Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

for

Synthesis and reactivity of NHC-coordinated phosphinidene oxide

Debabrata Dhara,^a Pradeep Kumar Pal,^b Ramapada Dolai,^a Nicolas Chrysochos,^c Hemant Rawat,^a Benedict J. Elvers,^c Ivo Krummenacher,^d Holger Braunschweig,^{*d} Carola Schulzke,^{*c} Vadapalli Chandrasekhar,^{*a,e} U. Deva Priyakumar,^{*b} and Anukul Jana^{*a}

- ^a Tata Institute of Fundamental Research Hyderabad Gopanpally, Hyderabad-500107 Telangana, India E-mail: ajana@tifrh.res.in
 ^b International Institute of Information Technology, Gachibowli, Hyderabad-500032, India E-mail: deva@iiit.ac.in
 ^c Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, D-17489 Greifswald E-mail: carola.schulzke@uni-greifswald.de
 ^d Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany E-mail: h.braunschweig@uni-wuerzburg.de
- ^e Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India E-mail: vc@iitk.ac.in

1	Content	S1
2	Experimental Details and Analytical Data	S2
3	Molecular Structures of 9, 11, and 13. DCM	S23
4	Crystallographic Details	S25
5	EPR Spectroscopy	S32
6	Computational Details	S35
7	References	S83

Experimental Details and Analytical Data

General considerations

All experiments were carried out under argon or nitrogen atmosphere using standard Schlenk techniques, PL-HE-2GB Innovative Technology GloveBox, and MBraun Unilab GloveBox. Hexane, diethyl ether, THF, and toluene were dried by PS-MD-5 Innovative Technology solvent purification system. Benzene was refluxed over sodium/benzophenone then distilled and stored under argon or nitrogen gas. CH₃CN was refluxed over CaH₂ and then distilled under vacuum followed by freeze-pump-thaw and eventually stored under argon or nitrogen gas. Compound 1 was prepared according to our reported literature procedure.⁵¹ N_2O gas was dried by passing through P_4O_{10} before passed into the reaction mixture. NOSbF₆ was purchased from Sigma Aldrich and used as received. Benzene-d₆, THF-d₈, and toluene-d₈ were dried and distilled over potassium under argon or nitrogen. CD₃CN was dried using CaH₂ and degassed by freezepump-thaw cycling. NMR spectra were recorded with a Bruker NanoBay 300 MHz NMR spectrometer. ¹H and ${}^{13}C{}^{1}H$ NMR spectra were referenced to the peaks of residual protons of the deuterated solvent (¹H) or the deuterated solvent itself ${}^{13}C{}^{1}H$, ${}^{31}P{}^{1}H$ and ${}^{31}P$ spectra were referenced to the peaks of H₃PO₄. ${}^{19}F$ spectrum was referenced to external tol-CF₃. UV/Vis spectra were acquired using a Jasco V-670 spectrometer using quartz cells with a path length of 0.1 cm. FT-IR spectra were recorded on a Bruker-Alpha spectrometer. Elemental analyses were performed on an Elemental Analyzer from Elementar (Vario Micro Cube). Melting points were determined in closed NMR tubes under argon atmosphere and are reported without correction.

Synthesis of 2

The argon atmosphere of a Schlenk flask containing toluene solution of **1** (0.300 g, 0.640 mmol, in 15 mL of toluene) was exchanged with N₂O gas using standard Schlenk line technique at room temperature. The reaction mixture was stirred for 10 minutes and an appearance of yellow turbidity was observed. Subsequently, the ³¹P NMR spectrum of an aliquot from the reaction

mixture with 2 drops of C_6D_6 shows complete conversion of **1** into **2**. Then the reaction mixture was evaporated to dryness and washed with hexane to obtain compound 2 as a yellow powder. Yield: 0.295 g (95 %). Single crystals suitable for X-ray diffraction were grown from the saturated solution of CH₃CN. **M.P.**: 145 °C (decomposed). ¹**H NMR (300 MHz, CD₃CN, 298 K)**: δ = 1.88 (s, 6H, CH₃ of Mes), 1.95 (s, 6H, CCH₃, NHC^{Me4} mixed with CD₃CN residual signal), 2.08 (s, 6H, CH₃ of Mes), 2.27 (s, 6H, CH₃ of Mes), 3.13 (s, 6H, N-CH₃, NHC^{Me4}), 6.74 (s, 2H, Ar-H), 6.85-6.87 (m, 4H, Ar-H), 7.33 (t, ³J_l31_P). ¹_H = 7.5 Hz, 1H, Ar-*H*) ppm. ¹³C**{¹H} NMR (75.43 MHz, CD**₃CN, 298 K): δ = 8.5 (2C, CH₃C, NHC^{Me4}), 21.4 (1C, CH₃-Mes), 21.5 (1C, CH₃-Mes), 21.7 (2C, CH₃-Mes), 21.9 (1C, CH₃-Mes), 22.1 (1C, CH₃-Mes), 31.8 (2C, N-CH₃, NHC^{Me4}), 128.7 (2C, Ar-CH), 129.2 (2C, Ar-CH), 129.7 (1C, Ar-CH), 129.9 (2C, CH₃C-CCH₃, NHC^{Me4}), 130.7 (2C, Ar-CH), 136.9 (3C, Ar-C_{quat}), 137.2 (2C, Ar-C_{quat}), 137.8 (2C, Ar-C_{quat}), 140.1 (1C, Ar-C_{quat}), 141.7 $(2C, Ar-C_{quat}), 146.7 (1C, d, {}^{1}J_{(31P, 13C)} = 18 Hz, Ar-C_{ipso}), 159.0 (1C, d, {}^{1}J_{(31P, 13C)} = 113 Hz, N-C-N, NHC^{Me_4}) ppm.$ ³¹P NMR (121.5 MHz, CD₃CN, 298 K): δ = 89.6 ppm. IR (KBr, cm⁻¹): Ū (cm⁻¹) = 2407 (vw), 1977 (vw), 1782 (vw), 1736 (vw), 1650 (s), 1608 (s), 1565 (s), 1480(s), 1434 (s), 1402 (s), 1370 (m), 1264 (mw), 1232 (m), 1186 (m) 1111 (m), 1083 (m), 1022(vs), 895 (w), 852 (vs), 806 (vs), 724 (vs), 695 (m), 671 (w), 525(s). UV/Vis (CH₃CN): $\lambda_{max}(\varepsilon) = 329$ (6410), 285 (4397) nm (Lmol⁻¹cm⁻¹). Elemental Analysis: Calcd. for (C₃₁H₃₇N₂OP): C, 76.83; H, 7.70; N, 5.78; Found: C, 76.82; H, 7.55; N, 5.74.

Fig. S1 ¹H NMR spectrum of **2** in CD₃CN at RT.

Fig. S3 ³¹P NMR spectrum of 2 in CD₃CN at RT.

 $VT-^{31}P$ NMR study from the synthesis of 2 from of 1 and N_2O

In a NMR tube 0.017 g (0.036 mmol) of compound **1** was taken and dissolved in normal THF (0.4 mL) and into that tube 0.1 mL THF-d₈ was added. The NMR tube was degassed (for removing argon in the tube) by applying the freeze-pump-thaw method and finally filled with N₂O at -78 °C. Then the NMR was recorded with a precooled probe at -70 °C and slowly brought to room temperature while recording ³¹P in 10 °C intervals. The VT NMR shows the formation of only **2** which started already at -70 °C and at room temperature **1** was fully converted to **2**.

Fig. S4 VT-³¹P NMR study of 1 with N₂O in THF/THF-d₈ (4:1).

Fig. S5 UV/Vis spectrum of compound 2 in THF at RT.

Fig. S6 Linear regression of compound 2 at 329 nm.

Fig. S7 Linear regression of compound 2 at 285 nm.

Path-1: Using 2 and N₂O

The Ar atmosphere of a Schlenk flask containing turbid toluene solution of **2** (0.480 g, 99 mmol, in 15 mL of toluene) was exchanged with N₂O gas using standard Schlenk line technique at room temperature. The reaction mixture was stirred for 2 hrs, during the course of reaction the yellow solution of **1** turned into colourless and the appearance of a white precipitate was observed. Subsequently, the ³¹P NMR spectrum of an aliquot from the reaction mixture with 2 drops of C₆D₆ shows complete conversion of **2** into **3**. Then the reaction mixture was filtered and residue solid was collected as compound **3** and dried. **Yield:** 0.470 g (95 %).

Path-2: Using **2** and O₂The Ar atmosphere of a Schlenk flask containing turbid toluene solution of **2** (0.200 g, 41 mmol, in 15 mL of toluene) was exchanged with O₂ gas using standard Schlenk line technique at room temperature. The reaction mixture was stirred for 1 hr, during the course of reaction the yellow solution of **1** turned into colourless and the appearance of a white precipitate was observed. Subsequently, the ³¹P NMR spectrum of an aliquot from the reaction mixture with 2 drops of C₆D₆ shows complete conversion of **2** into **3** quantitatively. Then the reaction mixture was filtered and residue solid was collected as compound **3**.

Path-3: Using 1 and N₂O

The Ar atmosphere of a Schlenk flask containing turbid toluene solution of **1** (0.2 g, 42 mmol, in 15 mL of toluene) was exchanged with N₂O gas using standard Schlenk line technique at room temperature. The reaction mixture was stirred for 3 hrs, during the course of reaction the yellow solution of **1** turned into colourless and the appearance of a white precipitate was observed. Subsequently, the ³¹P NMR spectrum of an aliquot from the reaction mixture with 2 drops of C₆D₆ shows complete conversion of **1** into **3**.

Path-4: Using 1 and O₂

The Ar atmosphere of a Schlenk flask containing toluene solution of **1** (0.500 g, 1 mmol, in 15 mL of toluene) was exchanged with O_2 gas using standard Schlenk line technique at room temperature. The reaction mixture was stirred for 1 hour, during the course of reaction the yellow solution of **1** turned into colourless and the appearance of a white precipitate was observed. Subsequently, the ³¹P NMR spectrum of an aliquot from the reaction mixture with 2 drops of C_6D_6 shows complete conversion of **1** into **3**. Then the reaction mixture was filtered and residue solid was collected as compound **3** and dried. **Yield:** 0.525 g (98 %). Single crystals suitable for X-ray diffraction were grown from the saturated solution of CH₃CN at 0 °C on standing overnight.

M.P.: 150 °C, decomposed. ¹**H NMR (300 MHz, CD₃CN, 298 K)**: *δ* = 2.03 (s, 18H, CH₃ of Mes), 2.32 (s, 6H, CCH₃, NHC^{Me₄}), 3.50 (s, 6H, N-CH₃, NHC^{Me₄}), 6.83 (s, 4H, Ar-*H*), 6.88-6.92 (m, 2H, Ar-*H*), 7.45 (t, ³*J*_(1H, 1H) = 7.5 Hz. 1H, Ar-*H*) ppm. ¹³C{¹H} **NMR (75.43 MHz, CD₃CN, 298 K)**: *δ* = 9.0 (2C, CH₃, CCH₃, NHC^{Me₄}), 21.5 (2C, CH₃-Mes), 21.8 (4C, CH₃-Mes), 34.4 (2C, N-CH₃, NHC^{Me₄}), 128.2 (2C, CCH₃, NHC^{Me₄}), 129.0 (4C, Ar-CH), 130.8 (1C, Ar-CH), 130.8 (1C, Ar-CH), 31.4 (1C, Ar-CH), 131.5 (1C, Ar-CH), 136.9 (2C, Ar-C_{quat}), 137.2 (4C, Ar-C_{quat}), 138.5 (1C, Ar-C_{quat}), 40.4 (1C, Ar-C_{quat}), 141.4 (1C, Ar-C_{quat}), 141.4 (1C, Ar-C_{quat}), 145.3 (1C, d, ¹*J*_(^{31p}, ¹³C) = 9.7 Hz), 147.3 (1C, d, ¹*J*_(^{31p}, ¹³C) = 105 Hz. N-C-N, NHC^{Me₄}) ppm. ³¹P NMR (121.5 MHz, CD₃CN, 298 K): *δ* = -0.8 ppm. **IR (KBr, cm⁻¹)**: $\bar{\nu}$ (cm⁻¹) = 2737 (w), 2409 (vw), 1969 (w), 1730 (vw), 1645 (mw), 1566 (m), 1459 (vs), 1366 (w), 1260 (s), 1233 (s), 1184 (m), 1131 (s), 1077 (s), 1042 (s) 859 (m), 847 (vs), 816 (s), 758 (vs), 723 (s), 598 (s), 562 (vs). **Elemental Analysis:** Calcd. for (C₃₁H₃₇N₂O₂P): C, 74.38; H, 7.45; N, 5.60; Found: C, 74.40: 12; H, 7.38; N, 5.60.

Fig. S8 ¹H NMR spectrum of **3** in CD₃CN at RT.

Fig. S9 $^{13}C{^{1}H}$ NMR spectrum of 3 in CD₃CN at RT.

Fig. S10 ³¹P NMR spectrum of **3** in CD₃CN at RT.

VT NMR of 1 with O₂

In a NMR tube 0.020 g (0.042 mmol) of compound **1** was taken and dissolved in normal THF (0.4 mL) and into that tube 0.1 mL THF-D8 was added. The NMR tube was degassed (for removing argon in the tube) by applying the Freeze-pump-thaw method and finally filled with O_2 at -78 °C. Then the NMR was recorded with a precooled probe at -70 °C and slowly brought to room temperature while recording ³¹P spectra in 10 °C intervals. The VT NMR shows the formation of **3** started already at -70 °C. At that temperature am signal for compound **2** was also observed. Up to room temperature signals for both 2, and 3 are present. This suggests that the formation of **3** occurs stepwise through the formation of **2**.

25 °C after 3 hours	 	
10 °C		
0 °C		
-10 °C		
-20 °C		
-30 °C		
-40 °C		
-50 °C		, , , ,
-60 °C		
-70 °C		

Fig. S11 Variable temperatures 31 P NMR of 1 with O₂ in THF/THF-D₈.

10 mL of C_6H_6 was added to a Schlenk flask containing 0.250 g (0.515 mmol) of **2** and 0.091 g (0.670 mmol) of KC₈ at 0 °C. Then the reaction mixture was slowly brought to room temperature over 6 hrs and the resulting red coloured reaction mixture was filtered. Then the obtained filtrate was concentrated to about 5 mL and dark red crystals of **6** were obtained by a slow diffusion of hexane onto the solution over two days at room temperature. **Yield:** 0.087g (25-35 %). Compound **6** is very much air and moisture sensitive and not stable in solution which hindered us to get any further analytical or spectroscopic data.

