz, 1H), 7.60 (d, *J* = 7.2 Hz, 2H), 7.10 – 7.07 (m, 2H), 7.05 – 6.95 (m, 1H), 6.18 (d, *J* = 15.5 Hz, 1H), 5.40 – 5.25 (m, 1H), 4.50 – 4.70 (m, 1H), 4.25 – 4.15 (q, *J* = 6.6 Hz, 2H), 3.50 – 3.30 (m, 2H), 1.35 - (s, 9H), 1.30 (t, *J* = 6.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.17, 155.31, 137.51, 132.19,

131.21, 128.46, 125.09, 120.28, 114.80, 111.18, 80.16, 60.96, 54.39, 28.33, 14.21, 11.43. MS (ESI) m/z (relative intensity) 401.34 (100) [M-H]⁺. HRMS (ESI) m/z calcd for C₂₁H₂₆N₂O₆Na (M + Na)⁺ 425.1683, found 425.1680.

Chemical Formula: C₂₃H₃₀N₂O₆

Exact Mass: 430.2104

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (DCM: MeOH= 20:1; R_f =0.26) to yield compound **3f** (53.2 mg, 62% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.87 (s, 1H), 7.70 (d, *J* = 15.0 Hz, 1H), 7.60 – 7.57 (m, 1H), 7.24 – 7.10 (m, 2H), 7.06 – 6.98 (m, 1H), 6.15 (d, *J* = 15 Hz, 1H), 5.28 (s, 1H), 4.65 – 4.45 (m, 1H), 3.45 – 3.32 (m, 2H), 1.51 (s, 9H), 1.45 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 137.43, 131.19, 128.95, 128.38, 124.82, 120.08, 119.62, 116.90,

116.22, 111.02, 81.18, 79.75, 60.46, 29.70, 28.38, 28.16, 14.19. MS (ESI) *m/z* (relative intensity) 429.65 (100) [M-H]⁺. HRMS (ESI) *m/z* calcd for C₂₃H₃₀N₂O₆Na (M + Na)⁺ 453.1996, found 453.1999.

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (DCM; $R_f = 0.52$) to yield compound **3g** (49.8 mg, 67% yield). ¹H NMR (600 MHz, CDCl₃) δ 9.11 (s, 1H), 7.64 (d, J = 15.9 Hz, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.29 (d, J = 3.9 Hz, 1H), 7.24 (t, J = 7.5 Hz, 1H), 7.09 (t, J = 7.5Hz, 1H), 6.26 (d, J = 8.0 Hz, 1H), 6.22 (d, J = 15.9 Hz, 1H), 5.07 – 4.99 (m, 1H), 4.31 – 4.24 (m, 3H), 4.23 – 4.19 (m, 1H), 4.11 – 4.03 (m, 1H), 3.48 (dd, J = 14.7, 5.6 Hz, 1H), 3.42 (dd, J = 14.7, 4.8 Hz,

1H), 1.98 (s, 3H), 1.34 (t, J = 7.1 Hz, 3H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 171.58, 170.02, 167.00, 137.42, 131.65, 131.35, 128.76, 125.01, 120.20, 119.69, 116.13, 115.20, 111.32, 61.94, 60.62, 53.16, 26.98, 23.13, 14.34, 13.95. MS (ESI) *m/z* (relative intensity) 373.25 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₂₀H₂₄N₂O₅Na (M + Na)⁺ 395.1577, found 395.1591.

Chemical Formula: C₂₅H₂₆N₂O₆ Exact Mass: 450.1791

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 1:3; R_f =0.16) to yield compound **3h** (57.6 mg, 64% yield). ¹H NMR (600 MHz, CDCl₃) δ 9.03 (s, 1H), 7.68 (d, *J* = 15.9 Hz, 1H), 7.53 (d, *J* = 7.9 Hz, 1H), 7.47 (t, *J* = 7.3 Hz, 1H), 7.39 – 7.32 (m, 5H), 7.26 (d, *J* = 8.1 Hz, 1H), 7.21 (t, *J* = 7.5 Hz, 1H), 7.05 (t, *J* = 7.4 Hz, 1H), 6.26 (d, *J* = 15.9 Hz, 1H), 5.51 (d, *J* = 8.1 Hz, 1H), 5.14 (q, *J* = 12.2 Hz, 2H), 4.85 – 4.79 (m, 1H), 4.24 (dd, *J* = 12.7, 6.3 Hz,

2H), 3.72 (s, 3H), 3.50 (dd, J = 14.7, 5.6 Hz, 1H), 3.44 (dd, J = 14.7, 4.6 Hz, 1H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 171.89, 167.13, 155.77, 137.44, 136.25, 133.40, 131.64, 131.37, 130.18, 128.63, 128.58, 128.50, 128.41, 128.14, 128.06, 125.10, 120.34, 119.72, 115.92, 115.21, 111.29, 67.07, 60.66, 54.85, 52.63, 27.18, 14.33. MS (ESI) *m/z* (relative intensity) 451.65 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₂₆H₂₈N₂O₆Na (M + Na)⁺ 464.1947, found 464.1950.

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate; R_f =0.22) to yield compound **3i** (40 mg, 58% yield). ¹H NMR (600 MHz, DMSO) δ 11.31 (s, 1H), 8.00 (d, *J* = 8.5 Hz, 1H), 7.73 (d, *J* = 15.8 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.39 (s, 1H), 7.30 (d, *J* = 8.2 Hz, 1H), 7.18 (t, *J* = 7.5 Hz, 1H), 7.04 (s, 1H), 7.00 (t, *J* = 7.5 Hz, 1H), 6.50 (d, *J* = 15.8 Hz, 1H), 4.49 (dd, *J* = 14.6, 7.0 Hz, 1H), 4.20 (g, *J* = 7.1 Hz, 2H), 3.26 (dd, *J* = 14.1, 6.2 Hz, 1H), 3.07 (dd, *J* =

Chemical Formula: C₁₈H₂₁N₃O₄ Exact Mass: 343.1532

14.1, 7.0 Hz, 1H), 1.77 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, DMSO) δ 173.24, 169.37, 166.92, 137.90, 133.10, 131.78, 128.56, 124.60, 120.53, 119.55, 117.73, 115.21, 111.58, 60.22, 53.97, 27.51, 23.01, 14.73. MS (ESI) *m/z* (relative intensity) 344.34 (100) [M+H⁺], 687.23 (50) [2M+H]⁺. HRMS (ESI) *m/z* calcd for C₁₈H₂₁N₃O₄Na (M + Na)⁺ 366.1424, found 366.1436.

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 1:3; R_f =0.3) to yield compound **5a** (68.9 mg, 65% yield). ¹H NMR (400 MHz, DMSO) δ 11.37 (s, 1H), 7.94 (d, *J* = 8.2 Hz, 1H), 7.69 (d, *J* = 15.8 Hz, 1H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.32 (d, *J* = 8.1 Hz, 1H), 7.20 (t, *J* = 7.5 Hz, 1H), 7.05 – 7.00 (m, 1H), 6.98 (d, *J* = 9.0 Hz, 1H), 6.51 (d, *J* = 15.8 Hz, 1H), 4.24 (dd, *J* = 14.3, 6.3 Hz, 2H), 3.73 (s, 3H), 3.58 (s, 3H), 3.19 (dd, *J* = 14.3, 5.6 Hz, 1H), 3.06 (dd, *J* = 14.2, 8.4 Hz, 1H), 1.78 – 1.66 (m, 1H), 1.27 (s, 9H), 1.24 – 1.16 (m, 4H), 0.84 – 0.78 (m, 6H). ¹³C NMR (101 MHz, DMSO) δ

172.11, 171.80, 167.40, 155.32, 137.95, 133.10, 131.74, 128.41, 124.75, 120.34, 119.61, 117.48, 114.92, 111.68, 78.74, 56.60, 56.11, 52.11, 51.86, 37.15, 29.48, 28.46, 27.54, 25.15, 15.64, 11.55. MS (ESI) m/z (relative intensity) 530.32 (100) [M+H⁺], 430.24 (30) [M-Boc+H]⁺. HRMS (ESI) m/z calcd for C₂₈H₃₉N₃O₇Na (M + Na)⁺ 552.2680, found 552.2681.

Chemical Formula: C₂₇H₃₇N₃O₇ Exact Mass: 515.2632

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 1:3; $R_f =0.3$) to yield compound **5b** (70.4 mg, 68% yield). ¹H NMR (600 MHz, CDCl₃) δ 9.13 (s, 1H), 7.75 (d, J = 15.7 Hz, 1H), 7.65 (d, J = 7.7 Hz, 1H), 7.22 (s, 2H), 7.10 – 7.04 (m, 1H), 6.55 (d, J = 7.9 Hz, 1H), 6.29 (d, J = 15.9 Hz, 1H), 5.41 (d, J = 5.5 Hz, 1H), 4.48 (d, J = 5.6 Hz, 1H), 4.41 (dd, J = 8.2, 5.1 Hz, 1H), 4.31 – 4.25 (m, 2H), 3.61 (s, 3H), 3.43 – 3.27 (m, 2H), 2.12 – 1.95 (m, 1H), 1.42 (s, 9H), 1.35 (t, J = 7.0

Hz, 3H), 0.83 (dd, J = 10.5, 7.0 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 171.76, 171.31, 167.21, 155.23, 137.53, 131.79, 131.30, 128.46, 124.84, 120.19, 119.92, 116.74, 115.39, 111.18, 80.00, 60.66, 57.34, 55.80, 52.03, 31.40, 28.28, 18.67, 17.81, 14.32. MS (ESI) *m/z* (relative intensity) 516.43 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₂₇H₃₇N₃O₇Na (M + Na)⁺ 538.2524, found 538.2522.

Exact Mass: 601.3363

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 1:3; $R_f = 0.21$) to yield compound **5c** (60.1 mg, 50% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.92 (s, 1H), 7.74 (d, J = 15.8 Hz, 1H), 7.68 (d, J = 7.2 Hz, 1H), 7.26 (d, J = 7.9 Hz, 1H), 7.21 (t, J = 7.4 Hz, 1H), 7.07 (t, J = 7.4 Hz, 1H), 6.66 (s, 1H), 6.23 (d, J = 15.9 Hz, 1H), 5.28 (d, J = 5.7 Hz, 1H), 4.57 – 4.41 (m, 2H), 4.32 – 4.23 (m, 2H), 3.68 (d, J = 7.4 Hz, 1H), 3.46 (d, J = 7.8 Hz, 1H), 3.43 – 3.28 (m, 2H), 1.42 (s, 9H), 1.40 (s, 8H),

1.36 (t, J = 7.1 Hz, 4H), 1.07 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 170.81, 168.80, 167.00, 162.62, 137.48, 131.83, 131.44, 128.49, 124.97, 120.19, 119.98, 116.75, 115.25, 111.16, 81.82, 72.98, 62.07, 60.51, 55.25, 53.58, 36.50, 31.48, 28.24, 27.98, 27.24, 14.38. MS (ESI) *m/z* (relative intensity) 602.49 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₃₂H₄₇N₃O₈Na (M + Na)⁺ 624.3255, found 624.3256.

