Electronic Supplementary Information

Palladium-Catalyzed Ring-Expansion Reaction of Cyclobutanols

with 2-Haloanilines Leading to Benzazepines and Quinolines

Xiao-Qin Shen,^a Xiao-Wei Yan,^b Xing-Guo Zhang^{*a, b}

^aCollege of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China;

^bGuangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou 542899, China E-mail: zxg@wzu.edu.cn

Supplementary data

List of Contents

Contents:

1. Investigation of the Reaction Parameters	S2-S3
2. General Information	S3
3. Experimental Procedures	S3-S6
4. Analytical Data for All Compounds	\$7-\$21
5. References	S22
6. NMR Spectra for All Compounds	S23-S66
7. GC-MS Data of Intermediate 6	S67
8. Control Experiments on the Reaction Mechanism	S68-S70
9. X-Ray Crystallographic Data	S70-S71

1. Investigation of the Reaction Parameters

 Table S1 Screening conditions ^a

	Br + Ph O	[F H Base, \$	^p d] /Ligand Solvent, 110 °C		Ph
1a	2a			3а	
Entry	Pd	Ligand	Base	Solvent	Yield
1	Pd(OAc) ₂	PCy ₃	K ₃ PO ₄	Toluene	55
2	$Pd(acac)_2$	PCy ₃	K ₃ PO ₄	Toluene	35
3	$Pd(TFA)_2$	PCy ₃	K ₃ PO ₄	Toluene	51
4	Pd(MeCN) ₂ Cl ₂	PCy ₃	K ₃ PO ₄	Toluene	58
5	PdCl ₂	PCy ₃	K ₃ PO ₄	Toluene	67
6	PdCl ₂	PCy ₃	K ₂ CO ₃	Toluene	28
7	PdCl ₂	PCy ₃	Na ₂ CO ₃	Toluene	23
8	PdCl ₂	PCy ₃	Cs_2CO_3	Toluene	87
9	PdCl ₂	PCy ₃	t-BuOK	Toluene	76
10	PdCl ₂	PCy ₃	Cs_2CO_3	Toluene	85^{b}
11	PdCl ₂	PCy ₃	Cs_2CO_3	Toluene	79 ^c
12	PdCl ₂	PCy ₃	Cs_2CO_3	THF	75
13	PdCl ₂	PCy ₃	Cs_2CO_3	DMF	69
14	PdCl ₂	PCy ₃	Cs_2CO_3	DMSO	50
15	PdCl ₂	PCy ₃	Cs_2CO_3	NMP	71
16	PdCl ₂	PCy ₃	Cs_2CO_3	DCE	75
17	PdCl ₂	PPh ₃	Cs_2CO_3	Toluene	45
18	PdCl ₂	X-Phos	Cs_2CO_3	Toluene	Trace
19	PdCl ₂	S-Phos	Cs_2CO_3	Toluene	Trace
20	PdCl ₂	DPPP	Cs_2CO_3	Toluene	48
21	-	PCy ₃	Cs_2CO_3	Toluene	0
22	PdCl ₂	-	Cs_2CO_3	Toluene	0
23	PdCl ₂	PCy ₃	-	Toluene	0
24	PdCl ₂	PCy ₃	Cs_2CO_3	Toluene	49^d
25	PdCl ₂	PCy ₃	Cs_2CO_3	Toluene	73 ^e , 54 ^f

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.22 mmol), Pd salts (5 mol %), PCy₃ (10 mol %), bases (0.4 mmol) in solvent (2 mL) at 110 °C under N₂ atmosphere for 12 h, isolated yields. ^{*b*} Cs₂CO₃ (1.5 eq.) ^{*c*} Cs₂CO₃ (1.0 eq.) ^{*d*} under air atmosphere. ^{*e*} 120 °C. ^{*f*} 100 °C.

Scheme S1 Reactions of 3- and 5-Membered Cycloalkanols with 1a¹

2. General Information

Chemicals were either purchased or purified by standard techniques. ¹H NMR and ¹³C{¹H} NMR spectra were measured on a 500 MHz spectrometer (500 MHz for ¹H and 125 MHz for ¹³C) or a 400 MHz spectrometer (400 MHz for ¹H and 100 MHz for ¹³C), using CDCl₃ or Acetone- d_6 as the solvent with tetramethylsilane (TMS) as an internal standard at room temperature. Chemical shifts are given in δ relative to TMS, the coupling constants J are given in Hz. High resolution mass spectra were recorded on an ESI-Q-TOF mass spectrometry. All reactions under air atmosphere were conducted using standard Schlenk techniques. Melting points were measured on X4 melting point apparatus and uncorrected. Column chromatography was performed using EM Silica gel 60 (300-400 mesh).

3. Experimental procedures

3.1 General Procedure for the Synthesis of Cyclobutanols 2:²

A dried two-neck round-bottomed flask equipped with a condenser and a magnetic stir bar was charged with Mg turnings (291.7 mg, 12 mmol, 2.0 equiv) under argon atmosphere. Anhydrous THF (0.5 mmol/mL) were added gradually. Then iodine (76.1 mg, 0.3 mmol, 0.05 equiv) was added under N_2 . After stirring at room temperature for 10 min, bromobenzene (6.6 mmol, 1.1 equiv) in anhydrous THF (1

mmol/mL) was then added dropwise. The reaction was then placed in an oil bath and heated at reflux for 3 h. After cooling to room temperature, cyclobutanone (420.5 mg, 6.0 mmol, 1.0 equiv) was added. After stirring for 8 h, the reaction was quenched with saturated aqueous NH₄Cl. The aqueous layer was extracted with ethyl acetate (3×30 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified via column chromatography on silica gel (ethyl acetate/petroleum ether = 1/10, v/v) to give corresponding 1-substituted cyclobutanols **2**.

3.2 General Procedure for the Synthesis of Benzazepines 3:

A Schlenk tube with a magnetic stirring bar was charged with 1 (0.2 mmol, 1.0 equiv), 2 (0.22 mmol, 1.1 equiv), PdCl₂ (1.7 mg, 0.01 mmol, 5 mol%), PCy₃ (5.6 mg, 0.02 mmol, 10 mol%), Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv), and 4Å MS (100.0 mg) in anhydrous toluene (2 mL). The mixture was stirred under N₂ atmosphere and heated at 110 °C. After 12 h, the reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography using petroleum ether/ethyl acetate as the eluent to afford the desired products **3a-3z**.

3.3 Gram Scale Reaction of Product 3a:

A Schlenk tube with a magnetic stirring bar was charged with **1a** (1.38 g, 8.0 mmol, 1.0 equiv), **2a** (1.30 g, 8.8 mmol, 1.1 equiv), $PdCl_2$ (70.9 mg, 0.4 mmol, 5 mol%), PCy_3 (224.3 mg, 0.8 mmol, 10 mol%), Cs_2CO_3 (5.21 g, 16.0 mmol, 2.0 equiv) in anhydrous toluene (80 mL). The mixture was stirred under N₂ atmosphere and heated at 110 °C. After 12 h, the reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography using petroleum

ether/ethyl acetate as the eluent to afford the desired products **3a** (1.38 g, 78% yield). **3.4 General Procedure for the Synthesis of Tetrahydrobenzazepine 4**:³

A mixture of benzo[*b*]azepine **3a** (66.3 mg, 0.3 mmol) and NaBH₄ (17.0 mg, 0.45 mmol, 1.5 equiv) in MeOH (2 mL) was stirred at room temperature for 1 h. The reaction mixture was cooled to the room temperature, and concentrated under reduced pressure. The residue was purified by flash column chromatography using petroleum ether/ethyl acetate as the eluent to afford the desired product **4** (40.1 mg, 60% yield).