20 mL of CH₃CN was added to a Schlenk flask containing 0.290 g (0.598 mmol) of 2 and 0.159 g (0.598 mmol) of NOSbF₆ at -78 °C. The reaction mixture was then slowly brought to room temperature over 3 hrs. The yellow colour of the solution became light brown around -30 to -20 °C to colourless around 0 °C. Subsequently, the ³¹P NMR spectrum of an aliquot from the reaction mixture with 2 drops of C_6D_6 showed complete consumption of **2**. After that all the volatiles were removed under vacuum. The resulting colourless solid was washed with hexane to isolate pure compound 9 as solid powder. Single crystals suitable for X-ray diffraction study were obtained from its saturated solution in CH₃CN on standing overnight at room temperature. Yield: 0.400 g (92 %). M.P.: >180 °C. ¹H NMR (300 MHz, CD₃CN, 298 K): δ = 1.87 (s, 6H, CH₃ of Mes), 2.11 (s, 6H, CH₃ of Mes), 2.16 (s, 6H, CCH₃, NHC^{Me4}), 2.35 (s, 6H, CH₃ of Mes), 3.29, (s, 6H, N-CH₃, NHC^{Me4}), 6.71 (s, 2H, Ar-H), 6.91 (s, 2H, Ar-H), 7.35-7.39 (m, 2H, Ar-H), 7.91 (t, ³J_(¹H, ¹H) = 7.5 Hz, 1H, Ar-H), 7.62 (d, ${}^{1}J_{(31_{P}, 1_{H})} = 547$ Hz, 1H, P-H) ppm. ${}^{13}C{}^{1}H$ NMR (75.43 MHz, CD₃CN, 298 K): $\delta = 9.2$ (2C, CH₃, CH₃C-CCH₃, NHC^{Me4}), 21.3 (2C, CH₃-Mes), 21.5 (2C, CH₃-Mes), 21.7 (2C, CH₃-Mes), 34.4 (2C, N-CH₃, NHC^{Me4}), 127.8 (1C, CH₃C-CCH₃, NHC^{Me4}), 128.0 (1C, CH₃C-CCH₃, NHC^{Me4}), 129.8 (2C, Ar-CH), 130.4 (2C, Ar-CH), 132.4 (1C, Ar-CH), 132.6 (2C, Ar-CH), 135.7 (1C, Ar-C_{quat}), 135.8 (1C, Ar-C_{quat}), 136.4 (1C, Ar-C_{quat}), 136.4 (1C, Ar-C_{quat}), 138.0 (2C, Ar- C_{quat}), 138.0 (2C, Ar- C_{quat}), 140.1 (3C, Ar- C_{quat}), 147.5 (d, ¹ $J_{(^{31}P, ^{13}C)}$ = 12.7 Hz, N-C-N of NHC^{Me4}) ppm. ³¹P NMR (121.5 MHz, CD₃CN, 298 K): δ = -7.0 (d, ¹J_(³¹P, ¹H) = 547 Hz) ppm. ³¹P{¹H} NMR (121.5 MHz, **CD₃CN, 298 K):** $\delta = -7.0$ (s) ppm. ¹⁹**F NMR (282.4 MHz, CH₃CN, 298 K):** $\delta = -124.0$ [m, 6F, (sex, ¹J_(121Sb, 19F)) = 1930 Hz, oct, ${}^{1}J_{(123_{Sb}, 19_{F})}$ = 1056 Hz.)] ppm. IR (KBr, cm⁻¹): $\bar{\nu}$ (cm⁻¹) = 2971 (s), 2961 (s), 2854 (m), 2361(m, P-H), 1637 (mw), 1604 (mw), 1567 (m), 1456 (vs), 1376 (s), 1261 (m), 1116 (m), 985 (w), 937 (s), 851 (s), 814 (s), 773 (w), 657 (s), 519 (m). Elemental Analysis: Calcd. for (C₃₁H₃₈N₂OPSbF₆): C, 51.61; H, 5.31; N, 3.88; Found: C, 49.67; H, 5.17; N 3.74 (the deviation of the elemental analysis result is most likely due to the presence of very minor amount of unassigned impurity, which can be seen in the ¹H NMR spectrum).

Fig. S13 $^{13}C{^{1}H}$ NMR spectrum of 9 in CD₃CN at RT.

Fig. S14 ${}^{31}P{}^{1}H$ NMR spectrum of 9 in CD₃CN at RT.

Fig. S15 ^{31}P NMR spectrum of 9 in CD_3CN at RT.

Fig. S16 19 F NMR spectrum of 9 in CD₃CN at RT.

15 mL of CH₃CN was added to a Schlenk flask containing 0.350 g (0.746 mmol) of **1** and 0.198 g (0.746 mmol) of NOSbF₆ at -78 °C. The reaction mixture was then slowly brought to room temperature over 3 hrs. The orange solution become light brown to colourless again. Subsequently, the ³¹P NMR spectrum of an aliquot from the reaction mixture with 2 drops of C₆D₆ shows complete consumption of 1. After that all the volatilities were removed under vacuum. The resulting colourless solid was washed with hexane and a white solid was obtained which consists mostly of compound 11 along with a small amount of unidentified impurity as revealed by ³¹P NMR data. Single crystals suitable for a X-ray diffraction study of **11** were obtained from its saturated solution in CH₃CN upon standing overnight at room temperature. We were unable to fully purify compound **11** not even after repeated re-crystallization. As a result, we cannot report the ¹³C{¹H} NMR data here and in the ¹H, ³¹P{¹H}, and ³¹P NMR spectra some unidentified resonances remain. Yield: 0.490 g (93 %). ¹H NMR (300 MHz, CD₃CN, 298 K): δ = 1.86 (s, 6H, CH₃ of Mes), 2.10 (s, 6H, CH₃, CH₃C-CCH₃, NHC^{Me4}), 2.18 (s, 6H, CH₃ of Mes), 2.35 (s, 6H, CH₃ of Mes), 3.23 (s, 6H, N-CH₃ of NHC^{Me4}), 4.72 (d, ¹J_(³¹P, ¹H) = 260 HZ. 1H, P-H), 6.91 (s, 2H, Ar-H), 7.09 (s, 2H, Ar-H), 7.19-7.23 (m, 2H, Ar-H), 7.6-7.7 (m, 1H, Ar-H) ppm. ³¹P{¹H} NMR (121.5 MHz, CD₃CN, 298 K): δ = -103.6 ppm. ³¹P NMR (121.5 MHz, CD₃CN, 298 K): δ = -103.6 (d, ¹J_(³¹P, ¹H) = 260 Hz., *P*-H) ppm. ¹⁹F NMR (282.4 MHz, CD₃CN, 298 K): -123.97 (m, 6F, (sex, ${}^{1}J_{(121_{Sb}, 19_{F})} = 1942$ Hz & oct, ${}^{1}J_{(123_{Sb}, 19_{F})} = 1032$ Hz.)) ppm.

Fig. 17 1 H NMR spectrum of 11 in CD₃CN at RT.

Fig. S18 ${}^{31}P{}^{1}H$ NMR spectrum of 11 in CD₃CN at RT.

Fig. S19 31 P NMR spectrum of **11** in CD₃CN at RT.

Fig. S20 ^{19}F NMR spectrum of 11 in CD₃CN at RT

15 mL of CH₃CN was added to a Schlenk flask containing 0.200 g (0.40 mmol) of **3** and 0.106 g (0.4 mmol) of NOSbF₆ at -78 °C. The reaction mixture was then slowly brought to room temperature over 3 hrs. The colourless solution turned light brown to colourless. Subsequently, the ³¹P NMR spectrum of an aliquot from the reaction mixture with 2 drops of C_6D_6 shows complete consumption of **3**. After that, all the volatilities were removed under vacuum. The resulting colourless solid was washed with hexane to yield pure compound 13 as solid powder. Single crystals suitable for a X-ray diffraction study were obtained from its saturated solution in DCM on standing overnight at room temperature. Yield: 0.275 g (93 %). M.P.: >180 °C. ¹H NMR (300 MHz, **CD₃CN, 298 K)**: δ = 1.90 (s, br, 12H, CH₃ of Mes), 2.04 (s, 6H, s, 6H, C–CCH₃, NHC^{Me}₄), 2.27 (s, 6H, CH₃ of Mes), 3.33 (s, 6H, N-CH₃ of NHC^{Me}₄), 5.60 (S, br, 1H, PO-H)), 7.10 (s, 4H, Ar-H), 7.12-7.15 (m, 2H, Ar-*H*), 7.70 (t, 1H, ${}^{3}J_{(1_{H}, 1_{H})} = 7.8$ Hz) ppm. ${}^{13}C{}^{1}H$ NMR (75.43 MHz, CD₃CN, 298 K): $\delta = 9.3$ (2C, CH₃, CH₃C-CCH₃, NHC^{Me}₄), 21.5 (2C, CH₃-Mes), 21.6 (4C, CH₃-Mes), 35.5 (2C, N-CH₃, NHC^{Me}₄), 129.7 (4C, Ar-CH), 131. 5 (2C, CH₃C-CCH₃, NHC^{Me₄}), 132.6 (1C, Ar-CH), 132.8 (1C, Ar-CH), 134.6 (1C, Ar-CH), 137.3 (6C, Ar-C_{quat}), 138.4 (2C, Ar- C_{quat}), 138.8 (3C, Ar- C_{quat}), 146.7 (d, ${}^{1}J_{(31_{P,}13_{C})}$ = 12.0 Hz., N-C-N of NHC^{Me4}) ppm. ³¹P NMR (121.5 MHz, CD₃CN, 298 K): δ = 8.1 ppm. ¹⁹F NMR (282.4 MHz, CD₃CN, 298 K): -123.94 (m, 6F, (sex, ${}^{1}J_{(121_{\text{Sb}}, 19_{\text{F}})} = 1936 \text{ Hz \& oct}, {}^{1}J_{(123_{\text{Sb}}, 19_{\text{F}})} = 1050 \text{ Hz.})) \text{ ppm. FT-IR (KBr, cm^{-1}): }\bar{\nu} (cm^{-1}) = 2958(s), 2967 (s), 2856$ (vs), 2732 (vw), 2231 (w, br, P-H), 1630 (w), 1612 (w), 1563 (w), 1488 (m), 1451 (m), 1350 (w), 1235 (s), 1185 (vs), 1118 (s), 1094 (w), 1062 (m), 1029 (s), 974 (m, br), 857 (vs), 809 (s), 772 (s), 759 (mw), 732 (w), 663 (vs), 607 (s), 556(s), 537 (s). Elemental Analysis: Calcd. for (C₃₁H₃₈N₂O₂PSbF₆): C, 50.49; H, 5.19; N, 3.80; Found: C, 49.10; H, 5.40; N 3.80 (the deviation of the elemental analysis result is most likely due to the presence of very minor amount of unassigned impurity, which can be seen in the ¹H NMR spectrum).

Fig. 21 ¹H NMR spectrum of 13 in CD₃CN at RT.

Fig. S22 $^{13}C{^1H}$ NMR spectrum of 13 in CD₃CN at RT.

Fig. S23 ${}^{31}P{}^{1}H$ NMR spectrum of 13 in CD₃CN at RT.

Fig. S24 ^{19}F NMR spectrum of 13 in CD_3CN at RT.

Molecular Structures of 9, 11, and 13. DCM

Fig. S25 Molecular structure of **9**, all hydrogen atoms except those at the P1-centre and all mesityl methyl groups are omitted for clarity.

Fig. S26 Molecular structure of **11**, all hydrogen atoms except those at the P1-centre and all mesityl methyl groups are omitted for clarity.

Fig. S27 Monomeric (left) and H-bonded dimeric (right) molecular structure of **13·DCM**; all hydrogen atoms except at O1 (for the monomeric structure) and O2 and O4 (for H-bonded dimeric structure) and all mesityl methyl groups are omitted for clarity.

Crystallographic Details

Single crystal X-ray data of 2 and 3 were collected at 298 K and those for 9, 11 and 13-DCM were collected at 293 K using a Rigaku XtaLAB AFC12 (RINC): Kappa single diffractometer with graphite-monochromated Mo K α radiation, λ = 0.71073 Å. Single crystal X-ray data of **6**·**3C**₆**H**₆ were collected at 170 K using a STOE-IPDS 2T diffractometer with graphite-monochromated molybdenum K α radiation, λ = 0.71073 Å. The unit cell parameters and the data reduction were obtained with the CrysAlisPro software from Rigaku Oxford Diffraction or with X-AREA from STOE.^{S2} A multi-scan absorption correction was applied to the collected reflections during data processing with SCALE3 ABSPACK also integrated in the CrysAlisPro software.⁵³ For 6·3C₆H₆ a numerical absorption correction was carried out with X-Red32 and X-Shape from STOE. The structures were solved with SHELXT^{S4} structure solution program using Intrinsic phasing and refined by full matrix least-squares methods based on F² using the SHELXL^{S4} refinement programme in the Olex-2 GUI.⁵⁵ All non-hydrogen-atoms were refined with anisotropic displacement parameters. Hydrogens were placed in geometrically calculated positions or found in the Fourier difference map and included in the refinement process using the riding model. The program Diamond (version 3.2k) was used for creating the crystallographic figures.⁵⁶ In the refinement of **6**·3C₆H₆ two of the three benzene solvent molecules did not behave well due to disorder. The carbon atoms were fixed to form ideal hexagons and their displacement parameters were constrained to be almost the same for all six carbon atoms of each ring (AFIX, SIMU, DELU). In compound 11 the SbF₆⁻ anion is disordered over two positions involving all six F atoms. This was modelled with SAME, SIMU and DELU constraints. The occupancies are roughly 60% and 40%. The imidazole-like heterocyclic substituent on P is disordered entirely (i.e. all N and all C appear in two positions). This was also modelled with SAME, SIMU and DELU constraints. The respective occupancies are roughly 58% and 42%. The hydrogen atom on P was refined freely with regard to location and its U_{iso} constrained to 1.5 times that of P. The crystal of **13-DCM** was a non-merohedral twin (presence of a minor domain accounting for ca. 17%) and the data were refined using a hklf5 file. The lattice dichloromethane is disordered over two positions. This was refined with SADI, SIMU and DELU constraints. The occupancies are roughly 80% and 20%. Both SbF_6^- anions are disordered and both were treated with SAME, SIMU and DELU constraints. The occupancies for Sb1 are 72% and 28% and those for Sb2 are 57% and 43%. Clear outliers were omitted from the refinement (OMIT). Because it was not possible to refine them, the oxygen bound hydrogen atoms were fixed.

Identification code	AJ1010
Empirical formula	C ₃₁ H ₃₇ N ₂ OP
Formula weight	484.59
Temperature/K	298.16(10)
Crystal system	monoclinic
Space group	P21
a/Å	8.0570(6)
b/Å	14.0475(13)
c/Å	12.2644(9)
α/°	90
β/°	95.457(6)
γ/°	90
Volume/ų	1381.80(19)
Z	2
ρ _{calc} g/cm ³	1.165
µ/mm ⁻¹	0.125
F(000)	520.0
Crystal size/mm ³	0.34 × 0.23 × 0.19
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	5.8 to 57.916
Index ranges	$-9 \le h \le 10, -18 \le k \le 15, -15 \le l \le 16$
Reflections collected	15907
Independent reflections	5547 [R _{int} = 0.1035, R _{sigma} = 0.0980]
Data/restraints/parameters	5547/1/326
Goodness-of-fit on F ²	1.055
Final R indexes [I>=2σ (I)]	R ₁ = 0.0681, wR ₂ = 0.1850
Final R indexes [all data]	R ₁ = 0.0876, wR ₂ = 0.1970
Largest diff. peak/hole / e Å ⁻³	0.52/-0.20

 Table S1. Crystal data and structure refinement for 2 (CCDC: 1985944)

Identification code	aj1003
Empirical formula	$C_{31}H_{37}N_2O_2P$
Formula weight	500.59
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P21/n
a/Å	14.0017(10)
b/Å	14.1141(8)
c/Å	14.6959(11)
α/°	90
β/°	109.903(8)
γ/°	90
Volume/ų	2730.8(3)
Z	4
ρ _{calc} g/cm ³	1.218
µ/mm ⁻¹	0.131
F(000)	1072.0
Crystal size/mm ³	0.250 × 0.190 × 0.140
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	4.948 to 58.042
Index ranges	$-18 \le h \le 17, -19 \le k \le 17, -17 \le l \le 18$
Reflections collected	18615
Independent reflections	5983 [R _{int} = 0.0580, R _{sigma} = 0.0722]
Data/restraints/parameters	5983/0/335
Goodness-of-fit on F ²	1.015
Final R indexes [I>=2σ (I)]	R ₁ = 0.0609, wR ₂ = 0.1371
Final R indexes [all data]	R ₁ = 0.1066, wR ₂ = 0.1558
Largest diff. peak/hole / e Å ⁻³	0.29/-0.27

 Table S2. Crystal data and structure refinement for 3 (CCDC: 2082008)

