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Experimental Procedures

Materials: ZnSO4, Zn(OTF)2, Zn(AC)2, ZnCl2, Zn foil (0.1 mm thick), and commercial sulfur 

powder were purchased from Inno-chem or Adamas-beta Co. Ltd. Ketjen black (KB) were 

purchased from XFNANO Co. Ltd. Glass fiber (GF/D borosilicate) was purchased from Whatman. 

Carbon paper was purchased from Fuel Cell Store.

Preparation of sulfur/carbon composites: The sulfur/carbon composites were prepared by the 

reported melt-diffusion method.1 Typically, 800 mg sulfur was first ground with 200 mg KB in a 

mortar for 30 minutes, and then the mixture was ball-milled for 5 hours at a rotating speed of 300 

rpm. The composite was collected and pressed into a pellet, which was sealed in an autoclave and 

held at 155 °C for 6 hours.

Characterization: X-ray diffraction (XRD) patterns were collected on X-ray diffractometer 

(D/Max-3c). Nitrogen adsorption and desorption isotherms were collected on an ASAP 2420-4 

(micromeritics) volumetric adsorption analyze at 77.3 K. The surface area was obtained in the 

relative pressure (P/Po) of 0.05-1.0. The pore size distribution curve is obtained by NL-DFT using 

the adsorption branch isotherm. The sample was degassed under vacuum (10-5 bar) at 40 oC for 24 

hours before analysis. The thermal performance of the KB-S composites was estimated using 

thermogravimetric analysis with a different thermal analysis apparatus (Q1000DSC+LNCS+FACS 

Q600DT) in the temperature range from 30 to 800 oC under nitrogen atmosphere with a heating rate 
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of 10 oC min-1. The microscopic morphology of the mixture was studied on a field emission 

scanning electron microscope (SEM) (SU8020, Hitachi). Transmission electron microscopy (TEM) 

images and energy dispersive X-ray (EDX) spectra of the KB-S composites were recorded at JEM-

2800 TEM/STEM.

Measurements of electrochemical performance: The cathode was prepared by the following method: 

the S-carbon nanocomposite cathode was mixed with KB and sodium alginate with a mass ratio of 

7:2:1. Water was added into the above mixture as the solvent to form a slurry. Afterwards, the 

slurry was casted on a carbon paper current collector and then dried at room temperature. The 

galvanostatic charge/discharge performance of Zn-S battery was estimated in two-electrode cells, in 

which the S-carbon nanocomposite, 1 M Zn2+-containing aqueous solution, and Zn foil were 

employed as the cathode, electrolyte, and anode, respectively. The electrochemical impedance 

spectra were obtained on a Gamry Interface 1010E workstation. The galvanostatic charge/discharge 

measurements were studied on an LANHE CT2001A battery tester.

The Warburg coefficient σ can be calculated from the following equation:

                                     (1)𝑍𝑟𝑒= 𝑅𝑒+ 𝑅𝑐𝑡+ 𝜎𝜔
‒ 0.5

Where Re is the electrolyte resistance, Rct is the charge transfer resistance, ω is the angular 

frequency in the low frequency region, Zre is the real axis resistance in the low frequency region; 

Thus, the Warburg coefficient σ is the slope of the plot Zre vs ω−0.5, as shown in the following Fig. 

S11.
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Fig. S1 The TGA curves for KB and KB-S.
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Fig. S2 The XRD patterns for sulfur and KB-S.
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Fig. S3 The SEM images of KB and KB-S.
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Fig. S4 The GCD profiles of Ketjen black at 50 mA g-1.
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Fig. S5 The discharge profile of aqueous Zn-S full cell, in which the mass ratio of Zn to sulfur is 

2.2:1. The specific capacity was calculated based on the mass of sulfur.
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Fig. S6 The plateau contribution for the total energy density.
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Fig. S7 The ex-situ XRD patterns of the discharged KB-S cathode working with different 

electrolytes at 50 mA g-1.
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Fig. S8 The EDX spectrum of the discharged cathode.
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Fig. S9 (a) The XPS spectra of Zn 2p at different states of discharge. (b) The XPS survey spectra of 

the KB-S cathodes at different states of discharge.
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Fig. S10 (a) The XPS survey spectra of the KB-S electrodes working in different electrolytes. (b) 

The XPS spectra of S 2p from the KB-S cathodes worked in different electrolytes.
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Fig. S11 The characterization of the electrolytes before and after the discharge process. (a) The UV-

Vis absorption spectra. (b) The FT-IR spectra. (c) The Raman spectra.
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Fig. S12 The electrochemical performance of Zn-S battery using ZnCl2 electrolytes with different 

concentrations. (a) GCD curves and (b) cycling performance in 1 M ZnCl2 electrolyte. (c) GCD 

curves and (d) cycling performance in 30 m ZnCl2 electrolyte.
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Fig. S13 The XPS spectra of S 2p from the KB-S cathodes at different states of charge. After 

charging the battery to 1.5 V, a new peak emerged at around 165.2 eV, which could be attributed to 

the S-O species from sulfate.2,3
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Fig. S14 (a) The Nyquist plot of the Zn-S cell after discharging for 12 h. (b) The plots of Zre vs ω−0.5.
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Fig. S15 The discharge curves of the KB-S cathodes with different sulfur loading of 3.9 and 8.3 mg 

cm-2.
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Fig. S16 The self-discharge behavior of Zn-S batteries. (a) The open circuit potential during self-

discharge measurement. (b) The discharge curve after resting the battery for 21 days.
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Table S1. The summary of electrochemical performance for recent primary batteries.

Cathode 

materials

Anode 

materials
Electrolytes

Voltage 

(V)

Specific 

capacity 

(mAh g-1)

Specific 

energy 

(Wh kg-1)

Mass 

loading 

(mg cm-2)

Areal capacity 

(mAh cm-2)

Areal 

energy

(mWh cm-2)

Ref.

MnO2 Li LiClO4 in PC 2.31 130 300 - - - 4

CFx Li
1 M LiClO4 in 

PC/DME/DOL
2.6 865 2180 1.33 1.15 2.9 5

AQ Li
1 m LiTFSI DME 

with FEC
2.4 575 1300 0.6 0.345 0.78 6

Air FeSi2 0.5 M H2SO4 0.6-0.7 1900 1235 - - - 7

DDQ Fe

14 M or 12 M 

methanesulfonic 

acid solution

0.85 69.4 59 2 0.139 0.118 8

MKB-S Li
1.5 M LiTFSI in 

DME/DOL
~2.1 1310 2751 14 18.34 38.5 9

MnO2 Zn
8.3 M KOH with 2.1 

wt% gelling agents
~1.2 308 ~370 - - - 10

KB-S Zn 1 M ZnCl2 ~0.7 1683 1083.3 8.3 11.4 7.67
This 

work
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