3.5 General Procedure for the Synthesis of Quinoline 5:⁴

A mixture of benzo[*b*]azepine **3** (0.1 mmol), *n*-Bu₄NI (7.4 mg, 0.02 mmol, 20 mol%), $K_2S_2O_8$ (108.1 mg, 0.4 mmol, 4.0 equiv) and acetic acid (18.0 mg, 0.3 mmol, 3.0 equiv) in 1 mL toluene was stirred in a Schlenk tube at 90 °C. After stirring for 16 h, the reaction mixture was cooled to the room temperature, and concentrated under reduced pressure. The residue was purified by flash column chromatography using petroleum ether/ethyl acetate as the eluent to afford the quinoline **5**.

3.6 General Procedure for the Synthesis of intermediate 6:5

A Schlenk tube with a magnetic stirring bar was charged with 1-bromo-2nitrobenzene1 (2.02 g, 10 mmol, 1.0 equiv), 1-phenylcyclobutan-1-ol (1.63 g, 11 mmol, 1.1 equiv), PdCl₂ (88.7 mg, 0.5 mmol, 5 mol%), PCy₃ (280.4 mg, 1 mmol, 10 mol%) and Cs₂CO₃ (6.52 g, 20 mmol, 2.0 equiv) in anhydrous toluene (20 mL). The mixture was stirred under N₂ atmosphere and heated at 110 °C. After 12 h, the reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography using petroleum ether/ethyl acetate as the eluent to afford 4-(2-nitrophenyl)-1-phenylbutan-1-one.

To a round flask were added 4-(2-nitrophenyl)-1-phenylbutan-1-one (1.35 g, 5 mmol), Fe powder (1.96 g, 35 mmol), AcOH (5 mL), CH_2Cl_2 : EtOH (1:1, 15 mL), and H_2O (5 mL) subsequently, and the mixture continued stirring for 1 h at room temperature. After filtration, saturated NaHCO₃ solution was added to the mother liquor. The water layer was extracted CH_2Cl_2 (3×20 mL) and combined organic layer were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography using petroleum ether/ethyl acetate as the eluent to afford 4-(2-aminophenyl)-1-phenylbutan-1-one.

4. Analytical Data for All Compounds.

2-phenyl-4,5-dihydro-3H-benzo[b]azepine (3a)⁶

Yellow oil obtained by column chromatography (Petroleum ether/ethyl acetate = 60:1), 38.4 mg, yield: 87%; ¹H NMR (500 MHz, CDCl₃) δ 8.02-8.00 (m, 2H), 7.48-7.47 (m, 3H), 7.34-7.31 (m, 1H), 7.20-7.18 (m, 2H), 7.10-7.07 (m, 1H), 2.65 (t, *J* = 7.0 Hz, 2H), 2.56 (t, *J* = 7.5 Hz, 2H), 2.42-2.37 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 171.4, 149.9, 139.2, 131.3, 130.4, 128.8, 128.5, 127.2, 124.5, 123.8, 34.5, 30.3, 28.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₆N⁺: 222.1277; Found 222.1271.

7-methyl-2-phenyl-4,5-dihydro-3H-benzo[b]azepine (3b)

Yellow oil obtained by column chromatography (Petroleum ether/ethyl acetate = 60:1), 33.8 mg, yield: 72%; ¹H NMR (500 MHz, CDCl₃) δ 7.98-7.96 (m, 2H), 7.43-7.42 (m, 3H), 7.11-7.06 (m, 2H), 6.98 (s, 1H), 2.61 (t, *J* = 7.5 Hz, 2H), 2.49 (t, *J* = 7.5 Hz, 2H), 2.37-2.31 (m, 5H). ¹³C NMR (125 MHz, CDCl₃) δ 171.0, 147.3, 139.3, 134.0, 131.2, 130.2, 129.4, 128.4, 127.7, 127.1, 123.8, 34.5, 30.3, 28.8, 20.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₈N⁺: 236.1434; Found 236.1424.

8-methyl-2-phenyl-4,5-dihydro-3H-benzo[b]azepine (3c)⁶

Yellow oil obtained by column chromatography (Petroleum ether/ethyl acetate = 60:1), 40.9 mg, yield: 87%; ¹H NMR (500 MHz, CDCl₃) δ 8.02-8.00 (m, 2H), 7.48-7.46 (m, 3H), 7.08 (d, *J* = 7.5 Hz, 1H), 7.03 (s, 1H), 6.90 (d, *J* = 7.5 Hz, 1H), 2.65 (t, *J* = 7.0 Hz, 2H), 2.52 (t, *J* = 7.0 Hz, 2H), 2.40-2.34 (m, 5H). ¹³C NMR (125 MHz, CDCl₃) δ 171.3, 149.7, 139.2, 136.8, 130.3, 128.6, 128.5, 128.3, 127.2, 125.3, 124.5, 34.5, 29.9, 28.9, 21.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₈N⁺: 236.1434; Found 236.1427.

9-methyl-2-phenyl-4,5-dihydro-3H-benzo[b]azepine (3d)

Yellow oil obtained by column chromatography (Petroleum ether/ethyl acetate = 60:1), 27.2 mg, yield: 58%; ¹H NMR (500 MHz, CDCl₃) δ 7.96-7.94 (m, 2H), 7.37-7.35 (m, 3H), 7.05 (d, *J* = 7.0 Hz, 1H), 6.93-6.87 (m, 2H), 2.52 (t, *J* = 7.5 Hz, 2H), 2.41 (t, *J* = 7.5 Hz, 2H), 2.29-2.23 (m, 5H). ¹³C NMR (125 MHz, CDCl₃) δ 169.5, 148.0, 139.2, 131.7, 130.7, 130.2, 128.6, 128.5, 127.1, 126.2, 124.3, 34.4, 30.4, 28.8, 17.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₈N⁺: 236.1434; Found 236.1426.

7-methoxy-2-phenyl-4,5-dihydro-3H-benzo[b]azepine (3e)⁶

Yellow oil obtained by column chromatography (Petroleum ether/ethyl acetate = 60:1), 27.7 mg, yield: 55%; ¹H NMR (500 MHz, CDCl₃) δ 8.01-7.98 (m, 2H), 7.47-7.45 (m, 3H), 7.14 (d, *J* = 8.5 Hz, 1H), 6.87 (dd, *J* = 8.5, 3.0 Hz, 1H), 6.77(d, *J* = 3.0 Hz, 1H), 3.83 (s, 3H), 2.65 (t, *J* = 7.5 Hz, 2H), 2.53 (t, *J* = 7.5 Hz, 2H), 2.41-2.36 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 170.7, 156.5, 143.2, 139.4, 132.8, 130.1, 128.4, 127.0, 125.1, 114.4, 112.0, 55.3, 34.2, 30.8, 28.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₈NO⁺: 252.1383; Found 252.1385.

