Supplementary Information

Circular Dichroism Spectroscopy of Catalyst Preequilibrium in Asymmetric Autocatalysis of Pyrimidyl Alkanol

Arimasa Matsumoto,*^a Ayame Tanaka,^a Yoshiyasu Kaimori,^b Natsuki Hara,^b Yuji Mikata^a and Kenso Soai^b

^{a.} Department of Chemistry, Biology, and Environmental Science, Nara Women's University, Kita-Uoya Nishi-machi, Nara, 630-8506 Japan.

^{b.} Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601 Japan.

Contents

Materials
CD spectrum measurement
Fig. S1. CD spectra of (<i>R</i>)-2•Zn in various temperature ($[2•Zn] = 8.4 \text{ mM}, [_{1}Pr_{2}Zn] = 60$
mM, cell length = 0.1 mm)
Fig. S2. CD spectra of (<i>R</i>)-2•Zn different equivalent $_{Pr_2Zn}$
TD-DFT calculations
Fig S3. calculated CD spectrum for square with various basis set
Fig. S4. calculated CD spectrum for square dimer with various functionals5
Fig. S5. calculated CD for various conformation of (<i>R</i>)-2•Zn6
Coordinates for TD-DFT calculations7
(R)-square dimer (from Gridnev's paper)7
(R)-Macrocyclic dimer (from Gridnev's paper)
(R)-Tetramer (crystal structure)9
(S)-Tetramer (brandy grass, from Gridnev's paper)11
Square dimer with iPr ₂ Zn (from Gridnev's paper)13
Square dimer with THF (optimized from crystal structure)14
X-ray crystallography15
Racemic dimer crystal with THF coordination16
Table S1: Crystal data for racemic dimer with THF coordination16
Enantiopure dimer crystal with pyridine coordination17
Table S2 . Crystal data for enantiopure dimer crystal with pyridine17
Reference

Materials

Methylcyclohexane (FUJIFILM Wako Pure Chemical) was dried over freshly activated MS 3A,. THF (FUJIFILM Wako Pure Chemical, super dehydrated grade) was used as purchased. Diisopropylzinc was prepared from the reaction of $ZnCl_2$ with isopropyl magnesium bromide in diethyl ether and purified by vacuum distillation. The solution of diisopropylzinc was prepared by diluting the distilled diisopropylzinc with dry solvents and the concentration was titillated by using iodine with LiCl method¹. high enantiomeric excess (>99.5% ee) alkanol **2** was obtained by asymmetric autocatalytic reaction of aldehyde **1** with diisopropylzinc.²

CD spectrum measurement

The CD spectrum were measured on JASCO-720 spectropolarimeter equipped with a 450 W xenon lamp with 0.1 mm Cylindrical Quartz Cuvette with water jacket. The temperature was controlled by circulation of coolant to cell. All spectra were recorded under following conditions: Band width: 2.0 nm; speed: 200 nm/min; number of scene: 16. The temperature was lowered from 20°C to -20°C, and finally returned to 20°C again to confirm that it returned to the initial spectrum (Fig. S1).

Fig. S1. CD spectra of (*R*)-2•Zn in various temperature ($[2•Zn] = 8.4 \text{ m M}, [iPr_2Zn] = 60 \text{ mM}$, cell length = 0.1 mm).

Fig. S2. CD spectra of (R)-2•Zn different equivalent *i*Pr₂Zn.

TD-DFT calculations

The DFT calculations were performed with Gaussian 09 rev. C^3 or Gaussian 16 rev. B^4 with G09Defaults option. The initial coordinates for calculations for the square dimer, macrocycle dimer, tetramer (brandy grass) and square dimer with *i*Pr₂Zn were obtained from reported optimize structure by Gridnev.⁵ The initial coordinates for tetramer (crystal) was optimized from crystal structure⁶ with B3LYP/6-31G(d) level, and dimer with THF was also optimized with B3LYP/6-31G(d) level from crystal structure of dimer with pyridine by replacing pyridine to THF. TD-DFT caluculation was performed with NState=40 for dimer structure and NState=80 for tetramer structure. solvent effect was accounted by PCM model. Simulation of CD spectra were calculated by Gauss View 6 with Harf-Width = 0.1 eV (for spectra in methyl cyclohexane) or Harf-Width = 0.2 eV (for spectra in THF). Some calculations were performed on *S* conformation. To compare the observed spectrum of *R* isomer, calculated CD was inverted.

To evaluate the basis set effect, TD-DFT calculation with various basis level was performed on square dimer optimized by B3LYP/6-31G(d) level (Fig. S3). As frequently pointed out, including the diffuse function seems indispensable to calculate excited state. Omitting diffuse function on heavy atoms significantly affect excitation energy and shape of calculated spectrum. On the other hand, diffuse function and polar function on hydrogen atom 6-31++G(d), 6-31+G(d,p) or using triple-zeta basis set 6-311+G(d) have little effect on appearance of calculated CD spectrum at least in this zinc alkoxide system. Thus, for the balance of calculation cost we use 6-31+G(d) base function for the CD spectrum calculation. The functional with long-range-correction such as CAM-B3LYP, w97XD afforded more reasonable peak position for this alkoxide system. Thus, we used CAM-B3LYP functional for further calculation of alkoxides (Fig. S4).

Fig S3. calculated CD spectrum for (R)-square dimer with various basis set.

Fig. S4. calculated CD spectrum for (R)-square dimer with various functionals.

Fig. S5. calculated CD for various conformation of (R)-2•Zn.

Coordinates for TD-DFT calculations (*R*)-square dimer (from Gridnev's paper)