Chemical Formula: C₂₄H₃₁N₃O₇ Exact Mass: 473.2162

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 1:3; $R_f =0.16$) to yield compound **5d** (68.1 mg, 72% yield). ¹H NMR (600 MHz, CDCl₃) δ 9.08 (s, 1H), 7.71 (d, J = 15.9 Hz, 1H), 7.63 (d, J = 7.9 Hz, 1H), 7.19 (s, 2H), 7.07 (t, J = 7.3 Hz, 1H), 6.66 (t, J = 4.9 Hz, 1H), 6.27 (d, J = 15.9 Hz, 1H), 5.38 (s, 1H), 4.56 (s, 1H), 4.33 – 4.17 (m, 2H), 4.04 (d, J = 17.9 Hz, 1H), 3.91 (d, J = 17.5 Hz, 1H), 3.70 (s, 3H), 3.38 (s, 2H), 1.42 (s, 9H), 1.34 (t, J = 6.8 Hz, 3H). ¹³C NMR (151 MHz,

CDCl₃) δ 171.48, 169.92, 167.19, 155.23, 137.44, 131.34, 128.48, 125.00, 120.24, 119.84, 116.51, 115.32, 111.18, 80.07, 60.62, 55.23, 52.34, 41.33, 28.27, 27.92, 14.30. MS (ESI) *m/z* (relative intensity)

474.78 (100) $[M +H]^+$. HRMS (ESI) *m/z* calcd for C₂₄H₃₁N₃O₇Na (M + Na)⁺ 496.2954, found 496.2953.

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl

Chemical Formula: C₃₁H₃₇N₃O₇ Exact Mass: 563.2632 acetate: petroleum ether= 1:3; $R_f = 0.35$) to yield compound **5e** (67.5 mg, 60% yield). ¹H NMR (600 MHz, CDCl₃) δ 9.11 (s, 1H), 7.74 (d, J = 15.7 Hz, 1H), 7.65 (d, J = 7.3 Hz, 1H), 7.26 – 7.13 (m, 6H), 7.08 (t, J = 6.9 Hz, 1H), 6.93 (s, 2H), 6.47 (s, 1H), 6.26 (d, J = 15.8 Hz, 1H), 5.32 (s, 1H), 4.73 (s, 1H), 4.47 (s, 1H), 4.35 – 4.19 (m, 2H), 3.60 (s, 3H), 3.43 – 3.25 (m, 2H), 3.00 (qd, J = 13.7, 5.7 Hz, 2H), 1.43 (s, 9H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 171.30, 170.91, 167.14, 155.15, 137.51, 135.65, 131.81, 131.35, 129.23, 128.44, 127.02, 125.00, 120.30, 119.90, 116.51, 115.40, 111.22, 80.04, 60.66, 53.54, 52.20, 37.94, 29.70, 28.27, 27.89, 14.34. MS (ESI) *m/z* (relative intensity) 564.74 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₃₁H₃₇N₃O₇Na (M + Na)⁺ 586.2524, found 586.2521.

Exact Mass: 503.2268

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 2:3; $R_f = 0.41$) to yield compound **5f** (51.5 mg, 52% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.89 (s, 1H), 7.65 (d, J = 15.9 Hz, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.29 (d, J = 2.9 Hz, 1H), 7.25 (t, J = 7.5 Hz, 1H), 7.20 (s, 1H), 7.11 (t, J = 7.4 Hz, 1H), 6.20 (d, J = 15.9 Hz, 1H), 5.60 (d, J = 5.2 Hz, 1H), 4.97 (s, 1H), 4.31 – 4.24 (m, 2H), 4.19 (s, 1H), 4.01 (d, J = 9.9 Hz, 1H), 3.69 (s, 3H), 3.69 – 3.59 (m, 2H), 3.47 (t, J = 5.4

Hz, 2H), 1.42 (s, 10H), 1.34 (t, J = 6.9 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 171.51, 171.08, 167.49, 155.42, 137.38, 131.84, 131.27, 128.55, 125.30, 120.41, 119.70, 116.30, 115.06, 111.38, 62.78, 60.90, 55.41, 53.34, 52.68, 29.69, 28.22, 26.82, 14.29. MS (ESI) *m/z* (relative intensity) 504.69 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₂₅H₃₃N₃O₈Na (M + Na)⁺ 526.2160, found 526.2182.

Chemical Formula: C₂₄H₃₁N₃O₇ Exact Mass: 473.2162

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 1:3; R_f =0.24) to yield compound **5g** (56.8 mg, 60% yield). ¹H NMR (600 MHz, CDCl₃) δ 9.28 (s, 1H), 7.58 (d, *J* = 15.9 Hz, 1H), 7.51 (d, *J* = 8.0 Hz, 1H), 7.28 – 7.25 (m, 1H), 7.21 (t, *J* = 7.5 Hz, 1H), 7.08 (t, *J* = 7.5 Hz, 1H), 6.83 (d, *J* = 7.4 Hz, 1H), 6.19 (d, *J* = 15.9 Hz, 1H), 5.01 (d, *J* = 6.0 Hz, 1H), 4.22 (d, *J* = 6.8 Hz, 2H), 3.83 – 3.75 (m, 2H), 3.71 (s, 3H), 3.47 (dd, *J* = 14.8, 5.2 Hz, 1H), 3.42 (dd, *J* = 14.8, 4.8

Hz, 1H), 1.43 (s, 9H), 1.32 (t, J = 7.0 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 171.52, 169.50, 167.30, 156.08, 137.46, 131.72, 131.37, 128.56, 125.04, 120.25, 119.46, 115.86, 115.07, 111.46, 80.10, 60.72, 53.79, 53.10, 52.63, 28.27, 26.84, 14.29. MS (ESI) *m/z* (relative intensity) 474.89 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₂₄H₃₁N₃O₇Na (M + Na)⁺ 496.2054, found 496.2057.

Chemical Formula: C₂₅H₃₃N₃O₇ Exact Mass: 487.2319

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 1:3; R_f =0.45) to yield compound **5h** (56.5 mg, 58% yield). ¹H NMR (600 MHz, CDCl₃) δ 9.20 (s, 1H), 7.62 (d, *J* = 15.9 Hz, 1H), 7.54 (d, *J* = 7.9 Hz, 1H), 7.30 – 7.27 (m, 1H), 7.22 (t, *J* = 7.5 Hz, 1H), 7.08 (t, *J* = 7.5 Hz, 1H), 6.89 (s, 1H), 6.22 (d, *J* = 15.9 Hz, 1H), 4.99 (d, *J* = 6.2 Hz, 1H),

4.25 (d, J = 6.8 Hz, 2H), 4.21 (d, J = 5.8 Hz, 1H), 3.69 (s, 3H), 3.46 (qd, J = 14.8, 5.2 Hz, 2H), 1.42 (s, 9H), 1.36 – 1.31 (m, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 172.58, 171.51, 167.30, 155.46, 137.44, 131.79, 131.30, 128.70, 125.09, 120.25, 119.83, 116.16, 115.06, 111.38, 80.01, 60.71, 53.26, 52.57, 50.13, 28.26, 26.98, 18.08, 14.32. MS (ESI) *m/z* (relative intensity) 487.98 (100) [M +H]⁺. HRMS (ESI) *m/z* calcd for C₂₅H₃₃N₃O₇Na (M + Na)⁺ 510.2211, found 510.2239.

Exact Mass: 635.3207

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 1:3; R_f =0.32) to yield compound **5i** (63.1 mg, 48% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.96 (s, 1H), 7.61 (d, *J* = 15.9 Hz, 1H), 7.43 (d, *J* = 7.9 Hz, 1H), 7.29 (d, *J* = 7.8 Hz, 1H), 7.24 (t, *J* = 7.5 Hz, 1H), 7.09 – 7.04 (m, 3H), 6.86 (d, *J* = 8.1 Hz, 2H), 6.60 (d, *J* = 7.8 Hz, 1H), 6.20 (d, *J* = 15.9 Hz, 1H), 5.15 (s, 1H), 4.94 (dd, *J* = 12.4, 5.3 Hz, 1H), 4.35 (s, 1H), 4.26 (d, *J* = 6.9 Hz, 2H), 3.66 (s, 3H), 3.46 – 3.35 (m, 2H), 3.10 – 3.04 (m, 1H),

3.00 - 2.86 (m, 1H), 1.36 (s, 9H), 1.34 - 1.31 (m, 12H). ¹³C NMR (151 MHz, CDCl₃) δ 171.22, 171.17, 167.19, 155.36, 154.07, 137.37, 131.72, 131.64, 131.20, 129.75, 128.63, 125.17, 124.27, 120.38, 119.77, 116.07, 115.08, 111.38, 79.94, 78.43, 60.72, 55.84, 53.10, 52.52, 37.61, 28.83, 28.22, 26.92, 14.33. MS (ESI) *m/z* (relative intensity) 636.21 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₃₅H₄₅N₃O₈Na (M + Na)⁺ 658.3599, found 658.3597.

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 1:3; R_f =0.27) to yield compound **5j** (60.3 mg, 43% yield). ¹H NMR (500 MHz, CDCl₃) ¹H NMR (500 MHz, Chloroform-*d*) δ 9.22 (s, 1H), 8.11 (t, *J* = 7.4 Hz, 1H), 7.57 (dd, *J* = 19.5, 11.9 Hz, 2H), 7.44 (s, 1H), 7.34 (d, *J* = 7.4 Hz, 1H), 7.31 – 7.26 (m, 1H), 7.20 (ddd, *J* = 20.6, 14.1, 8.0 Hz, 3H), 6.95 (d, *J* = 7.8 Hz, 1H), 6.71 (d, *J* = 7.9 Hz, 1H), 6.21

(d, J = 15.8 Hz, 1H), 5.31 (d, J = 7.9 Hz, 1H), 4.92 (q, J = 5.8 Hz, 1H), 4.45 (dd, J = 15.7, 8.2 Hz, 1H), 4.21 (q, J = 7.2, 6.8 Hz, 2H), 3.62 (s, 3H), 3.37 (tt, J = 14.5, 7.3 Hz, 2H), 3.28 – 3.02 (m, 2H), 1.63 (s, 9H), 1.37 (s, 9H), 1.29 (d, J = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 171.18, 171.08, 167.24, 149.57, 137.40, 135.47, 131.67, 131.25, 130.40, 128.61, 128.58, 125.05, 124.44, 124.32, 122.57, 120.17, 119.54, 119.10, 118.97, 115.89, 115.76, 115.16, 111.38, 83.51, 79.98, 60.70, 54.65, 53.20, 52.49, 29.67, 28.16, 28.11, 27.00, 14.27. MS (ESI) *m/z* (relative intensity) 703.56 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₃₈H₄₆N₄O₉Na (M + Na)⁺ 725.3157, found 725.3159.

