Electronic supplementary information

Scalable synthesis of Na_2MVF_7 (M = Mn, Fe, and Co) as high-performance cathode materials for sodium-ion batteries

Jiaying Liao‡, Jingchen Han‡, Jianzhi Xu, Yichen Du, Liping Duan, Yingying Sun and Xiaosi Zhou*

Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China

*Corresponding authors.

E-mail: zhouxiaosi@njnu.edu.cn

‡ J. L. and J. H. contributed equally to this work.

Experimental section

Synthesis of Na₂MVF₇ (M = Mn, Fe, and Co): Na₂MVF₇ was synthesized via a solid-state reaction method using polytetrafluoroethylene ($-CF_2-CF_2-$)_n (PTFE, Dupont, diameter < 1 µm) as a fluorine source. Typically, NaF, MC₂O₄·2H₂O, NH₄VO₃, and PTFE were planetary ball-milled with a molar ratio of 2:1:1.05:2 in ethanol at a speed of 500 rpm for 12 h. NH₄VO₃ was 5% excess to balance the subsequent evaporation of VF₃. After drying, the resulting mixture was pelletized and preheated at 550 °C for 1 h under flowing Ar. Thereafter, the pellet was intermediately ground to fine powder and further annealed at 650 °C for 1 h under an Ar environment to obtain the prduct of Na₂MVF₇ (M = Mn, Fe, and Co). Note that Na₂MVF₇ was economically synthesized without using expensive transition metal fluorides MF₂ and VF₃.

Materials characterization: The crystal phases of as-obtained Na₂MVF₇ (M = Mn, Fe, and Co) were characterized with an X-ray diffractometer (XRD; Rigaku, SmartLab). Rietveld approach was employed to refine the data sets using the GSAS package incorporated with the EXPGUI interface.¹ The morphology and structure of the samples were studied by scanning electron microscopy (SEM; JSM-7600F) and transmission electron microscopy (TEM; FEI Talos F200X). The elemental mappings were analyzed by energy dispersive X-ray spectroscopy (EDX) attached to the TEM instrument. Thermogravimetric analysis (TGA) was performed at a heating rate of 10 °C min⁻¹ in the temperature range of 25–800 °C under an air or Ar atmosphere (Shinadzu, DTG-60H). The element species and valence states were determined by X-ray photoelectron spectroscopy (XPS; ESCALab 250Xi).

Electrochemical measurements: Before the electrochemical evaluation, Na₂MVF₇ (M = Mn, Fe, and Co) and Ketjen black (KB) were mixed by high-energy ball milling (8000D Mixer/Mill, SPEX SamplePrep) with a mass ratio of 7:2 for 30 min to enhance the electrical conductivity and reduce the particle size. The electrodes were prepared by mixing the ball-milled products (90 wt%) and poly(vinylidene fluoride) binder (10 wt%) in N-methyl-2-pyrrolidinone to obtain slurries, which were coated on aluminium foil and then dried in a vacuum oven at 80 °C. The typical mass loading of active material was about 1.5 mg cm⁻². The electrochemical properties of Na₂MVF₇ were evaluated using CR2032coin-type cells, which were assembled in an argon-filled glovebox (O₂ and H₂O < 0.1

ppm). For the fabrication of sodium-ion batteries, sodium metal was used as the counter electrode, 1 M NaClO₄ in ethylene carbonate (EC)/propylene carbonate (PC) (1:1 by volume) with 5% fluoroethylene carbonate additive was used as the electrolyte. And a Whatman glass-fiber separator was used for each cell. Cyclic voltammetry (CV) measurements were conducted on a PARSTAT 4000 electrochemical workstation in a voltage range from 1.5 to 4.5 V at scan rates of 0.1–1.0 mV s⁻¹. Electrochemical impedance spectroscopy (EIS) was carried out in the frequency range of 10^5 Hz–0.01 Hz. The cells were galvanostatically cycled on a multi-channel battery test system (Land CT2001A) in the voltage range from 1.5 to 4.5 V.

Fig. S1. (a) TGA curves of PTFE and the mixture of ball-milled Na₂FeVF₇ precursors (NaF, FeC₂O₄·2H₂O, NH₄VO₃, and PTFE) under an Ar atmosphere with a temperature ramp of 10 °C min⁻¹ from room temperature to 800 °C. (b) XRD pattern of the sample obtained after the first sintering.

As shown in **Fig. S1a**, the first sintering step at 550 °C is used to decompose of precursors and PTFE, which can produce a strong fluorinated environment. The second sintering step at 650 °C aims to eliminate a small amount of FeF₂ and NaVF₄ intermediate products after the first step of sintering to form the target product Na₂FeVF₇ (**Fig. S1b**).