Identification code	DD 1155 B
Empirical formula	C ₁₂₈ H ₁₄₂ K ₄ N ₄ O ₄ P ₄
Formula weight	2080.73
Temperature/K	170.15(2) K
Crystal system	triclinic
Space group	P-1
a/Å	13.406(3)
b/Å	14.783(3)
c/Å	30.449(6)
α/°	99.67(3)
β/°	102.51(3)
γ/°	96.47(3)
Volume/ų	5737(2)
Z	2
ρ _{calc} g/cm ³	1.204
µ/mm⁻¹	0.265
F(000)	2212
Crystal size/mm ³	0.389 x 0.333 x 0.272
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	6.102 to 52.744
Index ranges	-16<=h<=16, -18<=k<=18, -38<=l<=38
Reflections collected	48722
Independent reflections	23376 [R(int) = 0.0781]
Data/restraints/parameters	23376 / 96 / 1306
Goodness-of-fit on F ²	1.020
Final R indexes [I>=2σ (I)]	R1 = 0.0656, wR2 = 0.1632
Final R indexes [all data]	R1 = 0.1286, wR2 = 0.1940
Largest diff. peak/hole / e Å ⁻³	hole 0.68 and -0.45

Table S3. Crystal data and structure refinement for $6.3C_6H_6$ (CCDC: 1985948)

Identification code	AJ1015
Empirical formula	$C_{31}H_{38}F_6N_2OPSb$
Formula weight	721.35
Temperature/K	293(2)
Crystal system	orthorhombic
Space group	Pnn2
a/Å	38.5155(18)
b/Å	9.8022(5)
c/Å	8.6041(4)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	3248.4(3)
Z	4
ρ _{calc} g/cm ³	1.475
µ/mm ⁻¹	0.959
F(000)	1464.0
Crystal size/mm ³	$0.17 \times 0.14 \times 0.11$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	5.186 to 50.044
Index ranges	-45 ≤ h ≤ 42, -11 ≤ k ≤ 10, -10 ≤ l ≤ 10
Reflections collected	38805
Independent reflections	5736 [R _{int} = 0.1669, R _{sigma} = 0.0811]
Data/restraints/parameters	5736/1/394
Goodness-of-fit on F ²	1.041
Final R indexes [I>=2σ (I)]	$R_1 = 0.0701$, $wR_2 = 0.1827$
Final R indexes [all data]	R ₁ = 0.0881, wR ₂ = 0.1949
Largest diff. peak/hole / e Å ⁻³	0.83/-0.49

Table S4. Crystal data and structure refinement for 9 (CCDC: 1985946)

Identification code	aj1026
Empirical formula	$C_{31}H_{38}F_6N_2PSb$
Formula weight	705.35
Temperature/K	293(2)
Crystal system	orthorhombic
Space group	Pnn2
a/Å	38.1631(19)
b/Å	9.9045(6)
c/Å	8.5781(5)
α/°	90
β/°	90
γ/°	90
Volume/ų	3242.4(3)
Z	4
ρ _{calc} g/cm ³	1.445
µ/mm ⁻¹	0.957
F(000)	1432.0
Crystal size/mm ³	0.250 × 0.210 × 0.160
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	5.728 to 57.818
Index ranges	-51 ≤ h ≤ 47, -11 ≤ k ≤ 12, -11 ≤ l ≤ 11
Reflections collected	24941
Independent reflections	7122 [$R_{int} = 0.1157$, $R_{sigma} = 0.0863$]
Data/restraints/parameters	7122/922/515
Goodness-of-fit on F ²	1.014
Final R indexes [I>=2 σ (I)]	R ₁ = 0.0624, wR ₂ = 0.1564
Final R indexes [all data]	R ₁ = 0.0940, wR ₂ = 0.1737
Largest diff. peak/hole / e Å ⁻³	0.66/-0.46
Flack parameter	0.00(3)

 Table S5. Crystal data and structure refinement for 11 (CCDC: 2082011)

Identification code	AJ1028
Empirical formula	C ₆₃ H ₇₈ Cl ₂ F ₁₂ N ₄ O ₄ P ₂ Sb ₂
Formula weight	1559.63
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group	P-1
a/Å	12.6743(2)
b/Å	14.2432(3)
c/Å	20.3249(7)
α/°	93.375(2)
β/°	91.737(2)
γ/°	108.005(2)
Volume	3478.82(16) A^3
Z, Calculated density	2, 1.489 Mg/m^3
Absorption coefficient	0.978 mm^-1
F(000)	1580
Crystal size	0.260 x 0.180 x 0.140 mm
Theta range for data collection	2.561 to 24.999 deg.
Limiting indices	-15<=h<=15, -16<=k<=16, -2<=l<=24
Reflections collected / unique	12154 / 12154 [R(int) = ?]
Completeness to theta = 24.999	99.3 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.84588
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	12154 / 876 / 978
Goodness-of-fit on F^2	1.060
Final R indices [I>2sigma(I)]	R1 = 0.0886, wR2 = 0.2396
R indices (all data)	R1 = 0.1003, wR2 = 0.2498
Extinction coefficient	n/a
Largest diff. peak and hole	0.641 and -0.630 e.A^-3

Table S6. Crystal data and structure refinement for 13-DCM (CCDC: 2082009)

EPR Spectroscopy

EPR measurements at X-band (9.38 GHz) were carried out using a Bruker ELEXSYS E580 CW EPR spectrometer equipped with an Oxford Instruments helium cryostat (ESR900) and a MercuryiTC temperature controller. The spectral simulations were performed using MATLAB 9.8 (R2020a) and the EasySpin 5.2.28 toolbox.⁵⁷

In Situ Reduction Study of 2

To a cooled toluene solution of **2** at $-30 \text{ }^{\circ}\text{C}$ was added KC₈. After filtering, the resulting deep red solution was probed by EPR spectroscopy at ambient temperature.

Fig. S28 Experimental CW EPR spectrum of the putative radical anion of **2** in toluene. The broad doublet has an isotropic *g*-value of 2.0059 with a phosphorus hyperfine coupling of $a(^{31}P) = 143$ MHz (51 G). The spectrum is stable over several hours at room temperature.

In Situ Oxidation Study of 2, 1, and 3

General Procedure for Sample Preparation: The phosphorus compound (**2**, **1**, or **3**) and the nitrosonium hexafluoroantimonate, $[NO][SbF_6]$, were each dissolved in acetonitrile solution and cooled to $-30 \text{ }^{\circ}\text{C}$. The solutions were mixed in the cold, transferred into an EPR tube and immediately frozen by using an acetone/liquid nitrogen bath. The EPR response was constantly monitored during thawing of the frozen solutions in the spectrometer cavity.

Fig. S29 Experimental and simulated CW EPR spectra of [7] (radical cation of 2) in acetonitrile. Simulation parameters: $g_{iso} = 2.0064$, $a(^{31}P) = 54$ MHz, and $a(^{1}H \text{ or }^{19}F) = 26$ MHz.

Fig. 30 Experimental and simulated CW EPR spectra of [**10**] (radical cation of **1**) in acetonitrile. Simulation parameters: $g_{iso} = 2.0021$ and $a(^{31}P) = 1090$ MHz (389 G).

Fig. S31 Experimental (black) and simulated (red) CW EPR spectra of [**12**] (radical cation of **3**) in acetonitrile. Simulation parameters: $g_{iso} = 2.0069$, $a(^{31}P) = 47$ MHz, and $a(^{1}H \text{ or }^{19}F) = 24$ MHz.

Computational Details

Compounds **1-5** and **7-13** were optimized at the M06⁵⁸/cc-pVDZ level of theory using the Gaussian 16 program.⁵⁹ The energy difference between singlet and triplet states was calculated for selected molecules and the singlet state was found to be more stable. Therefore, all energies reported here for the neutral molecules correspond to singlet states. Doublet states were considered for the negatively and positively charged species considered here. The images of the frontier orbitals and the spin densities were prepared using the GaussView program.⁵¹⁰ TD-DFT calculation was performed at the M06/cc-pVDZ level on molecule **2** to calculate the absorption spectrum. EPR calculation was performed at b3lyp^{S11}/cc-pVDZ level on radicals 7, 10 and 12. Coordinates of these radicals, in the presence and absence of coordinated NHC are also added. Natural Resonance Theory (NRT)¹² calculations were done using NBO 5.9^{S13} in Gamess^{S14}.

Bonding Analysis of 2, 2-H, Ph_2P-O^- , and H_2P-O^-

Bond	WBO
P-O	1.0313
P-C (NHC)	0.7093
P-C (R)	0.7716

Table S7. Wiberg bond orders (WBO) of 2 at the HF/6-31G* level of theory.

Table S8. Orbital contribution in hybridized MO in each bond involving phosphorus of **2** at the HF/6-31G* level of theory.

Bond	Atom	<i>s</i> -orbital %	<i>p</i> -orbital %	<i>d</i> -orbital %
P-O	Ρ	21.4	76.73	1.87
	0	38.48	61.01	0.51
P-C (NHC)	Ρ	10.3	87.62	2.07
	С	39.75	60.23	0.02
P-C (R)	Ρ	15.09	82.98	1.94
	C	29.29	70.68	0.03
Bond	WBO			
------	--------			
Р-О	1.0380			
P-C	0.7488			
P-C	0.7488			

Table S9. Wiberg bond orders (WBO) of **Ph₂P-O**⁻ at the HF/6-31G* level of theory.

Table S10. Orbital contribution in hybridized MO in each bond involving phosphorus of **2-H** at the HF/6-31G* level of theory.

Bond	Atom	s-orbital %	<i>p</i> -orbital %	<i>d</i> -orbital %
P-O	Ρ	20.93	76.80	2.27
	0	37.69	62.22	0.09
Р-С	Ρ	14.27	83.67	2.06
	C	30.32	69.66	0.02
Р-С	Ρ	14.27	83.67	2.06
	С	30.32	69.66	0.02

Fig. S32 The two most dominant resonance structures of **2-H** obtained using natural resonance theory (NRT) analysis at HF/6-31G* level of theory (R group and CH₃ in NHC ring has been replaced with H to avoid calculating too many possible resonance structures in NRT calculations).

 Table S11. Selected Natural Bond Order (NBO) of 2-H involving bonds with phosphorus calculated using

 NRT analysis at the HF/6-31G* level of theory.

Bond	Bond Order
Р-О	0.98947
P-H	0.94374
P-C	0.92817

Fig. S33 The most dominant resonance structure of H_2P-O^- obtained using NRT analysis at HF/6-31G* level of theory (benzene rings have been replaced with H to avoid calculating too many possible resonance structures in NRT calculations).

Table S12. Natural Bond Order (NBO) of H_2P-O^- calculated using NRT analysis at the HF/6-31G* level of theory.

Bond	Bond Order
Р-О	0.99276
P-H (both)	0.94996

Table S13. Wiberg bond orders (WBO) of 2-H at the HF/6-31G* level of theory.

Bond	WBO
P-O	1.0648
P-C (NHC)	0.7055
Р-Н	0.8719

Table S14. Orbital contribution in hybridized MO in each bond involving phosphorus of **2-H** at the HF/6-31G* level of theory.

Bond	Atom	s-orbital %	<i>p</i> -orbital %	<i>d</i> -orbital %
Р-О	Ρ	21.38	76.43	2.19
	0	35.04	64.86	0.1
P-C (NHC)	Ρ	10.05	87.64	2.31
	С	39.75	60.23	0.02
P-H	Ρ	13.39	84.32	2.29
	Н	100		

Table S15. Wiberg bond orders (WBO) of H_2P-O^- at the HF/6-31G* level of theory.

Bond	WBO
P-O	1.0502
P-H	0.8722
P-H	0.8722

Table S16. Orbital contribution in hybridized MO in each bond involving phosphorus of H_2P-O^- at theHF/6-31G* level of theory.

Bond	Atom	s-orbital %	<i>p</i> -orbital %	<i>d</i> -orbital %
Р-О	Ρ	22.77	75.39	1.84
	0	36.07	63.72	0.22
Р-Н	Ρ	13.45	84.46	2.10
	Н	100		
Р-Н	Ρ	13.45	84.46	2.10
	Н	100		

Calculation of EPR Parameters

Table S17. Calculated EPR parameters for radicals [4], [7], [10] and [12] in presence and absence of coordinated NHC^{Me₄} considering the presence and absence of CH₃CN, as a solvent at the b3lyp/cc-pVDZ level of theory (the entries in blue are the best compared values).

Solvent	Radical Ion	NHC	a(³¹ P)(exp.)	a(³¹ P)calc.	<i>a</i> (¹⁹ F) exp.	a(¹⁹ F) calc.
Toluene	[4]	Present	143 MHz	–27.45 MHz	-	-
Toluene	[4]	Absent	143 MHz	154.48 MHz		-
THF	[4]	Present	143 MHz	-26.84 MHz	-	-
THF	[4]	Absent	143 MHz	158.21 MHz	-	-
None	[7]	Present	54 MHz	1257 MHz	26 MHz	113 MHz
None	[10]	Present	1090 MHz	214 MHz	None	None
None	[12]	Present	47 MHz	–34 MHz	24 MHz	None
CH₃CN	[7]	Present	54 MHz	1106 MHz	26 MHz	27 MHz
CH₃CN	[10]	Present	1090 MHz	227 MHz	None	None
CH₃CN	[12]	Present	47 MHz	–34 MHz	24 MHz	None
None	[7]	Absent	54 MHz	1327 MHz	26 MHz	144 MHz
None	[10]	Absent	1090 MHz	216 MHz	None	60 MHz
None	[12]	Absent	47 MHz	–29 MHz	24 MHz	1.73 MHz*
CH₃CN	[7]	Absent	54 MHz	177 MHz	26 MHz	27 MHz
CH₃CN	[10]	Absent	1090 MHz	157 MHz	None	67 MHz
CH₃CN	[12]	Absent	47 MHz	–19 MHz	24 MHz	-3 MHz

*the F atom is bonded to P radical centre with a bond length of 1.8 A.

номо

LUMO

Fig. S35 Frontier orbitals of 3 calculated at M06/cc-pVDZ level of theory.

Fig. S36 Single occupied molecular orbital (SOMO) surfaces of [7].

Fig. S37 Single occupied molecular orbital (SOMO) surfaces of [10].

Fig. S38 Single occupied molecular orbital (SOMO) surfaces of [12].

Fig. 39 Spin density plot of 4 (with NHC^{Me_4}) at M06/cc-pVDZ level of theory.

Fig. S40 Spin density plot of **4** (without NHC^{Me₄}) at M06/cc-pVDZ level of theory.

Fig. S41 Spin density plot of 7 (with NHC^{Me_4}) at M06/cc-pVDZ level of theory.

Fig. S42 Spin density plot of 7 (without NHC^{Me_4}) at M06/cc-pVDZ level of theory.

Fig. S43 Spin density plot of 10 (with NHC^{Me4}) at M06/cc-pVDZ level of theory.

Fig. S44 Spin density plot of 10 (without NHC^{Me₄}) at M06/cc-pVDZ level of theory.

Fig. S45 Spin density plot of 12 (with NHC^{Me4}) at M06/cc-pVDZ level of theory.

Fig. S46 Spin density plot of 12 (without NHC^{Me₄}) at M06/cc-pVDZ level of theory.

Fig. S47 Reaction free energy profile for 2 to 9 at M06/cc-pVDZ level of theory.

Fig. S48 Reaction free energy profile for 1 to 11 at M06/cc-pVDZ level of theory.

Fig. S49 Reaction free energy profile for 3 to 13 at M06/cc-pVDZ level of theory.