2-phenyl-8-(trifluoromethyl)-4,5-dihydro-3H-benzo[b]azepine (3f)

Yellow oil obtained by column chromatography (Petroleum ether/ethyl acetate = 60:1), 40.5 mg, yield: 70%; ¹H NMR (500 MHz, CDCl₃) δ 8.02-8.00 (m, 2H), 7.52-7.46 (m, 3H), 7.44 (s, 1H), 7.33-7.28 (m, 2H), 2.66 (t, *J* = 7.5 Hz, 2H), 2.60 (t, *J* = 7.5 Hz, 2H), 2.45-2.39 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 172.7, 150.3, 138.6, 135.1, 130.9, 129.8 (²*J* = 32.1 Hz), 129.2, 128.6, 127.3, 124.3 (¹*J* = 270.4 Hz), 121.1 (³*J* = 3.6 Hz), 120.7 (³*J* = 3.6 Hz), 34.3, 30.2, 28.7. ¹⁹F NMR (470 MHz, CDCl₃): δ - 62.403(s, 3F). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₅F₃N⁺: 290.1151; Found 290.1150.

methyl 2-phenyl-4,5-dihydro-3H-benzo[b]azepine-8-carboxylate (3g)

Yellow oil obtained by column chromatography (Petroleum ether/ethyl acetate = 60:1), 44.1 mg, yield: 79%; ¹H NMR (500 MHz, CDCl₃) δ 8.01-8.00 (m, 2H), 7.84 (s, 1H), 7.75 (dd, *J* = 7.5, 1.0 Hz,1H), 7.48-7.47 (m, 3H), 7.25 (d, *J* = 7.0 Hz, 1H), 3.92 (s, 3H), 2.65-2.58 (m, 4H), 2.44-2.38 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 172.1, 167.1, 150.0, 138.8, 136.6, 130.7, 129.4, 128.9, 128.6, 127.2, 125.7, 124.9, 52.0, 34.2, 30.4, 28.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₈NO₂⁺: 280.1332; Found 280.1325.

8-fluoro-2-phenyl-4,5-dihydro-3H-benzo[b]azepine (3h)⁶

Yellow oil obtained by column chromatography (Petroleum ether/ethyl acetate = 60:1), 36.3 mg, yield: 76%; ¹H NMR (500 MHz, CDCl₃) δ 8.01-7.99 (m, 2H), 7.51-7.45 (m, 3H), 7.12 (dd, J = 8.0, 6.5 Hz, 1H), 6.90 (dd, J = 10.0, 2.5 Hz, 1H), 6.77 (td, J = 8.5, 2.5 Hz 1H), 2.65 (t, J = 7.5 Hz, 2H), 2.51 (t, J = 7.5 Hz, 2H), 2.40-2.34 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 172.4, 162.3 (¹J = 241.9 Hz), 151.3 (³J = 10.0 Hz), 138.8, 130.7, 129.6(³J = 8.9 Hz), 128.6, 127.3, 127.0 (⁴J = 3.0 Hz), 111.0 (²J = 21.1 Hz), 110.7 (²J = 22.5 Hz), 34.5, 29.6, 28.9. ¹⁹F NMR (470 MHz, Acetone- d_6) δ - 59.464 (s, 1F). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₅FN⁺: 240.1183; Found 240.1178.

7-chloro-2-phenyl-4,5-dihydro-3H-benzo[b]azepine (3i)

Yellow oil obtained by column chromatography (Petroleum ether/ethyl acetate = 60:1), 39.8 mg, yield: 78%; ¹H NMR (500 MHz, CDCl₃) δ 7.99-7.97 (m, 2H), 7.49-7.44 (m, 3H), 7.27-7.25 (m, 1H), 7.17 (d, J = 2.5 Hz, 1H), 7.09 (d, J = 8.5 Hz, 1H), 2.63 (t, J = 7.5 Hz, 2H), 2.51 (t, J = 7.5 Hz, 2H), 2.40-2.35 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 172.0, 148.4, 138.8, 133.1, 130.6, 129.4, 128.64, 128.59, 127.21, 127.18, 125.2, 34.2, 30.2, 28.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₅ClN⁺:

256.0888; Found 256.0877.

8-chloro-2-phenyl-4,5-dihydro-3H-benzo[b]azepine (3j)⁶

Yellow oil obtained by column chromatography (Petroleum ether/ethyl acetate = 60:1), 39.8 mg, yield: 78%; ¹H NMR (500 MHz, CDCl₃) δ 8.00-7.98 (m, 2H), 7.49-7.46 (m, 3H), 7.18 (d, *J* = 2.0 Hz, 1H), 7.10 (d, *J* = 8.0 Hz, 1H), 7.04 (dd, *J* = 8.0, 2.0 Hz, 1H), 2.64 (t, *J* = 7.5 Hz, 2H), 2.52 (t, *J* = 7.5 Hz, 2H), 2.40-2.34 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 172.5, 151.1, 138.7, 132.7, 130.7, 129.8, 128.6, 127.3, 124.4, 123.8, 34.3, 29.8, 28.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₅ClN⁺: 256.0888; Found 256.0884.

2-phenyl-4,5-dihydro-3H-naphtho[1,2-b]azepine (3k)

Yellow oil obtained by column chromatography (Petroleum ether/ethyl acetate = 60:1), 28.2 mg, yield: 52%; ¹H NMR (500 MHz, CDCl₃) δ 8.34 (d, *J* = 8.0 Hz, 1H), 8.19-8.18 (m, 2H), 7.84 (d, *J* = 7.5 Hz, 1H), 7.61 (d, *J* = 8.0 Hz, 1H), 7.53-7.48 (m, 5H), 7.36 (d, *J* = 8.0 Hz, 1H), 2.72-2.68 (m, 4H), 2.58-2.53 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 171.6, 144.8, 139.3, 133.2, 130.4, 129.0, 128.6, 127.7, 127.5, 127.3, 126.7, 125.45, 125.37, 124.4, 124.0, 36.5, 30.7, 29.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₁₈N⁺: 272.1434; Found 272.1428.

2-(o-tolyl)-4,5-dihydro-3H-benzo[b]azepine (3l)

Yellow oil obtained by column chromatography (Petroleum ether/ethyl acetate = 60:1), 35.7 mg, yield: 76%; ¹H NMR (500 MHz, CDCl₃) δ 7.44-7.42 (m, 1H), 7.31-7.23 (m, 4H), 7.20-7.16 (m, 2H), 7.08 (t, *J* = 7.0 Hz, 1H), 2.65 (t, *J* = 7.0 Hz, 2H), 2.53-2.50 (m, 5H), 2.40-2.35 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 175.3, 149.3, 141.4, 135.3, 131.2, 131.0, 128.8, 128.7, 127.9, 127.2, 125.8, 124.7, 124.0, 34.6, 32.6, 30.5, 20.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₈N⁺: 236.1434; Found

236.1433.

2-(p-tolyl)-4,5-dihydro-3H-benzo[b]azepine (3m)⁶

Yellow oil obtained by column chromatography (Petroleum ether/ethyl acetate = 60:1), 40.4 mg, yield: 86%; ¹H NMR (500 MHz, CDCl₃) δ 7.90 (d, *J* = 8.0 Hz, 2H), 7.31-7.25 (m, 3H), 7.18-7.15 (m, 2H), 7.07-7.03 (m, 1H), 2.62 (t, *J* = 7.5 Hz, 2H), 2.53 (t, *J* = 7.0 Hz, 2H), 2.41 (s, 3H), 2.39-2.33 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 171.2, 150.0, 140.7, 136.4, 131.4, 129.2, 128.7, 127.19, 127.15, 124.4, 123.8, 34.5, 30.3, 28.7, 21.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₈N⁺: 236.1434; Found 236.1424.

2-(3,5-dimethylphenyl)-4,5-dihydro-3H-benzo[b]azepine (3n)

Yellow oil obtained by column chromatography (Petroleum ether/ethyl acetate = 60:1), 36.9 mg, yield: 74%; ¹H NMR (500 MHz, CDCl₃) δ 7.62 (s, 2H), 7.33-7.30 (m, 1H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.13 (s, 1H), 7.09-7.06 (m, 1H), 2.64 (t, *J* = 7.0 Hz, 2H), 2.56 (t, *J* = 7.5 Hz, 2H), 2.41-2.36 (m, 8H). ¹³C NMR (125 MHz, CDCl₃) δ 171.8, 149.9, 139.2, 138.0, 132.1, 131.3, 128.7, 127.1, 125.0, 124.4, 123.8, 34.6, 30.3, 28.9, 21.3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₂₀N⁺: 250.1590; Found 250.1583.