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 1:3; R_f =0.35) to yield compound **5k** (56.5 mg, 45% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.66 (s, 1H), 7.66 (d, *J* = 15.9 Hz, 1H), 7.61 (d, *J* = 7.9 Hz, 1H), 7.42 – 7.28 (m, 5H), 7.28 (d, *J* = 6.0 Hz, 1H), 7.23 (t, *J* = 7.5 Hz, 1H), 7.10 (t, *J* = 7.5 Hz, 2H), 6.13 (d, *J* = 15.9 Hz, 1H), 5.99 (d, *J* = 8.4 Hz, 1H), 5.11 – 5.04 (m, 3H), 4.96 (dd, *J* = 12.8, 5.6 Hz, 1H), 4.58 (d, J = 6.7 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H), 3.65 (s, 3H), 3.47 – 3.39 (m, 2H), 2.84 (dd, J = 16.9, 4.7 Hz, 1H), 2.70 (dd, J = 16.9, 6.3 Hz, 1H), 1.41 (s, 10H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 171.27, 170.69, 170.43, 167.17, 156.04, 137.32, 136.25, 131.58, 131.19, 128.59, 128.51, 128.15, 125.25, 120.45, 119.87, 116.16, 115.15, 111.23, 81.65, 67.06, 60.71, 53.32, 52.53, 51.22, 37.59, 27.96, 26.81, 14.32. MS (ESI) *m/z* (relative intensity) 623.71 (100) [M +H]⁺. HRMS (ESI) *m/z* calcd for C₃₃H₃₉N₃O₉Na (M + Na)⁺ 644.2579, found 644.2581.

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 2:3; R_f =0.41) to yield compound **5l** (41.3 mg, 42% yield). ¹H NMR (600 MHz, DMSO) δ 11.44 (s, 1H), 8.47 (d, *J* = 7.4 Hz, 1H), 7.91 (d, *J* = 8.5 Hz, 1H), 7.63 (d, *J* = 15.8 Hz, 1H), 7.59 (d, *J* = 8.1 Hz, 1H), 7.34 (d, *J* = 8.2 Hz, 1H), 7.24 – 7.19 (m, 1H), 7.03 (t, *J* = 7.5 Hz, 1H), 6.98 (d, *J* = 8.5 Hz, 2H), 6.65 – 6.60 (m, 2H), 6.54 (d, *J* = 15.8 Hz, 1H), 4.49 (dd, *J* = 14.4, 7.5 Hz, 1H), 4.46 – 4.42 (m, 1H), 4.19 (qd, *J* = 7.0,

1.2 Hz, 2H), 3.48 (d, J = 8.0 Hz, 3H), 3.29 (dd, J = 14.3, 8.0 Hz, 1H), 3.23 (dd, J = 14.3, 6.5 Hz, 1H), 2.83 (dd, J = 13.9, 4.6 Hz, 1H), 2.57 (dd, J = 13.9, 9.7 Hz, 1H), 1.73 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, DMSO) δ 174.24, 174.09, 171.62, 169.08, 158.39, 140.12, 134.47, 133.87, 132.67, 130.54, 130.35, 127.12, 122.19, 118.70, 117.94, 117.48, 114.07, 62.61, 56.62, 56.16, 54.49, 39.50, 31.67, 28.92, 25.13, 16.91. MS (ESI) *m/z* (relative intensity) 522.45 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₂₈H₃₁N₃O₇Na (M + Na)⁺ 544.2054, found 544.2052.

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 1:3; R_f =0.30) to yield compound **5m** (65.3 mg, 62% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.95 (s, 1H), 7.65 (d, *J* = 15.9 Hz, 1H), 7.60 (d, *J* = 8.0 Hz, 1H), 7.29 (s, 1H), 7.23 (t, *J* = 7.5 Hz, 1H), 7.09 (t, *J* = 7.4 Hz, 1H), 6.19 (d, *J* = 15.2 Hz, 1H), 5.07 – 4.86 (m, 2H), 4.31 – 4.23 (m, 2H), 3.65 (s, 3H), 3.43 (qd, *J* = 14.7, 5.7 Hz, 2H), 2.31 – 2.12 (m, 3H), 1.84 – 1.60 (m, 6H), 1.38 (s, 9H), 1.35 (t, *J* = 7.1 Hz, 3H). ¹³C

NMR (151 MHz, CDCl₃) δ 174.57, 171.87, 167.12, 154.96, 137.41, 131.19, 128.65, 125.07, 120.21, 115.01, 111.28, 80.08, 66.98, 60.62, 53.58, 52.41, 28.20, 27.26, 24.18, 14.35. MS (ESI) *m/z* (relative intensity) 528.88 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₂₈H₃₇N₃O₇Na (M + Na)⁺ 550.2524, found 550.2521.

hemical Formula: C₃₀H₄₁N₃O₇ Exact Mass: 555.2945

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 1:3; R_f =0.28) to yield compound **5n** (85.6 mg, 65% yield). ¹H NMR (600 MHz, CDCl₃) δ 9.06 (s, 1H), 7.69 (d, *J* = 15.9 Hz, 1H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.29 (d, *J* = 8.7 Hz, 1H), 7.24 (t, *J* = 7.6 Hz, 1H), 7.12 (t, *J* = 7.4 Hz, 1H), 6.59 (d, *J* = 7.9 Hz, 1H), 6.27 (d, *J* = 15.9 Hz, 1H), 5.22 (d, *J* = 8.5 Hz, 1H), 4.98 (dd, *J* = 13.2, 5.7 Hz, 1H), 4.28 (q, *J* = 7.0 Hz, 2H), 3.95 (d, *J* = 6.3 Hz, 1H), 3.67 (s,

3H), 3.44 (d, *J* = 4.6 Hz, 2H), 1.75 – 1.66 (m, 3H), 1.66 – 1.56 (m, 3H), 1.46 (s, 9H), 1.35 (t, *J* = 7.0 Hz,

3H), 1.21 - 1.14 (m, 2H), 1.12 - 0.92 (m, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 171.53, 171.37, 167.11, 155.68, 137.43, 131.55, 131.18, 128.65, 125.21, 120.57, 119.90, 116.12, 115.22, 111.30, 79.73, 60.68, 59.33, 53.16, 52.51, 40.69, 29.55, 28.34, 27.93, 27.09, 26.04, 25.99, 14.34. MS (ESI) *m/z* (relative intensity) 556.42 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₃₀H₄₁N₃O₇Na (M + Na)⁺ 578.2837, found 578.2839.

Chemical Formula: $C_{32}H_{46}N_4O_8$ Exact Mass: 614.3316

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 1:3; R_f =0.21) to yield compound **50** (62.2 mg, 53% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.97 (s, 1H), 7.69 (d, *J* = 15.8 Hz, 1H), 7.61 (d, *J* = 7.6 Hz, 1H), 7.22 – 7.15 (m, 2H), 7.07 – 6.98 (m, 1H), 6.86 (d, *J* = 7.1 Hz, 1H), 6.41 (s, 1H), 6.20 (d, *J* = 15.9 Hz, 1H), 4.98 (d, *J* = 6.5 Hz, 1H), 4.68 (d, *J* = 6.1 Hz, 1H), 4.26 (s, 1H), 4.20 (dd, *J* = 11.9, 5.2 Hz, 2H), 3.94 (s, 1H), 3.50 (s, 3H), 3.38 (dd, *J* = 14.3, 4.9 Hz, 1H), 3.19 (dd, *J* = 14.3, 8.8 Hz, 1H), 2.15 – 2.08

(m, 1H), 1.92 - 1.84 (m, 1H), 1.37 (s, 9H), 1.27 (t, J = 7.1 Hz, 3H), 0.75 - 0.53 (m, 11H). ¹³C NMR (151 MHz, CDCl₃) δ 172.16, 171.43, 170.69, 167.15, 155.76, 137.51, 137.43, 131.61, 131.24, 128.44, 125.04, 120.38, 119.87, 116.51, 115.48, 111.24, 80.00, 60.73, 59.83, 57.42, 54.39, 51.99, 31.29, 30.79, 28.36, 28.32, 27.44, 19.18, 18.64, 17.76, 17.17, 14.36. MS (ESI) *m/z* (relative intensity) 615.54 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₃₂H₄₆N₄O₈Na (M + Na)⁺ 637.3208, found 637.3201.

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 1:3; $R_f =0.24$) to yield compound **5p** (58.6 mg, 50% yield). ¹H NMR (600 MHz, CDCl₃) δ 9.17 (s, 1H), 7.74 (d, J = 15.9 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.24 – 7.20 (m, 2H), 7.12 (d, J = 7.8 Hz, 1H), 7.10 – 7.06 (m, 1H), 6.68 (s, 1H), 6.29 (d, J = 15.9 Hz, 1H), 5.12 (d, J = 6.3 Hz, 1H), 4.80 (d, J = 6.8 Hz, 1H), 4.37 (dd, J = 8.3, 5.1 Hz, 1H), 4.31 – 4.24 (m, 2H), 4.19

(s, 1H), 3.62 (s, 3H), 3.44 (dd, J = 13.8, 5.2 Hz, 1H), 3.30 (dd, J = 14.4, 7.6 Hz, 1H), 2.03 (dd, J = 12.3, 6.7 Hz, 1H), 1.44 (s, 9H), 1.35 (t, J = 7.1 Hz, 3H), 1.31 – 1.24 (m, 3H), 0.82 – 0.76 (m, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 172.55, 171.54, 170.71, 167.38, 155.36, 137.50, 131.80, 131.24, 128.46, 124.94, 120.20, 116.69, 115.27, 111.30, 80.13, 60.76, 57.53, 54.45, 52.04, 50.27, 31.22, 29.69, 28.28, 18.64, 18.35, 17.81, 14.32. MS (ESI) *m/z* (relative intensity) 587.43 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₃₀H₄₂N₄O₈Na (M + Na)⁺ 609.2895, found 609.2899.