Coordinates of optimized geometries of radicals (at b3lyp/cc-PVDZ level of theory)

Table S18. Cartesian coordinates and energy values of [7] (with NHC^{Me4})

С	0.620889	-0.939867	0.247980
Ν	0.509937	-2.179038	-0.288205
С	0.172257	-3.087645	0.700540
С	0.052066	-2.377227	1.873632
Ν	0.327349	-1.057840	1.566534
С	-0.044881	-4.532572	0.417397
С	-0.357568	-2.817498	3.235490
С	0.638434	-2.559883	-1.698502
С	0.119050	0.046336	2.499992
Р	0.768177	0.660224	-0.663503
0	0.923899	0.402042	-2.174674
н	-0.199364	-5.082415	1.354265
н	0.814870	-4.980503	-0.103931
н	-0.940418	-4.664169	-0.210135
н	-0.470720	-3.908487	3.261659
н	-1.324965	-2.366718	3.508956
н	0.382836	-2.534072	3.999519
н	-0.959516	0.236949	2.584050
н	0.627990	0.939327	2.129340
н	0.536609	-0.215956	3.478867
н	-0.317169	-2.996074	-2.019035
н	1.443447	-3.298543	-1.805119
н	0.854875	-1.666699	-2.288406
F	-2.671895	-0.991933	1.425627
F	-5.040885	-2.042445	0.551182
F	-4.409939	-1.328144	-2.025273
F	-4.379918	0.566811	-0.041791
F	-2.020698	-0.304286	-1.141597
F	-2.675551	-2.879894	-0.576056
Sb	-3.549288	-1.163882	-0.304186
С	2.125048	1.718340	0.024540
С	1.754579	3.064006	0.284191
С	3.467027	1.281128	0.158331
С	2.748210	3.966953	0.688766
С	4.422897	2.220846	0.575285
С	4.071015	3.547235	0.834406
н	2.475723	5.004778	0.889022
н	5.460722	1.900410	0.687503
н	4.836182	4.259417	1.150437
С	0.324333	3.504499	0.145881
C	-0.488869	3.647348	1.298191
С	-0.222167	3.768866	-1.136985

С	-1.856271	3.901580	1.134533
С	-1.594108	4.033113	-1.246632
С	-2.438290	4.057865	-0.129973
н	-2.487404	3.971552	2.025127
Н	-2.015133	4.214125	-2.239528
С	3.910984	-0.125820	-0.128361
С	4.065476	-1.048224	0.930516
С	4.253729	-0.503105	-1.450500
С	4.494216	-2.352975	0.641038
С	4.687647	-1.812998	-1.689272
С	4.801561	-2.759985	-0.661423
Н	4.600005	-3.065922	1.463640
н	4.951966	-2.099367	-2.711358
С	0.071137	3.579488	2.702390
н	0.327536	4.592370	3.059084
Н	-0.669161	3.167796	3.404499
н	0.990789	2.984143	2.773911
С	-3.931617	4.209168	-0.280479
н	-4.197843	4.704702	-1.226105
н	-4.406968	3.212404	-0.278833
н	-4.368671	4.783488	0.550990
С	0.633040	3.776063	-2.384667
н	1.617392	4.232939	-2.201662
н	0.811343	2.754521	-2.758222
н	0.134753	4.340990	-3.185970
С	3.835605	-0.654907	2.372426
н	3.635735	-1.538588	2.995785
н	4.727842	-0.154359	2.787576
н	3.002407	0.050585	2.492241
С	4.186789	0.482505	-2.594052
н	4.594360	0.039011	-3.514003
н	3.147186	0.786804	-2.790181
н	4.760297	1.397101	-2.372446
С	5.242572	-4.173045	-0.959551
н	6.113458	-4.187485	-1.634289
н	5.509617	-4.715546	-0.040709
Н	4.439485	-4.740595	-1.460975

Zero-point correction=	0.617472 (Hartree/Particle)
Thermal correction to Energy=	0.665963
Thermal correction to Enthalpy=	0.666907
Thermal correction to Gibbs Free Ene	ergy= 0.530289
Sum of electronic and zero-point Ene	rgies= -2568.700441
Sum of electronic and thermal Energi	es= -2568.651950
Sum of electronic and thermal Enthal	pies= -2568.651006

Table S19. Cartesian coordinates and energy values of [7] (without NF	HC ^{™e₄})
--	---------------------

Р	0.373151	0.548384	-1.107853
С	0.792062	1.625684	0.317934
С	2.117242	1.577599	0.818609
С	-0.190625	2.476583	0.869754
С	2.435489	2.400962	1.909665
С	0.170737	3.283775	1.958076
С	1.468581	3.241612	2.470554
Н	3.446146	2.385859	2.320893
Н	-0.572388	3.949862	2.400034
Н	1.738237	3.876099	3.317227
С	3.188297	0.708932	0.244435
С	3.452205	-0.583979	0.819947
С	4.100671	1.265388	-0.723169
С	4.562494	-1.292938	0.378960
С	5.190070	0.509440	-1.122011
С	5.442220	-0.775480	-0.591136
н	4.764675	-2.278274	0.804290
н	5.880057	0.920803	-1.862281
С	-1.583981	2.524981	0.310814
С	-1.866307	3.352203	-0.803384
С	-2.614789	1.772397	0.918623
С	-3.173518	3.388770	-1.304060
С	-3.905534	1.835489	0.375064
С	-4.206919	2.630946	-0.736377
н	-3.389656	4.030377	-2.162927
н	-4.697518	1.240440	0.837660
6	2.538975	-1.174356	1.857890
Н	2.295916	-0.449092	2.649060
н	1.586323	-1.487649	1.402377
Н	2.998561	-2.058015	2.321145
C	3.867452	2.635195	-1.297446
н	2.901344	2.680729	-1.825949
н	3 834252	3 404209	-0 509428
н	4 659998	2 901038	-2 009589
C	6 625491	-1 566506	-1 064435
н	6 807584	-2 449196	-0.436663
н	6 459466	-1 912005	-2 100402
н	7 53//79	-0 9//16/	-1 083/88
C C	-0 702577	1 1 9 8 9 7 1 0 4	-1 450600
ч	-0.793572	1 875117	_0 712620
 Ц	-0.207720	2 582520	-1 0/510/
n L	1 226201	3.302029	2 2152504
п	-1.220201	4.059204	-2.212223

С	-5.598101	2.657585	-1.322169
Н	-6.356251	2.378063	-0.575401
Н	-5.850050	3.653884	-1.717174
Н	-5.684729	1.944762	-2.161079
С	-2.366723	0.932169	2.150065
Н	-1.429888	0.364574	2.079829
Н	-2.302467	1.563505	3.053071
Н	-3.182447	0.211297	2.299817
0	1.733997	-0.107057	-1.429991
Sb	-1.521502	-2.609542	-0.044071
F	-0.864201	-2.547526	-1.856979
F	-2.488606	-4.243459	-0.339852
F	0.069068	-3.551143	0.508422
F	-2.079976	-2.485352	1.796462
F	-0.470537	-0.902350	0.253136
F	-3.022234	-1.517871	-0.558557

Zero-point correction=	0.430699 (Hartree/Particle)
Thermal correction to Energy=	0.467458
Thermal correction to Enthalpy=	0.468402
Thermal correction to Gibbs Free Ene	ergy= 0.357892
Sum of electronic and zero-point Ene	rgies= -2185.339205
Sum of electronic and thermal Energi	es= -2185.302447
Sum of electronic and thermal Enthal	pies= -2185.301503
Sum of electronic and thermal Free E	nergies= -2185.412013

Table S20. Cartesian coordinates and energy values of [12] (with $\mathsf{NHC}^{\mathsf{Me}_4})$

С	-0.614333	-1.103812	0.048553
Ν	-0.127971	-1.288560	1.298021
С	0.423470	-2.550956	1.410788
С	0.248651	-3.163286	0.192033
F	-0.398859	-2.256138	-0.626401
С	1.157223	-3.008571	2.622845
С	0.748902	-4.478286	-0.295585
С	-0.009205	-0.262437	2.330656
С	-0.622944	-2.502810	-2.053953
Ρ	-1.011762	0.543452	-0.719067
0	0.277709	1.345006	-0.281759
0	-1.391842	0.340485	-2.176046
Н	1.529254	-4.029230	2.471634
Н	0.524396	-3.000575	3.525585
Н	2.028492	-2.355503	2.785071
Н	1.021238	-5.117198	0.554407
Н	1.660484	-4.326988	-0.896215
Н	0.000414	-5.012561	-0.899531

Н	0.357723	-2.632943	-2.532103
Н	-1.125010	-1.632808	-2.486657
н	-1.229763	-3.410794	-2.172542
Н	0.987552	0.190396	2.254151
Н	-0.145957	-0.731195	3.313174
Н	-0.787514	0.489804	2.183248
Sb	3.754474	-0.977772	-0.178002
F	2.825522	-0.509894	1.485891
F	5.408442	-1.055109	0.801767
F	4.005614	0.910003	-0.539744
F	3.378196	-2.845529	0.242250
F	4.632723	-1.474644	-1.815643
F	2.043174	-0.948846	-1.113877
С	-2.311230	1.519225	0.157190
С	-1.907256	2.852921	0.421365
С	-3.641684	1.107601	0.391654
С	-2.842384	3.765588	0.928868
С	-4.544408	2.044617	0.922135
С	-4.153720	3.358778	1.182873
Н	-2.542220	4.798051	1.121153
Н	-5.572550	1.731914	1.117483
Н	-4.876605	4.073399	1.582694
С	-0.497312	3.305709	0.145453
С	0.409807	3.540140	1.246285
С	-0.123604	3.766527	-1.178396
С	1.714736	3.885235	0.955906
С	1.195551	4.133823	-1.398566
С	2.154779	4.106071	-0.370865
Н	2.440396	3.961632	1.769015
Н	1.508848	4.399253	-2.410744
С	-4.128572	-0.284944	0.097354
С	-4.182238	-1.248083	1.128595
С	-4.606380	-0.607687	-1.196570
С	-4.657000	-2.535593	0.837949
С	-5.079611	-1.903255	-1.436199
С	-5.105168	-2.886619	-0.438648
Н	-4.685275	-3.279916	1.638958
Н	-5.446142	-2.148044	-2.437499
С	-3.785428	-0.913686	2.549013
Н	-2.846559	-0.344797	2.600183
Н	-4.552649	-0.291184	3.041217
Н	-3.667286	-1.827066	3.150359
С	-5.622333	-4.273538	-0.737854
Н	-5.058095	-4.743539	-1.560719
н	-5.549772	-4.931583	0.140646

Н	-6.679686	-4.245768	-1.051165
С	-4.621281	0.412840	-2.309018
Н	-5.114070	1.347297	-1.995564
Н	-3.591417	0.661478	-2.610284
Н	-5.156999	0.024083	-3.187297
С	-0.032416	3.377441	2.676376
Н	-0.618525	4.252862	3.007200
Н	-0.681720	2.503402	2.820093
Н	0.834841	3.286270	3.345467
С	3.615110	4.247568	-0.664563
Н	4.147292	4.785422	0.135336
Н	4.042335	3.227294	-0.717801
Н	3.800356	4.746696	-1.626588
С	-1.111865	3.752904	-2.310425
Н	-1.317278	2.717023	-2.632422
Н	-2.074568	4.200541	-2.017585
н	-0.715011	4.304046	-3.174425

Zero-point correction=	0.622276 (Hartree/Particle)
Thermal correction to Energy=	0.670993
Thermal correction to Enthalpy=	0.671937
Thermal correction to Gibbs Free Ene	ergy= 0.537031
Sum of electronic and zero-point Ene	rgies= -2643.888260
Sum of electronic and thermal Energi	ies= -2643.839544
Sum of electronic and thermal Enthal	pies= -2643.838599
Sum of electronic and thermal Free E	nergies= -2643.973505

Table S21. Cartesian coordinates and energy values of [12] (without NHC^{Me_4})

С	-0.212082	-1.675314	0.382838
С	-1.490884	-1.892320	0.934955
С	0.949466	-2.222333	0.969142
С	-1.615003	-2.675615	2.090598
С	0.788013	-2.995710	2.129720
С	-0.474334	-3.222761	2.681796
Н	-2.601038	-2.855307	2.524674
Н	1.675590	-3.422613	2.600809
Н	-0.571854	-3.830462	3.584201
С	-2.729972	-1.325554	0.300740
С	-3.358488	-0.157983	0.888500
С	-3.474947	-2.142286	-0.640015
С	-4.619156	0.207199	0.444999
С	-4.732788	-1.726190	-1.027514
С	-5.320185	-0.543753	-0.518708
Н	-5.084783	1.103856	0.859612
Н	-5.290616	-2.323060	-1.753062

С	2.326418	-1.994093	0.416138
С	2.833949	-2.844481	-0.592458
С	3.127695	-0.960588	0.949060
С	4.138048	-2.638329	-1.053763
С	4.422223	-0.784451	0.442254
С	4.946590	-1.608117	-0.558330
Н	4.528914	-3.298092	-1.833701
н	5.034525	0.027017	0.844931
С	-2.653781	0.640640	1.941733
Н	-2.399397	0.017645	2.814527
Н	-1.710538	1.060171	1.565563
Н	-3.278946	1.478011	2.279267
С	-2.865844	-3.390558	-1.212346
Н	-1.985013	-3.145403	-1.829299
Н	-2.521398	-4.076829	-0.423004
Н	-3.585904	-3.921324	-1.850066
С	-6.660538	-0.091867	-1.017524
Н	-7.159194	0.579508	-0.303910
Н	-6.535706	0.466644	-1.963502
Н	-7.322106	-0.944784	-1.233567
С	1.992935	-3.943073	-1.198631
Н	1.471354	-4.541081	-0.434355
Н	1.230685	-3.507291	-1.864960
Н	2.612697	-4.625142	-1.798817
С	6.330821	-1.374774	-1.113427
Н	6.982993	-0.876997	-0.379709
Н	6.810224	-2.319034	-1.415575
Н	6.290724	-0.728377	-2.007826
С	2.643907	-0.062447	2.064141
Н	1.588427	0.217510	1.957358
Н	2.754227	-0.554860	3.046866
Н	3.223880	0.870205	2.086513
0	-1.715065	-0.243373	-1.291097
Sb	0.501256	2.918624	-0.046146
F	0.742781	3.147656	-1.927483
F	0.450676	4.770539	0.407944
F	-1.394512	2.738479	-0.302115
F	0.230932	2.277384	1.758274
F	0.559087	0.796491	-0.478596
F	2.389608	2.704779	0.200371
Р	-0.236489	-0.695405	-1.143333
0	0.623316	-1.086385	-2.298710

Zero-point correction= Thermal correction to Energy= 0.436262 (Hartree/Particle) 0.474347

S54

Thermal correction to Enthalpy=	0.475291
Thermal correction to Gibbs Free Energy=	0.360941
Sum of electronic and zero-point Energies	-2260.548575
Sum of electronic and thermal Energies=	-2260.510489
Sum of electronic and thermal Enthalpies=	-2260.509545
Sum of electronic and thermal Free Energi	ies= -2260.623895

Table S22. Cartesian coordinates and energy values of [10] (with NHC^{Me_4})

С	0.959665	0.574130	1.442883
Ν	1.210732	1.746880	2.080956
С	0.143257	2.079200	2.900457
С	-0.792296	1.075710	2.764946
Ν	-0.259600	0.155823	1.875628
С	0.128186	3.312837	3.736740
С	-2.132297	0.918178	3.399101
С	2.474215	2.480738	2.063402
С	-0.927860	-1.070536	1.427132
Р	2.077072	-0.521541	0.480960
Н	-0.800479	3.362974	4.318594
Н	0.189315	4.221141	3.115855
н	0.972925	3.332196	4.443715
Н	-2.369518	1.806690	3.997958
Н	-2.156900	0.043579	4.069598
Н	-2.916195	0.787870	2.638361
Н	-0.234410	-1.917263	1.513961
Н	-1.264151	-0.966418	0.388611
Н	-1.801467	-1.255163	2.058041
Н	2.274952	3.553586	1.962389
Н	3.077486	2.144876	1.215826
Н	3.021176	2.298596	3.000021
F	-3.840700	0.233897	0.693066
F	-6.295467	-0.974446	0.820082
F	-3.999170	-2.397429	1.360752
F	-5.445711	-2.897992	-0.935660
F	-5.233760	-0.229892	-1.610457
F	-2.991290	-1.698511	-1.079366
Sb	-4.650646	-1.335314	-0.125772
С	2.781878	0.494082	-0.883922
С	4.116875	0.123914	-1.226585
С	2.074976	1.428534	-1.700964
С	4.740628	0.724397	-2.327491
С	2.745338	2.000046	-2.793728
С	4.064661	1.666551	-3.103071
Н	5.766291	0.442382	-2.574068
Н	2.206074	2.709744	-3.424278