2-(4-(tert-butyl)phenyl)-4,5-dihydro-3H-benzo[b]azepine (30)

Yellow oil obtained by column chromatography (Petroleum ether/ethyl acetate = 60:1), 41.0 mg, yield: 74%; ¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, *J* = 8.0 Hz, 2H), 7.50 (d, *J* = 8.0 Hz, 2H), 7.32 (t, *J* = 7.5 Hz, 1H), 7.19 (d, *J* = 7.0 Hz, 2H), 7.08 (t, *J* = 7.5 Hz, 1H), 7.19 (d, *J* = 7.0 Hz, 2H), 7.08 (t, *J* = 7.5 Hz, 1H), 7.19 (d, *J* = 7.0 Hz, 2H), 7.08 (t, *J* = 7.5 Hz, 1H), 7.19 (d, *J* = 7.0 Hz, 2H), 7.08 (t, *J* = 7.5 Hz, 1H), 7.19 (d, *J* = 7.0 Hz, 2H), 7.08 (t, *J* = 7.5 Hz, 1H), 7.19 (d, *J* = 7.0 Hz, 2H), 7.08 (t, *J* = 7.5 Hz, 1H), 7.19 (d, *J* = 7.0 Hz, 2H), 7.08 (t, *J* = 7.5 Hz, 1H), 7.19 (d, *J* = 7.0 Hz, 2H), 7.08 (t, *J* = 7.5 Hz, 1H), 7.19 (d, *J* = 7.0 Hz, 2H), 7.08 (t, *J* = 7.5 Hz, 1H), 7.19 (d, *J* = 7.0 Hz, 2H), 7.08 (t, *J* = 7.5 Hz, 1H), 7.19 (d, *J* = 7.0 Hz, 2H), 7.08 (t, *J* = 7.5 Hz, 1H), 7.19 (d, *J* = 7.0 Hz, 2H), 7.08 (t, *J* = 7.5 Hz, 1H), 7.19 (d, *J* = 7.0 Hz, 2H), 7.08 (t, *J* = 7.5 Hz, 1H), 7.19 (d, *J* = 7.0 Hz, 2H), 7.08 (t, *J* = 7.5 Hz, 1H), 7.19 (d, *J* = 7.0 Hz, 2H), 7.08 (t, *J* = 7.5 Hz, 1H), 7.19 (d, *J* = 7.0 Hz, 2H), 7.08 (t, *J* = 7.5 Hz, 1H), 7.19 (d, *J* = 7.0 Hz, 2H), 7.08 (t, *J* = 7.5 Hz, 1H), 7.19 (d, *J* = 7.0 Hz, 2H), 7.08 (t, *J* = 7.5 Hz, 1H), 7.19 (d, *J* = 7.0 Hz, 2H), 7.08 (t, J = 7.5 Hz, 1H), 7.19 (d, J = 7.0 Hz, 2H), 7.08 (t, J = 7.5 Hz, 1H), 7.19 (d, J = 7.0 Hz, 2H), 7.08 (t, J = 7.5 Hz, 1H), 7.19 (d, J = 7.0 Hz, 1H), 7.19 (d

7.5 Hz, 1H), 2.65 (t, J = 7.0 Hz, 2H), 2.56 (t, J = 7.0 Hz, 2H), 2.41-2.36 (m, 2H), 1.38 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 171.2, 153.9, 150.0, 136.2, 131.4, 128.7, 127.2, 127.0, 125.5, 124.4, 123.9, 34.8, 34.5, 31.2, 30.3, 28.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₄N⁺: 278.1903; Found 278.1906.

2-(4-methoxyphenyl)-4,5-dihydro-3H-benzo[b]azepin (3p)⁷

Yellow oil obtained by column chromatography (Petroleum ether/ethyl acetate = 60:1), 33.1 mg, yield: 66%; ¹H NMR (500 MHz, CDCl₃) δ 8.00-7.98 (m, 2H), 7.30 (td, J = 7.5, 1.0 Hz, 1H), 7.17 (t, J = 7.5 Hz, 2H), 7.06 (td, J = 7.5, 1.0 Hz, 1H), 6.99-6.97 (m, 2H), 3.87 (s, 3H), 2.63 (t, J = 7.5 Hz, 2H), 2.54 (t, J = 7.5 Hz, 2H), 2.39-2.33 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 170.5, 161.6, 150.1, 131.7, 131.3, 128.9, 128.7, 127.1, 124.2, 123.8, 113.8, 55.4, 34.3, 30.3, 28.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₈NO⁺: 252.1383; Found 252.1378.

2-(3-methoxyphenyl)-4,5-dihydro-3H-benzo[b]azepine (3q)⁶

Yellow oil obtained by column chromatography (Petroleum ether/ethyl acetate = 60:1), 30.1 mg, yield: 60%; ¹H NMR (500 MHz, CDCl₃) δ 7.62 (s, 1H), 7.54 (d, *J* = 7.5 Hz, 1H), 7.37 (t, *J* = 7.5 Hz, 1H), 7.32 (t, *J* = 7.5 Hz, 1H), 7.20-7.17 (m, 2H), 7.09-7.02 (m, 2H), 3.90 (s, 3H), 2.63 (t, *J* = 7.5 Hz, 2H), 2.55 (t, *J* = 7.0 Hz, 2H), 2.41-2.36 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 171.2, 159.9, 149.8, 140.6, 131.3, 129.4, 128.8, 127.2, 124.6, 123.8, 119.8, 116.6, 112.0, 55.4, 34.6, 30.3, 28.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₈NO⁺: 252.1383; Found 252.1386.

2-(benzo[d][1,3]dioxol-5-yl)-4,5-dihydro-3H-benzo[b]azepine (3r)

Yellow oil obtained by column chromatography (Petroleum ether/ethyl acetate = 60:1), 39.2 mg, yield: 74%; ¹H NMR (500 MHz, CDCl₃) δ 7.61 (s, 1H), 7.47 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.30 (t, *J* = 7.5 Hz, 1H), 7.18-7.13 (m, 2H), 7.05 (t, *J* = 7.5 Hz, 1H), 6.87 (d, *J* = 8.0 Hz, 1H), 6.03 (s, 2H), 2.59 (t, *J* = 7.0 Hz, 2H), 2.53 (t, *J* = 7.0 Hz, 2H), 2.38-2.32 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 170.3, 149.9, 149.7, 148.2, 133.7, 131.3, 128.7, 127.2, 124.4, 123.8, 122.1, 107.9, 107.3, 101.5, 34.4, 30.3, 28.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₆NO₂⁺: 266.1176; Found 266.1168.

2-(4-fluorophenyl)-4,5-dihydro-3H-benzo[b]azepine (3s)⁶

Yellow solid obtained by column chromatography (Petroleum ether/ethyl acetate = 60:1), 33.5 mg, yield: 70%; m.p.: 117.5-118.8 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.03-8.00 (m, 2H), 7.32 (td, *J* = 7.5, 1.0 Hz, 1H), 7.20-7.13 (m, 4H), 7.08 (td, *J* = 7.5, 1.0 Hz, 1H), 2.62 (t, *J* = 7.5 Hz, 2H), 2.55 (t, *J* = 7.5 Hz, 2H), 2.41-2.35 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 170.1, 164.3 (¹*J* = 249.3 Hz), 149.7, 135.3 (⁴*J* = 3.0 Hz), 131.2, 129.3 (³*J* = 8.5 Hz), 128.8, 127.2, 124.6, 123.8, 115.4 (²*J* = 21.5 Hz), 34.4, 30.3, 28.7. ¹⁹F NMR (470 MHz, CDCl₃) δ -110.384 (s, 1F). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₅FN⁺: 240.1183; Found 240.1181.