Chemical Formula: C₃₂H₄₄N₄O₈ Exact Mass: 612.3159

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 1:3; R_f =0.26) to yield compound **5q** (73.4 mg, 60% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.91 (s, 1H), 7.76 (d, *J* = 15.9 Hz, 1H), 7.68 (s, 1H), 7.30 (s, 1H), 7.26 (t, *J* = 7.8 Hz, 1H), 7.11 (t, *J* = 7.3 Hz, 1H), 6.93 (d, *J* = 7.7 Hz, 1H), 6.72 (s, 1H), 6.25 (d, *J* = 15.9 Hz, 1H), 4.76 (s, 1H), 4.37 (s, 1H), 4.32 – 4.27 (m, 2H), 4.24 (s, 1H), 3.63 (s, 3H), 3.35 (dd,

 $J = 96.5, 25.3 \text{ Hz}, 4\text{H}, 2.03 - 1.92 \text{ (m, 4H)}, 1.42 - 1.32 \text{ (m, 12H)}, 0.84 - 0.73 \text{ (m, 6H)}. {}^{13}\text{C NMR} (151 \text{ MHz}, \text{CDCl}_3) \\ \delta 171.58, 166.91, 137.43, 131.27, 125.11, 120.53, 119.78, 115.59, 115.50, 111.21, 82.36, 80.49, 60.72, 51.97, 47.33, 28.21, 18.68, 18.06, 14.36. \text{ MS} (ESI)$ *m/z*(relative intensity) 613.69 (100) [M+H]⁺. HRMS (ESI)*m/z*calcd for C₃₂H₄₄N₄O₈Na (M + Na)⁺ 635.3051, found 635.3046.

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 1:1; R_f =0.43) to yield compound **5r** (59.2 mg, 44% yield). ¹H NMR (600 MHz, CDCl₃) δ 9.24 (s, 1H), 7.71 (d, *J* = 15.9 Hz, 1H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.22 – 7.16 (m, 2H), 7.05 (t, *J* = 7.8 Hz, 1H), 6.88 (d, *J* = 6.7 Hz, 2H), 6.27 (d, *J* = 15.9 Hz, 1H), 5.34 (d, *J* = 8.1 Hz, 1H), 4.88 – 4.81 (m, 1H), 4.41 (dd, *J* = 8.4, 5.1

Hz, 1H), 4.29 - 4.21 (m, 2H), 4.17 - 4.10 (m, 1H), 3.63 (s, 3H), 3.38 (dd, J = 14.2, 6.0 Hz, 1H), 3.29 (dd, J = 14.2, 7.8 Hz, 1H), 2.24 (dd, J = 17.7, 10.5 Hz, 2H), 2.13 - 2.02 (m, 2H), 1.83 - 1.73 (m, 1H), 1.45 (s, 9H), 1.43 (s, 9H), 1.34 (t, J = 7.1 Hz, 3H), 0.82 (dd, J = 18.6, 6.9 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 171.94, 171.63, 171.49, 171.03, 167.25, 155.87, 137.54, 131.77, 131.27, 128.49, 124.79, 120.11, 119.80, 116.73, 115.30, 111.33, 82.13, 79.87, 60.64, 57.50, 54.67, 53.56, 52.02, 32.51, 31.32, 29.68, 28.80, 28.33, 28.02, 27.97, 18.73, 17.90, 14.31. MS (ESI) *m/z* (relative intensity) 701.56 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₃₆H₅₂N₄O₁₀Na (M + Na)⁺ 623.3576, found 623.3578.

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 1:1; R_f =0.24) to yield compound **5s** (115.2 mg, 48% yield). ¹H NMR (600 MHz, DMSO) δ 11.45 (s, 1H), 8.45 (d, *J* = 7.4 Hz, 1H), 8.12 (t, *J* = 5.5 Hz, 1H), 7.99 (d, *J* = 7.4 Hz, 1H), 7.88 (d, *J* = 7.5 Hz, 2H), 7.67 (dd, *J* = 17.3, 8.9 Hz, 3H), 7.62 (d, *J* = 15.8 Hz, 1H), 7.57 (d, *J* = 8.0 Hz, 1H), 7.40 (t, *J* = 7.5 Hz, 2H), 7.34 (d, *J* = 8.2 Hz, 1H), 7.30 (t, *J* = 7.5 Hz, 2H), 7.21 (t, *J* = 7.6 Hz, 1H), 7.03 (t, *J* = 7.4 Hz, 1H), 6.54 (d, *J* = 15.8

Hz, 1H), 6.38 (s, 1H), 4.54 (dd, J = 14.3, 7.3 Hz, 1H), 4.39 (dd, J = 8.7, 4.0 Hz, 1H), 4.32 – 4.17 (m, 6H), 3.79 (dd, J = 16.8, 5.7 Hz, 1H), 3.65 (dd, J = 16.8, 5.5 Hz, 1H), 3.49 (s, 3H), 3.30 (dd, J = 14.3, 7.8 Hz, 1H), 3.22 (dd, J = 14.3, 6.3 Hz, 1H), 3.01 (d, J = 5.6 Hz, 2H), 2.93 (s, 2H), 2.74 – 2.67 (m, 1H), 2.47 (s, 3H), 2.41 (s, 3H), 1.99 (s, 3H), 1.70 – 1.61 (m, 1H), 1.55 – 1.47 (m, 1H), 1.38 (s, 6H), 1.35 (s, 9H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, DMSO) δ 171.92, 171.13, 169.86, 169.06, 166.87, 157.91, 156.22, 144.27, 144.14, 141.16, 137.88, 137.74, 132.22, 131.92, 131.62, 128.21, 128.10, 127.52, 125.68, 124.91, 124.78, 120.55, 119.98, 119.88, 116.38, 115.72, 111.86, 86.73, 80.62, 66.22, 60.42, 60.23, 53.91, 52.33, 51.89, 47.06, 42.92, 42.04, 37.96, 28.73, 28.12, 26.85, 21.22, 19.39, 18.04, 14.69, 14.54, 12.71. MS (ESI) *m/z* (relative intensity) 1175.96 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₆₁H₇₄N₈O₁₄SNa (M + Na)⁺ 1197.4937, found 1197.4935.

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl

Chemical Formula: C₂₉H₃₉N₃O₁₀ Exact Mass: 589.2635

acetate: petroleum ether= 1:3; R_f =0.18) to yield compound **7a** (63.6 mg, 54% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.78 (s, 1H), 7.69 (d, *J* = 15.9 Hz, 1H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.29 (d, *J* = 7.7 Hz, 1H), 7.25 (t, *J* = 7.3 Hz, 1H), 7.11 (t, *J* = 7.2 Hz, 1H), 6.19 (d, *J* = 15.9 Hz, 1H), 5.62 (s, 1H), 5.17 (d, *J* = 7.5 Hz, 1H), 4.71 (d, *J* = 6.9 Hz, 1H), 4.68 – 4.64 (m, 1H), 4.62 (d, *J* = 11.3 Hz, 1H), 4.48 (d, *J* = 9.8 Hz, 1H), 3.81 (s, 3H), 3.70 (s, 3H), 3.44 (dd, *J* = 14.3, 5.4 Hz, 1H), 3.37 (dd, *J* = 14.5, 4.1 Hz, 1H), 1.48 (s, 9H), 1.44 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 172.10, 170.54, 166.36, 155.34, 155.00, 137.50, 132.83, 130.93, 128.77, 125.42, 120.44, 120.13, 117.26, 113.52, 111.18, 80.43, 80.00, 64.37, 54.43, 53.15, 52.81, 52.52, 29.69, 28.31, 27.35. MS (ESI) m/z (relative intensity) 590.45 (100) [M+H]⁺, 490.56 (30) [M-Boc+H]⁺. HRMS (ESI) *m/z* calcd for C₂₉H₃₉N₃O₁₀Na (M + Na)⁺ 612.2528, found 612.2516.

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 1:1; R_f =0.33) to yield compound **7b** (65.8 mg, 62% yield). ¹H NMR (600 MHz, DMSO) δ 11.43 (s, 1H), 7.71 (d, *J* = 15.8 Hz, 1H), 7.61 (d, *J* = 7.9 Hz, 1H), 7.35 (d, *J* = 8.1 Hz, 1H), 7.26 (d, *J* = 8.0 Hz, 1H), 7.22 (t, *J* = 7.6 Hz, 1H), 7.04 (t, *J* = 7.5 Hz, 1H), 6.98 (t, *J* = 5.4 Hz, 1H), 6.55 (d, *J* = 15.8 Hz, 1H), 4.20 (dd, *J* = 14.9, 7.5 Hz, 1H),

4.15 (t, J = 5.5 Hz, 2H), 3.55 (s, 3H), 3.33 – 3.20 (m, 4H), 1.39 (s, 9H), 1.32 (s, 9H). ¹³C NMR (151 MHz, DMSO) δ 172.58, 166.82, 156.13, 155.64, 137.94, 132.70, 131.65, 128.22, 124.84, 119.97, 119.83, 117.20, 115.45, 111.82, 78.79, 78.26, 63.26, 55.36, 55.31, 52.24, 28.67, 28.52, 26.44. MS (ESI) *m/z* (relative intensity) 532.67 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₂₇H₃₇N₃O₈Na (M + Na)⁺ 531.2581, found 531.2590.

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 1:1; R_f =0.22) to yield compound **7c** (71.5 mg, 52% yield). ¹H NMR (600 MHz, DMSO) δ 11.48 (s, 1H), 8.49 (d, *J* = 7.2 Hz, 1H), 7.70 (d, *J* = 15.7 Hz, 1H), 7.60 (d, *J* = 7.9 Hz, 1H), 7.33 (d, *J* = 8.1 Hz, 1H), 7.28 (d, *J* = 7.9 Hz, 1H), 7.22 (t, *J* = 7.6 Hz, 1H), 7.03 (t, *J* = 7.5 Hz, 1H), 6.65 (d, *J* = 9.0 Hz, 1H), 6.53 (d, *J* = 15.7 Hz, 1H), 4.71 (dd, *J* = 11.6, 5.9 Hz, 1H), 4.45 (dd, *J* = 11.3, 4.4 Hz, 1H), 4.37 (dd, *J* =

10.9, 6.1 Hz, 1H), 4.18 (dd, J = 14.9, 7.5 Hz, 1H), 3.95 – 3.90 (m, 1H), 3.68 (s, 3H), 3.53 (s, 3H), 3.28 (dd, J = 14.3, 6.5 Hz, 1H), 3.22 (dd, J = 14.3, 8.1 Hz, 1H), 2.03 – 1.90 (m, 1H), 1.37 (s, 10H), 1.31 (s, 9H), 0.89 – 0.82 (m, 6H). ¹³C NMR (151 MHz, DMSO) δ 172.59, 172.19, 170.30, 166.60, 155.88, 155.65, 138.03, 133.22, 131.52, 128.22, 124.98, 120.07, 119.87, 117.58, 114.72, 111.86, 78.81, 78.51, 63.44, 59.67, 55.39, 52.65, 52.23, 51.68, 31.08, 28.60, 28.52, 26.40, 19.53, 18.34. MS (ESI) *m/z* (relative intensity) 688.97 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₃₄H₄₈N₄O₁₁Na (M + Na)⁺ 711.3212, found 711.3230.