Fig. S2. (a) Digital image and (b) XRD pattern of the as-synthesized ~ 100 gram-scale Na₂FeVF₇ product.

Samples	Space groups	a/Å	<i>b</i> /Å	<i>c</i> /Å	β /°
Na ₂ MnVF ₇	P3 ₂ 21	7.4783(7)	7.4783(7)	18.2296(2)	90
Na ₂ FeVF ₇	C2/c	12.7656(9)	7.4259(5)	24.6907(1)	100.17(8)
Na ₂ CoVF ₇	<i>C</i> 2/ <i>c</i>	12.7066(5)	7.3706(7)	24.5919(5)	99.98(4)

Table S1. Crystallographic parameters of the Rietveld refinement for Na₂MnVF₇, Na₂FeVF₇, and Na₂CoVF₇.

Fig. S3. Crystal structures of Na₂FeVF₇ viewing from (a) [010], (b) [11-1], (c) [110], and (d) [1-10] directions.

Fig. S4. XPS survey scan of Na₂FeVF₇.

As displayed in Fig. S4, the slight N 1s peak may be derived from the nitrogen-doped carbon obtained from the decomposition of the raw material NH_4VO_3 .

Fig. S5. XPS spectrum of Na₂MnVF₇: (a) Survey scan and high-resolution XPS spectra of (b) Mn 2p, (c) V 2p, and (d) F 1s.

Fig. S6. XPS spectrum of Na₂CoVF₇: (a) Survey scan and high-resolution XPS spectra of (b) Co 2p, (c) V 2p, and (d) F 1s.

Fig. S7. (a) High-resolution C 1s XPS spectrum and (b) Raman spectrum of Na₂FeVF₇.

Fig. S8. (a) TGA curves of Na₂MnVF₇, Na₂FeVF₇, and Na₂CoVF₇ under an air environment at a heating rate of 10 °C min⁻¹ from room temperature to 750 °C. (b) Raman spectra of Na₂FeVF₇ before and after annealing at 350 °C in air. (c, d) XRD patterns of Na₂FeVF₇ after annealing at 350 °C (c) and 700 °C (d) in air.

We choose Na₂FeVF₇ sample as a representative to analyze the decomposition process (**Fig. S8a**). As shown in **Fig. S8b**, the characteristic D and G bands of carbon almost disappear after annealing at 350 °C in air. It means that the first weight loss plateau at about 350 °C is related to the oxidation of carbon and the partial decompostion of Na₂FeVF₇ to form Na₃FeF₆ and V₃O₅ (**Fig. S8c**). After annealing at 700 °C, Na₂FeVF₇ decomposes into Fe₂O₃ and amorphous $2Na_2O-V_2O_5$ (**Fig. S8d**). Therefore, the second weight loss plateau is the complete oxidation of fluorides. The F element is replaced by O₂ or H₂O in the air to generate F₂/HF gas. In materials containing F, F is easily replaced by O at high temperatures (*Adv. Energy Mater.*, 2018, **8**, 1801591). The weight loss of Na₂FeVF₇ into

its oxidative products $(2Na_2O-V_2O_5 \text{ and } Fe_2O_3)$ is about 19.5%. Based on the wight losses displayed in **Fig. S8a**, the carbon content in Na₂MnVF₇, Na₂FeVF₇, and Na₂CoVF₇ is calculated to be approximately 4.8%, 6.6%, and 3.2%, respectively.

Fig. S9. EDX spectrum of Na₂FeVF₇.

Fig. S10. XRD patterns of Na₂MnVF₇, Na₂FeVF₇, and Na₂CoVF₇ after high-energy ball milling with Ketjen black.

Fig. S11. (a) SEM image, (b) TEM image, (c) scanning transmission electron microscopy image, and (d–h) the corresponding elemental mapping images of the ball-milled Na₂FeVF₇.

Fig. S12. Selected charge/discharge curves of the Na_2FeVF_7 electrode at 100 mA g^{-1} .

Fig. S13. Electrochemical performance of Na₂MnVF₇: (a) CV curves of the initial three cycles at a scan rate of 0.1 mV s⁻¹; (b) charge/discharge profiles of the initial three cycles at a current density of 50 mA g⁻¹; (c) charge/discharge curves at different current densities; (d) cycling performance at 100 mA g⁻¹.

Fig. S14. Electrochemical properties of Na₂CoVF₇: (a) CV curves of the initial three cycles at 0.1 mV s⁻¹; (b) charge/discharge profiles of the initial three cycles at 50 mA g⁻¹; (c) charge/discharge curves at various current rates; (d) cycling performance at 100 mA g⁻¹.