2-(4-chlorophenyl)-4,5-dihydro-3H-benzo[b]azepine (3t)⁶

Yellow solid obtained by column chromatography (Petroleum ether/ethyl acetate = 60:1), 29.1 mg, yield: 57%; m.p.: 116.4-118.4 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, *J* = 8.5 Hz, 2H), 7.43 (d, *J* = 8.5 Hz, 2H), 7.32 (td, *J* = 7.5, 1.0 Hz, 1H), 7.20-7.15 (m, 2H), 7.08 (td, *J* = 7.5, 1.0 Hz, 1H), 2.61 (t, *J* = 7.5 Hz, 2H), 2.54 (t, *J* = 7.5 Hz, 2H), 2.41-2.35 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 170.2, 149.6, 137.5, 136.6, 131.2, 128.8, 128.7, 128.5, 127.3, 124.7, 123.8, 34.5, 30.3, 28.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₅ClN⁺: 256.0888; Found 256.0887.

2-(3-(trifluoromethyl)phenyl)-4,5-dihydro-3H-benzo[b]azepine (3u)

Yellow oil obtained by column chromatography (Petroleum ether/ethyl acetate = 60:1), 49.7 mg, yield: 86%; ¹H NMR (500 MHz, CDCl₃) δ 8.29 (s, 1H), 8.18 (d, *J* = 8.0 Hz, 1H), 7.73 (d, *J* = 7.5 Hz, 1H), 7.59 (t, *J* = 8.0 Hz, 1H), 7.34 (t, *J* = 7.5 Hz, 1H), 7.22-7.19 (m, 2H), 7.11 (t, *J* = 7.5 Hz, 1H), 2.66 (t, *J* = 7.5 Hz, 2H), 2.56 (t, *J* = 7.5 Hz, 2H), 2.45-2.39 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 169.9, 149.4, 139.9, 131.2, 131.1 (²*J* = 32.3 Hz), 130.4, 129.0, 128.9, 127.3, 126.9 (³*J* = 3.7 Hz), 125.0, 124.1 (¹*J* = 270.8 Hz), 124.0 (³*J* = 3.9 Hz), 123.9, 34.6, 30.3, 28.7. ¹⁹F NMR (470 MHz, CDCl₃) δ -62.599 (s, 3F). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₅F₃N⁺: 290.1151; Found 290.1153.

2-(naphthalen-2-yl)-4,5-dihydro-3H-benzo[b]azepine (3v)

Yellow solid obtained by column chromatography (Petroleum ether/ethyl acetate = 60:1), 51.5 mg, yield: 95%; m.p.: 95.8-99.2 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.26 (s, 1H), 8.16 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.84-7.76 (m, 3H), 7.44-7.40 (m, 2H), 7.23 (t, *J* = 7.5 Hz, 1H), 7.14-7.10 (m, 2H), 6.99 (t, *J* = 7.0 Hz, 1H), 2.66 (t, *J* = 7.5 Hz, 2H), 2.48 (t, *J* = 7.5 Hz, 2H), 2.37-2.31 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 171.2, 150.0, 136.4, 134.4, 133.1, 131.3, 128.85, 128.79, 128.2, 127.7, 127.5, 127.2, 127.1, 126.4, 124.6, 124.3, 123.9, 34.6, 30.4, 28.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₁₈N⁺: 272.1434; Found 272.1428.

2-([1,1'-biphenyl]-4-yl)-4,5-dihydro-3H-benzo[b]azepine (3w)

Yellow solid obtained by column chromatography (Petroleum ether/ethyl acetate = 60:1), 27.9 mg, yield: 47%; m.p.: 115.9-117.1 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.01-7.99 (m, 2H), 7.62-7.56 (m, 4H), 7.40-7.37 (m, 2H), 7.31-7.28 (m, 1H), 7.25-7.22 (m, 1H), 7.12-7.10 (m, 2H), 7.01-6.97 (m, 1H), 2.60-2.57 (m, 2H), 2.50-2.46 (m, 2H), 2.34-2.27 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 170.9, 150.0, 143.2, 140.4, 137.9, 131.3, 128.9, 128.8, 127.73, 127.71, 127.2, 127.1, 124.6, 123.9, 34.6, 30.4, 28.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₀N⁺: 298.1590; Found 298.1598.

2-(thiophen-2-yl)-4,5-dihydro-3H-benzo[b]azepine (3x)

Yellow oil obtained by column chromatography (Petroleum ether/ethyl acetate = 60:1), 27.2mg, yield: 60%; ¹H NMR (500 MHz, CDCl₃) δ 7.52-7.49 (m, 2H), 7.29 (t, J = 7.5 Hz, 1H), 7.18-7.15 (m, 2H), 7.12-7.10 (m, 1H), 7.06 (t, J = 7.5 Hz, 1H), 2.65 (t, J = 7.5 Hz, 2H), 2.57 (t, J = 7.5 Hz, 2H), 2.40-2.34 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 165.8, 149.3, 145.8, 131.6, 130.4, 128.8, 128.3, 127.6, 127.2, 124.6, 124.2, 34.1, 30.3, 29.3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₄NS⁺: 228.0841; Found 228.0831.

2,4-diphenyl-4,5-dihydro-3H-benzo[b]azepine (3y)

Yellow oil obtained by column chromatography (Petroleum ether/ethyl acetate = 60:1), 53.5 mg, yield: 90%; ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, *J* = 7.0 Hz, 2H), 7.45-7.39 (m, 3H), 7.35 (t, *J* = 7.5 Hz, 1H), 7.27-7.18 (m, 6H), 7.13-7.07 (m, 2H), 3.88-3.84 (m, 1H), 3.01-2.96 (m, 2H), 2.83-2.72 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 169.9, 149.6, 144.8, 139.0, 130.5, 129.9, 129.7, 128.6, 128.5, 127.5, 127.4, 126.9, 126.8, 124.8, 124.3, 52.6, 37.5, 36.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₀N⁺: 298.1590; Found 298.1583.

4-((benzyloxy)methyl)-2-phenyl-4,5-dihydro-3H-benzo[b]azepine (3z)

Yellow oil obtained by column chromatography (Petroleum ether/ethyl acetate = 60:1), 53.7 mg, yield: 79%; ¹H NMR (500 MHz, CDCl₃) δ 8.11-8.09 (m, 2H), 7.52-7.46 (m, 3H), 7.42-7.33 (m, 6H), 7.22 (d, *J* = 7.5 Hz, 1H), 7.15 (d, *J* = 6.5 Hz, 1H), 7.09 (td, *J* = 7.0, 1.0 Hz, 1H), 4.57-4.50 (q, *J* = 10.0 Hz, 2H), 3.49-3.38 (m, 2H), 3.02-2.94 (m, 1H), 2.73-2.56 (m, 3H), 2.44-2.40 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 170.2, 149.6, 139.4, 138.2, 130.4, 129.5, 129.4, 128.5, 128.4, 127.7, 127.6, 127.3, 127.2, 124.5, 124.0, 73.2, 72.7, 47.2, 32.9, 31.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₄H₂₄NO⁺: 342.1852; Found 342.1853.