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 1:1; R_f =0.21) to yield compound 7d (65.8 mg, 41% yield). ¹H NMR (500 MHz, DMSO) δ 11.43 (s, 1H), 8.50 (d, *J* = 7.2 Hz, 1H), 8.25 (d, *J* = 8.0 Hz, 1H), 7.75 (d,

J = 15.8 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.31 (d, J = 8.1 Hz, 1H), 7.21 (t, J = 7.5 Hz, 1H), 7.03 (t, J = 7.5 Hz, 1H), 6.90 (d, J = 8.9 Hz, 1H), 6.67 (d, J = 9.0 Hz, 1H), 6.51 (d, J = 15.7 Hz, 1H), 4.77 – 4.60 (m, 2H), 4.40 (ddd, J = 17.3, 11.3, 5.4 Hz, 2H), 4.26 – 4.14 (m, 1H), 3.95 – 3.87 (m, 1H), 3.67 (s, 3H), 3.59 (s, 3H), 3.24 (dd, J = 14.3, 4.9 Hz, 1H), 3.04 (dd, J = 14.2, 8.8 Hz, 1H), 2.66 (dd, J = 16.3, 6.5 Hz, 1H), 2.55 (d, J = 6.2 Hz, 1H), 1.97 (dd, J = 13.3, 6.6 Hz, 1H), 1.39 (s, 9H), 1.37 (s, 9H), 1.23 (s, 6H), 0.90 – 0.82 (m, 6H). ¹³C NMR (126 MHz, DMSO) δ 208.05, 172.20, 171.59, 171.43, 170.30, 169.50, 166.67, 155.88, 155.28, 138.06, 133.75, 131.68, 128.36, 124.86, 120.42, 119.63, 117.93, 114.39, 111.72, 81.04, 78.65, 78.51, 63.39, 59.67, 55.93, 52.66, 52.56, 51.70, 48.99, 37.52, 31.07, 28.60, 28.41, 28.08, 19.54, 18.34. MS (ESI) *m*/*z* (relative intensity) 788.64 (100) [M+H]⁺. HRMS (ESI) *m*/*z* calcd for $C_{39}H_{57}N_5O_{12}Na$ (M + Na)⁺ 810.3896, found 810.3890.

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 1:1; $R_f =0.24$) to yield compound **7e** (65.8 mg, 39% yield). ¹H NMR (500 MHz, DMSO) δ 11.43 (s, 1H), 8.49 (d, J = 7.3 Hz, 1H), 7.94 (d, J = 8.3 Hz, 1H), 7.71 (d, J = 15.7 Hz, 1H), 7.65 (d, J = 7.9 Hz, 1H), 7.32 (d, J = 8.1 Hz, 1H), 7.21 (t, J = 7.6 Hz, 1H), 7.03 (t, J = 7.5 Hz, 1H), 6.95 (d, J = 8.8 Hz, 1H), 6.67 (d, J

= 9.1 Hz, 1H), 6.51 (d, J = 15.7 Hz, 1H), 4.71 (dd, J = 11.7, 6.0 Hz, 1H), 4.40 (ddd, J = 17.5, 11.5, 5.4 Hz, 2H), 4.30 – 4.15 (m, 2H), 3.93 (dd, J = 8.7, 6.9 Hz, 1H), 3.68 (s, 3H), 3.65 – 3.61 (m, 1H), 3.58 (s, 3H), 3.20 (dt, J = 9.5, 4.8 Hz, 1H), 3.08 (dd, J = 14.2, 8.3 Hz, 1H), 2.06 – 1.90 (m, 2H), 1.37 (s, 9H), 1.27 (s, 9H), 0.91 – 0.81 (m, 12H). ¹³C NMR (126 MHz, DMSO) δ 172.20, 172.09, 170.30, 166.66, 155.87, 155.33, 138.07, 133.68, 131.70, 128.38, 124.85, 120.40, 119.63, 117.82, 114.36, 111.72, 78.75, 78.52, 63.42, 59.67, 57.62, 56.17, 52.67, 52.12, 51.69, 31.06, 30.84, 28.61, 28.45, 27.54, 19.55, 19.24, 18.60, 18.33. MS (ESI) *m/z* (relative intensity) 890.92 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₄₂H₆₁N₅O₁₄Na (M + Na)⁺ 882.4107, found 882.4120.

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 1:4; $R_f = 0.52$) to yield compound **7f** (64.1 mg, 61% yield). ¹H NMR (600 MHz, DMSO) δ 11.39 (s, 1H), 7.69 (d, J = 15.8 Hz, 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.33 (d, J = 8.2 Hz, 1H), 7.25 (d, J = 8.0 Hz, 1H), 7.21 (t, J = 7.6 Hz, 1H), 7.03 (t, J = 7.5 Hz, 1H), 6.55 (d, J = 15.8 Hz, 1H), 4.73 (td, J = 10.8, 4.4 Hz, 1H), 4.20 (dd, J = 14.9, 7.6 Hz, 1H), 3.55

(s, 3H), 3.28 (dd, J = 14.4, 6.6 Hz, 1H), 3.23 (dd, J = 14.3, 7.8 Hz, 1H), 1.96 (d, J = 11.7 Hz, 1H), 1.92 – 1.83 (m, 1H), 1.70 – 1.63 (m, 2H), 1.53 – 1.40 (m, 2H), 1.31 (s, 8H), 1.19 (s, 2H), 1.14 – 1.01 (m, 2H), 0.89 (t, J = 6.5 Hz, 6H), 0.77 (d, J = 6.9 Hz, 3H). ¹³C NMR (151 MHz, DMSO) δ 172.54, 166.44, 155.59, 137.92, 132.52, 131.71, 128.23, 124.77, 119.93, 119.79, 117.06, 115.87, 111.79, 78.75, 73.59, 55.36, 55.32, 52.17, 47.15, 34.22, 31.33, 28.51, 28.10, 26.62, 26.48, 23.74, 22.36, 20.88, 16.99. MS (ESI) *m/z* (relative intensity) 527.83 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₃₀H₄₂N₄O₆Na (M + Na)⁺ 549.2935, found 549.2940.

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 3:2; R_f =0.20) to yield compound **3k** (48.15 mg, 40% yield). ¹H NMR (600 MHz, DMSO) δ 11.39 (s, 1H), 10.85 (s, 1H), 10.25 (s, 1H), 7.75 (d, *J* = 8.6 Hz, 2H), 7.68 (d, *J* = 15.5 Hz, 1H), 7.59 (d, *J* = 8.2 Hz, 1H), 7.37 (d, *J* = 8.1 Hz, 1H), 7.27 (d, *J* = 8.7 Hz, 3H), 7.19 (dd,

J = 11.5, 4.2 Hz, 1H), 7.03 (dd, J = 11.3, 4.1 Hz, 1H), 6.66 (d, J = 15.5 Hz, 1H), 4.21 (dd, J = 15.0, 7.5 Hz, 1H), 3.54 (s, 3H), 3.30 (dd, J = 14.3, 6.7 Hz, 1H), 3.23 (dd, J = 14.3, 7.8 Hz, 1H), 2.52 – 2.44 (m, 2H), 2.20 – 2.13 (m, 2H), 1.91 – 1.80 (m, 2H), 1.31 (s, 9H), 0.78 (t, J = 7.4 Hz, 3H). ¹³C NMR (151 MHz, DMSO) δ 176.27, 173.26, 172.67, 170.78, 164.45, 155.64, 138.84, 137.83, 134.82, 132.19, 129.06, 128.52, 127.10, 124.23, 120.15, 119.71, 119.67, 115.75, 111.86, 78.80, 60.21, 55.39, 52.22, 50.29, 32.63, 29.61, 28.53, 28.11, 26.58, 26.50, 21.20, 21.14, 14.54, 9.39. MS (ESI) *m/z* (relative intensity) 603.75 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₃₃H₃₈N₄O₇Na (M + Na)⁺ 625.2633, found 625.2644.

acetate: petroleum ether= 1:2; R_f =0.28) to yield compound **3k** (69.8 mg, 55% yield). ¹H NMR (600 MHz, DMSO) δ 11.45 (s, 1H), 7.74 (d, *J* = 15.8 Hz, 1H), 7.61 (d, *J* = 8.0 Hz, 1H), 7.35 (d, *J* = 8.2 Hz, 1H), 7.29 (d, *J* = 8.1 Hz, 1H), 7.22 (t, *J* = 7.6 Hz, 1H), 7.04 (t, *J* = 7.5 Hz, 1H), 6.56 (d, *J* = 15.8 Hz, 1H), 4.65 (dd, *J* = 7.9, 2.5 Hz, 1H), 4.46 (d, *J* = 11.6 Hz, 1H), 4.37 (d, *J* =

According to the general procedure D, the crude residue was

purified by flash column chromatography on silica gel (ethyl

Chemical Formula: $C_{32}H_{42}N_2O_{11}$ (IH) Exact Mass: 630.2789 (dd, 2 2 Hz 1H) 4 28 (d I = 8.2 Hz 1H) 4 20 -

2.2 Hz, 1H), 4.28 (d, J = 8.2 Hz, 1H), 4.20 – 4.13 (m, 1H), 4.05 (d, J = 11.6 Hz, 1H), 3.79 (d, J = 11.7 Hz, 1H), 3.64 (d, J = 13.0 Hz, 1H), 3.55 (s, 3H), 3.28 (dd, J = 14.4, 6.3 Hz, 1H), 3.21 (dd, J = 14.4, 8.3 Hz, 1H), 1.48 (s, 3H), 1.39 (s, 6H), 1.30 (s, 12H). ¹³C NMR (151 MHz, DMSO) δ 172.59, 166.17, 155.65, 137.98, 133.24, 131.48, 128.21, 125.00, 120.09, 119.89, 117.69, 114.79, 111.85, 108.65, 101.57, 78.79, 70.52, 70.42, 69.76, 64.64, 61.02, 55.35, 52.26, 28.53, 26.71, 26.35, 26.21, 25.71, 24.44. MS (ESI) *m/z* (relative intensity) 631.65 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₃₂H₄₂N₂O₁₁Na (M + Na)⁺ 653.2681, found 653.2689.