Н	4.558492	2.128660	-3.960415
С	0.633005	1.807862	-1.512218
С	-0.393840	0.896120	-1.863546
С	0.288592	3.118716	-1.100683
С	-1.732865	1.290767	-1.734960
С	-1.064724	3.465188	-0.980097
С	-2.093176	2.566218	-1.284580
Н	-2.515379	0.574810	-1.989394
Н	-1.318690	4.474693	-0.642234
С	4.878819	-0.925000	-0.460740
С	5.741540	-0.572029	0.600338
С	4.783209	-2.281710	-0.869162
С	6.466065	-1.581945	1.254516
С	5.519460	-3.252825	-0.183933
С	6.365251	-2.926298	0.887275
Н	7.134958	-1.300824	2.073095
Н	5.437848	-4.296272	-0.501900
С	-0.095190	-0.470516	-2.441656
Н	0.528969	-1.086235	-1.774732
Н	-1.027995	-1.023090	-2.616700
Н	0.451613	-0.388937	-3.396203
С	1.327372	4.186999	-0.832176
Н	0.984042	4.880442	-0.049438
Н	2.299127	3.775355	-0.532890
Н	1.507264	4.790966	-1.738727
С	-3.543765	2.964280	-1.151705
Н	-4.207539	2.101299	-1.293496
Н	-3.747763	3.393211	-0.156966
Н	-3.811575	3.736448	-1.893682
С	5.910299	0.856892	1.065713
Н	5.719731	1.585057	0.265681
Н	5.219173	1.087042	1.894599
Н	6.928954	1.023899	1.446757
С	3.905047	-2.692782	-2.029035
Н	2.840888	-2.479286	-1.832839
Н	4.168920	-2.151026	-2.951401
Н	3.998026	-3.770083	-2.226627
С	7.141689	-4.001199	1.609048
Н	6.463817	-4.687694	2.144464
Н	7.724927	-4.615337	0.903386
Н	7.836868	-3.572410	2.345460
Zoro -	aint correct	ion-	0 6124

Zero-point correction=	0.613468 (Hartree/Particle)
Thermal correction to Energy=	0.661074
Thermal correction to Enthalpy=	0.662018

Thermal correction to Gibbs Free Energy=	0.526070
Sum of electronic and zero-point Energies=	-2493.474228
Sum of electronic and thermal Energies=	-2493.426623
Sum of electronic and thermal Enthalpies=	-2493.425679
Sum of electronic and thermal Free Energies=	-2493.561627

Table S23. Cartesian coordinates and energy values of [10] (without NHC^{Me_4})

Р	-1.200861	1.176093	-1.070014
С	-1.995475	0.740157	0.485159
С	-1.766431	1.926415	1.207163
С	-2.695849	-0.356785	1.032195
С	-2.213898	2.082036	2.511801
С	-3.140250	-0.186243	2.352696
С	-2.905968	0.996805	3.075954
н	-2.040417	2.998595	3.078226
Н	-3.684519	-1.001464	2.834483
н	-3.273564	1.070667	4.101311
С	-1.009483	2.847084	0.268827
С	0.444874	2.933164	0.357287
С	-1.734266	3.870541	-0.482574
С	1.103273	3.862814	-0.440023
С	-1.007964	4.773294	-1.242500
С	0.403853	4.777542	-1.247627
Н	2.193853	3.898116	-0.416902
Н	-1.542285	5.515050	-1.839177
С	-2.954670	-1.609629	0.254463
С	-4.210768	-1.804655	-0.366625
С	-1.945642	-2.593216	0.145759
С	-4.432972	-2.984882	-1.087525
С	-2.216467	-3.760537	-0.583196
С	-3.451339	-3.978553	-1.205432
Н	-5.402336	-3.129736	-1.573183
Н	-1.434110	-4.520356	-0.664922
6	1.211779	2.063880	1.304468
Н	1.134192	2.493153	2.319638
Н	0.818449	1.041548	1.361744
Н	2.270991	2.011944	1.026760
С	-3.231274	3.946668	-0.417492
Н	-3.702985	2.962077	-0.552338
Н	-3.541614	4.310019	0.576961
Н	-3.623144	4.635988	-1.176240
С	1.143219	5.753935	-2.111386
Н	2.188066	5.872204	-1.795027
Н	1.144328	5.389805	-3.154244
Н	0.646264	6.735510	-2.116431

С	-5.304514	-0.764501	-0.274278
Н	-5.642638	-0.618987	0.764733
Н	-4.962085	0.219276	-0.634970
Н	-6.177236	-1.060424	-0.873678
С	-3.730366	-5.254503	-1.963380
Н	-2.799226	-5.757057	-2.264693
Н	-4.303248	-5.965481	-1.342367
Н	-4.328765	-5.062821	-2.867802
С	-0.593763	-2.406183	0.791832
Н	-0.058149	-1.542593	0.372159
Н	-0.681460	-2.231213	1.876574
Н	0.047106	-3.283875	0.634265
Sb	3.262491	-1.164625	0.039053
F	4.169194	-1.285877	-1.664291
F	4.793432	-1.929841	0.937777
F	4.000851	0.613203	0.301478
F	2.328762	-1.025127	1.735988
F	1.714936	-0.377598	-0.842857
F	2.524664	-2.936244	-0.224736

Zero-point correction=	0.427612 (Hartree/Particle)
Thermal correction to Energy=	0.463255
Thermal correction to Enthalpy=	0.464200
Thermal correction to Gibbs Free Ene	rgy= 0.354428
Sum of electronic and zero-point Ene	rgies= -2110.092477
Sum of electronic and thermal Energi	es= -2110.056833
Sum of electronic and thermal Enthal	pies= -2110.055889
Sum of electronic and thermal Free E	nergies= -2110.165660

Table S24. Cartesian coordinates and energy values of [4] (with $\mathsf{NHC}^{\mathsf{Me}_4})$

С	2.275030	3.174512	0.057999
Ν	1.076677	2.478245	0.229196
С	0.993914	1.433934	-0.646068
Ν	2.133012	1.494719	-1.385739
С	2.942502	2.551370	-0.962389
С	2.478514	0.564894	-2.458770
С	0.020498	2.838627	1.164567
Р	-0.629186	0.483150	-0.983481
0	-0.335774	-0.320103	-2.334971
С	4.271239	2.838533	-1.577624
С	2.654738	4.353765	0.890022
С	-0.721880	-0.594444	0.505046
С	0.376556	-1.228764	1.247245
С	0.146753	-1.683829	2.549311
С	-1.123473	-1.658779	3.156930

С	-2.221355	-1.209868	2.381654
С	-2.055136	-0.716679	1.090572
С	1.742345	-1.492748	0.696787
С	1.941576	-2.416283	-0.372116
С	3.238158	-2.738651	-0.786891
С	4.381966	-2.172866	-0.196792
С	4.178930	-1.262309	0.844816
С	2.896181	-0.917131	1.303241
С	-3.307928	-0.361192	0.343088
С	-3.752234	-1.134387	-0.768679
С	-4.962815	-0.822002	-1.397055
С	-5.774966	0.246242	-0.978138
С	-5.335702	0.993242	0.117824
С	-4.132180	0.710389	0.786385
С	-2.951148	-2.305639	-1.284400
С	-7.068450	0.563614	-1.691168
С	-3.754683	1.577704	1.968735
С	0.771271	-3.083266	-1.048815
С	5.766889	-2.540254	-0.675882
С	2.794802	0.069202	2.447345
н	0.983208	-2.137382	3.092945
н	-1.273572	-2.072419	4.157387
Н	-3.236321	-1.292166	2.785242
Н	-5.291121	-1.441979	-2.238349
Н	-5.946339	1.832263	0.468543
Н	-4.093708	1.145264	2.926877
Н	-4.216093	2.575167	1.884762
н	-2.665754	1.697391	2.053038
Н	-2.058997	-1.951460	-1.826937
Н	-3.559695	-2.927728	-1.959728
Н	-2.587198	-2.937054	-0.458422
Н	-7.606632	1.389987	-1.202136
Н	-7.743534	-0.309640	-1.715633
Н	-6.893311	0.854831	-2.742023
Н	3.362053	-3.471423	-1.591997
Н	5.049042	-0.800075	1.323771
Н	0.196622	-2.329197	-1.614137
н	0.083273	-3.529840	-0.311365
Н	1.113057	-3.877082	-1.732493
Н	5.940889	-3.629363	-0.621128
Н	6.545853	-2.046846	-0.074372
Н	5.926107	-2.250197	-1.729755
Н	1.922549	0.728403	2.334879
Н	3.701911	0.691892	2.506560
Н	2.681237	-0.431041	3.425310

Н	1.536856	0.087000	-2.775430
Н	3.178806	-0.198295	-2.089172
Н	2.943761	1.122371	-3.284038
Н	4.936112	1.960288	-1.531853
Н	4.765804	3.664855	-1.049662
Н	4.180400	3.126712	-2.638401
Н	1.967662	5.203880	0.741953
Н	3.664198	4.694483	0.623516
Н	2.653928	4.111409	1.965524
Н	-0.947287	2.623464	0.689510
Н	0.089117	3.907834	1.398930
Н	0.093796	2.256885	2.095402

Zero-point correction=	0.597169 (Hartree/Particle)
Thermal correction to Energy=	0.635021
Thermal correction to Enthalpy=	0.635966
Thermal correction to Gibbs Free Ene	rgy= 0.526811
Sum of electronic and zero-point Ene	rgies= -1729.227583
Sum of electronic and thermal Energi	es= -1729.189731
Sum of electronic and thermal Enthal	pies= -1729.188786
Sum of electronic and thermal Free E	nergies= -1729.297941

Table S25. Cartesian coordinates and energy values of [4] (without $\mathsf{NHC}^{\mathsf{Me}_4})$

Р	0.005878	-0.931986	-1.320770
0	0.059771	-2.424222	-0.731085
С	-0.001549	0.187743	0.228126
С	1.215853	0.617262	0.816136
С	1.200543	1.422522	1.969179
С	-0.006450	1.817079	2.549754
С	-1.210675	1.416539	1.968221
С	-1.221660	0.611545	0.814403
С	2.562312	0.253700	0.245611
С	3.192335	-0.960243	0.611845
С	4.480833	-1.234113	0.134274
С	5.170783	-0.343654	-0.700876
С	4.529372	0.848191	-1.055700
С	3.241173	1.163720	-0.594814
С	-2.566893	0.242463	0.244312
С	-3.171671	-0.996116	0.569929
С	-4.460640	-1.273915	0.095873
С	-5.175777	-0.364626	-0.696776
С	-4.559520	0.851181	-1.011872
С	-3.271983	1.172061	-0.552404
С	-2.427124	-2.031443	1.377846
С	-6.565052	-0.695996	-1.190327

С	-2.652384	2.495224	-0.942744
С	2.470238	-1.976268	1.463558
С	6.560500	-0.669179	-1.197209
С	2.590894	2.457369	-1.029958
Н	2.148385	1.740905	2.412576
Н	-0.008425	2.439446	3.448323
Н	-2.160295	1.728779	2.412159
Н	-4.919865	-2.233617	0.353877
Н	-5.093248	1.575946	-1.634258
н	-2.422629	3.118569	-0.063445
Н	-3.324705	3.067257	-1.599187
Н	-1.698774	2.345087	-1.476219
Н	-1.556367	-2.390282	0.797949
Н	-3.078472	-2.884554	1.622522
н	-2.040297	-1.611796	2.321177
н	-6.982777	0.120068	-1.798696
н	-7.256981	-0.879266	-0.350608
н	-6.565069	-1.610863	-1.806994
н	4.959362	-2.175580	0.422637
н	5.043351	1.557453	-1.711677
н	1.592801	-2.353254	0.906537
н	2.098988	-1.533513	2.402499
н	3.130231	-2.819708	1.718254
н	7.267586	-0.795103	-0.359504
н	6.951796	0.124376	-1.851217
н	6.572795	-1.613516	-1.767505
н	1.651536	2.263107	-1.574939
н	3.256591	3.031685	-1.691141
н	2.327393	3.095671	-0.171206

Zero-point correction=	0.416259 (Hartree/Particle)
Thermal correction to Energy=	0.443039
Thermal correction to Enthalpy=	0.443983
Thermal correction to Gibbs Free Ene	ergy= 0.356563
Sum of electronic and zero-point Ene	rgies= -1345.971153
Sum of electronic and thermal Energi	ies= -1345.944373
Sum of electronic and thermal Enthal	lpies= -1345.943429
Sum of electronic and thermal Free E	nergies= -1346.030848

Coordinates of optimized geometries of other molecules: (at M06/cc-pVDZ level)

 Table S26. Cartesian coordinates and energy values of 1

Ρ	-0.558818	0.259228	-1.148985
Ν	2.017687	1.409696	-1.432802
Ν	1.057917	2.011972	0.417152
С	-0.777813	-0.707662	0.428711
С	0.287110	-1.374575	1.096487
С	0.031604	-2.118163	2.254172
Н	0.870624	-2.620152	2.748771
С	-1.258351	-2.271032	2.749117
Н	-1.441572	-2.868374	3.646046
С	-2.313938	-1.681456	2.063551
Н	-3.343322	-1.816464	2.413224
С	-2.094035	-0.909808	0.918807
С	-3.292227	-0.344981	0.230395
С	-3.770518	-0.941835	-0.952251
С	-4.904431	-0.415205	-1.570879
Н	-5.273545	-0.888653	-2.488597
С	-5.581519	0.690249	-1.056660
С	-5.109533	1.249117	0.129037
Н	-5.637028	2.106663	0.564092
С	-3.986322	0.743591	0.787255
С	-3.570061	1.354586	2.094012
Н	-3.945510	2.385356	2.188415
Н	-2.477646	1.363993	2.220387
Н	-3.970558	0.783058	2.950044
С	-3.088198	-2.134064	-1.555573
Н	-2.167806	-1.837537	-2.090697
Н	-3.744341	-2.638514	-2.280822
Н	-2.787279	-2.867666	-0.790052
С	-6.769656	1.264955	-1.766983
Н	-7.428961	1.814836	-1.077674
Н	-7.366558	0.480236	-2.258024
Н	-6.460183	1.973148	-2.555309
С	1.686315	-1.414392	0.569387
C	1.977318	-2.222354	-0.553683
C	3.280422	-2.264241	-1.045909
Н	3.493890	-2.892804	-1.919/48
C	4.319846	-1.535898	-0.461560
C	4.027705	-0.795968	0.6/9/04
Н	4.832030	-0.242658	1.181084
C	2./3//01	-0.747833	1.221934
C	0.914202	-3.040387	-1.220016
н	0.279842	-3.562276	-0.484976
H	1.356058	-3./90354	-1.893309
H	0.242526	-2.393054	-1.812685
	5./02195	-1.5/9856	-1.04128/
Н	6.110385	-2.604655	-1.035337
н	6.400558	-0.940166	-0.4/9936

Н	5.711951	-1.246880	-2.093998
С	2.537006	-0.015037	2.516559
Н	1.545629	0.453657	2.592371
Н	3.308239	0.760153	2.655128
Н	2.617517	-0.702759	3.377044
С	0.896380	1.210272	-0.679637
С	2.880875	2.299532	-0.801434
С	2.281808	2.677620	0.361217
С	2.301483	0.724843	-2.671662
Н	1.576779	-0.099009	-2.766674
Н	3.322734	0.313625	-2.650981
Н	2.191687	1.398438	-3.536956
С	4.201989	2.649277	-1.371963
Н	4.873573	1.773187	-1.410715
Н	4.695464	3.419519	-0.763015
Н	4.113973	3.041120	-2.399090
С	2.738626	3.601638	1.425567
Н	2.119556	4.513577	1.485948
Н	3.773308	3.921385	1.237599
Н	2.710974	3.121541	2.418551
С	-0.011256	2.292561	1.345322
Н	-0.956480	2.312033	0.775064
Н	0.163921	3.262990	1.828864
н	-0.105753	1.512407	2.119884