2-phenylquinoline (3aa)⁸

White solid obtained by column chromatography (Petroleum ether/ethyl acetate = 60:1), 23.1 mg, yield: 56%; m.p.: 85.2-86.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 8.4 Hz, 1H), 8.22-8.17 (m, 3H), 7.85 (d, J = 8.8 Hz, 1H), 7.81 (d, J = 8.4 Hz, 1H), 7.77-7.73 (m, 1H), 7.58-7.47 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 157.2, 148.2, 139.6, 136.6, 129.6, 129.5, 129.2, 128.7, 127.5, 127.4, 127.1, 126.2, 118.9.

2-phenyl-2,3,4,5-tetrahydro-1H-benzo[b]azepine (4)⁹

Light yellow oil obtained by column chromatography (Petroleum ether/ethyl acetate = 60:1), 40.1 mg, yield: 60%; ¹H NMR (500 MHz, CDCl₃) δ 7.46-7.31 (m, 5H), 7.16 (d, J = 7.0 Hz, 1H), 7.07 (t, J = 7.5 Hz, 1H), 6.89 (t, J = 7.5 Hz, 1H), 6.74 (d, J = 8.0 Hz, 1H), 3.84 (d, J = 10.5 Hz, 1H), 3.71 (brs, 1H), 2.93-2.83 (m, 2H), 2.07-1.91 (m, 3H), 1.53-1.46 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 149.0, 146.1, 133.8, 130.6, 128.8, 127.4, 126.7, 126.5, 121.3, 120.0, 63.9, 40.0, 35.5, 26.6. HRMS (ESI) m/z: [M + H]+ Calcd for C₁₆H₁₈N⁺: 224.1434; Found 224.1434.

phenyl(quinolin-2-yl)methanone (5a)¹⁰

Light yellow solid obtained by column chromatography (Petroleum ether/ethyl acetate = 30:1), 17.1 mg, yield: 73%; m.p.: 105.3-106.7 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.35 (d, *J* = 8.5 Hz, 1H), 8.25-8.23 (m, 2H), 8.21-8.20 (m, 1H), 8.11 (d, *J* = 8.5 Hz, 1H), 7.91 (d, *J* = 8.0 Hz, 1H), 7.80-7.77 (m, 1H), 7.68-7.61(m, 2H), 7.53-7.50 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 193.7, 154.7, 146.8, 137.0, 136.2, 133.0, 131.4, 130.5, 130.0, 128.9, 128.4, 128.1, 127.6, 120.8. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₆H₁₁NONa⁺: 256.0733; Found 256.0734.

(6-methylquinolin-2-yl)(phenyl)methanone (5b)¹¹

Yellow solid obtained by column chromatography (Petroleum ether/ethyl acetate = 30:1), 18.5 mg, yield: 75%; m.p.: 76.8-78.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.24-8.23 (m, 3H), 8.10-8.08 (m, 2H), 7.66 (s, 1H), 7.62-7.60 (m, 2H), 7.51 (t, *J* = 7.2 Hz, 2H), 2.58 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 193.8, 153.8, 145.3, 138.7, 136.29, 136.27, 132.9, 132.4, 131.4, 130.2, 129.0, 128.1, 126.4, 120.8, 21.8.

(6-methoxyquinolin-2-yl)(phenyl)methanone (5c)¹²

Gray solid obtained by column chromatography (Petroleum ether/ethyl acetate = 30:1), 16.8 mg, yield: 64%; m.p.: 112.8-113.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.23-8.20 (m, 3H), 8.13-8.07 (m, 2H), 7.62-7.60 (m, 1H), 7.53-7.51 (m, 2H), 7.44-7.41 (m, 1H), 7.14 (s, 1H), 3.98 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 193.7, 159.4, 152.3, 142.8, 136.4, 135.5, 132.8, 132.0, 131.4, 130.3, 128.0, 123.1, 121.3, 104.8, 55.6.

(6-chloroquinolin-2-yl)(phenyl)methanone (5d)¹²

Light yellow solid obtained by column chromatography (Petroleum ether/ethyl acetate = 30:1), 18.2 mg, yield: 68%; m.p.: 145.2-146.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 8.4 Hz, 1H), 8.22 (d, *J* = 7.6 Hz, 2H), 8.14 (d, *J* = 8.4 Hz, 2H), 7.90 (d, *J* = 1.2 Hz, 1H), 7.73 (dd, *J* = 8.8, 1.6 Hz, 1H), 7.64 (t, *J* = 7.2 Hz, 1H), 7.52 (t, *J* = 7.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 193.4, 154.8, 145.1, 136.2, 136.0, 134.4, 133.2, 132.1, 131.4, 131.2, 129.5, 128.2, 126.3, 121.7.

(7-chloroquinolin-2-yl)(phenyl)methanone (5e)¹²

White solid obtained by column chromatography (Petroleum ether/ethyl acetate = 30:1), 15.0 mg, yield: 56%; m.p.: 89.7-90.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, J = 8.4 Hz, 1H), 8.22-8.21 (m, 3H), 8.11 (d, J = 8.4 Hz, 1H), 7.85 (d, J = 8.8 Hz, 1H), 7.66-7.60 (m, 2H), 7.52 (t, J = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 193.4, 155.5, 147.0, 137.0, 136.1, 135.9, 133.2, 131.4, 129.44, 129.38, 128.8, 128.2, 127.2, 121.0.

benzo[h]quinolin-2-yl(phenyl)methanone (5f)¹²

Red solid obtained by column chromatography (Petroleum ether/ethyl acetate = 30:1), 11.3 mg, yield: 40%; m.p.: 108.3-109.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.17-9.15 (m, 1H), 8.39-8.30 (m, 4H), 7.95-7.91 (m, 2H), 7.78-7.65 (m, 4H), 7.57 (t, *J* = 7.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 193.6, 152.8, 145.0, 136.73, 136.70, 133.8, 132.7, 131.8, 131.6, 130.0, 128.6, 128.0, 127.9, 127.7, 127.6, 124.9, 124.8, 121.9.

quinolin-2-yl(p-tolyl)methanone (5g)¹⁰

Brown solid obtained by column chromatography (Petroleum ether/ethyl acetate = 30:1), 14.1 mg, yield: 57%; m.p.: 62.2-63.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.33 (d, J = 8.8 Hz, 1H), 8.20 (d, J = 8.4 Hz, 1H), 8.15 (d, J = 8.0 Hz, 2H), 8.07 (d, J = 8.4 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.78 (t, J = 7.6 Hz, 1H), 7.64 (t, J = 7.6 Hz, 1H), 7.31 (d, J = 8.0 Hz, 2H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 193.4, 155.0, 146.7,

(4-methoxyphenyl)(quinolin-2-yl)methanone (5h)¹⁰

White solid obtained by column chromatography (Petroleum ether/ethyl acetate = 30:1), 17.1 mg, yield: 65%; m.p.: 66.8-67.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.33 (d, J = 8.4 Hz, 1H), 8.30-8.27 (m, 2H), 8.21 (d, J = 8.8 Hz, 1H), 8.06 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.80-7.76 m, 1H), 7.67-7.63 (m, 1H), 7.01-6.98 (m, 2H), 3.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 192.2, 163.7, 155.3, 146.6, 137.0, 133.8, 130.3, 130.0, 128.9, 128.7, 128.1, 127.6, 120.8, 113.5, 55.4.