No	Symbol	Х	Y	Z	32	С	3.5307	0.5457	-4.0917	64	Н	2.0235	5.2533	0.7342
1	Zn	2.5115	0.1685	1.4799	33	С	1.0309	0.1593	-3.9652	65	Н	2.5745	1.2983	3.7177
2	С	2.4125	0.2485	3.4309	34	С	3.2627	3.4374	0.7052	66	Н	3.4865	-0.5042	5.188
3	С	1.032	-0.1669	3.9654	35	С	3.062	4.9537	0.5637	67	Н	3.4436	-1.6486	3.846
4	0	2.5967	-1.2636	0.142	36	С	4.7511	3.0805	0.5852	68	Н	4.5289	-0.2545	3.7805
5	Zn	2.5086	-0.1909	-1.4807	37	С	3.5276	-0.5806	4.0896	69	Н	0.2224	0.4632	3.5762
6	0	2.6134	1.2401	-0.1428	38	С	-6.279	-4.716	1.3662	70	Н	0.9944	-0.0972	5.0641
7	С	2.4229	2.6367	-0.3243	39	С	-5.9416	-5.685	-0.9466	71	Н	0.7851	-1.2055	3.707
8	С	0.943	2.9718	-0.2708	40	Н	0.4725	-1.7949	-1.4862	72	Н	-7.3479	-4.9572	1.3241
9	С	0.3089	3.7895	-1.2099	41	Н	0.8247	-4.2216	2.0403	73	Н	-6.1476	-3.8436	2.0146
10	Ν	-0.989	4.0954	-1.1646	42	Н	2.7583	-2.9343	1.3261	74	Н	-5.7514	-5.5605	1.8213
11	С	-1.6912	3.5674	-0.1431	43	Н	2.8709	-3.1628	-1.7032	75	Н	-5.4087	-6.547	-0.5321
12	Ν	-1.1961	2.7531	0.8134	44	Н	5.293	-3.6572	-1.3511	76	Н	-5.5697	-5.5087	-1.9611
13	С	0.1017	2.4706	0.7282	45	Н	4.896	-2.055	-0.7044	77	Н	-7.0076	-5.9346	-1.0076
14	С	-3.0847	3.8904	-0.0696	46	Н	5.1039	-3.4272	0.3945	78	Н	-6.1389	-3.0123	-1.681
15	С	-4.2643	4.1624	-0.0093	47	Н	1.9636	-5.2716	-0.7294	79	Н	-6.3798	-2.3343	-0.061
16	С	-5.6984	4.4846	0.0611	48	Н	3.2939	-5.3287	0.44	80	Н	-7.5763	-3.4613	-0.7364
17	С	2.391	-2.6579	0.3242	49	Н	3.6234	-5.5248	-1.2853	81	Н	0.8724	4.2153	-2.0411
18	С	3.2216	-3.4685	-0.705	50	Н	2.5576	-1.3225	-3.7178	82	Н	0.4963	1.7962	1.4883
19	С	3.0055	-4.9825	-0.5613	51	Н	0.9918	0.0894	-5.0639	83	С	-6.1463	4.502	1.5415
20	С	0.9074	-2.9771	0.2712	52	Н	0.7955	1.2005	-3.7071	84	С	-6.4932	3.4041	-0.7117
21	С	0.071	-2.4659	-0.7268	53	Н	0.2147	-0.4618	-3.5752	85	С	-5.9446	5.8709	-0.5793
22	Ν	-1.2297	-2.7349	-0.8117	54	Н	4.5287	0.2091	-3.7833	86	Н	-7.5653	3.6303	-0.6679
23	С	-1.7328	-3.545	0.1441	55	Н	3.4878	0.4691	-5.19	87	Н	-6.331	2.4123	-0.2774
24	Ν	-1.0357	-4.0813	1.1648	56	Н	3.4584	1.6147	-3.8487	88	Н	-6.1899	3.3705	-1.763
25	С	0.2652	-3.789	1.2098	57	Н	2.793	2.9096	-1.3261	89	Н	-7.0122	6.1174	-0.5374
26	С	-3.1296	-3.854	0.071	58	Н	2.9098	3.134	1.7033	90	Н	-5.6284	5.88	-1.6273
27	С	-4.3117	-4.1151	0.0128	59	Н	5.3366	3.6035	1.3497	91	Н	-5.3898	6.652	-0.0492
28	С	-5.7468	-4.4325	-0.0583	60	Н	4.9223	2.0066	0.7006	92	Н	-7.2158	4.7356	1.6053
29	С	-6.5056	-3.2331	-0.6734	61	Н	5.1434	3.3785	-0.3961	93	Н	-5.5943	5.258	2.1095
30	С	4.7137	-3.1268	-0.587	62	Н	3.6869	5.4888	1.2871	94	Н	-5.9756	3.5294	2.0141
31	С	2.4072	-0.2709	-3.4315	63	Н	3.3519	5.2982	-0.4378					

(*R*)-Macrocyclic dimer (from Gridnev's paper)

Row	Symbol	х	Y	Z	32	Zn	-2.747451	-1.335501	-0.17054	64	Н	5.818849	0.347398	-3.73214
1	Ν	-2.586951	0.776099	-0.37474	33	С	-3.683852	-2.4796	-1.47774	65	С	6.946848	-2.141202	-3.21074
2	С	-3.534651	1.7203	-0.57854	34	Н	-2.986252	-3.308701	-1.68004	66	Н	7.894149	-1.985403	-3.73934
3	Ν	-3.268051	3.017299	-0.80164	35	С	-3.927451	-1.761	-2.81294	67	Н	6.999448	-3.098602	-2.68244
4	С	-1.98535	3.391699	-0.76894	36	Н	-4.596451	-0.8984	-2.69484	68	Н	6.143748	-2.201602	-3.95224
5	Н	-1.80075	4.446999	-0.96574	37	Н	-4.394952	-2.427	-3.55874	69	С	7.854949	-0.919203	-1.18814
6	С	-0.928151	2.514699	-0.50244	38	Н	-2.995751	-1.385801	-3.25684	70	Н	7.706849	-0.101503	-0.47564
7	С	-1.307651	1.186599	-0.34054	39	С	-4.981252	-3.1059	-0.94734	71	Н	7.923949	-1.856703	-0.62694
8	Н	-0.561851	0.424799	-0.17194	40	Н	-5.453652	-3.7663	-1.69504	72	Н	8.806549	-0.756803	-1.70704
9	С	0.543749	2.931899	-0.39534	41	Н	-5.727152	-2.3416	-0.68894	73	С	-0.685352	-3.148401	2.78096
10	0	1.328049	1.796999	-0.26584	42	Н	-4.813452	-3.7076	-0.04454	74	Н	-1.752352	-3.299401	2.99936
11	Zn	2.952549	1.327998	0.49926	43	С	4.381649	-1.415902	-0.95014	75	С	-0.152151	-2.108601	3.77306
12	С	4.517449	1.836298	1.58786	44	С	5.432149	-1.203502	-1.51994	76	Н	-0.655851	-1.147501	3.63396
13	Н	4.132149	2.568298	2.31546	45	С	-4.910251	1.331	-0.54354	77	Н	-0.321452	-2.438701	4.80486
14	С	5.069649	0.649898	2.39196	46	С	-6.098751	1.0883	-0.49914	78	Н	0.928349	-1.953701	3.65456
15	Н	5.910749	0.950398	3.03976	47	С	-7.546251	0.8244	-0.44384	79	С	0.026448	-4.498301	2.94306
16	Н	5.443249	-0.147802	1.73616	48	С	-8.293151	2.1716	-0.29414	80	Н	1.106948	-4.408701	2.77336
17	Н	4.308249	0.199998	3.04256	49	Н	-8.083651	2.8331	-1.14084	81	Н	-0.112152	-4.888301	3.95816
18	С	5.640449	2.529598	0.80296	50	Н	-9.373451	1.991101	-0.25554	82	Н	-0.363052	-5.248801	2.24356
19	Н	5.29075	3.428698	0.27896	51	Н	-7.996151	2.6861	0.62546	83	Н	-1.076352	-3.477801	0.70266
20	Н	6.469749	2.839298	1.46156	52	С	-7.857951	-0.0843	0.76896	84	С	0.70855	3.998899	0.73756
21	Н	6.075149	1.864198	0.04446	53	Н	-8.936151	-0.274799	0.81746	85	Н	-0.08645	4.743099	0.58276
22	Ν	2.475749	-0.770302	0.33986	54	Н	-7.342251	-1.0464	0.68486	86	С	0.52585	3.398499	2.13706
23	С	3.137149	-1.745802	-0.32664	55	Н	-7.549851	0.3909	1.70596	87	Н	0.56955	4.181599	2.90236
24	Ν	2.689848	-3.002502	-0.46744	56	С	-7.987551	0.1254	-1.75254	88	Н	-0.436051	2.882999	2.23836
25	С	1.501248	-3.288001	0.07626	57	Н	-7.776551	0.7538	-2.62384	89	Н	1.318449	2.676099	2.35846
26	Н	1.146148	-4.307101	-0.07144	58	Н	-7.470751	-0.8305	-1.88414	90	С	2.04685	4.740399	0.61646
27	Н	0.752149	-0.291301	1.37316	59	Н	-9.066051	-0.066799	-1.71874	91	Н	2.16035	5.195698	-0.37494
28	С	1.288849	-1.089201	0.87496	60	С	6.705049	-0.974402	-2.22324	92	Н	2.11765	5.539099	1.36416
29	С	0.722648	-2.359201	0.77226	61	С	6.632149	0.362098	-2.99924	93	Н	2.89245	4.063998	0.77646
30	С	-0.681952	-2.637901	1.30736	62	Н	6.468949	1.205098	-2.32004	94	н	0.77655	3.465299	-1.33994
31	0	-1.459751	-1.485601	1.17946	63	Н	7.574449	0.528298	-3.53374					

