Supporting Information

LT-LiMn_{0.5}Ni_{0.5}O₂: A Unique Co-Free Cathode for High Energy Li-Ion Cells

Boyu Shi^a, Jihyeon Gim^a, Linze Li^b, Chongmin Wang^b, Anh Vu^a,

Jason R. Croy^a, Michael M. Thackeray^a and Eungje Lee*^a

^aElectrochemical Energy Storage Department, Chemical Sciences and Engineering Division,

Argonne National Laboratory, Lemont, IL 60439, United States

^bEnvironmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory,

Richland, WA 99352, United States

Materials Synthesis

A $Mn_{0.5}Ni_{0.5}(OH)_2$ precursor was synthesized by a co-precipitation method in a continuouslystirred-tank-reactor (CSTR) following a previous report.¹ A stoichiometric amount of $Mn_{0.5}Ni_{0.5}(OH)_2$ was thoroughly mixed with lithium carbonate (Li₂CO₃>99%, Sigma-Aldrich) using a mortar and pestle. The mixture was pressed into a pellet and calcined at a 'low-temperature' (LT) of 400 °C for 72 h in air. The heating rate was 2 °C/min while cooling was uncontrolled. The calcined pellet was ground to obtain a homogeneous fine powder.

Materials Characterization

The quality and structure of the LT-LiMn_{0.5}Ni_{0.5}O₂ product was first characterized by X-ray diffraction (XRD) using a laboratory Rigaku MiniFlex 600 diffractometer with Cu K α radiation (1.5406 Å). High resolution synchrotron XRD data were subsequently obtained using the synchrotron 11-ID-C beamline (calibrated wavelength: 0.1173 Å) at the Advanced Photon Source (APS), Argonne National Laboratory. The data were collected in transmission mode using a spinning Kapton capillary tube. Rietveld refinement analyses of the LT-LiMn_{0.5}Ni_{0.5}O₂ sample were conducted with the TOPAS software package.

The particle morphology was studied using scanning electron microscopy (SEM) (JCM-6000 PLUS Neoscope microscope). Specimens for high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) characterization were prepared with a routine focused-ion-beam (FIB) lifting-out procedure using a Thermo Scientific Helios DualBeam microscope working at 2-30 keV. HAADF STEM imaging was performed on an aberration-corrected JEOL GrandARM-300F microscope with an operation voltage of 300 kV. The convergence semi-angle was 22.4 mrad; signals with semi-angles spanning from 60 to 409 mrad were collected for HAADF STEM imaging.

Mn K-edge and Ni K-edge XAS data were collected at the 12-BM beamline of the APS. The standard samples for Mn^{n+} (n = 4) and Ni^{n+} (n = 2 and 3) were prepared as 7mm diameter pellets with boron nitride as a dispersing agent. In addition, a $Ni^{3.7+}$ standard sample was produced electrochemically by charging a Li/LiNiO₂ cell to 4.4 V to the cathode composition Li_{0.3}NiO₂. All spectra were collected in transmission mode; the data were reduced using ATHENA in the Demeter software package.² The standard Mn K-edge (6539 eV) and Ni K-edge (8333 eV) energy

was calibrated and aligned using the first inflection point of the edge region of a metallic Mn and Ni foil collected simultaneously with each measurement. For each spectrum, the built-in AUTOBK algorithm was used to normalize the absorption coefficient, $\mu(k)$, and separate the $\chi(k)$ functions from the isolated atom absorption background. The extracted EXAFS signal, $\chi(k)$, was weighted by k^2 ; fourier transform (FT) was then applied in k-ranges of 3.0–9.749 Å⁻¹ for Mn and 2.7-11.8 Å⁻¹ for Ni, respectively, using the Hanning window function to obtain the magnitude plots of the EXAFS spectra in R-space (Å). The FT peaks were not phase-corrected, and thus the actual bond lengths are approximately 0.2–0.4 Å longer.