Zero-point correction=	0.596846 (Hartree/Particle)
Thermal correction to Energy=	0.632595
Thermal correction to Enthalpy=	0.633539
Thermal correction to Gibbs Free Ener	rgy= 0.531765
Sum of electronic and zero-point Ener	gies= -1652.862700
Sum of electronic and thermal Energie	es= -1652.826951
Sum of electronic and thermal Enthalp	oies= -1652.826007
Sum of electronic and thermal Free Er	nergies= -1652.927781

Table S27. Cartesian coordinates and energy values of 2

Ρ	-0.687750	0.373393	-1.080796
0	-0.328662	-0.548316	-2.283503
Ν	2.099456	1.338946	-1.323319
Ν	1.013467	2.263929	0.292770
С	0.949858	1.268457	-0.623974
С	0.313435	-1.359060	1.159110
С	1.718542	-1.397849	0.650381
С	-0.759584	-0.707977	0.505586
С	2.236459	2.925339	0.212582
С	2.606770	4.023163	1.135041
Н	1.979673	4.920044	0.993886
Н	3.650605	4.325006	0.970919
Н	2.508250	3.715078	2.190121
С	0.071827	-2.106068	2.319218

Н	0.917161	-2.602726	2.808240
С	2.921887	2.336065	-0.808367
С	2.041309	-2.304929	-0.381830
С	-3.279235	-0.359287	0.322789
С	2.465640	0.205382	2.470561
Н	1.512656	0.748071	2.382935
н	3 275680	0 936912	2 621805
н	2 390893	-0 393486	3 395186
Ċ	-2.056601	-0 898851	1 010223
c	-3 975158	0.735503	0.86/678
c	-3.373138	-1 664616	2 162827
с ц	2 202007	1 202452	2.102007
С	-3.302997	-1.005455	2.522010
C 	-0.080882	2.022387	1.101572
н	-1.029660	2.374687	0.645033
н	-0.060439	3.701642	1.363857
Н	-0.0504/1	2.075152	2.118108
С	0.982034	-3.134804	-1.037877
Н	0.339348	-3.636710	-0.295049
Н	1.427445	-3.902847	-1.687772
Н	0.332235	-2.479992	-1.648307
С	2.740012	-0.666293	1.279863
С	2.449559	0.495272	-2.458471
Н	3.269368	-0.183829	-2.181055
Н	2.764409	1.135447	-3.296637
Н	1.550995	-0.083206	-2.730619
С	3.372582	-2.421928	-0.785116
Н	3.619755	-3.134864	-1.581163
С	-4.923629	-0.504083	-1.438793
Н	-5.304460	-1.007317	-2.335373
С	-3.770622	-1.003209	-0.830298
C	-1.212528	-2.254388	2.828690
Н	-1.383165	-2.850070	3.729628
C	-3.530107	1.389409	2.141138
н	-3 876872	0 826452	3 025762
н	-3 933957	2 410102	2 227655
н	-2 433568	1 436201	2.227035
Ċ	-5 603750	0.607602	-0 0/225/
c	-5.003750	1 208387	0.2168/1
ц	5.117080	2 071962	0.210841
п С	-3.047124	0.792104	0.030711
	4.034113	-0.785194	1 209624
П	4.841405	-0.190126	1.298034
C	4.391576	-1.655148	-0.21/332
C	4.282849	2.577839	-1.338429
н	4.901408	1.665953	-1.2/3512
Н	4.785981	3.369152	-0.765520
Н	4.266914	2.890378	-2.395702
С	-6.812496	1.146659	-1.646681
Н	-6.527097	1.844271	-2.453262
Н	-7.471849	1.698172	-0.958653
Н	-7.401389	0.341617	-2.113609
С	-3.080506	-2.199599	-1.416352

Н	-2.176864	-1.896937	-1.977768
Н	-3.748203	-2.734608	-2.108396
Н	-2.751715	-2.906452	-0.636585
С	5.797349	-1.751280	-0.729430
Н	6.082442	-2.794833	-0.937798
Н	6.523156	-1.335727	-0.013530
Н	5.917109	-1.196917	-1.678398

Zero-point correction=	0.600687 (Hartree/Particle)
Thermal correction to Energy=	0.637565
Thermal correction to Enthalpy=	0.638509
Thermal correction to Gibbs Free Ene	ergy= 0.533572
Sum of electronic and zero-point Ene	rgies= -1728.068856
Sum of electronic and thermal Energi	es= -1728.031977
Sum of electronic and thermal Enthal	pies= -1728.031033
Sum of electronic and thermal Free E	nergies= -1728.135971

Table S28. Cartesian coordinates and energy values of 3

Р	0.585697	0.562707	-0.811370	
0	1.403346	1.796384	-0.496633	
0	0.519059	-0.133744	-2.161745	
N	-2.229191	1.259266	-1.331369	
N	-1.470359	2.080939	0.514447	
С	-1.165402	1.257540	-0.508669	
С	-0.231305	-1.473219	1.092019	
С	-2.754246	2.586515	0.355516	
С	-3.235274	2.059459	-0.808524	
С	-1.639880	-1.489465	0.589772	
С	0.808854	-0.698833	0.531383	
С	2.132840	-0.900976	0.982163	
С	-2.677601	-0.901014	1.333428	
С	0.050974	-2.355025	2.142270	
Н	-0.768695	-2.947706	2.562219	
С	3.338784	-0.313047	0.321667	
С	-2.328092	0.572448	-2.613999	
н	-2.569373	1.309490	-3.394364	
Н	-3.118661	-0.191335	-2.564957	
Н	-1.350668	0.113716	-2.825123	
С	-1.944951	-2.230010	-0.573418	
С	-0.544979	2.498405	1.557836	
Н	-1.120177	2.799047	2.443718	
Н	0.080128	3.326259	1.194713	
Н	0.123460	1.668915	1.819921	
С	-3.378489	3.520943	1.321039	
Н	-3.481796	3.074805	2.324658	
Н	-4.384264	3.802352	0.980098	
Н	-2.793567	4.449002	1.431184	
С	-2.417461	-0.228798	2.649887	
Н	-2.416167	-0.963926	3.474006	
Н	-3.202175	0.509125	2.884040	

Н	-1.436426	0.266726	2.687346
С	3.855143	-0.949777	-0.819163
С	2.376646	-1.791895	2.033295
Н	3.411060	-1.932410	2.363611
С	4.012491	0.785129	0.883252
С	1.343237	-2.503076	2.628323
Н	1.548491	-3.195965	3.448753
С	-4.552048	2.197608	-1.469901
Н	-4.460937	2.588290	-2.496497
Н	-5.197197	2.885876	-0.906931
Н	-5.069115	1.224317	-1.530224
С	-3.991006	-0.975951	0.857935
Н	-4.790368	-0.485893	1.428126
С	-3.273683	-2.310183	-0.990734
Н	-3.507380	-2.890868	-1.892017
С	-4.310462	-1.674528	-0.303856
С	5.044943	-0.472747	-1.376962
Н	5.447966	-0.973708	-2.264937
С	-0.873291	-2.932690	-1.348592
Н	-0.211714	-2.198840	-1.842876
Н	-1.308627	-3.588457	-2.117251
Н	-0.236971	-3.547322	-0.689874
С	5.196099	1.225926	0.297782
Н	5.716392	2.085563	0.737162
С	3.429213	1.523449	2.047386
Н	2.538116	2.071166	1.695113
Н	4.142282	2.251349	2.462687
Н	3.109529	0.851253	2.860460
С	5.729959	0.611525	-0.836571
С	3.146580	-2.106678	-1.460125
Н	2.826283	-2.860420	-0.721053
Н	3.793658	-2.604164	-2.198073
Н	2.239084	-1.753204	-1.982009
С	-5.721564	-1.770701	-0.802512
Н	-6.402918	-1.121870	-0.230827
Н	-6.105142	-2.802268	-0.727052
Н	-5.794543	-1.487970	-1.867039
С	6.990913	1.127334	-1.461558
Н	7.737149	1.404071	-0.699291
Н	6.796430	2.032966	-2.061938
н	7.447359	0.382879	-2.131671

Zero-point correction=	0.607703 (Hartree/Particle)
Thermal correction to Energy=	0.644586
Thermal correction to Enthalpy=	0.645530
Thermal correction to Gibbs Free Ene	rgy= 0.542318
Sum of electronic and zero-point Ener	rgies= -1803.304026
Sum of electronic and thermal Energie	es= -1803.267144
Sum of electronic and thermal Enthal	pies= -1803.266200
Sum of electronic and thermal Free Ei	nergies= -1803.369411

Table S29. Cartesian coordinates and energy values of [4]

С	2.514421	2.597305	-0.578966
Ν	1.219316	2.153657	-0.325209
С	0.959128	1.017976	-1.029850
Ν	2.080834	0.772660	-1.753436
С	3.056793	1.719852	-1.469993
С	2.244730	-0.345185	-2.666768
С	0.234236	2.788711	0.520945
Ρ	-0.747675	0.226303	-1.128047
0	-0.594053	-0.943731	-2.169877
С	4.423261	1.620418	-2.031176
С	3.103670	3.782833	0.085095
С	-0.772595	-0.355780	0.640070
С	0.350937	-0.652039	1.528277
С	0.141772	-0.589764	2.913534
С	-1.108178	-0.373886	3.483695
С	-2.226830	-0.248899	2.626574
C	-2.071263	-0.241350	1.249943
C	1.689055	-1.069563	1.063739
C	1.849715	-2.213010	0.227509
C	3.119500	-2.604540	-0.184007
C	4.279477	-1.892623	0.159214
C	4.120404	-0.787486	0.991759
C	2.869893	-0.375887	1.463100
C	-3.317435	-0.151726	0.431959
C	-3.766852	-1.257700	-0.324467
C	-4.980408	-1.173799	-1.007430
С	-5.768363	-0.021838	-0.990083
С	-5.307327	1.065452	-0.252777
С	-4.103414	1.019963	0.455341
С	-2.960170	-2.514775	-0.423727
С	-7.052018	0.040592	-1.763533
С	-3.655458	2.244003	1.200811
С	0.671294	-3.034922	-0.186633
С	5.618718	-2.311147	-0.366933
С	2.831622	0.818102	2.372133
Н	0.993311	-0.804247	3.572239
Н	-1.234725	-0.392817	4.570493
Н	-3.239740	-0.197709	3.045316
Н	-5.322842	-2.047110	-1.578093
Н	-5.899825	1.989722	-0.232412
Н	-3.772694	2.146384	2.293112
Н	-4.229469	3.129270	0.879956
Н	-2.585539	2.439409	1.024649
Н	-2.138626	-2.368149	-1.150379
Н	-3.586183	-3.358276	-0.757930
Н	-2.493359	-2.774432	0.540375
Н	-7.647899	0.926738	-1.491338
Н	-7.676999	-0.852254	-1.588233
Н	-6.870738	0.088784	-2.852497

Н	3.212410	-3.509754	-0.800525
Н	5.008636	-0.210807	1.288070
Н	0.101195	-2.510304	-0.979322
Н	-0.021084	-3.188025	0.659202
Н	0.995356	-4.018679	-0.565022
Н	5.857132	-3.360240	-0.110539
Н	6.428445	-1.679654	0.035580
Н	5.669359	-2.247021	-1.471630
Н	1.961241	1.462859	2.163550
Н	3.754455	1.415904	2.267959
Н	2.745245	0.545849	3.440164
Н	1.242728	-0.799151	-2.795848
Н	2.935752	-1.089149	-2.238019
Н	2.640589	0.023753	-3.627444
Н	4.898130	0.670468	-1.724509
Н	5.054138	2.445822	-1.670041
Н	4.428400	1.651077	-3.134254
Н	2.564655	4.715521	-0.158009
Н	4.148692	3.913855	-0.231750
Н	3.100768	3.676609	1.184550
Н	-0.654733	3.050870	-0.080425
Н	0.663570	3.696629	0.966061
Н	-0.093132	2.093634	1.313036

Zero-point correction=	0.594787 (Hartree/Particle)
Thermal correction to Energy=	0.632035
Thermal correction to Enthalpy=	0.632979
Thermal correction to Gibbs Free Ene	rgy= 0.527011
Sum of electronic and zero-point Ener	rgies= -1728.062451
Sum of electronic and thermal Energie	es= -1728.025203
Sum of electronic and thermal Enthal	pies= -1728.024259
Sum of electronic and thermal Free Er	nergies= -1728.130227

Table S30. Cartesian coordinates and energy values of [5]

С	-4.394664	1.393680	1.886850
С	-4.188603	1.893353	0.603686
С	-2.958486	2.428458	0.207704
С	-1.896902	2.440986	1.126280
С	-2.082659	1.941482	2.431132
С	-3.332890	1.436528	2.789480
С	-0.572372	3.041643	0.778683
С	0.467068	2.347518	0.118332
С	1.716038	2.991703	0.017060
С	1.908666	4.295229	0.491526
С	0.860295	4.990499	1.082081
С	-0.366981	4.352713	1.230900
Ρ	0.394032	0.727797	-0.947352
0	-0.439823	1.244909	-2.196054
С	2.910782	2.310276	-0.572299

С	3.720942	1.505781	0.250793
С	4.910481	0.993965	-0.277067
С	5.299610	1.231539	-1.594101
С	4.457290	1.999463	-2.403060
С	3.270493	2.544070	-1.912750
С	3.262795	1.118341	1.620069
С	2.329378	3.283539	-2.817079
С	6.583541	0.672146	-2.134733
С	-2.771279	2.958900	-1.178847
С	-0.939000	1.855618	3.397027
С	-5.711098	0.804014	2.299840
Р	-0.717650	-0.568154	0.693199
С	-0.478283	-2.152592	-0.299036
C	-1.584559	-2.604214	-1.065844
C	-1.529158	-3.806760	-1.773774
C	-0.394902	-4.615359	-1.729051
C	0.690078	-4.192242	-0.968861
C	0.673713	-2.982714	-0.260053
C	-2.892374	-1.872884	-1.131692
c	-3.850689	-2.062307	-0.115867
c	-5 124472	-1 509865	-0 257457
c	-5.476662	-0.753492	-1.374282
c	-4 518976	-0 576349	-2 369667
c	-3.236632	-1.128482	-2.279431
C	1.932708	-2.708796	0.508552
c	3.097727	-2.319001	-0.178310
C	4.315031	-2.275674	0.510272
c	4.412252	-2.591915	1.861933
C	3.245031	-2.969108	2.528137
C	2.013666	-3.033047	1.877157
c	-3 509601	-2 821925	1 127738
c	-2 256698	-0.900612	-3 386673
c	-6.833829	-0.124230	-1.487776
C	3.050157	-1.887237	-1.612564
c	0.778585	-3.381197	2.645680
C	5.721765	-2.482747	2.586751
õ	0 474114	-0 487917	1 744136
н	-2 409162	-4 113989	-2 353790
н	1 595198	-4 811258	-0.912257
н	-0 362546	-5 567665	-2 269060
н	2 899649	4 755075	0 387660
н	-1.197974	4.865257	1.732646
н	1 001584	6 015754	1 442083
н	-5 865838	-1 675369	0 535643
н	-4 774119	0.011285	-3 261663
н	5 217184	-1 975668	-0.039035
н	3,291650	-3.218242	3.597033
н	5 538486	0 362902	0 365467
н	4.722466	2.162399	-3.456618
Н	-5.008875	1.862590	-0.124841
Н	-3.470530	1.032794	3.801639
	-		-