According to the general procedure F, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 2:1; R_f =0.3) to yield compound **9b** (80.3 mg, 62% yield). ¹H NMR (600 MHz, DMSO) δ 11.41 (s, 1H), 8.73 (s, 1H), 8.56 (d, *J* = 9.2 Hz, 1H), 7.50 (d, *J* = 7.3 Hz, 1H), 7.33 (d, *J* = 8.2 Hz, 1H), 7.27 (d, *J* = 15.8 Hz, 1H), 7.21 (t, *J* = 7.6 Hz, 1H), 6.99 (t, *J* = 7.5 Hz, 1H), 6.33 (d, *J* = 15.8 Hz, 1H), 5.10 (s, 1H), 4.45 (dd, *J* = 21.9, 9.0 Hz, 2H), 4.25 (s, 1H), 4.08 (t, *J* = 10.6 Hz, 1H), 3.72 (s, 3H), 3.69 – 3.62 (m, 1H), 3.51 (dd, *J* = 16.2, 3.6 Hz, 1H), 3.43 (dd,

Chemical Formula: C₂₅H₃₀N₄O₈ Exact Mass: 514.2064

J = 14.3, 7.4 Hz, 1H), 3.10 (d, *J* = 13.4 Hz, 1H), 1.34 (s, 9H). ¹³C NMR (151 MHz, DMSO) δ 169.90, 166.09, 137.62, 133.78, 131.99, 124.84, 120.32, 119.82, 114.67, 111.59, 78.89, 74.45, 63.58, 52.84, 52.72, 50.35, 28.54, 27.14. MS (ESI) *m/z* (relative intensity) 515.81 (100) [M+H]⁺. HRMS (ESI) *m/z*

Chemical Formula: C₂₈H₃₅N₅O₉ Exact Mass: 585.2435

According to the general procedure F, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate; R_f =0.23) to yield compound **9c** (57.3 mg, 47% yield). ¹H NMR (600 MHz, DMSO) δ 11.37 (s, 1H), 8.40 (d, *J* = 7.6 Hz, 1H), 8.31 (dd, *J* = 7.4, 4.7 Hz, 1H), 8.12 (d, *J* = 7.5 Hz, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.82 (d, *J* = 15.9 Hz, 1H), 7.31 (d, *J* = 8.2 Hz, 1H), 7.19 (t, *J* = 7.6 Hz, 1H), 7.04 – 6.97 (m, 2H), 6.38 (d, *J* = 15.9 Hz, 1H), 4.65 – 4.56 (m, 1H), 4.51 (dd, *J* = 11.1, 3.0 Hz, 1H), 4.46 – 4.41 (m, 1H), 4.36 – 4.32 (m, 1H), 4.16 – 4.01 (m, 2H), 3.69 (s, 3H), 3.55 –

3.49 (m, 1H), 3.45 (dd, J = 14.4, 4.1 Hz, 1H), 3.08 (dd, J = 14.4, 8.9 Hz, 1H), 1.22 (s, 9H). ¹³C NMR (151 MHz, DMSO) δ 172.22, 171.67, 169.94, 169.76, 166.16, 155.63, 137.96, 133.72, 130.97, 129.03, 127.47, 124.66, 120.86, 119.32, 114.26, 110.73, 78.52, 62.62, 57.35, 52.74, 52.25, 48.82, 43.01, 29.46, 28.43, 18.13. MS (ESI) *m/z* (relative intensity) 586.56 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₂₈H₃₅N₅O₉Na (M + Na)⁺ 608.2327, found 608.2318.

According to the general procedure F, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 4:1; R_f =0.3) to yield compound **9d** (57.7 mg, 43% yield). ¹H NMR (600 MHz, DMSO) δ 11.45 (s, 1H), 8.39 (d, *J* = 5.5 Hz, 1H), 7.99 – 7.95 (m, 1H), 7.79 (d, *J* = 8.1 Hz, 1H), 7.73 (d, *J* = 15.9 Hz, 1H), 7.46 (d, *J* = 5.8 Hz, 1H), 7.44 (d, *J* = 5.1 Hz, 1H), 7.32 (d, *J* = 8.2 Hz, 1H), 7.20 (t, *J* = 7.5 Hz, 1H), 7.02 (t, *J* = 7.4 Hz, 1H), 6.38 (d, *J* = 15.8 Hz, 1H), 4.91 – 4.84 (m, 1H), 4.52 (dd, *J* = 11.2, 4.0 Hz, 1H), 4.33 (td, *J* = 9.4, 2.7 Hz, 1H), 4.07 (dd, *J* = 11.2, 2.4 Hz, 1H), 4.14 (dd, *J* = 8.0, 2.5 Hz, 1H), 4.07 (dd,

J = 6.2, 2.7 Hz, 1H), 3.99 (dd, J = 16.2, 7.6 Hz, 1H), 3.76 - 3.71 (m, 1H), 3.70 (s, 3H), 3.34 (dd, J = 14.9, 2.5 Hz, 1H), 3.18 - 3.10 (m, 1H), 1.29 (s, 9H), 1.07 (s, 9H), 1.05 (d, J = 6.2 Hz, 3H). ¹³C NMR (151 MHz, DMSO) δ 172.41, 170.74, 169.98, 169.42, 166.06, 162.78, 156.17, 137.95, 133.77, 130.51, 129.14, 124.87, 120.92, 120.47, 119.69, 113.80, 111.67, 78.94, 73.96, 67.07, 64.27, 59.43, 57.23, 52.92, 51.72, 43.02, 36.24, 28.60, 28.53, 24.85, 20.94. MS (ESI) *m/z* (relative intensity) 672.70 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₃₃H₄₅N₅O₁₀Na (M + Na)⁺ 694.3059, found 694.3075.

by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 4:1; R_f =0.32) to yield compound **9e** (61.5 mg, 42% yield). ¹H NMR (600 MHz, DMSO) δ 11.40 (s, 1H), 8.35 (d, *J* = 7.6 Hz, 1H), 8.29 – 8.26 (m, 1H), 8.17 (d, *J* = 8.2 Hz, 1H), 8.01 (d, *J* = 15.9 Hz, 1H), 7.86 (d, *J* = 8.0 Hz, 1H), 7.33 (d, *J* = 8.2 Hz, 1H), 7.22 (t, *J* = 7.6 Hz, 1H), 7.06 – 7.02 (m, 2H), 6.75 (d, *J* = 8.3 Hz, 2H), 6.54 (d, *J* = 8.3 Hz, 2H), 6.32 (d, *J* = 15.9 Hz, 1H), 4.85 – 4.79 (m, 1H), 4.50 (dd, *J* = 11.2, 5.4 Hz, 1H), 4.35 (dd, *J* = 11.3, 2.9 Hz, 2H), 4.21 – 4.17 (m, 1H), 4.12 – 4.08 (m, 1H), 4.07 – 4.02 (m, 1H), 3.72 (s,

According to the general procedure F, the crude residue was purified

Chemical Formula: C₃₈H₄₇N₅O₁₀ Exact Mass: 733.3323

3H), 3.52 (dd, J = 16.8, 4.7 Hz, 1H), 3.10 - 3.03 (m, 2H), 2.63 (dd, J = 13.7, 9.7 Hz, 1H), 1.29 (s, 9H), 1.21 (s, 9H). ¹³C NMR (151 MHz, DMSO) δ 176.70, 171.12, 170.86, 169.83, 166.22, 155.47, 138.13, 134.09, 132.73, 132.35, 131.03, 130.01, 128.56, 124.67, 123.62, 120.88, 119.50, 119.23, 78.98, 78.53, 77.89, 63.60, 56.64, 55.27, 52.85, 51.76, 43.41, 36.44, 29.02, 28.55, 26.66. MS (ESI) *m/z* (relative intensity) 734.49 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₃₈H₄₇N₅O₁₀Na (M + Na)⁺ 756.3215, found 756.3220.

Chemical Formula: C₃₃H₄₃N₅O₁₁ Exact Mass: 685.2959 According to the general procedure F, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 4:1; R_J =0.27) to yield compound **9f** (53.5 mg, 39% yield). ¹H NMR (600 MHz, DMSO) δ 11.38 (s, 1H), 8.68 (d, *J* = 8.4 Hz, 1H), 8.35 (dd, *J* = 7.7, 4.6 Hz, 1H), 8.22 (d, *J* = 7.3 Hz, 1H), 7.95 (d, *J* = 3.8 Hz, 1H), 7.88 (d, *J* = 15.9 Hz, 1H), 7.29 (d, *J* = 8.2 Hz, 1H), 7.20 – 7.16 (m, 1H), 7.12 (d, *J* = 9.2 Hz, 1H), 7.00 (t, *J* = 7.5 Hz, 1H), 6.40 (d, *J* = 15.8 Hz, 1H), 4.72 (dd, *J* = 15.1, 6.9 Hz, 1H), 4.57 (dd, *J* = 11.0, 2.9 Hz, 1H), 4.49 (td, *J* = 7.1, 3.2 Hz, 1H), 4.41 (dd, *J* = 11.0, 6.9 Hz, 1H), 4.14 (dd, *J* = 16.8, 8.0 Hz, 1H), 4.08 (td, *J* = 10.0, 3.1 Hz, 1H), 3.67 (s, 3H), 3.55 – 3.46 (m, 2H),

3.08 (dd, J = 14.3, 10.5 Hz, 1H), 2.73 – 2.66 (m, 1H), 2.39 (dd, J = 15.6, 6.7 Hz, 1H), 1.36 (s, 9H), 1.13 (s, 9H). ¹³C NMR (151 MHz, DMSO) δ 171.85, 170.62, 169.98, 169.81, 169.76, 166.06, 162.79, 155.56, 137.97, 133.74, 130.82, 129.71, 129.13, 128.92, 124.70, 121.49, 119.58, 119.52, 114.48, 111.42, 80.51, 78.37, 62.66, 57.62, 52.65, 52.40, 50.06, 43.16, 38.01, 36.25, 28.36, 28.11. MS (ESI) *m/z* (relative intensity) 686.59 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₃₃H₄₃N₅O₁₁Na (M + Na)⁺ 708.2851, found 708.2868.