(*R*)-Tetramer (crystal structure)

Row	Symbol	Х	Y	Z	49	С	4.2729	4.0791	2.0263	98	Н	-0.2872	3.0106	2.8645
1	С	4.806	-3.4888	0.652	50	С	4.3149	1.8158	1.7649	99	Н	-6.0988	-2.0467	0.0172
2	С	5.3165	-3.2612	2.084	51	С	3.8408	1.9219	0.4512	100	Н	-4.8919	-4.7115	-0.9142
3	С	4.6839	-4.991	0.3562	52	С	3.5923	3.231	0.0255	101	Н	-5.3644	-4.2999	0.736
4	С	0.5662	1.002	2.6882	53	С	4.7087	6.1902	3.5597	102	Н	-6.5895	-4.4323	-0.5384
5	С	1.2041	1.0529	4.0885	54	С	4.9416	7.3699	4.4083	103	Н	-5.8281	-1.226	-2.3201
6	С	0.323	2.4221	2.1591	55	С	3.5936	8.0905	4.6513	104	Н	-5.1878	-2.7894	-2.8212
7	С	-5.3981	-2.5864	-0.639	56	С	5.9203	8.3278	3.6875	105	Н	-6.8607	-2.6634	-2.2826
8	С	-5.5663	-4.0795	-0.3197	57	С	5.5463	6.9224	5.7594	106	Н	0.5329	0.3808	-2.75
9	С	-5.8386	-2.2983	-2.084	58	С	-3.3975	4.7772	-2.0114	107	Н	0.578	2.3437	-1.2079
10	С	-0.366	1.0139	-2.6872	59	С	-2.9312	3.7862	-0.0147	108	Н	0.8034	2.8538	-2.8891
11	С	0.0873	2.3929	-2.1883	60	С	-3.4171	2.5551	-0.4673	109	Н	-0.7503	3.0936	-2.0923
12	С	-0.948	1.123	-4.1084	61	С	-3.8739	2.5599	-1.7916	110	Н	-0.2283	1.5897	-4.8001
13	С	1.0392	-2.8119	2.5447	62	С	-3.4044	5.9578	-2.8243	111	Н	-1.2104	0.1441	-4.5327
14	С	1.4738	-4.3073	2.5594	63	С	-3.4121	6.956	-3.5117	112	Н	-1.8527	1.7443	-4.132
15	С	1.3009	-4.9591	3.9387	64	С	-3.4219	8.1712	-4.3418	113	Н	1.4986	-2.3597	3.4416
16	С	0.8101	-5.1525	1.467	65	С	-4.5094	9.1359	-3.8103	114	Н	2.548	-4.2635	2.3449
17	С	3.6161	0.7147	-0.4441	66	С	-2.0358	8.8536	-4.2596	115	Н	1.7618	-5.9531	3.9463
18	С	4.8942	0.2898	-1.2208	67	С	-3.7336	7.7901	-5.8079	116	Н	1.7769	-4.3686	4.7311
19	С	6.0962	-0.011	-0.3173	68	С	4.5113	5.2223	2.8575	117	Н	0.244	-5.0917	4.2008
20	c	5.262	1.3167	-2.3022	69	N	2.1501	-2.7431	-1.6845	118	Н	0.9406	-4.7078	0.4762
21	c	-1.564	-2.6573	-2.5274	70	N	1.921	-3.0108	-4.0412	119	Н	1.2547	-6.1537	1.4399
22	C	-1 7629	-4 962	-1 3707	71	N	-2 6358	-2 2885	1 6955	120	н	-0 2648	-5 2751	1 6462
23	C	-2 2445	-4 0582	-2 5104	72	N	-2 4564	-2 5697	4 0551	121	н	2.88	1 011	-1 2098
23	C	-2 1423	-4 7781	-3 8625	73	N	4 5322	2.5657	2 5575	121	н	4 6125	-0 6407	-1 7332
25	C	-3 4607	1 3175	0.413	74	N	3 8023	4 3081	0.785	122	н	6.9123	-0 4478	-0.9052
25	c	-4 8247	1.1464	1 1419	75	N	-3 8703	3 6432	-2 5694	123	н	6 4842	0.9004	0.1521
20	c	-6.0318	1 1092	0.1966	76	N	-2.9161	4 8942	-0.7589	124	н	5 8402	-0 7225	0.1521
27	c	5 0158	2 2085	2 2247	70	0	1 5020	2 1/02	1 3840	125	и и	5 5750	2 271	1 8623
20	c	-5.0158	2.2085	2.2347	79	0	2 0800	-2.1493	0.2122	120	п п	6.0047	0.0496	-1.8025
29	c	0.5084	-2.9495	2.9231	70	0	1 0080	-0.5065	1 386	127	п u	4 4201	1 5150	-2.9125
21	c	0.0477	-2.8975	-3.9095	7 <i>9</i> 80	0	2 1 2 5	-1.0904	-1.580	120	п п	1 0409	2 1561	-2.9702
22	c	-0.04//	-2.7429	1 5992	80 91	7.	2 107	2 4072	-0.3439	129	п п	2 2741	-2.1301 5.97	1 2225
32	c	0.013	-2.0467	-1.5885	01 92	Z11 7n	1 6094	-2.4075	0.2000	121	п	-2.5741	-3.87	-1.5225
24	c	5 2475	2 2006	-3.0808	82	Z11 7n	2 6102	1 9152	0.1044	122	п п	1 0201	-3.2749	-1.5142
25	c	5.2475	-5.2000	-3.3310	0.5	Z11 7	-5.0192	-1.0132	-0.1944	132	п	-1.0301	-4.4025	-0.4000
33 26	c	0.0388	-5.511	-3.0832	84 95	Zn	-1.023	2 1020	-1.3243	133	п	-3.3029	-3.8300	-2.5558
30 27	c	0./195	-4.340	-4.8355	85	п	5.5848	-3.1029	-0.0252	134	п	-2.4898	-4.1438	-4.0889
3/	C	7.43/1	-4.0426	-2.4598	80	н	6.257	-3.8048	2.2767	135	н	-1.1143	-5.0913	-4.0825
38	C	7.2744	-2.1/2	-4.1598	8/	н	5.5094	-2.2007	2.2938	136	н	-2./611	-5.6822	-3.8568
39	C	-3.1//	-2.4057	2.9337	88	н	4.6006	-3.60/8	2.8429	137	н	-2.707	1.4521	1.2067
40	c	-1.3026	-2.4084	1.6028	89	н	4.4156	-5.1814	-0.6907	138	H	-4.7543	0.17	1.6418
41	C	-0.4688	-2.6368	2.6941	90	Н	5.6285	-5.5268	0.5539	139	H	-6.214	2.0884	-0.2608
42	С	-1.1325	-2.6711	3.9264	91	н	3.9197	-5.4781	0.9779	140	н	-5.8966	0.3764	-0.6036
43	С	-4.5969	-2.3628	3.0834	92	Н	-0.4205	0.5247	2.7962	141	Н	-6.9366	0.8325	0.7493
44	С	-5.7874	-2.3846	3.3177	93	Н	1.324	0.0558	4.5341	142	H	-4.1766	2.2209	2.9406
45	С	-7.224	-2.4445	3.6314	94	Н	2.1951	1.5242	4.0684	143	Н	-5.1137	3.2138	1.8075
46	С	-7.7352	-3.8778	3.3424	95	Н	0.5886	1.644	4.7856	144	Н	-5.9283	2.0072	2.8076
47	С	-7.4235	-2.1098	5.129	96	Н	1.2573	2.9777	2.0166	145	Н	0.0287	-2.923	-4.8372
48	С	-7.9966	-1.4292	2.7582	97	Н	-0.2013	2.4248	1.1951	146	Н	0.4508	-2.4803	-0.5861