(4-chlorophenyl)(quinolin-2-yl)methanone (5i)¹⁰

Brown solid obtained by column chromatography (Petroleum ether/ethyl acetate = 30:1), 16.5 mg, yield: 62%; m.p.: 105.2-106.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, *J* = 8.4 Hz, 1H), 8.24 (d, *J* = 8.0 Hz, 2H), 8.19 (d, *J* = 8.4 Hz, 1H), 8.13 (d, *J* = 8.8 Hz, 1H), 7.91 (d, *J* = 8.4 Hz, 1H), 7.80 (t, *J* = 8.0 Hz, 1H), 7.67 (t, *J* = 7.6 Hz, 1H), 7.49 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 192.3, 154.2, 146.6, 139.5, 137.2, 134.5, 132.9, 130.5, 130.2, 129.0, 128.6, 128.4, 127.7, 120.7.

quinolin-2-yl(3-(trifluoromethyl)phenyl)methanone (5j)¹³

Light yellow oil obtained by column chromatography (Petroleum ether/ethyl acetate = 30:1), 16.9 mg, yield: 56%; ¹H NMR (400 MHz, CDCl₃) δ 8.62 (s, 1H), 8.46 (d, *J* = 7.6 Hz, 1H), 8.38 (d, *J* = 8.8 Hz, 1H), 8.21-8.17 (m, 2H), 7.92 (d, *J* = 8.4 Hz, 1H), 7.88 (d, *J* = 7.6 Hz, 1H), 7.81 (t, *J* = 7.2 Hz, 1H), 7.71-7.64 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 192.0, 153.6, 146.7, 137.4, 136.8, 134.6, 130.60 (²*J* = 32.6 Hz), 130.55, 130.3, 129.2 (³*J* = 3.5 Hz), 129.1, 128.8, 128.6, 128.5 (³*J* = 3.8 Hz), 127.7, 123.9 (¹*J* = 270.7 Hz), 120.6.

quinolin-2-yl(thiophen-2-yl)methanone (5k)14

Yellow solid obtained by column chromatography (Petroleum ether/ethyl acetate = 30:1), 9.6 mg, yield: 40%; m.p.: 96.8-97.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.51-8.50 (m, 1H), 8.35-8.25 (m, 3H), 7.91 (d, *J* = 8.0 Hz, 1H), 7.84-7.80 (m, 2H), 7.67 (t, *J* = 8.0 Hz, 1H), 7.23 (t, *J* = 4.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 183.6, 153.4, 146.7, 139.7, 137.2, 136.8, 130.3, 130.1, 129.3, 128.6, 127.7, 127.5, 119.8.

naphthalen-2-yl(quinolin-2-yl)methanone (5l)14

Yellow solid obtained by column chromatography (Petroleum ether/ethyl acetate = 30:1), 14.4 mg, yield: 51%; m.p.: 135.1-136.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.82 (s, 1H), 8.38 (d, *J* = 8.8 Hz, 1H), 8.27 (d, *J* = 8.4 Hz, 1H), 8.23 (d, *J* = 8.4 Hz, 1H), 8.16 (d, *J* = 8.4 Hz, 1H), 7.97-7.90 (m, 4H), 7.81 (t, *J* = 7.2 Hz, 1H), 7.68 (t, *J* = 7.2 Hz, 1H), 7.62 (t, *J* = 7.2 Hz, 1H), 7.54 (t, *J* = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 193.7, 155.0, 146.8, 137.1, 135.6, 134.1, 133.4, 132.4, 130.5, 130.1, 129.9, 128.9, 128.5, 128.4, 127.9, 127.72, 127.66, 126.5, 126.4, 120.9.

phenyl(3-phenylquinolin-2-yl)methanone (5m)¹⁵

Yellow solid obtained by column chromatography (Petroleum ether/ethyl acetate = 30:1), 7.7 mg, yield: 25%; m.p.: 113.2-114.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 8.19 (d, J = 8.4 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.88 (d, J = 8.0 Hz, 2H), 7.79 (t, J = 8.0 Hz, 1H), 7.66 (t, J = 7.6 Hz, 1H), 7.55 (t, J = 7.2 Hz, 1H), 7.42-7.39 (m, 4H), 7.34-7.29 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.1, 156.3, 146.0, 137.7, 137.2, 136.2, 134.0, 133.5, 130.5, 130.1, 129.7, 129.0, 128.6, 128.4, 128.1, 128.0, 127.9, 127.7.

4-(2-aminophenyl)-1-phenylbutan-1-one (6)

Colourless oil obtained by column chromatography (Petroleum ether/ethyl acetate = 10:1), 980.1mg, yield: 41%; ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 6.8 Hz, 2H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.2 Hz, 2H), 7.06-7.03 (m, 2H), 6.72-6.68 (m, 2H), 4.03 (s, 2H), 3.09 (t, *J* = 6.4 Hz, 2H), 2.57 (t, *J* = 7.6 Hz, 2H), 2.08-2.01 (m, 2H).

5. References

(1) A. Nikolaev, N. Nithiy and A. Orellana, Synlett, 2014, 25, 2301-2305.

(2) Y. Y. Hu, H. G. Luo, X. T. Tu, H. Xue, H. W. Jin, Y. K. Liu and B. W. Zhou, *Chem. Commun.*, 2021, **57**, 4686–4689.

(3) Q.-W. Song, B. Yu, X.-D. Li, R. Ma, Z.-F. Diao, R.-G. Li, W. Li, L.-N. He, *Green Chem.*, 2014, **16**, 1633-1638.

(4) D. Zhao, T. Wang, Q. Shen, J.-X. Li, Chem. Commun., 2014, 50, 4302-4304.

(5) J. Yang, C.-Q. Ke, D. Zhang, X.-H. Liu, X.-M Feng, Org. Lett. 2018, 20, 4536-4539.

(6) R.-L. Yan and D.-J. Zhuang, CN 112574108 A, 2021.

(7) G. Dyker and H. Markwitz, Synthesis 1998; 1998, 1750-1754.

(8) S. Y. Lee and C.-H. Cheon, J. Org. Chem. 2018, 83, 13036-13044.

(9) O. Villanueva, N. M. Weldy, S. B. Blakey and C. E. MacBeth, *Chem. Sci.*, 2015, **6**, 6672-6675.

(10) W. Ali, A. Behera, S. Guin, and B. K. Patel, J. Org. Chem. 2015, 80, 5625-5632.

(11) X. Wu, X. Geng, P. Zhao, J. J. Zhang, X. X. Gong, Y. D. Wu and A. X. Wu, *Org. Lett.* 2017, **19**, 1550-1553.

(12) Z. J. Mao, H. J. Qu, Y. Y. Zhao and X. F. Lin, *Chem. Commun.*, 2012, **48**, 9927-9929.

(13) B. Reux, T. Nevalainen, K. H. Raitio, A. M. P. Koskinen, *Bioorg. Med. Chem.* 2009, **17**, 4441.

(14) T. J. Shao, Y. J. Li, N. N. Ma, C. Y. Li, G. B. Chai, X. W. Zhao, B. K. Qiao, Z. Y. Jiang, *iScience*, 2019, 16, 410–419.

(15) S. Karimi, S. Ma, K. Ramig, E. M. Greer, D. J. Szalda, G. Subramaniam, *Tetrahedron Letters*, 2015, **56**, 6886-6889.