According to the general procedure F, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate; R_f =0.2) to yield compound **9g** (80.7 mg, 40% yield). ¹H NMR (600 MHz, DMSO) δ 11.43 (s, 1H), 8.20 (s, 1H), 8.15 (d, *J* = 8.9 Hz, 1H), 7.94 (s, 1H), 7.89 (d, *J* = 7.2 Hz, 1H), 7.63 (d, *J* = 15.9 Hz, 1H), 7.53 (d, *J* = 8.0 Hz, 1H), 7.34 (d, *J* = 8.2 Hz, 1H), 7.22 (t, *J* = 7.5 Hz, 1H), 7.04 (t, *J* = 7.6 Hz, 1H), 6.82 (d, *J* = 9.0 Hz, 1H), 6.70 (d, *J* = 15.4 Hz, 1H), 6.40 (d, *J* = 15.9 Hz, 1H), 6.34 (dd, *J* = 17.3, 1.4 Hz, 1H), 4.78 – 4.68 (m, 2H), 4.55 (d, *J* = 8.3 Hz, 1H), 4.47 – 4.42 (m, 1H), 4.32 (dd, *J* = 13.6, 7.5 Hz, 1H), 3.79 (s, 1H), 3.69 (s, 3H), 3.65 (d, *J* = 6.0 Hz, 1H), 3.63 (s, 1H), 3.29 – 3.19 (m, 2H), 2.96 (s, 5H), 2.84

(dd, J = 15.3, 5.7 Hz, 1H), 2.46 (s, 3H), 2.41 (s, 3H), 1.41 (s, 8H), 1.39 (s, 8H), 1.38 (s, 7H). ¹³C NMR (151 MHz, DMSO) δ 172.53, 171.08, 169.79, 169.73, 169.02, 166.15, 157.93, 156.49, 155.24, 138.10, 137.24, 133.10, 131.89, 131.58, 129.21, 124.78, 120.88, 120.53, 119.16, 116.75, 114.61, 86.77, 80.61, 79.00, 62.70, 60.22, 56.24, 52.89, 49.88, 42.94, 37.77, 28.76, 28.61, 28.06, 27.12, 21.22, 19.39, 18.04, 14.55, 12.73. MS (ESI) *m/z* (relative intensity) 1094.81 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₅₂H₇₁N₉O₁₅Na (M + Na)⁺ 1116.4683, found 1116.4691.

hemical Formula: C₃₃H₄₄N₆O₁₀ Exact Mass: 684.3119

According to the general procedure F, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate; R_f =0.45) to yield compound **9h** (41.2 mg, 30% yield). ¹H NMR (600 MHz, DMSO) δ 11.40 (s, 1H), 8.34 – 8.25 (m, 1H), 8.06 (dd, J = 17.4, 8.4 Hz, 2H), 7.96 – 7.93 (m, 1H), 7.85 (d, J = 7.9 Hz, 1H), 7.71 (d, J = 15.8 Hz, 1H), 7.30 (d, J = 8.2 Hz, 1H), 7.19 (t, J = 7.5 Hz, 1H), 7.01 (t, J = 7.5 Hz, 1H), 6.86 (d, J = 7.6 Hz, 1H), 6.37 (d, J = 15.8 Hz, 1H), 4.78 – 4.71 (m, 1H), 4.58 (dd, J = 11.2, 7.1 Hz, 1H), 4.54 – 4.47 (m, 1H), 4.44 – 4.39

(m, 1H), 4.29 (dd, J = 8.1, 5.6 Hz, 1H), 4.08 – 3.99 (m, 1H), 3.97 – 3.91 (m, 1H), 3.71 (s, 3H), 3.57 (dd, J = 16.7, 4.5 Hz, 1H), 3.10 (dd, J = 14.5, 6.9 Hz, 1H), 2.07 (dq, J = 13.6, 6.8 Hz, 1H), 1.36 (s, 9H), 1.06 (d, J = 7.2 Hz, 3H), 0.79 (d, J = 6.8 Hz, 3H), 0.74 (d, J = 6.8 Hz, 3H). ¹³C NMR (151 MHz, DMSO) δ 172.87, 171.66, 171.03, 169.82, 169.77, 166.34, 155.20, 137.99, 133.81, 131.16, 129.70, 128.93, 124.83, 121.03, 119.71, 114.23, 111.55, 78.58, 62.29, 58.10, 55.37, 52.86, 52.08, 50.29, 42.92, 30.81, 28.62, 26.89, 19.73, 18.63, 17.99. MS (ESI) *m/z* (relative intensity) 685.51 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₃₃H₄₄N₆O₁₀Na (M + Na)⁺ 707.3011, found 707.3013.

According to the general procedure F, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 1:1; R_f =0.43) to yield compound **9i** (44.4 mg, 34% yield). ¹H NMR (600 MHz, DMSO) δ 11.38 (s, 1H), 8.26 (dd, *J* = 7.1, 5.4 Hz, 1H), 8.15 (d, *J* = 7.6 Hz, 1H), 8.05 (d, *J* = 8.0 Hz, 1H), 8.02 (d, *J* = 8.3 Hz, 1H), 7.84 (d, *J* = 8.0 Hz, 1H), 7.73 (d, *J* = 15.8 Hz, 1H), 7.30 (d, *J* = 8.2 Hz, 1H), 7.18 (t, *J* = 7.6 Hz, 1H), 6.99 (t, *J* = 7.5 Hz, 1H), 6.87 (d, *J* = 8.7 Hz, 1H), 6.37 (d, *J* = 15.8 Hz, 1H), 4.77 - 4.70

(m, 1H), 4.60 – 4.50 (m, 2H), 4.44 (dd, J = 11.3, 3.3 Hz, 1H), 4.41 – 4.33 (m, 1H), 4.06 – 3.99 (m, 1H), 3.91 (td, J = 9.9, 4.7 Hz, 1H), 3.70 (s, 3H), 3.59 (dd, J = 16.8, 4.9 Hz, 1H), 3.49 – 3.43 (m, 2H), 3.09 (dd, J = 14.4, 7.3 Hz, 1H), 1.47 – 1.40 (m, 1H), 1.38 (s, 9H), 1.32 – 1.23 (m, 2H), 1.04 (s, 9H), 0.76 (dd, J = 28.9, 6.6 Hz, 6H). ¹³C NMR (151 MHz, DMSO) δ 192.43, 172.63, 171.33, 169.82, 169.79, 169.72, 166.31, 155.49, 137.95, 133.83, 131.15, 128.93, 128.22, 124.78, 121.12, 119.75, 118.89, 114.19, 111.48, 78.56, 73.22, 62.51, 61.87, 55.08, 53.98, 53.63, 52.81, 52.12, 43.00, 41.40, 40.50, 28.62, 27.62, 27.58, 26.49, 24.65, 23.39, 21.83. MS (ESI) *m/z* (relative intensity) 770.90 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₃₈H₅₄N₆O₁₁Na (M + Na)⁺ 793.3743, found 793.3744.

Chemical Formula: C₂₈H₃₅N₅O₉ Exact Mass: 585.2435 According to the general procedure F, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate; R_f =0.33) to yield compound **9j** (42.1 mg, 36% yield). ¹H NMR (600 MHz, DMSO) δ 11.34 (s, 1H), 8.25 (d, *J* = 5.7 Hz, 1H), 7.95 (d, *J* = 4.7 Hz, 1H), 7.68 (d, *J* = 8.8 Hz, 1H), 7.62 – 7.56 (m, 2H), 7.34 (d, *J* = 8.2 Hz, 1H), 7.22 (t, *J* = 7.6 Hz, 1H), 7.05 (t, *J* = 7.5 Hz, 1H), 6.90 (d, *J* = 8.0 Hz, 1H), 6.36 (d, *J* = 15.8 Hz, 1H), 4.62 (dd, *J* = 13.7, 5.5 Hz, 1H), 4.47

-4.33 (m, 2H), 4.28 (dd, J = 13.1, 6.4 Hz, 1H), 4.19 (dd, J = 10.7, 6.5 Hz, 1H), 3.74 (s, 3H), 3.62 (dd, J = 17.1, 6.9 Hz, 1H), 3.38 (s, 1H), 3.33 -3.16 (m, 2H), 1.40 (s, 9H), 1.22 (d, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, DMSO) δ 172.50, 171.97, 169.41, 169.13, 166.21, 138.08, 133.24, 132.35, 127.75, 124.79, 119.87, 119.48, 117.17, 115.03, 111.92, 78.98, 64.45, 61.52, 52.70, 52.55, 49.37, 42.40, 28.63, 26.32,

18.27. MS (ESI) m/z (relative intensity) 586.72 (100) [M+H]⁺. HRMS (ESI) m/z calcd for C₂₈H₃₅N₅O₉Na (M + Na)⁺ 608.2327, found 608.2335.

According to the general procedure F, the crude residue was purified by flash column chromatography on silica gel (DCM: MeOH: AcOHr= 15:1:0.5; R_f =0.13) to yield compound **9k** (92 mg, 33% yield). ¹H NMR (600 MHz, MeOD) δ 7.75 (d, *J* = 7.7 Hz, 1H), 7.71 (d, *J* = 15.9 Hz, 1H), 7.31 (d, *J* = 8.2 Hz, 1H), 7.23 – 7.18 (m, 1H), 7.06 (t, *J* = 7.3 Hz, 1H), 6.25 (d, *J* = 15.8 Hz, 1H), 4.70 – 4.58 (m, 2H), 4.26 (dd, *J* = 10.6, 4.3 Hz, 1H), 4.10 (dd, *J* = 32.7, 12.0 Hz, 2H), 3.65 (d, *J* = 12.9 Hz, 1H), 3.35 (s,

1H), 3.31 - 3.24 (m, 1H), 2.07 (dd, J = 13.3, 6.6 Hz, 1H), 1.49 (s, 8H), 1.45 (d, J = 2.5 Hz, 1H), 1.01 (dd, J = 26.2, 6.7 Hz, 6H). ¹³C NMR (151 MHz, MeOD) δ 166.86, 138.35, 133.43, 131.37, 127.82, 124.34, 119.26, 119.08, 117.99, 113.12, 110.91, 79.56, 64.51, 60.26, 52.66, 41.72, 29.95, 27.29, 25.80, 18.20, 17.66. MS (ESI) *m/z* (relative intensity) 598.72 (100) [M-H]⁺. HRMS (ESI) *m/z* calcd for C₂₉H₃₇N₅O₉Na (M + Na)⁺ 622.2483, found 622.2478.

According to the general procedure G(A) to yield compound **10a** (68 mg, 85% yield). ¹H NMR (600 MHz, DMSO) δ 11.39 (s, 1H), 8.48 (d, *J* = 7.1 Hz, 1H), 8.39 (s, 3H), 8.28 (d, *J* = 8.5 Hz, 1H), 7.98 (d, *J* = 8.3 Hz, 1H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.62 (d, *J* = 6.0 Hz, 1H), 7.49 (t, *J* = 4.5 Hz, 1H), 7.41 (d, *J* = 15.7 Hz, 1H), 7.28 (d, *J* = 8.2 Hz, 1H), 7.17 (t, *J* = 7.6 Hz, 1H), 7.02 (d, *J* = 7.6 Hz, 1H), 6.35 (d, *J* = 15.7 Hz, 1H), 4.68 (ddd, *J* = 10.2, 8.6, 3.7 Hz, 1H), 4.45 (dd, *J* = 14.2, 7.1 Hz, 1H), 4.38 (dd, *J* = 14.4, 7.5 Hz, 1H), 4.31 (t, *J* = 10.8 Hz, 1H), 4.25 (dd, *J* = 11.0, 3.3 Hz, 1H), 3.69 (d, *J* = 4.6 Hz, 1H), 3.62 (s, 3H), 3.57 (s, 1H), 3.20 (d, *J* =

7.5 Hz, 1H), 3.03 (dd, J = 7.2, 2.5 Hz, 1H), 2.99 – 2.95 (m, 2H), 2.75 (dd, J = 16.7, 7.0 Hz, 1H), 2.47 (t, J = 8.4 Hz, 1H), 1.51 – 1.47 (m, 1H), 1.41 – 1.37 (m, 1H), 1.33 – 1.26 (m, 2H). ¹³C NMR (151 MHz, DMSO) δ 172.07, 170.79, 170.60, 169.87, 168.84, 168.08, 166.40, 157.24, 138.19, 132.28, 128.02, 120.18, 119.83, 114.93, 114.13, 112.03, 63.21, 52.81, 51.74, 51.46, 50.16, 46.14, 42.33, 40.72, 35.00, 29.37, 26.79, 25.06, 9.02. MS (ESI) *m/z* (relative intensity) 686.64 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₃₀H₃₉N₉O₁₀Na (M + Na)⁺ 708.2712, found 708.2717.