Н	1.020651	-3.804950	3.634879
Н	0.211920	-2.438414	2.769139
Н	0.134809	-4.091599	2.099319
Н	6.575497	-2.693288	1.919682
Н	5.878988	-1.465837	2.993462
Н	5.777056	-3.180473	3.440160
Н	4.060821	-1.662420	-1.993636
Н	2.579459	-2.639242	-2.267285
Н	2.439342	-0.964988	-1.695375
Н	-3.024756	-3.787915	0.905732
Н	-2.779715	-2.232491	1.717290
Н	-4.404438	-3.005186	1.745888
Н	-1.721980	-1.824192	-3.660938
Н	-2.766761	-0.510637	-4.283746
Н	-1.492083	-0.154706	-3.067060
Н	-7.586898	-0.668997	-0.892949
Н	-6.828734	0.919723	-1.119185
Н	-7.183842	-0.089962	-2.533716
Н	4.046344	0.560195	2.159816
Н	2.967244	1.994972	2.223377
Н	2.353749	0.470192	1.561470
Н	6.928006	-0.190899	-1.540266
Н	6.468574	0.334036	-3.179276
Н	7.402069	1.417198	-2.129137
Н	1.356687	2.752737	-2.864060
Н	2.113466	4.300210	-2.445182
Н	2.739877	3.366992	-3.837066
Н	-0.235778	1.071826	3.039644
Н	-0.374511	2.800070	3.469957
Н	-1.294935	1.579945	4.403902
Н	-2.425584	4.008795	-1.160409
Н	-1.986713	2.371767	-1.708358
Н	-3.714100	2.913472	-1.750054
Н	-5.618411	-0.280950	2.490296
Н	-6.090531	1.261017	3.231945
Н	-6.479945	0.935387	1.520135

Zero-point correction=	0.830646 (Hartree/Particle)
Thermal correction to Energy=	0.882311
Thermal correction to Enthalpy=	0.883255
Thermal correction to Gibbs Free Ene	ergy= 0.749010
Sum of electronic and zero-point Ene	rgies= -2690.142752
Sum of electronic and thermal Energi	es= -2690.091088
Sum of electronic and thermal Enthal	pies= -2690.090143
Sum of electronic and thermal Free E	nergies= -2690.224388

Table S31. Cartesian coordinates and energy values of [7]

Р	-0.558615	0.119008	-0.958027
Ν	1.919962	1.581558	-1.207353
Ν	0.648819	2.288344	0.400450

С	-0.702158	-0.968002	0.511359
С	0.403393	-1.616045	1.099691
С	0.162417	-2.433937	2.206820
н	1.010142	-2.945741	2.672857
С	-1.127549	-2.621424	2.696061
Н	-1.290682	-3.274588	3.556839
C	-2.210573	-1.998769	2.084978
н	-3.227310	-2.162848	2.453257
C	-2 016156	-1 164398	0 981859
C C	-3 169178	-0 513724	0 301040
C C	-3 617382	-1 019063	-0.942613
c c	-4 666829	-0.367/18	-1 587500
н	-4.000823	-0.307410	-2 5/78/7
C C	-5 202678	0.754508	-2.347047
C C	-3.293078	1 201021	0 2002/5
с u	-4.007705	2 055002	0.209343
п С	-2.2/2020	2.055962	0.071990
C C	-5.652127	0.574975	0.904208
	-3.501832	1.044950	2.292095
н	-4.15/981	0.556358	3.034070
н	-3.665976	2.129286	2.398543
Н	-2.4/08/8	0.81010/	2.59/131
C	-3.01/140	-2.2461/9	-1.566502
Н	-2.137043	-2.002115	-2.187124
Н	-3.748401	-2.737499	-2.224490
Н	-2.692109	-2.979610	-0.811777
6	-6.400564	1.440176	-1.779560
Н	-6.921912	2.173399	-1.147857
Н	-7.143039	0.714999	-2.147796
Н	-6.014253	1.974206	-2.663752
С	1.793387	-1.507817	0.571919
С	2.184809	-2.329145	-0.506970
С	3.507692	-2.269620	-0.946942
Н	3.815699	-2.914954	-1.777513
С	4.449472	-1.422082	-0.358247
С	4.038752	-0.627077	0.712508
Н	4.767579	0.028340	1.204502
С	2.731190	-0.672715	1.204273
С	1.216211	-3.266668	-1.162875
Н	0.464763	-2.712810	-1.751240
Н	0.667183	-3.870015	-0.421461
Н	1.734824	-3.955403	-1.844470
С	5.861654	-1.388693	-0.857716
Н	6.403292	-2.305704	-0.571681
н	6.423068	-0.536093	-0.447093
н	5.901343	-1.332593	-1.957684
С	2.372874	0.130605	2.420784
Н	1.377567	0.597302	2.342524
Н	3.116979	0.919368	2.611424
Н	2.338436	-0.505506	3.321988
С	0.758515	1.354176	-0.567413
С	2.587012	2.630915	-0.598420

С	1.784329	3.079912	0.419232	
С	2.459656	0.845979	-2.348671	
Н	1.693866	0.157418	-2.722409	
Н	3.350358	0.286262	-2.027896	
Н	2.728686	1.564569	-3.135157	
С	3.922854	3.079327	-1.049897	
Н	4.650720	2.251440	-1.026361	
Н	4.299654	3.879856	-0.400058	
Н	3.896621	3.470398	-2.079858	
С	1.977715	4.164001	1.408147	
Н	1.249703	4.981018	1.274094	
Н	2.980693	4.598864	1.307664	
Н	1.875067	3.790044	2.440165	
С	-0.500014	2.464714	1.273176	
н	-1.388704	2.016932	0.803635	
Н	-0.684980	3.537597	1.414850	
н	-0.325780	1.993273	2.253248	
0	-0.227536	-0.545098	-2.292872	

Zero-point correction=	0.601799 (Hartree/Particle)
Thermal correction to Energy=	0.637253
Thermal correction to Enthalpy=	0.638198
Thermal correction to Gibbs Free Ene	rgy= 0.536120
Sum of electronic and zero-point Ene	rgies= -1727.859234
Sum of electronic and thermal Energi	es= -1727.823780
Sum of electronic and thermal Enthal	pies= -1727.822836
Sum of electronic and thermal Free E	nergies= -1727.924913

Table S32. Cartesian coordinates and energy values of [8]

Ν	1.874038	1.626101	-1.122748
Ν	1.426150	1.844524	0.982609
С	-0.836113	-0.865212	0.372974
С	0.253891	-1.730330	0.621182
С	-0.006525	-2.970189	1.218298
Н	0.836509	-3.642646	1.405479
С	-1.297605	-3.368603	1.544064
Н	-1.467232	-4.343288	2.007870
С	-2.371419	-2.537137	1.249575
Н	-3.398233	-2.850712	1.461159
С	-2.155618	-1.289233	0.665143
С	-3.329602	-0.454516	0.269738
С	-3.891886	-0.642776	-1.010743
С	-4.972027	0.154620	-1.394008
Н	-5.408588	0.010822	-2.388952
С	-5.528962	1.107184	-0.537831
С	-4.973988	1.250996	0.734347
Н	-5.402917	1.986439	1.424053
С	-3.887678	0.485273	1.156352
С	-3.301546	0.705411	2.517066
Н	-3.046583	-0.239854	3.021369
н	-3.992629	1.264153	3.164181
--------	----------------------	----------------------	---------------
н	-2.370445	1.298495	2.449053
С	-3.367273	-1.695948	-1.942874
н	-2.288365	-1.578598	-2.138571
н	-3.894655	-1.669058	-2.907306
н	-3.500303	-2.705910	-1.520408
С	-6.713852	1.920172	-0.957505
н	-6.723321	2.906738	-0.470585
н	-7.653767	1.413864	-0.679323
н	-6.739319	2.070323	-2.047098
н	1.670686	-1.481992	0.219215
н	2.046119	-1.715804	-1.119112
н	3.391751	-1.599535	-1.474696
н	3.682854	-1.806120	-2.512152
C	4.378353	-1.257542	-0.546895
C	3 984137	-1 044682	0 773550
н	4 744330	-0 796603	1 524616
C	2 653751	-1 180135	1 179582
C C	1 031968	-2 117409	-2 149878
н	0 279796	-1 329242	-2 325714
н	0.275750	-3 012/50	-1 833067
н	1 514592	-2 346200	-3 111467
C	5 821171	-2.340200	-0.042866
с ц	6 2 2 6 0 1 6	-1.174900	-0.942800
ц	6 358520	-2.130342	-0.750517
	0.338330 E 041480	-0.403070	2 015/07
C C	3.341403	1 062257	2.013407
с ц	1 296200	0 752066	2.039934
	2 004275	0.752000	2.020072
	2 4 4 7 5 0 4	-0.301702	2 1/6257
п С	2.447504	1 206150	0.190720
C C	0.954579	1.500155	0 5 2 6 7 0 1
C C	2.992738	2.190/51	-0.520761
C C	1 920097	2.330130	0.001000
с ц	0.015120	1.020620	2.347004
	0.013129	1.020035	2.023333
	2.332021	0.493327 2 2000E0	2 11/001
п С	2.122750	2.209000	1 205024
с ц	4.219030	1 601636	1 000012
	4.000014		-1.600012
	3.000893	2.0/4545	-0.020174
п С	4.04/0/2	3.2/1128	-2.000102
	2.222990	2.0/00/5	1.911200
н	3.045951	3./1680/	2.421213
н	4.497231	3.228930	1.528222
H	3.746581	2.09/08/	2.669236
	0.681///	1.908164	2.23114/
н	0.055969	2.813934	2.201966
н	1.386047	1.920525	3.0/1/69
Н	0.043126	1.020814	2.3391/8
0	-1.017973	0.692090	-1.925767
Н	-1.893583	1.026723	-2.1//772

Zero-point correction=	0.613832 (Hartree/Particle)
Thermal correction to Energy=	0.651146
Thermal correction to Enthalpy=	0.652090
Thermal correction to Gibbs Free Ene	ergy= 0.546168
Sum of electronic and zero-point Ene	ergies= -1728.487277
Sum of electronic and thermal Energi	ies= -1728.449962
Sum of electronic and thermal Entha	lpies= -1728.449018
Sum of electronic and thermal Free E	nergies= -1728.554941

Table S33. Cartesian coordinates and energy values of [9]

Р	0.543265	0.219535	-0.900486
0	0.397077	-0.394471	-2.272072
Ν	-2.034744	1.448010	-1.262288
С	-0.925782	1.298706	-0.520752
С	1.263733	-2.530407	2.717243
Н	1.447736	-3.179498	3.576860
С	3.725453	-0.930032	-0.895546
С	-1.679849	-1.519613	0.579188
С	-2.212897	2.855242	0.438729
С	-2.666581	-0.769830	1.243749
Ν	-1.014640	2.162356	0.510216
С	0.787365	-0.870547	0.534580
С	3.898032	0.734135	0.887819
С	-3.964824	-0.745002	0.725235
Н	-4.728706	-0.147373	1.237587
С	4.931229	1.350820	0.178970
Н	5.409208	2.239168	0.607778
С	3.268566	-0.392368	0.327737
С	-3.337775	-2.278307	-1.002855
Н	-3.607993	-2.900316	-1.864152
С	3.129424	-2.173686	-1.491852
Н	2.232096	-1.944364	-2.092319
Н	2.833685	-2.903204	-0.721136
Н	3.851985	-2.663260	-2.160642
С	-0.289012	-1.578523	1.113911
С	-4.321731	-1.492612	-0.396154
С	4.769940	-0.286364	-1.557515
Н	5.127155	-0.702236	-2.506250
С	5.378716	0.862000	-1.047628
С	2.109765	-1.035092	1.008491
С	2.322615	-1.861949	2.113873
Н	3.344398	-1.988650	2.483318
С	-2.021454	-2.307566	-0.543102
С	-2.380652	-0.039857	2.524151
Н	-2.558440	-0.695269	3.394794
Н	-3.047123	0.829273	2.646581
Н	-1.334873	0.293128	2.607376
С	-1.012642	-3.186096	-1.220007
Н	-0.308597	-2.589038	-1.823703

Н	-1.506072	-3.902828	-1.891509
Н	-0.415179	-3.757855	-0.491482
С	-2.860263	2.393491	-0.677392
С	3.521037	1.285033	2.234099
Н	4.245251	0.963155	3.002582
Н	2.534243	0.946019	2.584073
Н	3.537653	2.386977	2.235968
С	-0.027046	-2.397521	2.213747
Н	-0.856598	-2.949671	2.665447
С	-4.180562	2.743092	-1.246818
Н	-4.092406	3.153097	-2.265567
Н	-4.679561	3.498188	-0.625747
Н	-4.838815	1.860072	-1.298491
С	0.022417	2.405396	1.501518
Н	0.606105	1.488618	1.660606
Н	-0.444910	2.687188	2.453716
Н	0.690865	3.216221	1.171667
С	-2.373167	0.755427	-2.506598
Н	-2.587127	1.507410	-3.278754
Н	-3.259125	0.127641	-2.336645
Н	-1.520787	0.137358	-2.811553
С	6.505258	1.518274	-1.783396
Н	6.695735	2.536975	-1.415756
Н	6.302805	1.572786	-2.864154
Н	7.439328	0.944293	-1.662789
С	-5.718332	-1.476112	-0.938519
Н	-6.161862	-2.484818	-0.923033
Н	-5.738886	-1.145388	-1.991355
Н	-6.377343	-0.812654	-0.359375
С	-2.601537	3.882859	1.431447
Н	-2.707584	3.459023	2.443903
Н	-3.566368	4.329433	1.158090
Н	-1.862555	4.698415	1.485226
Н	1.566108	1.204206	-0.760924

Zero-point correction=	0.612923 (Hartree/Particle)
Thermal correction to Energy=	0.649846
Thermal correction to Enthalpy=	0.650790
Thermal correction to Gibbs Free Ene	rgy= 0.545986
Sum of electronic and zero-point Ene	rgies= -1728.478835
Sum of electronic and thermal Energi	es= -1728.441912
Sum of electronic and thermal Enthal	pies= -1728.440968
Sum of electronic and thermal Free E	nergies= -1728.545772

Table S34. Cartesian coordinates and energy values of [10]

Р	-0.613123	0.168417	-1.077276
Ν	1.947765	1.411356	-1.347345
Ν	0.876687	2.130900	0.389458
С	-0.753690	-0.827610	0.461582
С	0.341383	-1.475784	1.083858

С	0.095141	-2.271468	2.205168
н	0.937398	-2.783768	2.680257
С	-1.196907	-2.454204	2.690356
н	-1.366201	-3.089095	3.563366
С	-2.273474	-1.852529	2.047042
Н	-3.294634	-2.008123	2.407905
С	-2.071772	-1.042852	0.928399
C	-3.240348	-0.423052	0.238607
c	-3 715208	-0 985949	-0.966695
c	-4 799229	-0 390308	-1 606584
н	-5 171806	-0.832331	-2 537562
c	-5 / 33698	0 7/2/80	-1 091136
c c	-1.455058	1 259021	0.11601/
с u	5 472640	2 1 2 9 6 0 1	0.554712
C C	2 204600	0.600116	0.004715
C C	-3.894000	1.228076	0.802210
	-3.510800	1.238970	2.147704
п 	-4.131851	0.782213	2.942942
н	-3.693117	2.325001	2.199936
Н	-2.469844	1.035705	2.418136
C	-3.084697	-2.210095	-1.563830
Н	-2.171052	-1.964722	-2.137442
Н	-3.773198	-2.701438	-2.266266
Н	-2.794055	-2.946318	-0.797548
С	-6.582203	1.368502	-1.819035
Н	-7.098560	2.117313	-1.201521
Н	-7.320131	0.611272	-2.127239
Н	-6.240990	1.872196	-2.738892
С	1.728645	-1.434376	0.537698
С	2.041607	-2.201229	-0.606852
С	3.352216	-2.198609	-1.083986
Н	3.595886	-2.810114	-1.961130
С	4.364230	-1.452456	-0.474452
С	4.036993	-0.721899	0.666827
Н	4.820531	-0.152030	1.180782
С	2.745026	-0.723566	1.201502
С	1.010150	-3.040173	-1.305124
Н	0.318082	-3.523049	-0.597286
Н	1.488231	-3.827219	-1.905968
Н	0.387706	-2.441977	-1.996520
С	5.755246	-1.461214	-1.031353
Н	6.182126	-2.477233	-1.017979
н	6.431210	-0.808616	-0.459479
н	5.772043	-1.131655	-2.084571
С	2.490026	0.003625	2.489091
н	1.511972	0.509436	2.504791
н	3.277448	0.746935	2.687430
н	2.485562	-0.691654	3.345994
С	0.813626	1.251763	-0.635030
Č	2.764298	2.350740	-0.738350
Č.	2.084565	2.812771	0.356992
c	2.295168	0.711029	-2.573405
-			