147	Н	6.1672	-4.1932	-5.7123	161	Н	-6.8844	-2.8185	5.7658	175	Н	6.502	6.4095	5.6106
148	Н	7.763	-4.712	-5.1266	162	Н	-7.0632	-1.1018	5.3586	176	Н	5.7181	7.7958	6.3998
149	Н	6.2921	-5.5047	-4.5247	163	Н	-8.4894	-2.1606	5.3799	177	Н	4.8711	6.2378	6.283
150	Н	8.4838	-4.2158	-2.7359	164	Н	-7.6565	-0.4064	2.951	178	Н	-2.525	3.8829	0.9922
151	Н	7.412	-3.3259	-1.6333	165	Н	-7.8612	-1.6422	1.6933	179	Н	-4.2532	1.6463	-2.2446
152	Н	7.0139	-4.9863	-2.1022	166	Н	-9.0665	-1.4839	2.9899	180	Н	-4.3092	9.4185	-2.7717
153	Н	8.3204	-2.3306	-4.4461	167	Н	4.5194	0.8384	2.1971	181	Н	-4.5281	10.0472	-4.4199
154	Н	6.7355	-1.7749	-5.026	168	Н	3.1933	3.4206	-0.9711	182	Н	-5.5003	8.672	-3.8532
155	Н	7.2468	-1.4209	-3.3639	169	Н	2.8822	7.431	5.1591	183	Н	-1.7943	9.1271	-3.2274
156	Н	-0.9128	-2.3053	0.6013	170	Н	3.7532	8.9753	5.2792	184	Н	-1.2486	8.1878	-4.6283
157	Н	-0.5754	-2.7764	4.8561	171	Н	3.145	8.4127	3.7061	185	Н	-2.0313	9.7647	-4.8699
158	Н	-7.5995	-4.14	2.2887	172	Н	6.098	9.2145	4.3077	186	Н	-3.7501	8.6905	-6.4336
159	Н	-7.2024	-4.6149	3.952	173	Н	6.8823	7.839	3.5017	187	Н	-2.9752	7.1076	-6.2051
160	Н	-8.8033	-3.9406	3.5811	174	Н	5.5122	8.6544	2.7256	188	Н	-4.7083	7.2974	-5.885

(S)-Tetramer (brandy grass, from Gridnev's paper)