6. NMR Spectra for All Compounds

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

S26

¹H NMR (500 MHz, CDCl₃) 2-phenyl-8-(trifluoromethyl)-4,5-dihydro-3H-benzo[*b*]azepine (3f)

¹³C NMR (125 MHz, CDCl₃) 2-(benzo[d][1,3]dioxol-5-yl)-4,5-dihydro-3H-benzo[*b*]azepine (3r)

S43

60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -50 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 f1 (ppm)

S46

¹³C NMR (125 MHz, CDCl₃) 4-((benzyloxy)methyl)-2-phenyl-4,5-dihydro-3H-benzo[*b*]azepine (3z)

¹H NMR (400 MHz, CDCl₃) 2-phenylquinoline (3aa)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

⁻¹⁰ 210 200 130 120 110 100 f1 (ppm) 170 160 150 140

¹H NMR (500 MHz, CDCl₃) phenyl(quinolin-2-yl)methanone (5a)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) (6-methylquinolin-2-yl)(phenyl)methanone (5b)

¹H NMR (400 MHz, CDCl₃) (6-methoxyquinolin-2-yl)(phenyl)methanone (5c)

¹H NMR (400 MHz, CDCl₃) (6-chloroquinolin-2-yl)(phenyl)methanone (5d)

¹H NMR (400 MHz, CDCl₃) (7-chloroquinolin-2-yl)(phenyl)methanone (5e)

¹H NMR (400 MHz, CDCl₃) benzo[*h*]quinolin-2-yl(phenyl)methanone (5f)

¹³C NMR (100 MHz, CDCl₃) benzo[*h*]quinolin-2-yl(phenyl)methanone (5f)

¹H NMR (400 MHz, CDCl₃) quinolin-2-yl(p-tolyl)methanone (5g)

¹H NMR (400 MHz, CDCl₃) (4-methoxyphenyl)(quinolin-2-yl)methanone (5h)

¹H NMR (400 MHz, CDCl₃) (4-chlorophenyl)(quinolin-2-yl)methanone (5i)

¹³C NMR (100 MHz, CDCl₃) (4-chlorophenyl)(quinolin-2-yl)methanone (5i)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR (400 MHz, CDCl₃) quinolin-2-yl(3-(trifluoromethyl)phenyl)methanone (5j)

¹H NMR (400 MHz, CDCl₃) quinolin-2-yl(thiophen-2-yl)methanone (5k)

¹H NMR (400 MHz, CDCl₃) naphthalen-2-yl(quinolin-2-yl)methanone (5l)

¹³C NMR (100 MHz, CDCl₃) naphthalen-2-yl(quinolin-2-yl)methanone (5l)

¹H NMR (400 MHz, CDCl₃) phenyl(3-phenylquinolin-2-yl)methanone (5m)

7. GC-MS Data of intermediate 6

8. Control Experiments on the Reaction Mechanism

8.1 O¹⁸-labeled experiment of benzazepine 3a

A mixture of benzo[*b*]azepine **3a** (22.1 mg, 0.1 mmol), *n*-Bu₄NI (7.4 mg, 0.02 mmol, 20 mol%), $K_2S_2O_8$ (108.1 mg, 0.4 mmol, 4.0 equiv), acetic acid (18.0 mg, 0.3 mmol, 3.0 equiv) and 0.1 mL H₂O¹⁸ in 1 mL anhydrous toluene was stirred in a Schlenk tube at 90 °C. After stirring for 16 h, the reaction mixture was cooled to the room temperature, and concentrated under reduced pressure. The residue was purified by flash column chromatography using petroleum ether/ethyl acetate as the eluent to afford the quinoline **5a** (16.3 mg, 70% yield).

a) O¹⁸:O¹⁶-5a GC analysis

8.2 Reaction of 3a in the Presence of AcOH

A mixture of benzo[b]azepine **3a** (22.1 mg, 0.1 mmol), acetic acid (18.0 mg, 0.3 mmol, 3.0 equiv) and 0.1 mL H₂O in 1 mL anhydrous toluene was stirred in a Schlenk tube at 90 °C. After stirring for 16 h, the reaction mixture was cooled to the room temperature and monitored by GC-MS and TLC.

8.3 Oxidation Experiment of 6

A mixture of **6** (23.9 mg, 0.1 mmol), *n*-Bu₄NI (7.4 mg, 0.02 mmol, 20 mol%), $K_2S_2O_8$ (108.1 mg, 0.4 mmol, 4.0 equiv) and acetic acid (18.0 mg, 0.3 mmol, 3.0 equiv) in 1 mL toluene was stirred in a Schlenk tube at 90 °C. After stirring for 16 h, the reaction mixture was cooled to the room temperature and monitored by GC-MS and TLC.

8.4 Radical Inhibition Experiments

A mixture of benzo[*b*]azepine **3a** (22.1 mg, 0.1 mmol), *n*-Bu₄NI (7.4 mg, 0.02 mmol, 20 mol%), $K_2S_2O_8$ (108.1 mg, 0.4 mmol, 4.0 equiv), acetic acid (18.0 mg, 0.3 mmol, 3.0 equiv) and TEMPO (31.3 mg, 2.0 equiv) in 1 mL toluene was stirred in a Schlenk tube at 90 °C. After stirring for 16 h, the reaction mixture was cooled to the room temperature, and concentrated under reduced pressure. The residue was purified by flash column chromatography using petroleum ether/ethyl acetate as the eluent to afford the quinoline **5a** (7.5 mg, 32% yield).

A mixture of benzo[*b*]azepine **3a** (22.1 mg, 0.1 mmol), *n*-Bu₄NI (7.4 mg, 0.02 mmol, 20 mol%), $K_2S_2O_8$ (108.1 mg, 0.4 mmol, 4.0 equiv), acetic acid (18.0 mg, 0.3 mmol, 3.0 equiv) and 1,1-diphenylethylene (36.1 mg, 2.0 equiv) in 1 mL toluene was

stirred in a Schlenk tube at 90 °C. After stirring for 16 h, the reaction mixture was cooled to the room temperature and monitored by GC-MS and TLC.

9. X-Ray Crystallographic Data (CCDC 2098117).

Method for crystal growth: Product **5a** (20 mg) was added into a clean tube, and dissolved by dichloromethane, then the mixture was evaporating slowly at room temperature under the air condition until the single crystal was obtained as a yellow crystal.

Crystal measurement: Sheldrick, G. M.; SHELXL-97, Program for X-ray Crystal Structure Solution and Refinement, University of Göttingen: Germany, 1997. Sheldrick, G. M. SHELXTL. Structure Determination Software Programs. Version 6.14. Bruker AXS. Madison, Wisconsin, USA 2000.

Figure S1. ORTEP diagram of compound 5a (30% probability factor for thermal ellipsoids)

Bond precision:		C-C = 0.0018 A		Wavelength=0.71073		
Cell:	a=3.9127(1)		b=28.582	9(8)	c=10.3664(3)
	alpha=90		beta=92.	863(1)	gamma=90	
Temperature:	213 K					
		Calculat	ed			Reported
Volume		1157.89(6)			1157.89(6)
Space group		P 21/c				P 21/c
Hall group		-P 2ybc				-P 2ybc
Moiety form	ıla	C16 H11	N O			?
Sum formula		C16 H11	N 0			C16 H11 N 0
Mr		233.26				233.26
Dx,g cm-3		1.338				1.338
Ζ		4				4
Mu (mm-1)		0.084				0.084
F000		488.0				488.0
F000'		488.20				
h, k, <mark>1</mark> max		4, 35, 12				4, 35, 12
Nref		2276				2255
Tmin, Tmax		0.985,0.	990			0.632, 0.746
Tmin'		0.983				
Correction m SCAN	nethod= # Rep	orted T L	imits: Tn	nin=0.632 Tmax	x=0.746 Abs	Corr = MULTI-
Data completeness= 0.991			Theta(max) = 2	5.995		
R(reflections)= 0.0360(1933)				wR2(refle	ctions)= 0.	0940 (2255)
S = 1.050		Npar	= 164			