Electrochemical Testing and Ex Situ Electrodes Analysis

LT-LiMn_{0.5}Ni_{0.5}O₂ cathode laminates were prepared by coating a cathode slurry on aluminum foil. The composition of the slurry was 84 wt% active material: 8 wt% super P carbon: 8 wt % polyvinylidene difluoride (Solvay) binder homogeneously dispersed in an N-methyl-2-pyrrolidone (NMP) solvent. The typical electrode loading was 4.4 mg/cm². Electrochemical tests were conducted using 2032-type coin cells that were assembled in an Ar-filled glovebox. A lithium metal chip was used as the anode. The electrolyte was made of 1.2 M lithium hexafluorophosphate (LiPF₆) dissolved in a 3:7 mixture solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC). The coin cells were placed in a climate chamber, which was maintained at 30 °C, and tested using a MACCOR battery cycler. For *ex situ* XRD and XAS tests, the charged/discharged electrode samples were collected from the disassembled coin cells in an Ar-filled glove box. The harvested electrodes were sealed with Kapton film to prevent air exposure. The *ex situ* XRD and XAS data were obtained from different electrode discs each of which was cut from the same laminate.

Supporting Information References

- Feng, Z.; Barai, P.; Gim, J.; Yuan, K.; Wu, Y. A.; Xie, Y.; Liu, Y.; Srinivasan, V. In Situ Monitoring of the Growth of Nickel, Manganese, and Cobalt Hydroxide Precursors during Co-Precipitation Synthesis of Li-Ion Cathode Materials. *J. Electrochem. Soc.* 2018, 165, A3077-A3083.
- (2) Ravel, B; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data Analysis for X-ray Absorption Spectroscopy using IFEFFIT, *J. Synchrotron Radiat*. **2005**, *12*, 537–541.

Fig. S1 Comparison of XRD patterns and SEM images for LT-LiMn_{0.5}Ni_{0.5}O₂ and HT-LiMn_{0.5}Ni_{0.5}O₂ samples. The HT-sample, which has a layered structure, was synthesized in air at 850 °C for 15h.

Fig. S2 *Ex situ* Mn K-edge and Ni K-edge XAS analysis of LT-LiMn_{0.5}Ni_{0.5}O₂. Normalized (a) Mn and (b) Ni K-edge XANES spectra. K²-weighted Fourier transform (FT) magnitudes of (c) Mn and (d) Ni K-edge EXAFS spectra.

Fig. S3 *Ex situ* synchrotron XRD patterns of LT-LiMn_{0.5}Ni_{0.5}O₂ electrodes in their discharged state. Bottom to top: pristine electrode; after 1 cycle, and after 50 cycles (v = 2.5 - 5.0 V; i = 15 mAh/g).

Intensity (arbi. unit)					Yc Yc Yc Di	5) 7)(008)
	1 2	2 3	4	5	6	7
		20 (d	egree, λ =	= 0.1173 Å	A)	
Atom	Site	X	у	Z	Occ	B _{eq}
Lil	8a	0.125	0.125	0.125	0.81	1
Li2	16d	0.5	0.5	0.5	0.166	1
Mn1	16c	0	0	0	0.083	1
Mn2	16d	0.5	0.5	0.5	0.417	1
Ni1	16с	0	0	0	0.083	1
Ni2	16d	0.5	0.5	0.5	0.417	1
0	32e	0.2537	0.2537	0.2537	1	2.546

Fig. S4 *Ex situ* synchrotron XRD pattern and Rietveld refinement results of a delithiated LT-Li_{1-x}Mn_{0.5}Ni_{0.5}O₂ electrode using a spinel model (LT-Li_{2-y}MnNiO₄, y ~1.0) collected at 4.2 V. Space group *Fd-3m*; a = 8.1307 Å; $R_{wp} = 3.73\%$.

	Tetrahedral Li	Octahedral Li	
	$(0 \le x \le 1)$	(1≤x≤2)	
$Li_xMn_2O_4^{18}$	4.1 V	3.0 V	
	Mn^{3+}/Mn^{4+}	Mn^{3+}/Mn^{4+}	
$Li_{x}Mn_{1.5}Ni_{0.5}O_{4}^{19}$	4.7 V	3.0 V	
	Ni ²⁺ /Ni ³⁺ /Ni ⁴⁺	Mn^{3+}/Mn^{4+}	
LT-Li _x Mn _{0.5} Ni _{0.5} O ₂ *	4.5-4.7 V	3.6 V	
[This work]	Ni ²⁺ /Ni ³⁺ /Ni ⁴⁺ ?	Ni ²⁺ /Ni ³⁺	
	O ²⁻ /O ¹⁻ ?	3.0 V	
	Ni-O (hybridized state)?	Mn^{4+}/Mn^{3+} (minimal)	

Table S1 Reaction potentials (vs. Li⁰) and corresponding redox couples in spinel cathodes.

*Lithiated-spinel component only