Н	1.524361	-0.039195	-2.792000
Н	3.259034	0.197565	-2.447367
Н	2.353772	1.425633	-3.407430
С	4.110599	2.677918	-1.257987
Н	4.767405	1.791119	-1.240670
Н	4.581601	3.456179	-0.643375
Н	4.073862	3.049204	-2.294596
С	2.446980	3.835585	1.364349
Н	1.814225	4.735191	1.283510
Н	3.488473	4.155117	1.226808
Н	2.346053	3.449046	2.391175
С	-0.201115	2.405581	1.324872
Н	-0.230108	3.482747	1.534755
Н	-0.061265	1.855306	2.268578
Н	-1.156732	2.108151	0.871597

Zero-point correction=	0.597653 (Hartree/Particle)
Thermal correction to Energy=	0.632885
Thermal correction to Enthalpy=	0.633829
Thermal correction to Gibbs Free Ene	ergy= 0.532445
Sum of electronic and zero-point Ene	rgies= -1652.667738
Sum of electronic and thermal Energi	es= -1652.632507
Sum of electronic and thermal Enthal	pies= -1652.631563
Sum of electronic and thermal Free E	nergies= -1652.732947

Table S35. Cartesian coordinates and energy values of [11]

Р	-0.353594	-0.078565	-1.212648
Ν	1.955162	1.566021	-1.280749
Ν	0.582204	2.278059	0.228450
С	-0.666932	-0.913205	0.419217
С	0.422842	-1.528966	1.069348
С	0.195756	-2.247327	2.246216
Н	1.046982	-2.720979	2.745135
С	-1.088579	-2.387483	2.759337
Н	-1.255321	-2.964551	3.671895
С	-2.162561	-1.811425	2.093037
Н	-3.180175	-1.937750	2.474637
С	-1.979986	-1.072379	0.918515
С	-3.180837	-0.513300	0.235956
С	-3.620437	-1.079451	-0.981513
С	-4.730342	-0.533527	-1.620993
Н	-5.072570	-0.981125	-2.561132
С	-5.426939	0.558423	-1.096126
С	-4.996059	1.080250	0.120230
Н	-5.541873	1.920749	0.564206
С	-3.899963	0.551711	0.810214
С	-3.573517	1.123248	2.162070
Н	-4.256427	0.717486	2.928516
Н	-3.709361	2.217152	2.175527
н	-2.554470	0.888453	2.500858

С	-2.930181	-2.264195	-1.596129
Н	-2.062269	-1.970091	-2.217170
Н	-3.613629	-2.808240	-2.264191
Н	-2.558095	-2.971657	-0.838477
С	-6.618466	1.115221	-1.811231
Н	-6.962621	2.057525	-1.361446
Н	-7.461679	0.405244	-1.782851
Н	-6.397942	1.302249	-2.874109
С	1.815035	-1.479514	0.533707
С	2.197484	-2.365341	-0.494703
С	3.521875	-2.352836	-0.940058
Н	3.818725	-3.050520	-1.731214
С	4.478639	-1.495553	-0.394739
С	4.078946	-0.634818	0.630561
Н	4.820610	0.030422	1.089780
С	2.770768	-0.626175	1.118613
С	1.220428	-3.334324	-1.092209
Н	0.651021	-3.869553	-0.315193
Н	1.734767	-4.081242	-1.713218
Н	0.478370	-2.827634	-1.734512
С	5.900604	-1.519951	-0.866320
Н	6.515441	-2.176140	-0.227266
Н	6.361257	-0.519930	-0.828073
Н	5.984948	-1.901967	-1.894560
С	2.428214	0.248481	2.289745
Н	1.428334	0.702544	2.200679
Н	3.171695	1.050131	2.420903
Н	2.412430	-0.333636	3.227137
С	0.750589	1.335935	-0.722551
С	2.572656	2.637540	-0.659206
С	1.703481	3.089484	0.298162
С	2.562562	0.823823	-2.376395
н	1.857483	0.065362	-2.736125
Н	3.475040	0.324490	-2.018808
Н	2.805091	1.515477	-3.195234
С	3.922393	3.104632	-1.048379
н	4.668111	2.297303	-0.960014
Н	4.244028	3.932053	-0.402595
Н	3.946350	3.467524	-2.088789
С	1.824210	4.191278	1.279374
н	1.078732	4.984305	1.104992
Н	2.817603	4.654205	1.214893
Н	1.689629	3.827143	2.311378
С	-0.592819	2.441473	1.066462
Н	-1.442186	1.914562	0.614360
Н	-0.836991	3.509194	1.145422
Н	-0.408989	2.034660	2.073601
н	-1.542886	0.716309	-1.264401

Zero-point correction= Thermal correction to Energy= 0.606985 (Hartree/Particle) 0.643516

Thermal correction to Enthalpy=	0.644461
Thermal correction to Gibbs Free Energy=	0.539464
Sum of electronic and zero-point Energies	-1653.283152
Sum of electronic and thermal Energies=	-1653.246621
Sum of electronic and thermal Enthalpies=	-1653.245677
Sum of electronic and thermal Free Energi	ies= -1653.350674

 Table S36. Cartesian coordinates and energy values of [12]

Р	-0.522378	0.247019	-0.907240
Ν	2.092171	1.423947	-1.285583
Ν	1.055812	2.233133	0.432608
С	-0.682547	-0.864344	0.540825
С	0.347010	-1.609183	1.137434
С	0.031674	-2.433835	2.223968
Н	0.833570	-3.009881	2.695899
С	-1.273315	-2.538030	2.692216
Н	-1.500321	-3.192689	3.536872
С	-2.296825	-1.821072	2.078049
Н	-3.330047	-1.924603	2.424567
С	-2.007322	-0.979171	1.001603
С	-3.136726	-0.322628	0.287037
С	-3.648470	-0.962598	-0.907213
С	-4.802696	-0.465781	-1.478383
Н	-5.190518	-0.935625	-2.386955
С	-5.510126	0.606899	-0.912809
С	-5.046624	1.169543	0.297170
Н	-5.620794	1.982744	0.752438
С	-3.898722	0.731000	0.912040
С	-3.418339	1.389262	2.160242
Н	-4.233176	1.928100	2.663104
Н	-2.643947	2.130326	1.901885
Н	-2.969737	0.682299	2.873224
С	-2.959092	-2.138493	-1.509621
Н	-2.047491	-1.815829	-2.047056
Н	-3.615261	-2.645350	-2.229931
Н	-2.639072	-2.865687	-0.746028
С	-6.730276	1.151275	-1.562833
Н	-7.516201	1.368002	-0.822518
Н	-7.131109	0.475966	-2.330576
Н	-6.492518	2.112181	-2.053679
С	1.751547	-1.565627	0.636456
С	2.115737	-2.373704	-0.461411
С	3.439726	-2.349286	-0.898758
Н	3.726740	-2.985656	-1.744012
С	4.408557	-1.545495	-0.292409
С	4.027072	-0.771225	0.802828
Н	4.777770	-0.155565	1.313054
С	2.718999	-0.788880	1.296646
С	1.113921	-3.253113	-1.145508
Н	0.528948	-3.845794	-0.422912

н	1.608401	-3.951660	-1.835327
Н	0.403170	-2.642506	-1.728064
С	5.815391	-1.536302	-0.808528
Н	6.261601	-2.543009	-0.764202
Н	6.461440	-0.859090	-0.230538
Н	5.854757	-1.225834	-1.866945
С	2.393494	-0.021979	2.545222
Н	1.415379	0.482208	2.496040
Н	3.167600	0.730096	2.762799
Н	2.344311	-0.692632	3.420699
С	0.954803	1.340104	-0.572319
С	2.936479	2.357860	-0.711998
С	2.279948	2.878645	0.371849
С	2.447419	0.678774	-2.492599
Н	1.597786	0.046658	-2.776136
Н	3.333292	0.062703	-2.281436
Н	2.672402	1.395680	-3.294838
С	4.282598	2.640398	-1.258147
Н	4.913747	1.736177	-1.249013
Н	4.788514	3.409245	-0.659840
Н	4.235664	3.002458	-2.297620
С	2.692029	3.924382	1.336737
Н	2.001663	4.783196	1.330651
Н	3.689932	4.303205	1.079735
Н	2.741221	3.540230	2.369008
С	0.009291	2.533388	1.396771
Н	-0.743049	3.194845	0.943581
Н	0.459512	3.015282	2.273065
Н	-0.480550	1.603328	1.713839
0	-0.250754	-0.482886	-2.201975
0	-1.748187	1.187503	-0.726871

Zero-point correction= 0.606519 (Hartree/Particle) Thermal correction to Energy= 0.644034 0.644978 Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= 0.538685 Sum of electronic and zero-point Energies= -1803.064308 Sum of electronic and thermal Energies= -1803.026792 Sum of electronic and thermal Enthalpies= -1803.025848 Sum of electronic and thermal Free Energies= -1803.132141

Table S37. Cartesian coordinates and energy values of [13]

. Р	-0.483643	0.360542	-0.811620
Ν	2.158864	1.351156	-1.284856
Ν	1.320951	2.095625	0.571632
С	-0.782528	-0.788626	0.572638
С	0.279429	-1.541376	1.122550
С	0.005232	-2.405301	2.186196
Н	0.828032	-2.987954	2.611244

С	-1.286573	-2.552314	2.677298
Н	-1.482170	-3.238474	3.504753
С	-2.335391	-1.858144	2.086078
Н	-3.363971	-2.012253	2.425635
С	-2.109622	-0.981277	1.022501
С	-3.294544	-0.377138	0.343777
С	-3.757043	-0.946788	-0.860430
С	-4.866962	-0.372808	-1.487424
Н	-5.224491	-0.812369	-2.424791
С	-5.534776	0.728761	-0.956692
С	-5.073568	1.257074	0.253520
Н	-5.592220	2.115438	0.694632
С	-3.977040	0.715767	0.923163
С	-3.522218	1.310594	2.223157
Н	-4.151860	2.164339	2.510455
Н	-2.480072	1.668075	2.164025
Н	-3.556078	0.577499	3.045112
С	-3.096878	-2.143020	-1.480695
Н	-2.210971	-1.846027	-2.067786
Н	-3.789320	-2.656452	-2.162840
Н	-2.761908	-2.870076	-0.723685
С	-6.734933	1.311212	-1.634974
Н	-6.764612	2.406669	-1.533642
Н	-7.664123	0.922196	-1.185441
Н	-6.759730	1.060941	-2.705296
С	1.670086	-1.520533	0.579510
С	1.960485	-2.275503	-0.580435
С	3.271735	-2.292594	-1.054846
Н	3.500161	-2.887203	-1.947288
С	4.302758	-1.590708	-0.423845
С	3.998038	-0.886890	0.739902
Н	4.798192	-0.358495	1.272822
С	2.705124	-0.866834	1.272177
С	0.905263	-3.080236	-1.278804
Н	0.309452	-3.673427	-0.565755
Н	1.358160	-3.774192	-2.000939
Н	0.202863	-2.431290	-1.828462
С	5.694189	-1.628550	-0.978708
Н	6.105874	-2.650562	-0.945320
Н	6.380026	-0.976976	-0.417126
Н	5.716408	-1.321216	-2.038372
С	2.478481	-0.197956	2.596699
Н	1.447729	0.161528	2.730883
Н	3.175192	0.643048	2.746461
Н	2.663231	-0.904833	3.424543
С	1.082769	1.290369	-0.482129
С	3.109712	2.180996	-0.719514
С	2.579009	2.661046	0.449184
С	2.355705	0.692103	-2.576603
Н	1.449929	0.133132	-2.835529
Н	3.217990	0.014543	-2.503158

Н	2.545941	1.462373	-3.337204
С	4.431826	2.401032	-1.345689
Н	4.998075	1.456323	-1.409761
Н	5.025537	3.109488	-0.753696
Н	4.342724	2.808576	-2.365036
С	3.138674	3.601752	1.446642
Н	2.490806	4.481683	1.586959
Н	4.120669	3.964170	1.115758
Н	3.276581	3.125472	2.431678
С	0.387973	2.402395	1.648124
Н	-0.259213	3.244269	1.362992
Н	0.956921	2.656440	2.550678
Н	-0.235463	1.524154	1.860149
0	-0.461124	-0.246025	-2.183979
0	-1.443197	1.655869	-0.596500
Н	-2.390247	1.408071	-0.570901

Zero-point correction=	0.619392 (Hartree/Particle)
Thermal correction to Energy=	0.657020
Thermal correction to Enthalpy=	0.657965
Thermal correction to Gibbs Free Ene	rgy= 0.551974
Sum of electronic and zero-point Ene	rgies= -1803.714181
Sum of electronic and thermal Energi	es= -1803.676553
Sum of electronic and thermal Enthal	pies= -1803.675609
Sum of electronic and thermal Free E	nergies= -1803.781599

References

- 1 D. Dhara, P. Kalita, S. Mondal, R. S. Narayanan, K. R. Mote, V. Huch, M. Zimmer, C. B. Yildiz, D. Scheschkewitz, V. Chandrasekhar and A. Jana, *Chem. Sci.*, 2018, **9**, 4235–4243.
- 2 Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- 3 G. M. Sheldrick, *Acta Cryst. A*, 2015, **71**, 3–8.
- 4 G. M. Sheldrick, *Acta Cryst. C*, 2015, **71**, 3–8.
- 5 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339–341.
- 6 Bradenburg, K. Diamond, version 3.2k; *Crystal Impact GbR*: Bonn, Germany, 2015.
- 7 S. Stoll and A. Schweiger, J. Magn. Reson., 2006, 178, 42–55.
- 8 Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215–241.
- Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria; M. A. Robb; J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Williams; F. Ding; F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- 10 GaussView, Version 5, R. Dennington, T. A. Keith and J. M. Millam, Semichem Inc., Shawnee Mission, KS, **2009**.
- 11 A. D. Becke, J. Chem. Phys., 1993, 93, 5648–5652.
- 12 E. D. Glendening and F. Weinhold, J. Comput. Chem., 1998, **19**, 593–609.
- 13 F. Weinhold and E. D. Glendening, *NBO 5.0 program manual: natural bond orbital analysis programs*, 2001.
- M. J. Barca, C. Bertoni, L. Carrington, D. Datta, N. D. Silva, J. E. Deustua, D. G. Fedorov, J. R. Gour, A. O. Gunina, E. Guidez, T. Harville, S. Irle, J. Ivanic, K. Kowalski, S. S. Leang, H. Li, W. Li, J. J. Lutz, I. Magoulas, J. Mato, V. Mironov, H. Nakata, B. Q. Pham, P. Piecuch, D. Poole, S. R. Pruitt, A. P. Rendell, L. B. Roskop, K. Ruedenberg, T. Sattasathuchana, M. W. Schmidt, J. Shen, L. Slipchenko, M. Sosonkina, V. Sundriyal, A. Tiwari, J. L. G. Vallejo, B. Westheimer, M. Włoch, P. Xu, F. Zahariev and M. S. Gordon, *J. Chem. Phys.*, 2020, **152**, 154102(1)–154102(26).