Row	Symbol	Х	Y	Z	53	С	-0.538603	-3.190804	1.905004	106	Н	-7.490504	-1.237807	-3.422396
1	С	8.899495	-0.304699	-0.072096	54	С	-0.600105	-0.096404	2.359604	107	Н	-3.272406	1.852195	2.165304
2	Ν	8.625795	0.293901	1.117504	55	С	-0.528605	0.755196	3.471504	108	Н	-2.541707	4.245595	1.890204
3	С	7.418595	0.0487	1.666004	56	Ν	0.546294	1.521697	3.741304	109	Н	-2.349307	3.988895	0.150904
4	С	6.460995	-0.7816	1.068404	57	С	1.589294	1.485597	2.876504	110	Н	-1.309507	3.123496	1.288204
5	С	6.831796	-1.3355	-0.165196	58	Ν	1.592895	0.708797	1.751704	111	Н	-5.555506	2.096694	1.189104
6	Ν	8.030796	-1.1137	-0.738496	59	С	0.519495	-0.083603	1.523504	112	Н	-4.997707	3.648994	1.841604
7	С	5.111096	-1.055301	1.710204	60	С	2.716094	2.299098	3.178704	113	Н	-4.977607	3.361194	0.098004
8	С	5.067596	-2.416601	2.466304	61	С	3.629394	3.024898	3.530204	114	Н	1.422294	1.800297	-4.020396
9	С	3.707896	-2.603702	3.164704	62	С	4.695693	3.930899	4.001404	115	Н	-0.575205	-0.486104	-0.957296
10	С	10.176295	-0.066199	-0.660996	63	С	4.434993	4.277199	5.494204	116	Н	-0.500004	-2.126204	-3.103296
11	С	11.267195	0.138102	-1.160196	64	С	-1.586404	-2.491204	4.111904	117	Н	0.474197	-3.574703	-3.381296
12	С	12.592295	0.385203	-1.762296	65	С	-3.613303	-4.135705	-0.299396	118	Н	0.470296	-2.814603	-1.781296
13	С	13.536595	-0.802297	-1.424496	66	С	-5.013603	-4.669506	0.061904	119	Н	2.565896	-2.325902	-3.089496
14	0	4.064395	-0.982402	0.715204	67	С	-3.171903	-4.668605	-1.678796	120	н	0.696995	-0.876703	-5.057696
15	Zn	3.036995	0.679998	0.169104	68	С	-5.332504	-1.348606	-2.991896	121	н	1.597296	-2.365703	-5.372296
16	С	3.622194	2.347598	-0.772896	69	с	-6.530604	-1.130307	-3.937196	122	н	2.472095	-0.848102	-5.109796
17	С	2.677793	3.544298	-0.535296	70	С	-4.013804	-1.311306	-3.786596	123	н	2.677495	0.089798	-2.870596
18	Zn	3.293696	-2.299702	-0.510896	71	c	-2.336207	3.477495	1.123004	123	н	4.966798	-5.715801	-1.555596
19	C	3 473797	-4 217302	-0.958896	72	C	0.452096	-2 612503	-2 857096	125	н	5 589997	-4 508201	-0 427496
20	C	2 877497	-5 119202	0 142004	73	c	4 918097	-4 647001	-1 285896	126	н	5 340397	-4 081001	-2 126796
20	0	2.077497	-0.778603	-1.053996	74	c	5.083694	2 750699	-0.493896	120	н	2 945898	-6 185402	-0.133896
22	C	1 827395	-0.455603	-2 430696	75	c	6 211296	-2 552601	3 491204	128	н	3 410597	-5 004002	1 095704
22	c	1.650296	-1 749003	-3 284796	76	c	6.079693	3 241399	3 861404	120	н	1 818497	-4 898903	0 330304
23	c	1.602596	1 / 136203	4 791996	70	c	4 674492	5 234000	3 154004	129	ч	2 872507	4 372002	1 860406
24	c	0.620605	0.475007	-4.791990	79	c	4 520408	5.071404	2 112806	121	и и	2.560204	2 004508	1 847406
25	c	0.030095	1.571407	-2.494390	70	c	-4.520408	4 120602	-2.113890	131	п 11	5.300394	2.094398	-1.04/490
20	N	0.380094	2 401606	-3.307490	7.9 80	c	12 445705	4.139093	-3.040090	132	п u	5 277402	2.980099	1.065006
27	N C	-0.472500	2.401090	-3.449/90	0U 01	c	12.445795	1.700402	-3.303090	133	п 11	5.577495	1.052000	-1.005090
20	N	-1.522500	2.1/9990	-2.022390	01 92		13.165294	0.824506	-1.187090	134	п 11	2 000102	1.932999	-0.750590
29	IN C	-1.343100	0.216206	-1./0/696	82	п	-1.55/105	0.854596	4.108104	135	п	2.990193	4.454098	-1.110296
30	2	-0.490803	0.310390	-1.0/4/96	83	п	0.380993	-0.090903	0.637204	130	п	2.038993	3.840098	0.322404
31	Zn	-2.96/805	0.859395	-0.128596	84	н	-2.656305	-0.505405	2.646304	137	н	1.642593	3.319697	-0.826196
32	C	-3.363206	2.32/495	1.171304	85	н	-2.630904	-2.89/405	2.280104	138	н	4.927995	-0.266/01	2.45/904
33	С	-4.798006	2.882494	1.071204	86	Н	-1.610803	-3.534804	4.445104	139	Н	5.186697	-3.205001	1.706604
34	С	-2.639706	3.052995	-2.733896	87	Н	-2.419104	-1.965905	4.595404	140	Н	6.126997	-3.505801	4.025204
35	С	-3.552507	3.840595	-2.909296	88	Н	-0.649504	-2.050504	4.474304	141	Н	6.164696	-1.749501	4.238804
36	С	-4.623607	4.825494	-3.159396	89	Н	-0.587103	-3.102304	0.814904	142	Н	7.197996	-2.52	3.019104
37	С	-4.445008	5.408794	-4.588996	90	Н	0.439496	-2.825803	2.241104	143	Н	3.655697	-3.585002	3.650204
38	0	-2.150105	-0.904205	0.663804	91	Н	-0.597003	-4.254804	2.161204	144	Н	3.565196	-1.837302	3.938404
39	Zn	-3.424004	-2.169905	-0.195496	92	Н	-2.908503	-4.537705	0.446704	145	Н	2.879396	-2.527802	2.455804
40	0	-4.176105	-0.536006	-0.958796	93	Н	-3.227802	-5.769705	-1.718196	146	Н	6.861793	3.9168	4.225704
41	С	-5.304305	-0.307106	-1.833696	94	Н	-3.814503	-4.289505	-2.485196	147	Н	6.118694	2.319199	4.451304
42	С	-6.590105	-0.295207	-1.024496	95	Н	-2.139203	-4.386605	-1.922796	148	Н	6.293994	2.999399	2.815604
43	С	-7.599705	0.655793	-1.223296	96	Н	-5.324603	-4.374606	1.072804	149	Н	4.858193	5.018399	2.096904
44	Ν	-8.749405	0.665592	-0.518096	97	Н	-5.043902	-5.771606	0.020604	150	Н	3.708992	5.742498	3.243104
45	С	-8.909505	-0.302408	0.422704	98	Н	-5.781803	-4.308106	-0.635896	151	Н	5.458192	5.911099	3.512304
46	Ν	-7.979904	-1.257107	0.703004	99	Н	-5.181805	0.685694	-2.294296	152	Н	3.465393	4.770598	5.617104
47	С	-6.841404	-1.236507	-0.015896	100	Н	-5.434904	-2.341106	-2.525296	153	Н	4.446093	3.374499	6.113704
48	С	-10.12690	5 -0.318509	1.165204	101	Н	-4.021304	-2.068606	-4.578896	154	Н	5.217993	4.954399	5.853304
49	С	-11.16770	5 -0.335109	1.795604	102	н	-3.152004	-1.498205	-3.140296	155	Н	-3.549108	6.472495	-2.178296
50	С	-12.43040	5 -0.35771	2.560104	103	Н	-3.878005	-0.329305	-4.259496	156	Н	-5.305908	6.710494	-2.307496
51	С	-1.824105	-0.948104	2.075604	104	н	-6.505304	-1.860707	-4.753596	157	Н	-4.647208	5.588294	-1.096596
52	С	-1.685804	-2.418604	2.576704	105	Н	-6.495905	-0.129207	-4.387496	158	Н	-6.106407	3.325093	-3.772396