Chemical Formula: $C_{24}H_{30}N_5O_7^+$ Exact Mass: 500.2140

According to the general procedure G(B) to yield compound **10b** (51 mg, 95% yield). ¹H NMR (600 MHz, DMSO) δ 11.48 (s, 1H), 9.41 (d, *J* = 4.5 Hz, 1H), 8.68 (s, 3H), 7.78 (d, *J* = 15.9 Hz, 1H), 7.61 (d, *J* = 7.9 Hz, 1H), 7.36 (d, *J* = 8.1 Hz, 1H), 7.24 (t, *J* = 7.5 Hz, 1H), 7.07 (dd, *J* = 13.1, 6.3 Hz, 2H), 6.56 (d, *J* = 6.7 Hz, 1H), 6.36 (d, *J* = 15.9 Hz, 1H), 4.85 (d, *J* = 10.1 Hz, 1H), 4.63 (d, *J* = 10.1 Hz, 1H), 4.54 - 4.49 (m, 1H), 4.47 (s, 1H), 4.15 (d, *J* = 3.0 Hz, 1H), 3.92 - 3.87 (m, 1H), 3.78 (dd, *J* = 11.3, 5.8 Hz, 1H), 3.74 - 3.69 (m, 2H), 3.44 - 3.41 (m, 2H), 3.13 (dd, *J* = 14.1, 11.3 Hz,

1H), 1.39 - 1.35 (m, 1H), 1.22 - 1.14 (m, 2H), 0.75 (d, J = 6.5 Hz, 3H), 0.67 (d, J = 6.5 Hz, 3H). ¹³C NMR (151 MHz, DMSO) δ 172.66, 171.12, 169.57, 168.24, 165.58, 138.40, 135.78, 131.76, 127.74, 119.95, 119.60, 118.61, 113.33, 112.02, 66.83, 65.38, 61.17, 58.50, 52.56, 51.94, 24.57, 23.22, 21.60,

15.64. MS (ESI) *m/z* (relative intensity) 500.44 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₂₄H₂₉N₅O₇Na (M + Na)⁺ 522.1959, found 522.1960.

According to the general procedure H to yield compound **10c** (51 mg, 40% yield). ¹H NMR (600 MHz, MeOD) δ 7.83 (d, *J* = 15.9 Hz, 1H), 7.73 (d, *J* = 7.7 Hz, 1H), 7.33 (d, *J* = 8.2 Hz, 1H), 7.24 (t, *J* = 7.6 Hz, 1H), 7.09 (t, *J* = 7.4 Hz, 1H), 6.28 (d, *J* = 15.9 Hz, 1H), 4.74 (s, 2H), 4.62 (d, *J* = 9.8 Hz, 1H), 4.55 (d, *J* = 10.8 Hz, 1H), 4.42 (s, 1H), 4.20 - 4.15 (m, 1H), 4.04 (d, *J* = 10.1 Hz, 1H), 3.89 (d, *J* = 10.7 Hz, 1H), 3.66 - 3.58 (m, 1H), 3.27 - 3.18 (m, 1H), 1.33 - 1.29 (m, 1H), 0.82 (dd, *J* = 39.4, 6.6 Hz, 6H). ¹³C NMR (151

MHz, MeOD) δ 166.50, 156.18, 138.54, 134.75, 131.08, 127.77, 124.72, 119.90, 119.45, 119.05, 118.90, 112.50, 110.99, 79.69, 65.39, 60.68, 57.41, 53.13, 52.36, 39.51, 27.29, 24.52, 22.00, 20.09. MS (ESI) *m/z* (relative intensity) 530.81 (100) [M+H]⁺. HRMS (ESI) *m/z* calcd for C₂₅H₃₂N₅O₈⁺Na (M + Na)⁺ 552.2065, found 552.2066.

Chemical Formula: C₂₂H₂₈N₂O₆ Exact Mass: 416.1947 According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 1:4; $R_f = 0.4$) to yield compound **3a** (63.5mg, 76% yield).¹H NMR (500 MHz, CDCl₃) δ 9.16 (s, 1H), 7.64 (d, J = 15.9 Hz, 1H), 7.55 (d, J = 7.9 Hz, 1H), 7.19 (dt, J = 14.8, 8.0 Hz, 2H), 7.07 (ddd, J = 8.0, 6.7, 1.2 Hz, 1H), 6.27 (d, J = 15.9 Hz, 1H), 5.20 (d, J = 8.4 Hz, 1H), 4.79 – 4.68 (m, 1H), 4.33 – 4.16 (m, 2H), 3.72 (s, 3H), 3.42 (qd, J = 14.6, 5.3 Hz, 2H), 1.45 (s, 9H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ

172.27, 167.09, 155.11, 137.45, 131.59, 131.25, 128.69, 125.01, 120.18, 119.80, 116.04, 115.19, 111.18, 80.03, 60.57, 54.46, 52.51, 29.67, 28.31, 27.23, 14.32. HRMS (ESI) *m/z* calcd for C₂₂H₂₈N₂O₆Na (M + Na)⁺ 439.1840, found 439.1841.

Chemical Formula: C₁₃H₁₃NO₂ Exact Mass: 215.0946

According to the general procedure D, the crude residue was purified by flash column chromatography on silica gel (ethyl acetate: petroleum ether= 1:8; $R_f = 0.45$) to yield compound **3a** (23.7mg, 55% yield).¹H NMR (500 MHz, CDCl₃) δ 8.42 (s, 1H), 7.85 (d, J = 16.0 Hz, 1H), 7.60 (dq, J = 7.9, 0.8 Hz, 1H), 7.33 (dt, J = 8.2, 1.0 Hz, 1H), 7.28 (ddd, J = 8.1, 6.9, 1.1 Hz, 1H), 7.13 (ddd, J = 8.0, 6.9, 1.1 Hz, 1H), 6.19 (d, J = 16.0 Hz, 1H), 4.32 (q, J = 7.1

Hz, 2H), 2.44 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.38, 137.45, 132.31, 129.99, 129.08, 125.03, 119.89, 118.71, 113.83, 110.97, 60.56, 29.70, 14.38, 8.91. HRMS (ESI) m/z calcd for C₁₃H₁₃NO₂Na (M + Na)⁺ 238.0838, found 238.0840.

L. ¹H NMR and ¹³C NMR of products

¹C NMR (126 MHz, DMSO) spectrum of **3b**

¹C NMR (151 MHz, DMSO) spectrum of 3c

¹C NMR (151 MHz, CDCl₃) spectrum of **3d**

¹C NMR (151 MHz, CDCl₃) spectrum of **3e**

¹C NMR (151 MHz, CDCl₃) spectrum of **3f**

¹C NMR (151MHz, CDCl₃) spectrum of **3g**

¹C NMR (151 MHz, CDCl₃) spectrum of **3h**

¹C NMR (151 MHz, DMSO) spectrum of **3i**

¹C NMR (101 MHz, DMSO) spectrum of 5a

¹C NMR (151 MHz, CDCl₃) spectrum of **5b**

¹C NMR (151 MHz, CDCl₃) spectrum of **5c**

 1C NMR (151 MHz, CDCl₃) spectrum of $\mathbf{5d}$

¹C NMR (151 MHz, CDCl₃) spectrum of **5e**

¹C NMR (151 MHz, CDCl₃) spectrum of 5f

¹C NMR (151 MHz, CDCl₃) spectrum of 5g

 1C NMR (151 MHz, CDCl₃) spectrum of $\mathbf{5h}$

¹C NMR (151 MHz, CDCl₃) spectrum of 5i

50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -{ f1 (ppm)

¹C NMR (126 MHz, CDCl₃) spectrum of 5j

¹C NMR (151 MHz, CDCl₃) spectrum of 5k

¹C NMR (151 MHz, DMSO) spectrum of 51

¹C NMR (151 MHz, CDCl₃) spectrum of **5m**

 ^{1}C NMR (151 MHz, CDCl₃) spectrum of **5n**

¹C NMR (151 MHz, CDCl₃) spectrum of 50

 1C NMR (151 MHz, CDCl₃) spectrum of $\mathbf{5p}$

¹C NMR (151 MHz, CDCl₃) spectrum of 5q

¹C NMR (151 MHz, CDCl₃) spectrum of **5r**

¹C NMR (151 MHz, DMSO) spectrum of 5s

¹C NMR (151 MHz, CDCl₃) spectrum of 7a

¹C NMR (151 MHz, CDCl₃) spectrum of 7b

¹C NMR (151 MHz, DMSO) spectrum of 7c

¹C NMR (151 MHz, DMSO) spectrum of 7d

¹C NMR (151 MHz, DMSO) spectrum of 7e

¹C NMR (151 MHz, DMSO) spectrum of 7f

¹C NMR (151 MHz, DMSO) spectrum of 7g

¹C NMR (151 MHz, DMSO) spectrum of 7h

¹C NMR (151 MHz, DMSO) spectrum of **9b**

¹C NMR (151 MHz, DMSO) spectrum of 9c

¹C NMR (151 MHz, DMSO) spectrum of 9d

¹C NMR (151 MHz, DMSO) spectrum of 9e

¹C NMR (151 MHz, DMSO) spectrum of 9f

¹H NMR (600 MHz, DMSO) spectrum of **9g**

 $^1\mathrm{C}$ NMR (600 MHz, DMSO) spectrum of $\mathbf{9g}$

¹C NMR (151 MHz, DMSO) spectrum of **9h**

¹C NMR (151 MHz, DMSO) spectrum of 9i

¹C NMR (151 MHz, DMSO) spectrum of 9j

¹C NMR (151 MHz, DMSO) spectrum of 9k

¹C NMR (151 MHz, DMSO) spectrum of 10a

¹C NMR (151 MHz, DMSO) spectrum of 10b

¹C NMR (151 MHz, CD₃OD) spectrum of **10c**

50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -{ f1 (ppm)

¹C NMR (126 MHz, CDCl₃) spectrum of *rac*-3a

¹C NMR (126 MHz, CDCl₃) spectrum of *olifination derivative of 3- methyl indole*