Samples	Voltage range (V)	Initial charge/discharge capacity (mAh g ⁻¹)	Cycling stability	References
FeF ₃ ·0.5H ₂ O	1.2-4.0	-/135	78% after 50 cycles at 22 mA g^{-1}	2
FeF ₃ /C	1.2-4.2	-/149	76% after 50 cycles at 20 mA g^{-1}	3
FeF ₃ /graphene	1.5–4.2	-/206	51% after 50 cycles at 60 mA g^{-1}	4
$K_{0.6}FeF_3$	1.5–4.5	127/140	78% after 10 cycles at 20 mA g^{-1}	5
KFeF ₃	1.5–4.5	180/110	95% after 35 cycles at 18 mA g^{-1}	6
NH ₄ FeF ₃	2.0-4.5	220/180	85% after 100 cycles at 18 mA g^{-1}	7
Na ₃ FeF ₆	0.65-4.0	-/180	22% after 20 cycles at 17 mA g^{-1}	8
NaMnF ₃	1.0-4.5	165/130	58% after 15 cycles at 8 mA g^{-1}	9
Orthorhombic Na ₂ Fe ₂ F ₇	2.6-3.8	58/58	86% after 30 cycles at 18 mA g^{-1}	10
Trigonal Na ₂ Fe ₂ F ₇	1.5-4.3	82/184	88% after 1000 cycles at 368 mA $\rm g^{-1}$	11
Na ₂ FeVF ₇	1.5–4.5	186/147	95% after 200 cycles at 100 mA g ⁻¹	This work
Na ₂ MnVF ₇	1.5-4.5	146/124	93% after 200 cycles at 100 mA g^{-1}	This work
Na ₂ CoVF ₇	1.5-4.5	145/123	92% after 200 cycles at 100 mA g^{-1}	This work

Table S2. Comparison of sodium storage properties of Na_2MVF_7 and other fluoride-based materials.

Fig. S15. Linear fitting for the peak current densities (i_p) versus the square root of sweep rates $(v^{1/2})$ achieved from CV curves of Na₂FeVF₇.

Peak	$D_{\rm Na+}/10^{-11} {\rm ~cm^2~s^{-1}}$
A1	7.7
A2	7.0
C1	1.6
C2	5.4

Table S3. Na⁺ diffusion coefficient of (D_{Na^+}) of the Na₂FeVF₇ electrode calculated from CV curves.

Fig. S16. (a) SEM image and (b) XRD pattern of the ball-milled Na₂FeVF₇ electrode after 200 cycles.

Fig. S17. EIS spectra of the ball-milled Na₂FeVF₇ electrodes after 3 and 200 cycles.

References

- 1. B. H. Toby, J. Appl. Cryst., 2001, 34, 210–213.
- C. Li, C. Yin, L. Gu, R. E. Dinnebier, X. Mu, P. A. Aken and J. Maier, J. Am. Chem. Soc., 2013, 135, 11425–11428.
- Z. Sun, W. Fu, M. Z. Liu, P. Lu, E. Zhao, A. Magasinski, M. Liu, S. Luo, J. McDaniel and G. Yushin, J. Mater. Chem. A, 2020, 8, 4091–4098.
- 4. T. Bao, H. Zhong, H. Zheng, H. Zhan and Y. Zhou, Mater. Lett., 2015, 158, 21-24.
- 5. Y. Han, J. Hu, C. Yin, Y. Zhang, J. Xie, D. Yin and C. Li, J. Mater. Chem. A, 2016, 4, 7382–7389.
- 6. D. Cao, C. Yin, D. Shi, Z. Fu, J. Zhang and C. Li, Adv. Funct. Mater., 2017, 27, 1701130.
- A. Martin, E. S. Santiago, E. Kemnitz and N. Pinna, ACS Appl. Mater. Interfaces, 2019, 11, 33132– 33139.
- E. E. Foley, A. Wong, R. C. Vincent, A. Manche, A. Zaveri, E. Gonzalez-Correa, G. Menard and R. J. Clement, *Phys. Chem. Chem. Phys.*, 2021, DOI: 10.1039/d1cp02763h.
- 9. J. Nava-Avendaño, M. E. A. Dompablo, C. Fronter, J. A. Ayllón and M. R. Palacín, *Solid State Ionics*, 2015, **278**, 106–113.
- U. K. Dey, N. Barman, S. Ghosh, S. Sarkar, S. C. Peter and P. Senguttuvan, *Chem. Mater.*, 2019, 31, 295–299.
- H. Park, Y. Lee, M.-K. Cho, J. Kang, W. Ko, Y. H. Jung, T.-Y. Jeon, J. Hong, H. Kim, S.-T. Myung and J. Kim, *Energy Environ. Sci.*, 2021, 14, 1469–1479.