159	Н	-6.167407	3.734093	-2.041096	169	Н	11.784694 1.340602	-3.567696	179	С	-13.557605 0.30049	1.718604
160	Н	-6.799807	4.874193	-3.247296	170	Н	13.428995 0.690303	-3.752996	180	Н	-13.175205 0.41729	4.457804
161	Н	-3.473208	5.902495	-4.690896	171	Н	12.537394 2.553202	-1.416096	181	Н	-11.450305 -0.012709	4.496404
162	Н	-4.514407	4.620294	-5.345696	172	Н	13.299794 1.635003	-0.100596	182	Н	-11.976006 1.476491	3.681804
163	Н	-5.232008	6.146194	-4.782796	173	Н	14.170794 1.884803	-1.630896	183	Н	-14.4957050.287889	2.285604
164	Н	-7.488306	1.440193	-1.966396	174	Н	13.658395 -0.908897	7 -0.341496	184	Н	-13.310006 1.33999	1.479604
165	Н	-6.103804	-1.991307	0.231004	175	Н	13.140196 -1.742097	7 -1.822996	185	Н	-13.712305 -0.24241	0.780204
166	Н	7.214695	0.5399	2.613004	176	Н	14.522495 -0.624397	7 -1.869296	186	Н	-13.749304 -1.84941	3.451304
167	Н	6.147396	-1.969501	-0.716196	177	С	-12.811304 -1.82821	2.884504	187	Н	-12.948504 -2.40811	1.965704
168	Н	12.032595	-0.410898	-3.731496	178	С	-12.241105 0.43359	3.884504	188	Н	-12.031904 -2.310009	3.484004

Square dimer with iPr₂Zn (from Gridnev's paper)

Row	Symbol	Х	Y	Z	39	С	5.21321	7.272208	1.47031	78	Н	2.473809	6.848808	1.64081
1	Zn	2.009409	-2.380792	-1.62449	40	Н	2.946009	0.141308	1.56881	79	Н	2.104709	6.947908	-0.09179
2	С	2.199209	-2.314392	-3.57589	41	Н	5.854109	0.369708	-1.58069	80	Н	2.77271	8.359808	0.75461
3	С	2.420709	-0.882992	-4.09049	42	Н	4.966009	-1.810292	-0.98459	81	Н	-2.981191	-2.051491	1.04221
4	0	3.150009	-2.043592	-0.05599	43	Н	4.787509	-1.849892	2.05021	82	Н	-0.224191	-0.990992	-2.07269
5	Zn	1.823509	-2.193592	1.36961	44	Н	5.862309	-4.097892	1.86211	83	С	-4.375091	4.632909	-3.01809
6	0	0.713309	-2.692592	-0.18689	45	Н	4.305509	-4.083792	1.01331	84	С	-5.125991	4.797009	-0.60469
7	С	-0.664891	-3.007592	-0.22259	46	Н	5.818009	-3.987492	0.09531	85	С	-6.512891	3.495109	-2.27639
8	С	-1.479391	-1.750192	-0.48739	47	Н	6.752109	-0.498092	1.31901	86	Н	-5.691191	5.707309	-0.83489
9	С	-2.623291	-1.416491	0.23441	48	Н	7.263409	-1.796192	0.22591	87	Н	-4.118991	5.087109	-0.28799
10	Ν	-3.343491	-0.313291	-0.00849	49	Н	7.290509	-2.049392	1.97581	88	Н	-5.616891	4.288809	0.23171
11	С	-2.914691	0.492909	-1.00399	50	Н	2.500809	-1.866692	3.76811	89	Н	-7.084891	4.399209	-2.51429
12	Ν	-1.816591	0.274209	-1.74999	51	Н	0.559609	-0.605292	4.71611	90	Н	-7.028091	2.962909	-1.47019
13	С	-1.121391	-0.830192	-1.47929	52	Н	-0.304791	-0.748192	3.18481	91	Н	-6.502191	2.851009	-3.16159
14	С	-3.682391	1.666709	-1.28059	53	Н	1.182609	0.200108	3.27031	92	Н	-4.933591	5.543709	-3.26239
15	С	-4.315091	2.669809	-1.53799	54	Н	1.457809	-4.132392	3.75871	93	Н	-4.327691	4.006509	-3.91479
16	С	-5.075891	3.888609	-1.85689	55	Н	0.718709	-3.112792	5.00271	94	Н	-3.354191	4.917609	-2.74359
17	С	4.467809	-1.520292	-0.04519	56	Н	-0.137691	-3.420092	3.49111	95	Zn	-5.249291	0.071309	1.16611
18	С	5.295909	-2.132692	1.11561	57	Н	-0.965491	-3.394592	0.76461	96	С	-6.609091	-0.678391	-0.06789
19	С	6.728609	-1.580692	1.16031	58	Н	-0.648291	-3.739792	-2.24049	97	Н	-6.345291	-0.336291	-1.08199
20	С	4.427609	-0.001892	0.00321	59	Н	-0.290191	-6.152792	-1.70079	98	С	-8.032491	-0.177891	0.22071
21	С	3.603509	0.690008	0.89641	60	Н	0.946509	-5.155092	-0.91429	99	Н	-8.773991	-0.591091	-0.48659
22	Ν	3.550409	2.019208	0.97631	61	Н	-0.407391	-5.798392	0.03061	100	Н	-8.106991	0.916509	0.15961
23	С	4.348009	2.698408	0.12491	62	Н	-2.612791	-5.294991	-2.04509	101	Н	-8.370591	-0.463191	1.22741
24	Ν	5.167209	2.147208	-0.79139	63	Н	-2.816891	-4.831391	-0.35149	102	С	-6.582591	-2.214991	-0.09529
25	С	5.192609	0.812208	-0.83559	64	Н	-3.067791	-3.636691	-1.63759	103	Н	-6.834591	-2.647191	0.88431
26	С	4.313709	4.129608	0.19991	65	Н	1.249709	-2.673392	-4.00219	104	Н	-5.595291	-2.608491	-0.37489
27	С	4.283409	5.340108	0.26701	66	Н	3.382709	-3.231392	-5.18139	105	Н	-7.309191	-2.633591	-0.81419
28	С	4.247609	6.809608	0.35221	67	Н	4.293809	-2.969392	-3.69279	106	С	-4.576091	0.800209	2.88771
29	С	2.80741	7.266308	0.68521	68	Н	3.131509	-4.297192	-3.79099	107	Н	-5.463291	1.083609	3.47711
30	С	5.315509	-3.664692	1.01691	69	Н	1.606009	-0.204392	-3.80649	108	С	-3.718591	2.064109	2.73061
31	С	1.511909	-1.980092	3.29781	70	Н	2.494209	-0.857292	-5.19019	109	Н	-2.826491	1.877409	2.11601
32	С	0.857509	-3.226892	3.91491	71	Н	3.351709	-0.447392	-3.70259	110	Н	-3.356491	2.445909	3.70191
33	С	0.699709	-0.718092	3.62861	72	Н	4.66911	8.506708	-0.94559	111	Н	-4.270191	2.883009	2.25001
34	С	-0.956891	-4.127992	-1.25759	73	Н	4.02091	7.096108	-1.80929	112	С	-3.816691	-0.254791	3.70811
35	С	-2.449591	-4.484691	-1.32619	74	Н	5.70731	7.098808	-1.25749	113	Н	-4.428991	-1.141591	3.92251
36	С	-0.123491	-5.378592	-0.94349	75	Н	6.240609	6.959808	1.25671	114	Н	-3.473191	0.141309	4.68001
37	С	3.306109	-3.253292	-4.08159	76	Н	4.921409	6.854608	2.43941	115	Н	-2.914191	-0.605191	3.18531
38	С	4.68981	7.412108	-1.00199	77	Н	5.19311	8.365708	1.54511					

Square dimer with THF (optimized from crystal structure)

Row	Symbol	х	Y	Z	41	Н	-4.510654	-3.491904	1.510579	82	С	0.32794	-3.884289	-3.451847
1	Zn	0.022945	-3.184108	-0.615762	42	Н	-5.167307	-4.219576	0.035534	83	Н	1.364574	-3.519256	-3.48423
2	Zn	0.022481	-0.413541	0.550272	43	С	3.705794	0.535453	-1.658069	84	Н	-0.320206	-3.029897	-3.689345
3	С	-0.012959	-4.513416	-2.090594	44	Н	3.645559	0.214971	-2.698902	85	Н	0.226262	-4.606439	-4.279909
4	Н	-1.059159	-4.855807	-2.158789	45	С	-5.451836	6.609503	-0.269435	86	С	0.841067	-5.770314	-1.866727
5	С	-5.798654	4.201619	0.102597	46	Н	-4.675505	6.654572	0.501518	87	Н	0.730596	-6.497668	-2.689092
6	С	3.288816	0.276569	0.643374	47	Н	-5.951598	7.584706	-0.313106	88	Н	0.579386	-6.294602	-0.937634
7	Н	2.873973	-0.249664	1.49924	48	Н	-4.966109	6.426823	-1.23353	89	Н	1.912793	-5.534182	-1.80462
8	С	-3.308346	-0.534222	0.296699	49	С	5.23763	6.812796	0.689774	90	С	0.280689	-0.687706	3.431651
9	С	6.28668	5.676936	0.615699	50	Н	4.698368	6.911476	-0.258045	91	Н	1.359634	-0.889002	3.357858
10	С	-4.569211	1.859928	0.198361	51	Н	5.73638	7.76554	0.904227	92	Н	-0.23595	-1.651837	3.326038
11	С	-0.187163	0.336213	2.382701	52	Н	4.506159	6.620365	1.481507	93	Н	0.10184	-0.335581	4.46214
12	Н	-1.274041	0.44939	2.522589	53	С	-3.633503	-2.826224	-1.80917	94	Ν	4.305941	1.709073	-1.444604
13	С	3.165122	-0.260377	-0.644144	54	Н	-4.340433	-2.008607	-1.99301	95	0	-0.078099	-4.314766	1.294702
14	С	2.49937	-1.595146	-0.926297	55	Н	-4.063392	-3.734873	-2.24638	96	С	1.026138	-4.383403	2.234814
15	Н	2.208352	-1.582591	-1.992337	56	Н	-2.703401	-2.606413	-2.341597	97	С	-1.024254	-5.383318	1.552816
16	С	-4.052944	-0.026241	1.365114	57	С	-7.153504	5.78827	1.414017	98	С	0.543395	-5.306925	3.350513
17	Н	-4.134117	-0.587383	2.296419	58	Н	-7.885452	5.012731	1.661612	99	Н	1.899585	-4.797309	1.717499
18	С	4.379821	2.110666	-0.160984	59	Н	-7.67029	6.75493	1.383199	100	Н	1.249213	-3.365627	2.55743
19	С	-6.485349	5.502498	0.048884	60	Н	-6.408642	5.820085	2.215785	101	С	-0.351716	-6.292623	2.583093
20	С	5.600059	4.406218	0.333031	61	С	-7.561466	5.461097	-1.062621	102	Н	-1.945361	-4.935779	1.94535
21	С	5.037396	3.357889	0.101401	62	Н	-7.10969	5.256283	-2.038912	103	Н	-1.246272	-5.879961	0.604387
22	С	7.028643	5.565728	1.968587	63	Н	-8.079173	6.426526	-1.116552	104	Н	-0.043919	-4.744246	4.085322
23	Н	6.328793	5.351962	2.782901	64	Н	-8.30416	4.682346	-0.860344	105	Н	1.371167	-5.792879	3.875381
24	Н	7.542452	6.508517	2.191674	65	С	4.133404	-2.886683	0.609718	106	Н	-1.078804	-6.805362	3.219364
25	Н	7.774722	4.764748	1.941744	66	Н	4.876478	-2.094625	0.758823	107	Н	0.258739	-7.053091	2.082669
26	С	-2.576582	-1.866077	0.352383	67	Н	4.652137	-3.845779	0.726978	108	0	0.070506	0.994184	-1.072865
27	Н	-2.487405	-2.133461	1.421326	68	Н	3.38727	-2.803724	1.405136	109	С	-0.065132	2.43562	-0.898237
28	С	-5.233909	3.129877	0.146244	69	С	4.545072	-2.816636	-1.884553	110	С	-0.026752	0.648564	-2.478518
29	С	7.299329	5.97498	-0.515047	70	Н	5.228473	-1.962245	-1.805696	111	С	-0.035004	3.018384	-2.311481
30	Н	8.051701	5.182671	-0.586291	71	Н	4.089594	-2.794177	-2.882222	112	Н	-1.020574	2.625792	-0.399249
31	Н	7.813898	6.922674	-0.315972	72	Н	5.151663	-3.727283	-1.818648	113	Н	0.752217	2.777135	-0.25965
32	Н	6.794241	6.052296	-1.48338	73	Ν	-3.874084	1.483968	-0.896161	114	С	-0.636302	1.877529	-3.148279
33	С	-3.37956	-3.025583	-0.310337	74	Ν	-4.68733	1.14864	1.334824	115	Н	0.982039	0.444375	-2.857637
34	Н	-2.72866	-3.905214	-0.203955	75	Ν	3.885794	1.441686	0.900787	116	Н	-0.625332	-0.261878	-2.553129
35	С	-3.266365	0.297935	-0.827391	76	0	1.353218	-1.781585	-0.118232	117	Н	0.996829	3.220292	-2.620857
36	Н	-2.703401	-0.005452	-1.704525	77	0	-1.293355	-1.73651	-0.221729	118	Н	-0.60431	3.94947	-2.382207
37	С	3.483389	-2.795562	-0.776091	78	С	0.433703	1.709523	2.679182	119	Н	-0.382308	1.939647	-4.210615
38	Н	2.845483	-3.679828	-0.912545	79	Н	0.275474	2.00502	3.730703	120	Н	-1.727623	1.872572	-3.049597
39	С	-4.685665	-3.32215	0.44048	80	Н	-0.006971	2.50211	2.06131					
40	Н	-5.400303	-2.495551	0.347397	81	Н	1.517631	1.732659	2.506774					

X-ray crystallography

The crystal was covered by Nujol and immediately mounted on X-ray diffractometer and cooled to 100 K by nitrogen gas flow. The X-ray single crystal diffraction was recorded by Bruker Apex2 CCD diffractometer equipped with Mo K rotating anode X-ray tube. Data collection, integration, and scaling, were carried out using Bruker APEX II software. The diffraction was recorded at 100 K. Space groups were determined on the basis of systematic absences and intensity statistics, and the structures were solved by direct methods (*SHELXS*⁷ or *SIR2011*⁸) and refined by full-matrix least-squares on F^2 using *SHELXL-2018*¹ program. All nonhydrogen atoms were refined using anisotropic displacement parameters otherwise noted. Hydrogen atoms were placed in idealized positions and refined using a riding model.

It should be noted that the alkoxide crystal are air and moisture sensitive. In addition, due to a tendency to disorder in the weekly coordinated or free diisopropyl zinc we cannot obtain the high-angle data ideally in some crystals.

Racemic dimer crystal with THF coordination

Single crystal of the racemic zinc alkoxide dimer with THF was made by the reaction with excess neat iPr_2Zn (0.1 mL, 0.73 mmol, 8.4 equiv.) with racemic pyrimidylalkanol **2** (20 mg, 0.086 mmol) in THF 0.05 mL at room temperature, The yellow single crystal was obtained after keeping the oil at room temperature for a week.

Table S1: Crystal data for racemic dimer with THF coordination

	ea. 0.1 mm		
CCDC No	2099174	Formula	(C14H19N2OZnC3H7)2
	2000174	l'onnula	(C4H8O)2 (C6H14Zn)3
Configuration	racemic (<i>meso</i>)	Radiation	Μο Κα
Z	1	Temp. (K)	100
Space group	<i>P</i> -1	R ₁	0.0964
<i>a</i> (Å)	10.823(5)	wR^2	0.2662
b (Å)	13.099(6)	Flack parameter	-
<i>c</i> (Å)	14.027(7)		
lpha (deg.)	66.034(5)		
eta (deg.)	78.752(6)		
γ(deg.)	67.832(5)		
V	1680.7(14)		

Enantiopure dimer crystal with pyridine coordination

We cannot obtain homochiral THF coordinated dimer crystal in several trials and oligomer or THF coordinated tetramer crystal was obtained as previously reported. Homo chiral dimer crystal was obtained By using more strong coordinated pyridine. We succeeded

Single crystal of the homochiral zinc alkoxide dimer with pyridine was obtained by the addition of iPr_2Zn (0.05 mL, 0.36 mmol, 2.1 equiv.) to the solution of mixture of enantiopure (*R*)-pyrimidylalkanol **2** (40 mg, 0.18 mmol) in pyridine 0.05 mL (0.62 mmol, 3.7 equiv) and triethyl amine (0.5 mL) at room temperature, The colorless single crystal was obtained after few minutes by adding the powder crystal obtained in a previous similar operation as a seed crystal.

	ca. 0.1 mm		×.
	2000173	Formula	(C14H19N2OZnC3H7)2
	2000110	1 officia	(C5H5N)2
ion	R	Radiation	Μο Κα
	4	Temp. (K)	100
up	P212121	R_1	0.0405

Table S2. Crystal data for enantiopure dimer crystal with pyridine

CCDC No

			(C5H5N)2
Configuration	R	Radiation	Μο Κα
Z	4	Temp. (K)	100
Space group	<i>P</i> 2 ₁ 2 ₁ 2 ₁	R1	0.0405
<i>a</i> (Å)	10.0737(12)	WR^2	0.0910
b (Å)	19.301 (8)	Flack parameter	-0.013(9)
<i>c</i> (Å)	23.277 (3)		
lpha (deg.)	90		
β (deg.)	90		
γ(deg.)	90		
V	4525.8(10)		

Reference

⁴ Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.

Gaussian, Inc., Wallingford CT, 2016.

⁵ I. D. Gridnev and A. K. Vorobiev, ACS Catal., 2012, **2**, 2137–2149.

⁶ (a) A. Matsumoto, T. Abe, A. Hara, T. Tobita, T. Sasagawa, T. Kawasaki and K. Soai, *Angew. Chemie Int. Ed.*, 2015, 54, 15218–15221. (b) A. Matsumoto, S. Fujiwara, T. Abe, A. Hara, T. Tobita, T. Sasagawa, T. Kawasaki and K. Soai, *Bull. Chem. Soc. Jpn.*, 2016, 89, 1170–1177.

⁷ G. M. Sheldrick, *Acta Crystallogr. A.* 2008, **64**, 112–122.

⁸ M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, C. Giacovazzo, M. Mallamo, A. Mazzone, G. Polidori, R. Spagna, *J. Appl. Crystallogr.* 2012, **45**, 357–361.

¹ A. Krasovskiy and P. Knochel, *Synthesis*, 2006, 890–891.

² I. Sato, H. Urabe, S. Ishiguro, T. Shibata and K. Soai, *Angew. Chem. Int. Ed.*, 2003, 42, 315–317.

³ Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox,