Supporting Information for

Chiral Anthranilic Pyrrolidine as Custom-made Amine Catalyst for Enantioselective Michael Reaction of Nitroalkenes with Carbonyl Compounds

Yukari Oka,[†] Seiji Tsuzuki,[‡] and Katsuhiko Moriyama*[†]

 [†]Department of Chemistry, Graduate School of Science and Soft Molecular Activation Research Center, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba, 263-8522, Japan
[‡]Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-8656, Japan moriyama@faculty.chiba-u.jp

Table of contents

1. General Methods.	S2
2. Procedure for Synthesis of Chiral Anthranilic Pyrrolidine Cata	llyst (1)
3. Procedure for Enantioselective Michael Reaction of Nitroalker Using Anthranilic Pyrrolidine Catalyst (1e) (Scheme 2 and Scher	nes (2) with Cyclic Ketones (3) me 3).
4. Procedure for Enantioselective Michael Reaction of Nitroalker Anthranilic Pyrrolidine Peptide-like Catalyst (10) (Table 2 and S	nes (2) with Aldehydes (5) Using cheme 4).
5. Transformation of chiral Michael reaction adduct (3a) into β -p	proline derivative (8a) (Scheme 7).
6. DFT Calculation Studies for Transition State of Enantioselecti Nitroalkenes with Carbonyl compounds Using Chiral Pyrrolidyl	we Michael Reaction of Anthranilic Acid Catalyst.
7. References	

----- S45

8. ¹H and ¹³C NMR Spectra of Materials.

	S46
--	-----

9. HPLC Spectra of Materials.

	S79
--	-----

1. General Methods. ¹H NMR spectra were measured on a JEOL ECS-400 (400 MHz) spectrometer at ambient temperature. Data were recorded as follows: chemical shift in ppm from internal tetramethylsilane on the δ scale, multiplicity (s = singlet; d = doublet; t = triplet; q = quartet; sep = septet; m = multiplet; br = broad), coupling constant (Hz), integration, and assignment. ¹³C NMR spectra were measured on a JEOL ECS-400 (100 MHz) spectrometer. Chemical shifts were recorded in ppm from the solvent resonance employed as the internal standard (deuterochloroform at 77.0 ppm). High-resolution mass spectra were recorded by Thermo Fisher Scientific Exactive Orbitrap mass spectrometers. Infrared (IR) spectra were recorded on a JASCO FT/IR 4100 spectrometer. Single crystal X-ray diffraction data were collected at 173K on a Bruker SMART APEX II ultra CCD diffractometer with Cu K α (λ = 1.54178) radiation and graphite monochromator. For thin-layer chromatography (TLC) analysis throughout this work, Merck precoated TLC plates (silica gel 60GF254 0.25 mm) were used. The products were purified by neutral column chromatography on silica gel (Kanto Chemical Co., Inc. silica gel 60N, Prod. No. 37560-84; Merck silica gel 60, Prod. No. 1.09385.9929). Visualization was accomplished by UV light (254 nm), anisaldehyde, KMnO₄, and phosphomolybdic acid. In experiments that required dry solvents such as DMSO and *i*-PrOH were distilled in prior to use.

2. Procedure for Synthesis of Chiral Anthranilic Pyrrolidine Catalyst (1). < Synthesis of Chiral Anthranilic Pyrrolidine Acid (1e) >

To a solution of *N*-Boc-Prolinol (2.01g, 10.0 mmol) and *N*-Ts-anthranilic acid methyl ester (3.05 g, 10.0 mmol) and PPh₃ (3.93 g, 15.0 mmol) in THF (50 mL) was added DIAD (in toluene 1.9 M, 7.89 mL, 15.0 mmol) at 0 °C. The reaction mixture was stirred at room temperature for 18 h. The reaction mixture was concentrated reduced pressure, and the crude product was purified by column chromatography (eluent: hexane/AcOEt = 5/1) to give the desired product **S1** (4.86 g, >99% yield).

To a solution of **S1** (4.86 g, 10.0 mmol) in MeOH (25 mL) and H₂O (25 mL) was added KOH (2.81 g, 50.0 mmol) at room temperature. The reaction mixture was stirred under reflux conditions at 80 °C for 18 h. The reaction mixture was washed with Et₂O (15 mL×5). The aqueous layer was acidified with 1*N* HCl aqueous solution until pH to 1. The product was extracted with AcOEt (15 mL × 3). The organic phase was dried over Na₂SO₄. The organic phase was concentrated under reduced pressure to give the desired product **S2** (4.72 g, >99% yield).

To a solution of S2 (1.80 g, 3.79 mmol) in CH_2Cl_2 (38 mL) was added TFA (11 mL) at room temperature. The reaction mixture was stirred room temperature for 15 h. The volatile solvents were removed under reduced pressure. Et₂O was added, then the precipitated solid was washed with Et₂O (20 mL) to give the desired product **1e** (1.65 g, 89% yield).

(*S*)-2-((4-Methyl-*N*-(pyrrolidin-2-ylmethyl)phenyl)sulfonamido)benzoic acid TFA salt (1e): White solid, mp 180.0-180.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.71 (brs, 1H), 10.16 (brs, 0.6H), 9.57 (brs, 0.4H), 9.01 (brs, 0.6H), 8.79 (brs, 0.4H), 8.30-8.11 (m, 1H), 7.63-7.42 (m, 4H), 7.37-7.28 (m, 2H), 6.85 (d, *J* = 7.8 Hz, 0.4H), 6.80-6.68 (m, 0.6H), 4.96-4.81 (m, 0.6H), 4.76-4.63 (m, 0.4H), 4.10-3.95 (m, 0.4H), 3.95-3.73 (m, 1H), 3.64 (d, *J* = 16.0 Hz, 0.4H), 3.58-3.31 (m, 1.6H), 3.44 (d, *J* = 16.0 Hz, 0.6H), 2.44 (s, 3H), 2.28-2.12 (m, 0.6H), 2.12-1.76 (m, 2.6H), 1.73-1.58 (m, 0.4H), 1.38-1.22 (m, 0.4H). ¹³C NMR (100 MHz, CDCl₃) δ 144.5 and 144.1 (rotamers), 140.5, 137.9, 134.9 and 134.1 (rotamers), 133.1 and 132.9 (rotamers), 132.7 (2C), 130.0 and 129.9 (rotamers) (2C), 129.0 and 128.5 (rotamers), 127.9 and 127.6 (rotamers) (2C), 127.5 and 126.0 (rotamers), 59.5 and 59.3 (rotamers), 51.1 and 48.2 (rotamers), 45.4 and 45.1 (rotamers), 26.9 and 25.5 (rotamers), 22.9 and 22.2 (rotamers), 21.5. IR (neat) 2978, 2931, 2781, 1700, 1666, 1409, 1346, 1269, 1180, 1162, 1130 cm⁻¹. HRMS (ESI) *m/z*: [M+H–TFA]⁺ calcd for $C_{19}H_{23}N_2O_4S$ 375.1373, found 375.1364. [α]_D²⁰ = 4.3 (*c* 1.1, CHCl₃, >99% ee (*S*)).

Crystal data of 1e: Recrystallization of **1e** was carried out by slow evaporation from Et_2O and MeOH solution at room temperature. Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-2098360. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: int. code + 44(1223)336-033; E-mail: deposit@ccdc.cam.ac.uk].

Figure S1. ORTEP drawing of 1e. The ellipsoids correspond to 50% probability.

Formula	$C_{21}H_{23}F_3N_2O_6S$
Formula Weight	488.47
Temperature	123 K
Wavelength	1.54178 Å
Crystal System	Monoclinic
Space Group	P 1 21 1
Unit Cell Dimensions	$a = 16.1768(16)$ Å $\alpha = 90.00$ °
	$b = 7.6356(7)$ Å $\beta = 92.555(4)$ °
	$c = 18.1963(17)$ Å $\gamma = 90.00$ °
Volume	2245.4(4) Å ³
Z Value	4
Calculated Density	1.445 g cm ⁻³
Absorption coeficiente	1.877 mm ⁻¹
F(000)	1016

Crystal size	0.20×0.10×0.05 mm ³
Theta Range for Data Collection	2.430-68.706°
Index Ranges	$\textbf{-19} \leq h \leq 19, \textbf{-9} \leq k \leq 9, \textbf{-21} \leq l \leq 21$
Reflections Collected	27043
Independent Reflections	7981 [R(int) = 0.0266]
Completeness to Theta = 68.706°	98.5%
Refinement Method	Full-matrix least-squares on F ²
Data/ Restraints/ Parameters	7981/1/644
Goodness-of-Fit on F ²	1.050
Final R Indices [I>2sigma(I)]	$R_1 = 0.0547$ and $wR_2 = 0.1526$
R Indices (All Data)	$R_1 = 0.0560$ and $wR_2 = 0.1544$
Largest Diff. Peak and Hole	0.651 and –0.315 $e^{-}\!/$ ${\rm \AA^3}$
Flack x	0.055(6)

< Synthesis of Chiral Anthranilic Pyrrolidine Peptide-like Catalyst (10) >

To a solution of **S2** (985.9 mg, 2.08 mmol) and DIPEA (361.8 μ L, 2.08 mmol) in DMF (10 mL) was added COMU (889.7 mg, 2.08 mmol) at 0 °C, the mixture was stirred at 0 °C for 10 min. Then, (*S*)-methyl morpholine-3-carboxylate (301.6 mg, 2.08 mmol) and DIPEA (361.8 μ L, 2.08 mmol) was added to the mixture at 0 °C, the mixture was stirred at 0 °C for 1 h. The reaction mixture was stirred at room temperature for 18 h. H₂O (5 mL) was added to the mixture, and the product was extracted with AcOEt (15 mL × 3). The organic phase was washed with saturated NaHCO₃ aqueous solution, 1*N* HCl aqueous solution, and brine, and dried over Na₂SO₄. The organic phase was concentrated under reduced pressure, and the crude product was purified by column chromatography (eluent: hexane/AcOEt = 3/2) to give the desired product **S3** (967.8 mg, 77% yield).

To a solution of S3 (967.8 mg, 1.61 mmol) in THF (8 mL) and H₂O (8mL) was added LiOH

(96.3 mg, 4.02 mmol) at room temperature. The reaction mixture was stirred room temperature for 18 h. The reaction mixture was washed with Et₂O (15 mL×3). The aqueous layer was acidified with 1*N* HCl aqueous solution until pH to 1. The product was extracted with AcOEt (15 mL × 3). The organic phase was dried over Na₂SO₄. The organic phase was concentrated under reduced pressure to give the desired product **S4** (708.4 mg, 75% yield).

To a solution of S4 (708.4 mg, 1.21 mmol) in CH_2Cl_2 (12 mL) was added TFA (3 mL) at room temperature. The reaction mixture was stirred room temperature for 18 h. The volatile solvents were removed under reduced pressure. Et₂O was added, then the precipitated solid was washed with Et₂O (20 mL) to give the desired product **10** (550.8 mg, 76% yield).

(*S*)-4-(2-((4-Methyl-*N*-(((*S*)-pyrrolidin-2-yl)methyl)phenyl)sulfonamido)benzoyl)morpholine-3-carboxylic acid TFA salt (10): White solid, mp 146.5-147.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.25 (brs, 1H), 10.16 (brs, 0.7H), 9.54 (brs, 1H), 9.46 (brs, 0.3 H), 7.57-7.29 (m, 7H), 6.75 (d, *J* = 8.0 Hz, 0.7H), 6.70 (d, *J* = 7.2 Hz, 0.3H), 5.23 (s, 0.7H), 4.60 (d, *J* = 12.8 Hz, 0.3H), 4.51 (d, *J* = 12.0 Hz, 0.7H), 4.28 (d, *J* = 11.6 Hz, 0.3H), 4.24-4.04 (m, 1.3H), 4.04-3.35 (m, 7.4H), 3.35-3.13 (m, 1.3H), 2.46 (s, 3H), 2.36-1.92 (m, 3.3H), 1.92-1.74 (m, 0.7H). ¹³C NMR (100 MHz, CDCl₃) δ 171.7 and 170.8 (rotamers), 170.4 and 169.5 (rotamers), 161.4, 144.9 and 144.7 (rotamers), 137.25 and 137.19 (rotamers), 136.2 and 135.5 (rotamers), 133.7 and 133.1 (rotamers), 131.4 and 131.1 (rotamers), 129.8 (2C), 128.9 and 128.8 (rotamers), 128.3 and 127.7 (rotamers), 128.2 and 127.4 (rotamers), 127.8 (2C), 67.7 and 67.3 (rotamers), 66.3 and 66.1 (rotamers), 63.1 and 58.9 (rotamers), 52.2 and 50.1 (rotamers), 21.5. IR (neat) 2986, 2947, 1720, 1681, 1619, 1459, 1393, 1349, 1307, 1166, 1133, 1118 cm⁻¹. HRMS (ESI) *m/z*: [M+H–TFA]⁺ calcd for C_{24H30}N₃O₆S 488.1850, found 488.1844. [α]_p²⁰ = -52.9 (*c* 1.1, CHCl₃, >99% ee (*S*)).

3. Procedure for Enantioselective Michael Reaction of Nitroalkenes (2) with Cyclic Ketones(3) Using Anthranilic Pyrrolidine Catalyst (1e) (Scheme 2 and Scheme 3).

To a solution of catalyst 1e (12.2 mg, 0.025 mmol) in *i*-PrOH (250 µL) was added 2,6-lutidine (2.9

 μ L, 0.025 mmol) at room temperature, and the reaction mixture was stirred at room temperature for 10 min. Then, *trans*-β-nitrostyrene (**2a**) (37.3 mg, 0.25 mmol) and cyclohexanone (**3a**) (259.1 μ L, 2.5 mmol) was added to the mixture at room temperature, and the mixture was stirred at room temperature for 48 h. Saturated NaHCO₃ aqueous solution (5 mL) was added to the mixture, and the product was extracted with AcOEt (15 mL × 3). The organic phase was washed with brine and dried over Na₂SO₄. The organic phase was concentrated under reduced pressure, and the crude product was purified by column chromatography (eluent: hexane/AcOEt = 5/1) to give the desired product **4a** (61.5 mg, >99% yield, dr = 93:7, 96% ee).

Table S1. Screening for chiral anthranilic pyrrolidine catalyst (1) for enantioselective Michael reaction of β -nitrostyrene (2a) with cyclohexanone (3a).

^aNumbers indicate ee of syn-product as the major diastereomer. ^bNMM=N-methylmorpholine. ^c2,6-Lutidine

(20 mol%) was used.

Table S2. Other chiral 2-substituted pyrrolidine catalyst for enantioselective Michael reaction of β -nitrostyrene (2a) with cyclohexanone (3a).

^a For 24 h

^a The reaction was carried out for 24 h.

(*S*)-2-((*R*)-2-Nitro-1-phenylethyl)cyclohexan-1-one (4a):¹ >99% yield, 61.5 mg, White solid, mp 132.5-133.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.29 (m, 2H), 7.29-7.24 (m, 1H), 7.19-7.14 (m, 2H), 4.94 (dd, *J* = 12.6, 4.6 Hz, 1H), 4.63 (dd, *J* = 12.6, 10.1 Hz, 1H), 4.63 (td, *J* = 10.1, 4.6 Hz, 1H), 2.74-2.64 (m, 1H), 2.52-2.44 (m, 1H), 2.44-2.34 (m, 1H), 2.14-2.03 (m, 1H), 1.83-1.50 (m, 4H), 1.30-1.17 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 212.0, 137.7, 128.9 (2C), 128.1 (2C), 127.8, 78.9, 52.5, 43.9, 42.7, 33.2, 28.5, 25.0. IR (neat) 2955, 1696, 1550, 1385, 1129, 1013 cm⁻¹. [α]_D²⁰ = -29.3 (*c* 1.1, CHCl₃, 93% ee (*S*,*R*)). HPLC analysis; Daicel Chiralpack AS-H, Hexane/*i*-PrOH = 75/25, flow rate = 1.0 mL/min, 254 nm, *t*_R = 9.3 min (minor, *R*,*S*), 13.4 min (major, *S*,*R*).

(*S*)-2-((*R*)-1-(4-chlorophenyl)-2-nitroethyl)cyclohexan-1-one (4b):¹ 90% yield, 63.1 mg, White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.28 (m, 2H), 7.15-7.09 (m, 2H), 4.93 (dd, *J* = 12.7, 4.6 Hz, 1H), 4.60 (dd, *J* = 12.7, 10.1 Hz, 1H), 3.76 (td, *J* = 10.1, 4.6 Hz, 1H), 2.70-2.60 (m, 1H), 2.52-2.44 (m, 1H), 2.44-2.32 (m, 1H), 2.15-2.04 (m, 1H), 1.86-1.50 (m, 4H), 1.30-1.16 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 211.5, 136.2, 133.6, 129.5 (2C), 129.1 (2C), 78.6, 52.4, 43.3, 42.7, 33.1, 28.4, 25.0. IR (neat) 2947, 1697, 1553, 1386, 1131, 1099, 1013 cm⁻¹. HPLC analysis; Daicel Chiralpack AS-H, Hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 254 nm, *t*_R = 17.2 min (minor, *R*,*S*), 29.8 min (major, *S*,*R*).

(*S*)-2-((*R*)-1-(4-Bromophenyl)-2-nitroethyl)cyclohexan-1-one (4c):¹ 94% yield, 77.0 mg, White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.42 (m, 2H), 7.09-7.04 (m, 2H), 4.93 (dd, *J* = 12.8, 4.6 Hz, 1H), 4.60 (dd, *J* = 12.8, 10.2 Hz, 1H), 3.75 (td, *J* = 10.2, 4.6 Hz, 1H), 2.65 (dddd, *J* = 10.7, 10.0, 5.3, 0.9 Hz, 1H), 2.52-2.44 (m, 1H), 2.43-2.32 (m, 1H), 2.15-2.04 (m, 1H), 1.85-1.51 (m, 4H), 1.29-1.17 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 211.5, 136.8, 132.1 (2C), 129.9 (2C), 121.7, 78.5, 52.3, 43.4, 42.7, 33.1, 28.4, 25.0. IR (neat) 2931, 1696, 1552, 1387, 1130, 1074, 1011 cm⁻¹. HPLC analysis; Daicel Chiralpack AS-H, Hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 210 nm, *t*_R = 17.0 min (minor, *R*,*S*), 29.4 min (major, *S*,*R*).

(S)-2-((R)-2-Nitro-1-(4-nitrophenyl)ethyl)cyclohexan-1-one (4d):² 79% yield, 57.7 mg, Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.25-8.17 (m, 2H), 7.45-7.36 (m, 2H), 5.00 (dd, J = 13.2, 4.8 Hz, 1H), 4.70 (dd, J = 13.2, 10.2 Hz, 1H), 3.94 (td, J = 10.2, 4.8 Hz, 1H), 2.77-2.67 (m, 1H),

2.55-2.46 (m, 1H), 2.46-2.34 (m, 1H), 2.18-2.08 (m, 1H), 1.87-1.78 (m, 1H), 1.75-1.56 (m, 3H), 1.34-1.18 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 210.8, 147.4, 145.5, 129.3 (2C), 124.0 (2C), 77.9, 52.1, 43.7, 42.7, 33.1, 28.2, 25.0. IR (neat) 2943, 1705, 1550, 1518, 1345, 1130, 1015 cm⁻¹. HPLC analysis; Daicel Chiralpack AD-H, Hexane/*i*-PrOH = 75/25, flow rate = 1.0 mL/min, 254 nm, *t*_R = 13.3 min (minor, *R*,*S*), 27.9 min (major, *S*,*R*).

(*S*)-2-((*R*)-2-Nitro-1-(4-(trifluoromethyl)phenyl)ethyl)cyclohexan-1-one (4e):³ 90% yield, 70.9 mg, White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.2 Hz, 2H), 4.97 (dd, *J* = 13.0, 4.6 Hz, 1H), 4.67 (dd, *J* = 13.0, 10.1 Hz, 1H), 3.86 (td, *J* = 10.1, 4.6 Hz, 1H), 2.70 (dddd, *J* = 12.7, 9.8, 5.2, 0.9 Hz, 1H), 2.53-2.45 (m, 1H), 2.44-2.33 (m, 1H), 2.16-2.06 (m, 1H), 1.86-1.76 (m, 1H), 1.76-1.51 (m, 3H), 1.31-1.18 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 211.3, 142.0, 130.0 (q, *J*_{C-F} = 33.3 Hz), 128.7 (2C), 125.9 (q, *J*_{C-F} = 2.9 Hz, 2C), 123.9 (q, *J*_{C-F} = 276.6 Hz), 78.3, 52.3, 43.7, 42.7, 33.2, 28.4, 25.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.6. IR (neat) 2961, 1697, 1555, 1329, 1115, 1017 cm⁻¹. HPLC analysis; Daicel Chiralpack AS-H, Hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 254 nm, *t*_R = 11.4 min (minor, *R*,*S*), 19.2 min (major, *S*,*R*).

(*S*)-2-((*R*)-1-(4-Methoxyphenyl)-2-nitroethyl)cyclohexan-1-one (4f):¹ 94% yield, 65.4 mg, White solid, mp 148.0-148.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.11-7.05 (m, 2H), 6.88-6.82 (m, 2H), 4.91 (dd, *J* = 12.6, 4.8 Hz, 1H), 4.59 (dd, *J* = 12.6, 10.1 Hz, 1H), 3.78 (s, 3H), 3.71 (td, *J* = 10.1, 4.8 Hz, 1H), 2.70-2.59 (m, 1H), 2.52-2.43 (m, 1H), 2.43-2.33 (m, 1H), 2.13-2.02 (m, 1H), 1.84-1.50 (m, 4H), 1.30-1.17 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 212.1, 159.0, 129.5, 129.1 (2C), 114.3 (2C), 79.1, 55.2, 52.7, 43.2, 42.7, 33.1, 28.5, 25.0. IR (neat) 2953, 1699, 1551, 1390, 1255, 1130, 1026 cm⁻¹. [α]_D²⁰ = -21.5 (*c* 1.1, CHCl₃, 94% ee (*S*)). HPLC analysis; Daicel Chiralpack AD-H, Hexane/*i*-PrOH = 75/25, flow rate = 0.7 mL/min, 210 nm, *t*_R = 10.3 min (minor, *R*,*S*), 12.2 min (major, *S*,*R*).

(*S*)-2-((*R*)-2-Nitro-1-(*p*-tolyl)ethyl)cyclohexan-1-one (4g):¹ 96% yield, 62.7 mg, White solid, mp 130.0-130.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.15-7.09 (m, 2H), 7.07-7.02 (m, 2H), 4.92 (dd, *J* = 12.6, 4.6 Hz, 1H), 4.61 (dd, *J* = 12.6, 10.1 Hz, 1H), 3.72 (td, *J* = 10.1, 4.6 Hz, 1H), 2.71-2.62 (m, 1H), 2.51-2.44 (m, 1H), 2.44-2.33 (m, 1H), 2.31 (s, 3H), 2.12-2.03 (m, 1H), 1.83-1.50 (m, 4H), 1.30-1.17 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 212.1, 137.4, 134.5, 129.6 (2C), 128.0 (2C), 79.0, 52.5, 43.6, 42.7, 33.2, 28.5, 25.0, 21.1. IR (neat) 2949, 1697, 1551, 1386, 1130, 1015 cm⁻¹. [α]_D²⁰ = -30.0 (*c* 1.1, CHCl₃, 97% ee (*S*)). HPLC analysis; Daicel Chiralpack AS-H, Hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 254 nm, *t*_R = 11.7 min (minor, *R*,*S*), 20.5 min (major, *S*,*R*).

(*S*)-2-((*R*)-2-Nitro-1-(*m*-tolyl)ethyl)cyclohexan-1-one (4h):⁴ 87% yield, 56.6 mg, White solid, mp 98.0-98.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.17 (m, 1H), 7.10-7.02 (m, 1H), 6.98-6.92 (m, 2H), 4.93 (dd, *J* = 12.8, 4.6 Hz, 1H), 4.62 (dd, *J* = 12.8, 10.1 Hz, 1H), 3.71 (td, *J* = 10.1, 4.6 Hz, 1H), 2.72-2.62 (m, 1H), 2.52-2.44 (m, 1H), 2.44-2.34 (m, 1H), 2.33 (s, 3H), 2.14-2.02 (m, 1H), 1.83-1.50 (m, 4H), 1.31-1.17 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 212.1, 138.5, 137.6, 128.9, 128.7, 128.5, 125.0, 78.9, 52.5, 43.9, 42.7, 33.2, 28.5, 25.0, 21.4. IR (neat) 2950, 1699, 1550, 1384, 1130, 1015 cm⁻¹. [α] $_{D}^{20}$ = -25.2 (*c* 1.1, CHCl₃, 94% ee (*S*)). HPLC analysis; Daicel Chiralpack AS-H, Hexane/*i*-PrOH = 85/15, flow rate = 1.0 mL/min, 254 nm, *t*_R = 10.6 min (minor, *R*,*S*), 17.6 min (major, *S*,*R*).

(S)-2-((R)-2-Nitro-1-(o-tolyl)ethyl)cyclohexan-1-one (4i):4 94% yield, 61.2 mg, White solid, mp

83.0-83.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.17 (m, 1H), 7.17-7.13 (m, 2H), 7.12-7.08 (m, 1H), 5.00 (dd, J = 12.8, 4.6 Hz, 1H), 4.61 (dd, J = 12.8, 10.6 Hz, 1H), 4.12 (td, J = 10.6, 4.6 Hz, 1H), 2.71-2.60 (m, 1H), 2.52-2.45 (m, 1H), 2.44-2.34 (m, 1H), 2.36 (s, 3H), 2.15-2.04 (m, 1H), 1.80-1.62 (m, 3H), 1.61-1.47 (m, 1H), 1.30-1.17 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 212.3, 137.4, 136.4, 131.0, 127.3, 126.7, 125.6, 78.7, 53.4, 42.9, 38.2, 32.9, 28.7, 25.3, 19.9. IR (neat) 2940, 1704, 1548, 1379, 1130 cm⁻¹. [α]_D²⁰ = -33.3 (*c* 1.1, CHCl₃, 97% ee (*S*)). HPLC analysis; Daicel Chiralpack AS-H, Hexane/*i*-PrOH = 85/15, flow rate = 1.0 mL/min, 254 nm, $t_{\rm R} = 10.3$ min (minor, *R*,*S*), 10.8 min (major, *S*,*R*).

(*S*)-2-((*S*)-1-Nitropentan-2-yl)cyclohexan-1-one (4j): 90% yield, 47.8 mg, Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 4.56 (dd, J = 12.6, 6.2 Hz, 1H), 4.40 (dd, J = 12.6, 6.4 Hz, 1H), 2.65-2.54 (m, 1H), 2.54-2.45 (m, 1H), 2.45-2.37 (m, 1H), 2.37-2.22 (m, 1H), 2.17-2.03 (m, 2H), 2.01-1.88 (m, 1H), 1.77-1.57 (m, 2H), 1.57-1.20 (m, 5H), 0.92 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 211.3, 77.1, 51.3, 42.6, 37.0, 31.4, 30.2, 27.7, 25.2, 20.2, 14.0. IR (neat) 2958, 1707, 1547, 1381, 1124, 1018 cm⁻¹. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₁H₁₉NNaO₃ 236.1257, found 236.1259. HPLC analysis; Daicel Chiralpack AD-H, Hexane/*i*-PrOH = 75/25, flow rate = 0.7 mL/min, 214 nm, $t_{\rm R} = 6.7$ min (major, *S*, *R*), 7.4 min (minor, *R*, *S*). The absolute configuration of 4j was assigned from that of 4m by analogy of the HPLC analysis.

(*S*)-2-((*S*)-4-Methyl-1-nitropentan-2-yl)cyclohexan-1-one (4k):⁵ 80% yield, 45.7 mg, Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 4.59 (dd, J = 12.8, 5.4 Hz, 1H), 4.38 (dd, J = 12.8, 6.8 Hz, 1H), 2.69-2.58 (m, 1H), 2.56-2.47 (m, 1H), 2.44-2.26 (m, 2H), 2.18-2.05 (m, 2H), 2.01-1.88 (m, 1H), 1.76-1.42 (m, 4H), 1.30 (ddd, J = 14.0, 8.4, 5.2 Hz, 1H), 1.19 (ddd, J = 14.0, 9.0, 5.6 Hz, 1H), 0.95 (d, J = 6.4 Hz, 3H), 0.91 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 211.2, 77.2, 51.5, 42.6, 38.5, 35.2, 30.2, 27.6, 25.5, 25.3, 23.1, 21.8. IR (neat) 2953, 1707, 1547, 1382, 1208, 1124, 1066 cm⁻¹. [α]_D²⁰ = -39.7 (*c* 1.1, CHCl₃, 97% ee (*S*)). HPLC analysis; Daicel Chiralpack IA, Hexane/*i*-PrOH = 95/5, flow rate = 0.5 mL/min, 210 nm, $t_R = 11.6$ min (major, *S*,*R*), 12.6 min (minor, *R*,*S*).

(2*S*,4*S*)-4-Methyl-2-((*R*)-2-nitro-1-phenylethyl)cyclohexan-1-one (4l):² 92% yield, 59.9 mg, White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.23 (m, 3H), 7.20-7.14 (m, 2H), 4.69 (dd, *J* = 13.2, 4.8 Hz, 1H), 4.60 (dd, *J* = 13.2, 10.6 Hz, 1H), 3.80 (td, *J* = 10.6, 4.8 Hz, 1H), 2.77-2.68 (m, 1H), 2.54-2.46 (m, 2H), 2.12-1.94 (m, 2H), 1.69-1.58 (m, 1H), 1.52-1.36 (m, 2H), 0.97 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 213.0, 137.2, 129.1 (2C), 128.01, 127.97 (2C), 79.1, 50.1, 44.1, 38.6, 37.8, 34.4, 26.5, 19.4. IR (neat) 2957, 1705, 1549, 1455, 1379, 1200, 1129 cm⁻¹. HPLC analysis; Daicel Chiralpack AS-H, Hexane/EtOH = 90/10, flow rate = 0.7 mL/min, 210 nm, *t*_R = 13.1 min (minor, *R*,*S*), 19.4 min (major, *S*,*R*).

(*S*)-4,4-Dimethyl-2-((*R*)-2-nitro-1-phenylethyl)cyclohexan-1-one (4m):² 54% yield, 36.9 mg, White solid, mp 93.5-94.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.23 (m, 3H), 7.17-7.11 (m, 2H), 5.00 (dd, *J* = 12.6, 4.6 Hz, 1H), 4.63 (dd, *J* = 12.6, 9.8 Hz, 1H), 3.70 (td, *J* = 9.8, 4.6 Hz, 1H), 2.92-2.81 (m, 1H), 2.62-2.50 (m, 1H), 2.31 (ddd, *J* = 13.8, 4.8, 2.8 Hz, 1H), 1.80-1.70 (m, 1H), 1.64 (td, *J* = 14.0, 4.6 Hz, 1H), 1.37 (ddd, *J* = 13.8, 5.2, 3.4 Hz, 1H), 1.22 (t, *J* = 13.8 Hz, 1H), 1.13 (s, 3H), 0.88 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 212.6, 137.7, 128.9 (2C), 128.1 (2C), 127.7, 79.0, 47.6, 45.8, 43.8, 40.7, 39.1, 31.0 (2C), 24.3. IR (neat) 2957, 1707, 1549, 1431, 1377, 1122 cm⁻¹. [α]_D²⁰ = -53.8 (*c* 1.0, CHCl₃, 93% ee (*S*)). HPLC analysis; Daicel Chiralpack AD-H, Hexane/*i*-PrOH = 95/5, flow rate = 1.0 mL/min, 210 nm, *t*_R = 8.5 min (minor, *R*,*S*), 10.5 min (major, *S*,*R*).

(*S*)-7-((*R*)-2-Nitro-1-phenylethyl)-1,4-dioxaspiro[4.5]decan-8-one (4n):⁶ 89% yield, 68.1 mg, White solid, mp 129.0-129.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.29 (m, 2H), 7.29-7.23 (m, 1H), 7.19-7.14 (m, 2H), 4.94 (dd, *J* = 12.8, 4.8 Hz, 1H), 4.61 (dd, *J* = 12.8, 10.1 Hz, 1H), 4.01-3.78 (m, 5H), 3.11-3.01 (m, 1H), 2.76-2.64 (m, 1H), 4.46 (ddd, *J* = 14.2, 5.3, 3.4 Hz, 1H), 2.09-2.01 (m, 1H), 1.95 (td, *J* = 13.5, 5.2 Hz, 1H), 1.68 (ddd, *J* = 13.7, 5.7, 3.4 Hz, 1H), 1.55 (t, *J* = 13.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 210.5, 137.3, 129.1 (2C), 128.3 (2C), 128.0, 107.1, 79.0, 64.9, 64.6, 48.2, 43.5, 39.4, 38.7, 35.1. IR (neat) 2954, 1719, 1545, 1381, 1119, 1045 cm⁻¹. [α]_D²⁰ = -13.1 (*c* 1.1, CHCl₃, 97% ee (*S*)). HPLC analysis; Daicel Chiralpack AS-H, Hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 210 nm, *t*_R = 16.3 min (minor, *R*,*S*), 27.1 min (major, *S*,*R*).

tert-butyl (*R*)-3-((*R*)-2-Nitro-1-phenylethyl)-4-oxopiperidine-1-carboxylate (40):⁷ 85% yield, 74.3 mg, White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.27 (m, 3H), 7.23-7.16 (m, 2H), 4.94 (dd, *J* = 12.8, 4.4 Hz, 1H), 4.60 (dd, *J* = 12.8, 10.0 Hz, 1H), 4.37-4.08 (brs, 1H), 4.00-3.66 (m, 2H), 3.31-3.11 (m, 1H), 2.90-2.65 (m, 2H), 2.62-2.45 (m, 2H), 1.57-1.17 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 208.4, 154.0, 136.3, 129.2 (2C), 128.2, 128.0 (2C), 80.7, 78.8, 51.9, 48.1, 44.2, 41.80, 41.75, 28.2 (3C). IR (neat) 2927, 1691, 1550, 1412, 1367, 1241, 1161 cm⁻¹. HPLC analysis; Daicel Chiralpack OD-H, Hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 254 nm, *t*_R = 17.1 min (minor, *R*,*S*), 19.3 min (major, *S*,*R*).

(*R*)-3-((*R*)-2-Nitro-1-phenylethyl)tetrahydro-4*H*-pyran-4-one (4p):¹ 98% yield, 60.8 mg, White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.23 (m, 3H), 7.22-7.14 (m, 2H), 4.94 (dd, *J* = 12.9, 4.6 Hz, 1H), 4.65 (dd, *J* = 12.9, 10.3 Hz, 1H), 4.20-4.08 (m, 1H), 3.89-3.73 (m, 2H), 3.70 (ddd, *J* = 12.0, 5.6, 1.2 Hz, 1H), 3.27 (dd, *J* = 11.8, 9.1 Hz, 1H), 2.94-2.83 (m, 1H), 2.73-2.62 (m, 1H), 2.56 (dt, *J* = 14.2, 4.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 207.4, 136.2, 129.2 (2C), 128.3, 127.9 (2C), 78.7, 71.6, 69.0, 53.2, 43.0, 41.3. IR (neat) 2862, 1698, 1552, 1456, 1383, 1236, 1150, 1109 cm⁻¹. HPLC analysis; Daicel Chiralpack IA, Hexane/*i*-PrOH = 85/15, flow rate = 1.0 mL/min, 210 nm, *t*_R = 14.7 min (minor, *R*,*S*), 25.6 min (major, *S*,*R*).

(S)-3-((R)-2-Nitro-1-phenylethyl)tetrahydro-4H-thiopyran-4-one (4q):² 85% yield, 56.2 mg, White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.24 (m, 3H), 7.24-7.17 (m, 2H), 4.75 (dd, J = 12.8, 4.8 Hz, 1H), 4.63 (dd, J = 12.8, 10.3 Hz, 1H), 3.98 (td, J = 10.3, 4.8 Hz, 1H), 3.11-3.01 (m, 1H), 3.01-2.91 (m, 2H), 2.91-2.75 (m, 2H), 2.62 (ddd, J = 14.2, 4.4, 1.8 Hz, 1H), 2.46 (dd, J = 14.2, 9.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 209.5, 136.4, 129.3 (2C), 128.3, 128.1 (2C), 78.6, 54.9, 44.5, 43.4, 35.1, 31.6. IR (neat) 2900, 1702, 1545, 1427, 1380, 1291, 1112, 1080 cm⁻¹. HPLC analysis; Daicel Chiralpack OD-H, Hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 254 nm, $t_{\rm R} = 22.8$ min (minor, *R*,*S*), 25.6 min (major, *S*,*R*).

4. Procedure for Enantioselective Michael Reaction of Nitroalkenes (2) with Aldehydes (5) Using Anthranilic Pyrrolidine Peptide-like Catalyst (10) (Table 2 and Scheme 4).

To a solution of catalyst **10** (15.0 mg, 0.025 mmol) in *i*-PrOH (250 μ L) was added *N*,*N*-dimethylaniline (3.2 μ L, 0.025 mmol) at room temperature, and the reaction mixture was stirred at room temperature for 10 min. Then, *trans*- β -nitrostyrene (**2a**) (37.3 mg, 0.25 mmol) and propionaldehyde (**5a**) (180.4 μ L, 2.5 mmol) was added to the mixture at 0 °C, and the mixture was stirred at 0 °C for 48 h. Saturated NaHCO₃ aqueous solution (5 mL) was added to the mixture, and the product was extracted with AcOEt (15 mL × 3). The organic phase was washed with brine and dried over Na₂SO₄. The organic phase was concentrated under reduced pressure, and the crude product was purified by column chromatography (eluent: hexane/AcOEt = 10/1) to give the desired product **6a** (45.1 mg, 87% yield, dr = 95:5, 93% ee).

$$H \xrightarrow{O \quad Ph}_{\overline{z}} NO_2$$

(2*S*,3*R*)-2-Methyl-4-nitro-3-phenylbutanal (6a):¹ 87% yield, 45.1 mg, Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.72 (d, *J* = 1.6 Hz, 1H), 7.38-7.27 (m, 3H), 7.19-7.13 (m, 2H), 4.80 (dd, *J* = 12.8, 5.6 Hz, 1H), 4.68 (dd, *J* = 12.8, 9.6 Hz, 1H), 3.81 (td, *J* = 9.6, 5.6 Hz, 1H), 2.87-2.71 (m, 1H), 1.01 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.2, 136.5, 129.1 (2C), 128.1, 128.0 (2C), 78.1, 48.4, 44.0, 12.1. IR (neat) 2924, 1722, 1549, 1455, 1379, 1097 cm⁻¹. HPLC analysis; Daicel Chiralpack OD-H, Hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 210 nm, *t*_R = 26.6 min (major, *S*,*R*), 39.5 min (minor, *R*,*S*).

(2*S*,3*R*)-2-Ethyl-4-nitro-3-phenylbutanal (6b):¹ 93% yield, 51.4 mg, Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.72 (d, *J* = 2.5 Hz, 1H), 7.38-7.27 (m, 3H), 7.21-7.15 (m, 2H), 4.72 (dd, *J* = 12.8,

5.3 Hz, 1H), 4.63 (dd, J = 12.8, 9.8 Hz, 1H), 3.79 (td, J = 9.8, 5.3 Hz, 1H), 2.73-2.63 (m, 1H), 1.57-1.44 (m, 2H), 0.84 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 203.2, 136.7, 129.0 (2C), 128.1, 127.9 (2C), 78.5, 54.9, 42.6, 20.3, 10.6. IR (neat) 2967, 1717, 1550, 1379, 1203, 1089 cm⁻¹. HPLC analysis; Daicel Chiralpack OD-H, Hexane/*i*-PrOH = 90/10, flow rate = 0.7 mL/min, 210 nm, $t_{\rm R} = 26.9$ min (major, *S*, *R*), 33.6 min (minor, *R*, *S*).

(*S*)-2-((*R*)-2-Nitro-1-phenylethyl)pentanal (6c):¹ 92% yield, 53.9 mg, Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.70 (d, *J* = 3.2 Hz, 1H), 7.39-7.27 (m, 3H), 7.21-7.14 (m, 2H), 4.71 (dd, *J* = 13.2, 5.6 Hz, 1H), 4.64 (dd, *J* = 13.2, 9.6 Hz, 1H), 3.78 (td, *J* = 9.6, 5.6 Hz, 1H), 2.71 (tt, *J* = 9.6, 3.2 Hz, 1H), 1.55-1.43 (m, 1H), 1.43-1.24 (m, 2H), 1.24-1.09 (m, 1H), 0.80 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 203.2, 136.7, 129.1 (2C), 128.1, 127.9 (2C), 78.4, 53.7, 43.1, 29.4, 19.7, 13.9. IR (neat) 2921, 1720, 1551, 1456, 1379, 1090 cm⁻¹. [α]_D²⁵ = -39.6 (*c* 1.0, CHCl₃, 90% ee (*S*)). HPLC analysis; Daicel Chiralpack OD-H, Hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 220 nm, *t*_R = 15.9 min (major, *S*, *R*), 21.2 min (minor, *R*, *S*).

(*S*)-2-((*R*)-2-Nitro-1-phenylethyl)octanal (6d):¹ 97% yield, 67.4 mg, Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.70 (d, *J* = 3.2 Hz, 1H), 7.38-7.25 (m, 3H), 7.20-7.14 (m, 2H), 4.71 (dd, *J* = 13.0, 5.2 Hz, 1H), 4.64 (dd, *J* = 13.0, 10.0 Hz, 1H), 3.78 (td, *J* = 10.0, 5.2 Hz, 1H), 2.75-2.64 (m, 1H), 1.54-1.06 (m, 10H), 0.82 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 203.3, 136.7, 129.1 (2C), 128.1, 128.0 (2C), 78.4, 53.8, 43.0, 31.3, 29.0, 27.3, 26.3, 22.4, 13.9. IR (neat) 2925, 1719, 1552, 1455, 1379, 1092 cm⁻¹. [α]_D²⁵ = -39.0 (*c* 1.0, CHCl₃, 85% ee (*S*)). HPLC analysis; Daicel Chiralpack OD-H, Hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 220 nm, *t*_R = 13.2 min (major, *S*, *R*), 17.3 min (minor, *R*, *S*).

(2S,3R)-2-Isopropyl-4-nitro-3-phenylbutanal (6e):¹ >99% yield, 58.4 mg, Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.61 (d, J = 2.8 Hz, 1H), 7.38-7.25 (m, 3H), 7.23-7.16 (m, 2H), 4.67 (dd, J = 12.8, 4.4 Hz, 1H), 4.57 (dd, J = 12.8, 10.4 Hz, 1H), 3.90 (td, J = 10.4, 4.4 Hz, 1H), 2.78

(ddd, J = 10.4, 4.4, 2.8 Hz, 1H), 1.78-1.64 (m, 1H), 1.10 (d, J = 7.4 Hz, 3H), 0.88 (d, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 204.4, 137.0, 129.1 (2C), 128.1, 127.9 (2C), 79.0, 58.7, 41.9, 27.9, 21.6, 16.9. IR (neat) 2921, 1715, 1550, 1455, 1378, 1089 cm⁻¹. [α]_D²⁵ = -69.8 (*c* 1.0, CHCl₃, 91% ee (*S*)). HPLC analysis; Daicel Chiralpack OD-H, Hexane/*i*-PrOH = 95/5, flow rate = 0.5 mL/min, 220 nm, $t_{\rm R} = 27.4$ min (minor, *R*,*S*), 28.9 min (major, *S*,*R*).

$$H \xrightarrow{O \quad Ph}_{\underline{F}} NO_2$$

(2*S*,3*R*)-2-Benzyl-4-nitro-3-phenylbutanal (6f):¹ 93% yield, 65.6 mg, Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.71 (d, *J* = 2.0 Hz, 1H), 7.42-7.15 (m, 8H), 7.06-7.00 (m, 2H), 4.74 (dd, *J* = 13.2, 6.4 Hz, 1H), 4.70 (dd, *J* = 13.2, 8.6 Hz, 1H), 3.82 (td, *J* = 8.6, 6.4 Hz, 1H), 3.16-3.07 (m, 1H), 2.80-2.70 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 203.0, 137.1, 136.6, 129.3 (2C), 128.8 (2C), 128.7 (2C), 128.3, 128.0 (2C), 126.9, 78.0, 55.3, 43.4, 34.2. IR (neat) 2922, 1721, 1550, 1454, 1378, 1090 cm⁻¹. HPLC analysis; Daicel Chiralpack OD-H, Hexane/*i*-PrOH = 95/5, flow rate = 1.0 mL/min, 220 nm, *t*_R = 37.4 min (major, *S*,*R*), 40.7 min (minor, *R*,*S*).

(*S*)-2-((*R*)-2-Nitro-1-phenylethyl)pent-4-enal (6g):¹ 87% yield, 50.9 mg, Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.73 (d, J = 2.4 Hz, 1H), 7.39-7.27 (m, 3H), 7.21-7.15 (m, 2H), 5.69-5.56 (m, 1H), 5.11-4.94 (m, 2H), 4.77 (dd, J = 13.2, 5.2 Hz, 1H), 4.67 (dd, J = 13.2, 10.0 Hz, 1H), 3.81 (td, J = 10.0, 5.2 Hz, 1H), 2.90-2.81 (m, 1H), 2.27-2.18 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 202.7, 136.5, 132.9, 129.1 (2C), 128.2, 128.0 (2C), 118.8, 78.2, 52.9, 42.7, 31.7. IR (neat) 2920, 1722, 1550, 1454, 1379, 1089 cm⁻¹. HPLC analysis; Daicel Chiralpack OD-H, Hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 220 nm, $t_{\rm R} = 18.5$ min (major, *S*,*R*), 25.7 min (minor, *R*,*S*).

(2S,3S)-2-Methyl-3-(nitromethyl)-5-phenylpentanal (6h):⁹ 96% yield, 56.4 mg, Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.62 (s, 1H), 7.32-7.27 (m, 2H), 7.25-7.18 (m, 1H), 7.18-7.12 (m, 2H), 4.54 (dd, *J* = 12.8, 6.0 Hz, 1H), 4.44 (dd, *J* = 12.8, 8.0 Hz, 1H), 2.85-2.74 (m, 1H), 2.74-2.53 (m, 3H), 1.78 (q, J = 7.6 Hz, 1H), 1.74-1.55 (m, 1H), 1.16 (d, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.5, 140.4, 128.6 (2C), 128.2 (2C), 126.4, 76.7, 47.0, 36.7, 33.1, 30.2, 9.0. IR (neat) 2923, 1722, 1549, 1454, 1381, 1081 cm⁻¹. HPLC analysis; Daicel Chiralpack AD-H, Hexane/EtOH = 90/10, flow rate = 1.0 mL/min, 210 nm, $t_{\rm R} = 15.5$ min (minor, *R*,*S*), 16.4 min (major, *S*,*R*).

(2*S*,3*S*,*E*)-2-Methyl-3-(nitromethyl)-5-phenylpent-4-enal (6i):¹⁰ 90% yield, 52.3 mg, Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.67 (d, *J* = 0.8 Hz, 1H), 7.38-7.20 (m, 5H), 6.54 (d, *J* = 16.0 Hz, 1H), 5.95 (dd, *J* = 16.0, 9.6 Hz, 1H), 4.63-4.47 (m, 2H), 3.56-3.44 (m, 1H), 2.63-2.54 (m, 1H), 1.20 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.1, 135.8, 135.1, 128.6 (2C), 128.1, 126.4 (2C), 123.5, 77.5, 47.2, 41.8, 10.8. IR (neat) 2931, 1721, 1549, 1450, 1379, 1073 cm⁻¹. HPLC analysis; Daicel Chiralpack AD-H, Hexane/EtOH = 90/10, flow rate = 1.0 mL/min, 210 nm, *t*_R = 15.5 min (minor, *R*,*S*), 16.4 min (major, *S*,*R*). The enantioselectivity of **6i** was determined after its derivatization to **6h**.

(2*S*,3*S*)-2-Benzyl-3-(nitromethyl)hexanal (6j):¹¹ >99% yield, 62.0 mg, Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.68 (s, 1H), 7.35-7.26 (m, 2H), 7.26-7.14 (m, 3H), 4.45 (dd, *J* = 12.8, 6.8 Hz, 1H), 4.39 (dd, *J* = 12.8, 6.8 Hz, 1H), 3.06 (dd, *J* = 14.0, 8.8 Hz, 1H), 2.92-2.80 (m, 1H), 2.80-2.66 (m, 2H), 1.52-1.23 (m, 4H), 0.89 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.5, 138.3, 129.0 (2C), 128.9 (2C), 126.9, 77.5, 54.2, 36.8, 31.5, 31.4, 20.2, 13.9. IR (neat) 2930, 1721, 1549, 1454, 1381, 1079 cm⁻¹. HRMS (APCI) *m*/*z* [M+H]⁺ calcd for C₁₄H₂₀NO₃ 250.1438; found 250.1439. HPLC analysis; Daicel Chiralpack OD-H, Hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 220 nm, *t*_R = 17.9 min (major, *S*, *R*), 19.6 min (minor, *R*, *S*).

(2*S*,3*S*)-2-Benzyl-5-methyl-3-(nitromethyl)hexanal (6k): 92% yield, 60.4 mg, Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.70 (s, 1H), 7.35-7.28 (m, 2H), 7.26-7.17 (m, 3H), 4.45 (dd, *J* = 12.8, 6.8 Hz, 1H), 4.40 (dd, *J* = 12.8, 7.2 Hz, 1H), 3.07 (dd, *J* = 14.0, 8.8 Hz, 1H), 2.91-2.83 (m, 1H), 2.83-2.68 (m, 2H), 1.65-1.50 (m, 1H), 1.38-1.19 (m, 2H), 0.90 (d, *J* = 6.8 Hz, 3H), 0.82 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.3, 138.2, 128.9 (2C), 128.8 (2C), 126.8, 76.97, 54.2, 38.2, 34.8, 31.3, 25.2, 22.4, 22.1. IR (neat) 2928, 1721, 1549, 1468, 1382, 1081 cm⁻¹. HRMS (APCI) *m/z* [M+H]⁺ calcd for C₁₅H₂₂NO₃ 264.1594; found 264.1595. HPLC analysis; Daicel Chiralpack OD-H, Hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 220 nm, *t*_R = 10.1 min (major, *S*,*R*), 11.3 min (minor, *R*,*S*). The absolute configuration of **6k** was assigned from that of **6j** by analogy of the HPLC analysis.

5. Transformation of chiral Michael reaction adduct (3a) into β -proline derivative (8a) (Scheme 7).

To a solution of **6a** (52.9 mg, 0.26 mmol) in CHCl₃ (750 μ L) was added triphenylphosphonium ethoxycarbonylmethylylide (177.9 mg. 0.51 mmol), and the reaction mixture was stirred at room temperature for 2 h under argon atomosphere. The solvent was removed under reduced pressure and the crude mixture was purified by column chromatography (eluent: hexane/AcOEt=10:1) to give the desired product **5** (66.5 mg, 94% yield (*E*: *Z* = >99:<1, dr = 90:10, 90% ee)).

Ethyl (4*R***,5***R***,***E***)-4-methyl-6-nitro-5-phenylhex-2-enoate (7a): 94% yield, 66.5 mg, Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.24 (m, 3H), 7.21-7.14 (m, 2H), 6.86 (dd,** *J* **= 16.0, 9.8 Hz, 1H), 5.92 (dd,** *J* **= 16.0, 0.4 Hz, 1H), 4.64 (dd,** *J* **= 13.2, 5.2 Hz, 1H), 4.57 (dd,** *J* **= 13.2, 10.4 Hz,** 1H), 4.21 (q, J = 7.2 Hz, 2H), 3.37 (td, J = 10.4, 5.2 Hz, 1H), 2.68-2.55 (m, 1H), 1.31 (t, J = 7.2 Hz, 3H), 0.91 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 149.8, 137.3, 128.8 (2C), 127.9 (2C), 127.9, 122.7, 79.1, 60.5, 48.9, 40.2, 18.1, 14.1. IR (neat) 2979, 1712, 1551, 1455, 1377, 1271, 1175, 1036 cm⁻¹. HRMS (ESI) m/z [M+H]⁺ calcd for C₁₅H₂₀NO₄ 278.1387; found 278.1385. HPLC analysis; Daicel Chiralpack AD-H, Hexane/EtOH = 90/10, flow rate = 1.0 mL/min, 230 nm, $t_R = 8.6$ min (minor, *S*,*S*), 12.9 min (major, *R*,*R*).

To a solution of **7a** (62.8 mg (dr = 90:10, 90% ee), 0.23 mmol) in EtOH (2.3 mL) and AcOH (518 μ L) was added Zn powder (222.1 mg, 3.40 mmol) at -5 °C, and the reaction mixture was stirred at room temperature for 20 h. The reaction mixture was filtered through Celite with EtOH and the organic layer was concentrated under reduced pressure. The residue was cooled to -5 °C and basified with 1N NaOH aqueous solution (5.0 mL) to pH 10, and the product was extracted with CH₂Cl₂ (10 mL × 3). The combined extracts was dried over Na₂SO₄. The organic phase concentrated under reduced pressure to give the crude product. To a solution of the crude product and Et₃N (47.3 μ L, 0.34 mmol) in CH₂Cl₂ (1.1 mL) was added TsCl (47.5 mg, 0.25 mmol) at room temperature, and then sttired at room temperature for 18 h. 1N HCl aqueous solution (10 mL) was added to the mixture, and the product was extracted with CHCl₃ (10 mL × 3). The organic products was washed with brine (10 mL) and dried over Na₂SO₄. The organic phase was concentrated under reduced pressure and the crude product was purified by silica gel column chromatography (eluent: hexane/AcOEt=8:1) to give the desired product **8a** (61.5 mg, 68% yield (dr = 87:6:5:2), 91% ee).

Ethyl 2-((3*S*,4*R*)-3-methyl-4-phenyl-1-tosylpyrrolidin-2-yl)acetate (8a): 68% yield, 61.5 mg, Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 8.4 Hz, 2H), 7.37 (d, *J* = 8.4 Hz, 2H), 7.31-7.25 (m, 2H), 7.25-7.18 (m, 1H), 7.12-7.06 (m, 2H), 4.18 (q, *J* = 7.2 Hz, 2H), 3.76 (dd, *J* = 12.0, 7.6 Hz, 1H), 3.63 (ddd, *J* = 8.8, 6.8, 4.0 Hz, 1H), 3.46 (t, *J* = 12.0 Hz, 1H), 3.00 (dd, *J* = 16.4, 4.0 Hz, 1H), 2.81 (dd, *J* = 16.4, 6.8 Hz, 1H), 2.47 (s, 3H), 2.37-2.24 (m, 1H), 2.12 (td, *J* = 11.2, 7.6 Hz, 1H), 1.30 (t, J = 7.2 Hz, 3H), 0.79 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 143.8, 138.4, 134.8, 129.9 (2C), 128.8 (2C), 127.8 (2C), 127.6 (2C), 127.4, 63.9, 60.7, 55.4, 51.5, 47.0, 39.6, 21.7, 15.8, 14.3. IR (neat) 2963, 1730, 1454, 1344, 1289, 1161, 1092, 1030 cm⁻¹. HRMS (ESI) *m*/*z* [M+H]⁺ calcd for C₂₂H₂₈NO₄S 402.1734; found 402.1733. HPLC analysis; Daicel Chiralpack OJ-H, Hexane/*i*-PrOH = 90/10, flow rate = 0.6 mL/min, 210 nm, *t*_R = 31.0 min (minor), 34.9 min (major).

6. DFT Calculation Studies for Transition State of Enantioselective Michael Reaction of Nitroalkenes with Carbonyl compounds Using Chiral Pyrrolidyl Anthranilic Acid Catalyst

All calculation were performed with the Gaussian 16 package.¹² As a preliminary study, various TS models were explored at the B3LYP/6-311G* level according to the SCRF method based on PCM (i-PrOH). The promising TS models were further optimized at the M06-02X/6-31G* level according to the SCRF method based on PCM (i-PrOH). Frequency analyses were also carried out to identify the stationary points (TS: one imaginary frequency). Single-point energy calculations of the optimized structures were evaluated at the M06-02X/6-31G* level according to the SCRF method based on PCM (i-PrOH).

< Transition State model of Enantioselective Michael Reaction of β -Nitrostyrene with Cyclohexanone using Catalyst 1e >

To identify the promising TS model for the enantioselective Michael reaction of β -nitrostyrene with cyclohexanone using catalyst **1e**, various TS models consisting of **1e**-enamine generated from catalyst **1e** and cyclohexanone, and β -nitrostyrene were explored based on previous studies and the results in Scheme 5. The energetically favored TS models (**TS-A**–**TS-H**) were identified at the B3LYP/6-311G** level according to the SCRF method based on PCM (*i*-PrOH). The TS models (**TS-A**–**TS-H**) were further optimized at the M06-02X/6-31G* level according to the SCRF method based on PCM (*i*-PrOH) to find the most energetically favored TS model (**TS-E**).

TS-C; ∆E (+7.9 kcal/mol)

∆G (+7.0 kcal/mol)

TS-B; ∆E (0.0 kcal/mol) ∆G (+1.5 kcal/mol)

TS-A; ∆E (+2.8 kcal/mol) ∆G (+4.0 kcal/mol)

TS-F; ∆E (+0.9 kcal/mol) ∆G (+2.4 kcal/mol)

TS-E; ∆E (+0.2 kcal/mol) ∆G (0.0 kcal/mol)

TS-D; ∆E (+6.2 kcal/mol) ∆G (+7.5 kcal/mol)

TS-G; ∆E (+1.5 kcal/mol) ∆G (+1.1 kcal/mol)

TS-H; ∆E (-0.1 kcal/mol) ∆G (+2.0 kcal/mol)

Figure S2. Optimized geometries for the transition states of Michael reaction of β -nitrostyrene with cyclohexanone using catalyst 1e.

ГЅ-А						30	1	0	-0.404206	0.357847	-0.294126
4062X/6-3	31G*					31	6	0	3.690329	0.304369	0.74245
E(RM062X	K) = -2292.6	56867 Hai	tree			32	6	0	5.115151	-0.037628	0.963819
EE+Therm	al Free Ene	rgy of Cori	rection = -229	92.066382 Hai	rtree	33	6	0	6.081154	0.971605	0.87953
						34	6	0	7.424591	0.69202	1.12004
Center	Atomic	Atomic	Coord	dinates (Angs	troms)	35	6	0	7.820572	-0.60275	1.442316
Number	Number	Туре	Х	Y	Z	36	6	0	6.866236	-1.617686	1.523815
						37	6	0	5.526215	-1.338004	1.286177
1	7	0	1.446291	-1.423335	-0.997572	38	1	0	5.772053	1.983937	0.633241
2	6	0	2.183867	-0.416374	-1.490816	39	1	0	8.15965	1.487373	1.054311
3	6	0	3.573196	-0.40759	-1.326746	40	1	0	8.866673	-0.823611	1.626475
4	6	0	4.441044	0.546332	-2.117814	41	1	0	7.168928	-2.630215	1.769628
5	6	0	3.716195	1.830724	-2.513808	42	1	0	4.794639	-2.13987	1.344648
6	6	0	2.366568	1.490893	-3.137433	43	6	0	2.729582	-0.253436	1.582998
7	6	0	1.482417	0.769867	-2.119568	44	7	0	1.492786	0.336077	1.724026
8	1	0	4.044989	-1.355519	-1.089606	45	8	0	0.693339	-0.146132	2.55566
9	1	0	5.349291	0.775448	-1.549925	46	8	0	1.192131	1.341775	1.048578
10	1	0	4.781324	0.035304	-3.029049	47	1	0	3.493036	1.32282	0.418613
11	1	0	3.555849	2.463684	-1.630818	48	1	0	2.880491	-1.109784	2.222551
12	1	0	4.334424	2.405645	-3.209254	49	7	0	-2.211648	-0.769573	-0.364481
13	1	0	1.851007	2.392954	-3.479218	50	6	0	-2.995627	-0.995611	0.813144
14	1	0	2.519634	0.852288	-4.015889	51	6	0	-2.614836	-0.396432	2.018335
15	1	0	1.23931	1.463102	-1.305643	52	6	0	-3.38977	-0.565402	3.160832
16	1	0	0.536603	0.464527	-2.57502	53	6	0	-4.570844	-1.301131	3.105034
17	6	0	2.049021	-2.671388	-0.492875	54	6	0	-4.957521	-1.885916	1.905709
18	6	0	0.860014	-3.427361	0.084065	55	6	0	-4.170417	-1.762899	0.758204
19	6	0	-0.259577	-3.069655	-0.895114	56	1	0	-1.702739	0.193969	2.060128
20	6	0	-0.016869	-1.586139	-1.194709	57	1	0	-3.07715	-0.101932	4.090444
21	1	0	2.819071	-2.454507	0.245212	58	1	0	-5.18555	-1.420958	3.99018
22	1	0	2.507901	-3.21414	-1.330754	59	1	0	-5.872406	-2.464125	1.837945
23	1	0	0.638405	-3.049243	1.088098	60	6	0	-4.673043	-2.484404	-0.452825
24	1	0	1.047276	-4.499505	0.153413	61	8	0	-5.846152	-2.719255	-0.63738
25	1	0	-1.268082	-3.229727	-0.50776	62	8	0	-3.714625	-2.929836	-1.272557
26	1	0	-0.151618	-3.655369	-1.812814	63	1	0	-4.158857	-3.39213	-2.001686
27	1	0	-0.294893	-1.332807	-2.218972	64	16	0	-2.86296	0.332923	-1.451806
28	6	0	-0.749827	-0.676846	-0.21038	65	8	0	-4.271241	-0.00315	-1.612218
29	1	0	-0.505033	-0.99509	0.804527	66	8	0	-1.966549	0.337352	-2.603108

TS-A

N

Е

Е

67	6	0	-2.755337	1.909734	-0.654589
68	6	0	-3.727647	2.258455	0.284813
69	6	0	-3.594694	3.459902	0.966515
70	6	0	-2.508765	4.312327	0.725854
71	6	0	-1.553556	3.937079	-0.222229
72	6	0	-1.667436	2.737019	-0.917322
73	1	0	-4.572445	1.601565	0.467122
74	1	0	-4.344838	3.745091	1.698199
75	1	0	-0.710605	4.59155	-0.421417
76	1	0	-0.935475	2.450003	-1.665506
77	6	0	-2.39364	5.616649	1.468385
78	1	0	-1.417491	6.078005	1.310271
79	1	0	-2.538385	5.467357	2.541349
80	1	0	-3.161116	6.319139	1.129549

TS-B

M062X/6-31G*

E(RM062X) = -2292.661327 Hartree

EE+Thermal Free Energy of Correction = -2292.070424 Hartree

Center	Atomic	Atomic	Coordinates (Angstroms)					
Number	Number	Туре	Х	Y	Z			
1	7	0	-1.466536	-1.408552	1.106158			
2	6	0	-2.208051	-0.393515	1.597417			
3	6	0	-3.580582	-0.347415	1.374119			
4	6	0	-4.4711	0.613859	2.125829			
5	6	0	-3.737896	1.871315	2.586967			
6	6	0	-2.434924	1.482194	3.276529			
7	6	0	-1.50998	0.749815	2.303637			
8	1	0	-4.06612	-1.254687	1.031143			
9	1	0	-5.337634	0.875011	1.508547			
10	1	0	-4.880125	0.097616	3.005667			
11	1	0	-3.512164	2.516994	1.727714			
12	1	0	-4.378591	2.449852	3.258767			
13	1	0	-1.915699	2.362702	3.665183			
14	1	0	-2.657243	0.833784	4.132968			

1.530771	1.449177	-1.169783	0	1	15
2.819002	0.400575	-0.61462	0	1	16
0.552452	-2.622129	-2.093017	0	6	17
0.165339	-3.500876	-0.909349	0	6	18
1.243229	-3.159485	0.121687	0	6	19
1.422335	-1.646022	-0.038042	0	6	20
-0.291929	-2.371321	-2.73558	0	1	21
1.328274	-3.095516	-2.710381	0	1	22
-0.827959	-3.220207	-0.544455	0	1	23
0.143084	-4.558432	-1.174635	0	1	24
0.971432	-3.423497	1.147052	0	1	25
2.175958	-3.673305	-0.12788	0	1	26
2.443586	-1.336969	0.18836	0	1	27
0.448884	-0.856004	0.837017	0	6	28
-0.552649	-1.275769	0.715615	0	1	29
0.38536	0.186123	0.510376	0	1	30
-0.732416	0.50937	-3.534782	0	6	31
-1.036835	0.200767	-4.947179	0	6	32
-0.930842	1.218255	-5.902998	0	6	33
-1.25404	0.976058	-7.236051	0	6	34
-1.680569	-0.288508	-7.631028	0	6	35
-1.78398	-1.311391	-6.686898	0	6	36
-1.465246	-1.069531	-5.356921	0	6	37
-0.604076	2.207384	-5.593633	0	1	38
-1.171208	1.776493	-7.963674	0	1	39
-1.928709	-0.480493	-8.669553	0	1	40
-2.110455	-2.300472	-6.990512	0	1	41
-1.539868	-1.876901	-4.633194	0	1	42
-1.528661	-0.024658	-2.533295	0	6	43
-1.57426	0.565894	-1.288807	0	7	44
-2.443652	0.156697	-0.480533	0	8	45
-0.805622	1.493393	-0.984107	0	8	46
-0.308438	1.489322	-3.334275	0	1	47
-2.238589	-0.827992	-2.657439	0	1	48
0.823203	-0.929974	2.258428	0	7	49
0.028858	-1.632342	3.222963	0	6	50
0.703908	-2.521969	4.065417	0	6	51
0.020768	-3.260002	5.023718	0	6	52

53	6	0	5.132041	-3.14871	-1.363584	1	7	0	-1.44444	-0.747165	0.99843
54	6	0	4.278236	-2.293849	-2.045781	2	6	0	-2.266303	0.257676	1.337276
55	6	0	3.338346	-1.509445	-1.369344	3	6	0	-3.64571	0.031237	1.456971
56	1	0	3.946465	-2.622318	1.776058	4	6	0	-4.540089	1.061148	2.113854
57	1	0	5.66932	-3.937505	0.569215	5	6	0	-4.011133	2.486117	1.973906
58	1	0	5.86586	-3.733282	-1.907281	6	6	0	-2.549591	2.533059	2.405335
59	1	0	4.325031	-2.207296	-3.12583	7	6	0	-1.698553	1.655303	1.487156
60	6	0	2.46294	-0.657993	-2.239536	8	1	0	-3.953105	-0.9972	1.61749
61	16	0	2.813948	0.295753	1.820971	9	1	0	-5.552842	0.983399	1.704182
62	8	0	4.112638	-0.1179	2.334019	10	1	0	-4.630877	0.819739	3.181736
63	8	0	1.717316	0.575741	2.74309	11	1	0	-4.091353	2.820887	0.931102
64	6	0	3.050506	1.71545	0.799065	12	1	0	-4.618211	3.168286	2.575927
65	8	0	2.174974	-0.985139	-3.371423	13	1	0	-2.161039	3.554774	2.378155
66	8	0	2.041346	0.464748	-1.66784	14	1	0	-2.464508	2.180922	3.44061
67	1	0	1.19288	0.718993	-2.105668	15	1	0	-1.662969	2.103575	0.488897
68	6	0	4.260412	1.859489	0.124588	16	1	0	-0.670326	1.610424	1.854993
69	6	0	4.402432	2.911054	-0.77109	17	6	0	-1.875939	-2.159393	0.996924
70	6	0	3.351846	3.805846	-1.005323	18	6	0	-0.674446	-2.885827	0.411162
71	6	0	2.148215	3.630419	-0.314903	19	6	0	0.4913	-2.119507	1.035395
72	6	0	1.987214	2.588516	0.590314	20	6	0	0.037744	-0.657889	0.954733
73	6	0	3.526983	4.955315	-1.961923	21	1	0	-2.782999	-2.28528	0.41124
74	1	0	5.071798	1.162139	0.305645	22	1	0	-2.075581	-2.475256	2.03048
75	1	0	5.341493	3.040074	-1.301154	23	1	0	-0.672403	-2.76914	-0.678369
76	1	0	1.325672	4.317361	-0.490612	24	1	0	-0.674627	-3.949553	0.651166
77	1	0	1.05308	2.451285	1.125354	25	1	0	1.442241	-2.264469	0.519176
78	1	0	3.958262	5.819141	-1.445846	26	1	0	0.620539	-2.418695	2.079726
79	1	0	2.569763	5.265859	-2.385468	27	1	0	0.396052	-0.089481	1.818647
80	1	0	4.201057	4.688871	-2.778785	28	6	0	0.493054	0.023339	-0.335973
						29	1	0	0.2237	-0.584096	-1.202323
						30	1	0	0.007179	0.989088	-0.472807
TS-C						31	6	0	-4.246033	0.014393	-0.604684
M062X/6-3	31G*					32	6	0	-5.600239	-0.564657	-0.422983
E(RM062X	K) = -2292.6	648752 Har	rtree			33	6	0	-6.716668	0.278407	-0.457074
EE+Therm	al Free Ene	rgy of Cori	rection = -229	2.061607 Har	tree	34	6	0	-8.003406	-0.239341	-0.327012
						35	6	0	-8.190408	-1.607858	-0.154648
Center	Atomic	Atomic	Coord	linates (Angst	troms)	36	6	0	-7.0839	-2.456866	-0.113019
Number	Number	Туре	Х	Y	Z	37	6	0	-5.800749	-1.939781	-0.244977
						38	1	0	-6.571992	1.346444	-0.596275

39	1	0	-8.857937	0.428486	-0.359825	77	1	0	3.2658	-3.214466	-0.676528
40	1	0	-9.191371	-2.012911	-0.049574	78	1	0	8.105166	-3.431236	1.14782
41	1	0	-7.222223	-3.524013	0.026235	79	1	0	6.894423	-4.120248	2.234162
42	1	0	-4.946772	-2.611139	-0.202737	80	1	0	7.611495	-2.535395	2.584494
43	6	0	-3.349247	-0.65191	-1.440555						
44	7	0	-2.257974	0.009566	-1.955813						
45	8	0	-1.505883	-0.595118	-2.748513	TS-D					
46	8	0	-2.049923	1.201442	-1.643932	M062X/6-3	31G*				
47	1	0	-4.202007	1.099384	-0.647383	E(RM062X	K) = -2292.6	51443 Hai	tree		
48	1	0	-3.441387	-1.675893	-1.76933	EE+Therma	al Free Ene	rgy of Cori	rection $= -2292$	2.060731 Hai	tree
49	7	0	1.949224	0.221753	-0.323999						
50	6	0	2.480215	1.365997	0.353343	Center	Atomic	Atomic	Coord	linates (Angst	troms)
51	6	0	2.603139	2.62654	-0.25858	Number	Number	Туре	х	Y	Z
52	6	0	3.178482	3.676301	0.458459						
53	6	0	3.600258	3.499279	1.772254	1	7	0	1.663845	-0.245807	-1.396998
54	6	0	3.472317	2.253229	2.378079	2	6	0	2.458642	0.830398	-1.3535
55	6	0	2.928199	1.18971	1.662717	3	6	0	3.853233	0.67344	-1.321965
56	6	0	2.185869	2.940452	-1.66258	4	6	0	4.758212	1.871966	-1.492599
57	1	0	3.285051	4.636357	-0.034567	5	6	0	4.110661	3.154073	-0.975184
58	1	0	4.033677	4.330753	2.316915	6	6	0	2.757348	3.336069	-1.652085
59	1	0	3.808434	2.10153	3.397972	7	6	0	1.801972	2.196326	-1.290455
60	1	0	2.859688	0.197815	2.099415	8	1	0	4.244093	-0.265636	-1.700397
61	16	0	2.92104	-0.482228	-1.47925	9	1	0	5.710295	1.682991	-0.984392
62	8	0	3.577265	0.553836	-2.273578	10	1	0	5.00887	2.00117	-2.554407
63	8	0	2.11227	-1.503699	-2.135104	11	1	0	3.964738	3.096481	0.111351
64	6	0	4.19503	-1.279943	-0.537461	12	1	0	4.761799	4.010412	-1.172575
65	8	0	2.695964	3.818554	-2.319974	13	1	0	2.295538	4.286309	-1.370678
66	8	0	1.153909	2.212469	-2.095777	14	1	0	2.903809	3.359436	-2.738775
67	1	0	0.956085	2.481244	-3.00719	15	1	0	1.401227	2.348629	-0.284047
68	6	0	5.268699	-0.524328	-0.06806	16	1	0	0.953869	2.207537	-1.980418
69	6	0	6.24386	-1.151566	0.69684	17	6	0	2.170331	-1.599084	-1.691702
70	6	0	6.167607	-2.519485	0.985272	18	6	0	0.928281	-2.491775	-1.659898
71	6	0	5.086692	-3.253049	0.487445	19	6	0	-0.208662	-1.534858	-2.028
72	6	0	4.09584	-2.642738	-0.274743	20	6	0	0.187412	-0.240411	-1.324029
73	6	0	7.250665	-3.189923	1.787919	21	1	0	2.923547	-1.889575	-0.959717
74	1	0	5.338661	0.532811	-0.304016	22	1	0	2.640399	-1.58755	-2.683252
75	1	0	7.082246	-0.572596	1.072599	23	1	0	0.769489	-2.893868	-0.655195
76	1	0	5.021663	-4.316922	0.694345	24	1	0	1 021217	-3 332157	-2 348829

-0.676528	-3.214466	3.2658	0	1	77
1.14782	-3.431236	8.105166	0	1	78
2.234162	-4.120248	6.894423	0	1	79
2.584494	-2.535395	7.611495	0	1	80

2.480215	1.365997	0.353343	Center	Atomic	Atomic	Coord	dinates (Angs	troms)
2.603139	2.62654	-0.25858	Number	Number	Туре	Х	Y	Z
3.178482	3.676301	0.458459						
3.600258	3.499279	1.772254	1	7	0	1.663845	-0.245807	-1.396998
3.472317	2.253229	2.378079	2	6	0	2.458642	0.830398	-1.3535
2.928199	1.18971	1.662717	3	6	0	3.853233	0.67344	-1.321965
2.185869	2.940452	-1.66258	4	6	0	4.758212	1.871966	-1.492599
3.285051	4.636357	-0.034567	5	6	0	4.110661	3.154073	-0.975184
4.033677	4.330753	2.316915	6	6	0	2.757348	3.336069	-1.652085
3.808434	2.10153	3.397972	7	6	0	1.801972	2.196326	-1.290455
2.859688	0.197815	2.099415	8	1	0	4.244093	-0.265636	-1.700397
2.92104	-0.482228	-1.47925	9	1	0	5.710295	1.682991	-0.984392
3.577265	0.553836	-2.273578	10	1	0	5.00887	2.00117	-2.554407
2.11227	-1.503699	-2.135104	11	1	0	3.964738	3.096481	0.111351
4.19503	-1.279943	-0.537461	12	1	0	4.761799	4.010412	-1.172575
2.695964	3.818554	-2.319974	13	1	0	2.295538	4.286309	-1.370678
1.153909	2.212469	-2.095777	14	1	0	2.903809	3.359436	-2.738775
0.956085	2.481244	-3.00719	15	1	0	1.401227	2.348629	-0.284047
5.268699	-0.524328	-0.06806	16	1	0	0.953869	2.207537	-1.980418
6.24386	-1.151566	0.69684	17	6	0	2.170331	-1.599084	-1.691702
6.167607	-2.519485	0.985272	18	6	0	0.928281	-2.491775	-1.659898
5.086692	-3.253049	0.487445	19	6	0	-0.208662	-1.534858	-2.028
4.09584	-2.642738	-0.274743	20	6	0	0.187412	-0.240411	-1.324029
7.250665	-3.189923	1.787919	21	1	0	2.923547	-1.889575	-0.959717
5.338661	0.532811	-0.304016	22	1	0	2.640399	-1.58755	-2.683252
7.082246	-0.572596	1.072599	23	1	0	0.769489	-2.893868	-0.655195
5.021663	-4.316922	0.694345	24	1	0	1.021217	-3.332157	-2.348829

25	1	0	-1.189284	-1.876214	-1.691608	
26	1	0	-0.243623	-1.371322	-3.109315	
27	1	0	-0.233843	0.63626	-1.81882	
28	6	0	-0.178063	-0.230539	0.157832	
29	1	0	0.211471	-1.131193	0.636577	
30	1	0	0.295983	0.623807	0.643495	
31	6	0	4.245564	0.093563	0.729423	
32	6	0	5.518306	-0.638801	0.516349	
33	6	0	6.731284	0.034505	0.707	
34	6	0	7.947716	-0.625373	0.54762	
35	6	0	7.970138	-1.971026	0.193945	
36	6	0	6.768413	-2.655205	0.008288	
37	6	0	5.555601	-1.996356	0.168582	
38	1	0	6.718532	1.07958	1.003389	
39	1	0	8.876122	-0.086115	0.704157	
40	1	0	8.915988	-2.486913	0.066416	
41	1	0	6.776937	-3.705802	-0.262743	
42	1	0	4.630911	-2.547534	0.024667	
43	6	0	3.197318	-0.551145	1.388776	
44	7	0	2.208567	0.204594	1.978517	
45	8	0	1.366981	-0.352153	2.711313	
46	8	0	2.161048	1.436467	1.763181	
47	1	0	4.354292	1.14752	0.967596	
48	1	0	3.124989	-1.610924	1.581406	
49	7	0	-1.631441	-0.142554	0.35623	
50	6	0	-2.152525	1.167221	0.626942	
51	6	0	-1.671583	1.876537	1.730085	
52	6	0	-2.191043	3.129112	2.03691	
53	6	0	-3.21304	3.670168	1.258059	
54	6	0	-3.697979	2.963452	0.165077	
55	6	0	-3.161212	1.718683	-0.175235	
56	1	0	-0.885696	1.429441	2.334403	
57	1	0	-1.808394	3.675497	2.892121	
58	1	0	-3.629694	4.641192	1.501862	
59	1	0	-4.493967	3.367496	-0.450683	
60	6	0	-3.742175	1.063717	-1.389856	
61	16	0	-2.334313	-1.390632	1.232376	
62	8	0	-2.370399	-1.087985	2.661795	

63	8	0	-1.661541	-2.608963	0.787077
64	6	0	-3.994442	-1.371902	0.624579
65	8	0	-4.886533	1.235612	-1.745042
66	8	0	-2.872875	0.326839	-2.092492
67	1	0	-3.357146	-0.037403	-2.851827
68	6	0	-4.962346	-0.6372	1.303645
69	6	0	-6.246291	-0.576217	0.775131
70	6	0	-6.566038	-1.235035	-0.415858
71	6	0	-5.576136	-1.98512	-1.062657
72	6	0	-4.286896	-2.056949	-0.552667
73	6	0	-7.940018	-1.108721	-1.015074
74	1	0	-4.706541	-0.122671	2.224209
75	1	0	-7.010216	-0.002552	1.290935
76	1	0	-5.820714	-2.5154	-1.978128
77	1	0	-3.516384	-2.636713	-1.05041
78	1	0	-8.694989	-0.936117	-0.245549
79	1	0	-8.211151	-2.002874	-1.580099
80	1	0	-7.965614	-0.258368	-1.704518

TS-E

M062X/6-31G*

E(RM062X) = -2292.660945 Hartree

EE+Thermal Free Energy of Correction = -2292.072746 Hartree

Center Atomic		Atomic	Coordinates (Angstroms)						
Number	Nulliber	туре	Λ	1	L				
1	6	0	-1.591862	-1.839368	-2.928698				
2	1	0	-1.449307	-1.383868	-3.911099				
3	6	0	-0.282204	-2.681447	-1.083901				
4	1	0	0.694568	-3.024581	-0.738169				
5	6	0	-0.474661	-1.182473	-0.862107				
6	1	0	-0.81239	-0.960401	0.149924				
7	7	0	-1.50525	-0.831355	-1.856764				
8	6	0	-2.224861	0.30021	-1.823302				
9	6	0	-2.305576	1.061114	-0.64779				
10	1	0	-1.516963	0.934372	0.088278				

11	6	0	-3.020201	0.668063	-3.059057	49 7 0 1.769504 -0.547614 -0.059834
12	1	0	-3.905238	0.026825	-3.101381	50 6 0 2.862502 -1.448665 -0.20921
13	1	0	-2.41903	0.438613	-3.943568	51 6 0 3.109982 -2.460897 0.733314
14	6	0	-3.426989	2.142436	-3.085004	52 6 0 4.218535 -3.292848 0.560795
15	1	0	-2.548263	2.761453	-3.30436	53 6 0 5.049328 -3.15855 -0.545011
16	1	0	-4.141117	2.299986	-3.898002	54 6 0 4.792555 -2.162092 -1.483228
17	6	0	-4.010859	2.571924	-1.743708	55 6 0 3.714357 -1.301681 -1.305263
18	1	0	-4.365556	3.605735	-1.787733	56 6 0 2.274916 -2.728677 1.947284
19	1	0	-4.880264	1.944781	-1.505851	57 1 0 4.406379 -4.05596 1.307836
20	6	0	-2.946144	2.430935	-0.659074	58 1 0 5.895054 -3.825106 -0.671222
21	1	0	-2.168747	3.19106	-0.820285	59 1 0 5.440888 -2.0395 -2.344035
22	1	0	-3.368519	2.640439	0.329737	60 1 0 3.530288 -0.495837 -2.009291
23	1	0	-2.590635	-2.293279	-2.895978	61 16 0 1.821756 0.603141 1.13632
24	1	0	-1.059799	-3.224016	-0.539809	62 8 0 2.692791 0.088233 2.184281
25	6	0	-0.489342	-2.847586	-2.59239	63 8 0 0.438408 0.96669 1.42541
26	1	0	0.428083	-2.604072	-3.137088	64 6 0 2.609066 2.00701 0.396055
27	1	0	-0.780229	-3.862597	-2.865955	65 8 0 2.710372 -3.284651 2.929809
28	6	0	-3.67036	-0.181265	0.461648	66 8 0 0.988386 -2.371485 1.838582
29	1	0	-4.515618	0.152705	-0.133283	67 1 0 0.555981 -2.613861 2.673848
30	6	0	-3.349193	-1.533997	0.341069	68 6 0 3.99862 2.005173 0.268146
31	1	0	-2.757595	-2.099258	1.046143	69 6 0 4.610194 3.074185 -0.37189
32	7	0	-3.767237	-2.251262	-0.753451	70 6 0 3.855901 4.138932 -0.882772
33	8	0	-4.450987	-1.693358	-1.639647	71 6 0 2.46612 4.110194 -0.74028
34	8	0	-3.454803	-3.457853	-0.854188	72 6 0 1.831838 3.047755 -0.103083
35	6	0	-3.524436	0.464502	1.788587	73 6 0 4.540561 5.303239 -1.547358
36	6	0	-3.325927	1.668578	4.311952	74 1 0 4.584429 1.186617 0.67428
37	6	0	-4.53684	1.309832	2.256384	75 1 0 5.691074 3.088209 -0.475659
38	6	0	-2.403376	0.240086	2.597242	76 1 0 1.871396 4.930649 -1.130057
39	6	0	-2.305405	0.837912	3.848003	77 1 0 0.753554 3.027431 0.019346
40	6	0	-4.441173	1.904578	3.512346	78 1 0 4.952641 5.982628 -0.794644
41	1	0	-5.406601	1.494423	1.631257	79 1 0 3.844194 5.871535 -2.166497
42	1	0	-1.585467	-0.376848	2.234161	80 1 0 5.369887 4.965289 -2.172967
43	1	0	-1.425473	0.663139	4.458681	
44	1	0	-5.236809	2.553781	3.863011	
45	1	0	-3.246205	2.13586	5.287985	TS-F
46	6	0	0.789594	-0.354033	-1.131682	M062X/6-31G*
47	1	0	0.527606	0.70715	-1.206756	E(RM062X) = -2292.659832 Hartree
48	1	0	1.2453	-0.641225	-2.083658	EE+Thermal Free Energy of Correction = -2292.068942 Hartree

	Atomic	Atomic	Coord	linates (Angst	troms)
Nur	nber	Туре	Х	Y	Z
	-				
	6	0	1.666227	-3.008585	1.653727
	1	0	1.384403	-3.036638	2.708565
3	6	0	0.616006	-2.992608	-0.520323
4	1	0	-0.295868	-3.181375	-1.090533
5	6	0	0.700938	-1.544775	-0.042508
6	1	0	1.118359	-0.888478	-0.805485
7	7	0	1.602859	-1.63512	1.122463
8	6	0	2.211446	-0.577935	1.681295
9	6	0	2.338336	0.627675	0.977458
10	1	0	1.657962	0.799324	0.147946
11	6	0	2.849397	-0.762177	3.042734
12	1	0	3.796427	-1.29309	2.907511
13	1	0	2.208021	-1.406627	3.650281
14	6	0	3.080703	0.56338	3.770524
15	1	0	2.11962	0.96485	4.115082
16	1	0	3.688677	0.378775	4.66055
17	6	0	3.742092	1.584057	2.850928
18	1	0	3.966009	2.50724	3.393297
19	1	0	4 699335	1 184891	2 490265
20	6	0	2 817720	1 881783	1 673164
20	1	0	1.04662	2 445522	2.026142
21	1	0	2 212222	2.443522	2.050145
22	1	0	3.313323	2.53529	0.945401
23	1	0	2.098821	-3.30//5/	1.338914
24	I	0	1.483213	-3.212820	-1.14818/
25	0	0	0.695312	-3.80462	0.//6333
26	I	0	-0.286854	-3.866864	1.254076
27	1	0	1.05144	-4.822251	0.610922
28	6	0	3.955946	0.049846	-0.333704
29	1	0	4.682731	0.089074	0.472706
30	6	0	3.735294	-1.214519	-0.880279
31	1	0	3.284565	-1.407848	-1.842373
32	7	0	4.078671	-2.344596	-0.177324
33	8	0	4.609879	-2.241142	0.950021
34	8	0	3.853727	-3.469388	-0.674563

73	6	0	-4.901812	4.161906	2.100731
74	1	0	-4.308021	1.262555	-1.523481
75	1	0	-5.710687	2.608135	0.025064
76	1	0	-2.186631	3.900868	2.105537
77	1	0	-0.776803	2.543809	0.568471
78	1	0	-5.21002	5.089178	1.607808
79	1	0	-4.361522	4.428824	3.010709
80	1	0	-5.809202	3.620494	2.378314

21

22

23

24 25

26

27

28

29

30

31

32

33

34

1

1

1

1

6

1

1

6

1

6

1

7

8

8

3.710361

4.490882

1.662446

-0.206081

-0.468723

-1.151865

-0.666624

3.484828

4.405668

2.58634

1.78272

2.663169

3.553135

1.83559

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1.03482

1.212228

-3.979502

-2.397342

-3.495984

-3.473685

-4.408194

-0.513684

-0.991027

-1.336699

-0.994532

-2.703704

-3.210127

-3.425251

0.903398

3.559226

1.473114

1.689366

3.004124

2.791171

0.872562

1.275842

3.599418

3.215987

4.586871

-0.532541

0.074876

-1.291329

0.308871

1.477184

2.735271

3.834526

3.697473

2.452081

1.350836

3.020064

4.801356

4.564072

2.429863

0.872366

0.1411

-1.508169

0.336704

1.191499

-0.227362

-1.16116

-0.838785

-1.838604

-2.474117

-1.706112

-0.989751

-2.302915

-1.579138

-2.425971

-1.695949

-1.877602

-2.301074

-2.120137

-1.459618

-1.768535

-2.527815

-2.209596

-2.753977

1.404363

1.986391

2.06936

0.938031

0.161654

0.742819

-0.086303

-1.47042

-2.04513

-1.228473

2.212739

0.377052

-2.097439

TS-G

M062X/6-31G*

E(RM062X) = -2292.658556 Hartree

EE+Thermal Free Energy of Correction = -2292.071067 Hartree

						35	
Center	Atomic	Atomic	Coord	linates (Angs	troms)	36	
umber	Number	Туре	Х	Y	Z	37	(
						38	6
1	6	0	0.985565	-3.437381	0.814033	39	6
2	1	0	1.104706	-3.835729	1.82368	40	6
3	6	0	-0.62814	-2.231311	-0.513311	41	1
4	1	0	-1.667083	-1.906343	-0.613922	42	1
5	6	0	0.21966	-1.201031	0.227771	43	1
6	1	0	0.602357	-0.437044	-0.450473	44	1
7	7	0	1.333582	-2.005375	0.761403	45	1
8	6	0	2.486096	-1.489444	1.213641	46	6
9	6	0	2.866434	-0.181232	0.883157	47	1
10	1	0	2.083322	0.506208	0.578169	48	1
11	6	0	3.405071	-2.400739	2.001126	49	7
12	1	0	3.900508	-3.077486	1.298917	50	6
13	1	0	2.796879	-3.021285	2.665303	51	6
14	6	0	4.439737	-1.632877	2.825386	52	6
15	1	0	3.948409	-1.168429	3.689112	53	6
16	1	0	5.176538	-2.339438	3.217178	54	6
17	6	0	5.105926	-0.543866	1.991834	55	6
18	1	0	5.891695	-0.042899	2.564473	56	6
19	1	0	5.587451	-0.996622	1.114942	57	1
20	6	0	4.054735	0.471733	1.551485	58	1

59	1	0	-1.094006	2.336011	-3.123724	7	7	0	2.085122	-2.009523	0.056815
60	1	0	-1.55488	0.376786	-1.657344	8	6	0	3.050862	-1.335776	0.695019
61	16	0	-3.135785	0.176185	1.582823	9	6	0	2.932267	0.045442	0.917015
62	8	0	-3.604848	1.513082	1.932182	10	1	0	1.932216	0.469186	0.914883
63	8	0	-3.078765	-0.874316	2.592698	11	6	0	4.305642	-2.094328	1.075448
64	6	0	-4.137807	-0.392204	0.235925	12	1	0	4.897354	-2.25562	0.169986
65	8	0	-1.337095	4.122043	2.661171	13	1	0	4.014356	-3.082019	1.444713
66	8	0	-0.835204	1.969832	2.990413	14	6	0	5.137172	-1.375478	2.139338
67	1	0	-0.893336	2.268071	3.912773	15	1	0	4.643461	-1.46749	3.1145
68	6	0	-4.669015	0.537227	-0.654617	16	1	0	6.108888	-1.869565	2.22429
69	6	0	-5.400338	0.07674	-1.744158	17	6	0	5.295038	0.103493	1.804379
70	6	0	-5.60869	-1.29122	-1.947669	18	1	0	5.948248	0.598091	2.528951
71	6	0	-5.065387	-2.199865	-1.031878	19	1	0	5.770838	0.207152	0.820171
72	6	0	-4.328815	-1.761189	0.061761	20	6	0	3.922048	0.770678	1.799951
73	6	0	-6.429169	-1.779594	-3.111603	21	1	0	3.535021	0.801549	2.827864
74	1	0	-4.51734	1.599016	-0.490242	22	1	0	3.99815	1.8147	1.477355
75	1	0	-5.819376	0.791293	-2.44611	23	1	0	2.958342	-3.34799	-1.298234
76	1	0	-5.224696	-3.264217	-1.176746	24	1	0	0.468075	-2.016956	-2.214394
77	1	0	-3.913599	-2.463629	0.77751	25	6	0	0.827258	-3.747369	-0.959462
78	1	0	-6.054071	-2.735244	-3.484082	26	1	0	0.28503	-4.287416	-0.177216
79	1	0	-6.422627	-1.057774	-3.930547	27	1	0	0.866769	-4.386763	-1.842341
80	1	0	-7.469887	-1.929316	-2.807096	28	6	0	3.328826	0.755986	-1.076344
						29	1	0	4.393916	0.579426	-0.958063
						30	6	0	2.694437	-0.026457	-2.042245
тѕ-н						31	1	0	1.74041	0.195086	-2.498418
M062X/6-3	31G*					32	7	0	3.25962	-1.208823	-2.454894
E(RM062)	K) = -2292.6	661126 Hai	tree			33	8	0	4.35462	-1.575022	-1.975102
EE+Therm	al Free Ene	rgy of Cori	rection = -229	2.069641 Har	tree	34	8	0	2.667216	-1.910136	-3.303547
						35	6	0	2.890914	2.161788	-0.902094
Center	Atomic	Atomic	Coord	linates (Angst	troms)	36	6	0	2.132826	4.849125	-0.640364
Number	Number	Туре	Х	Y	Z	37	6	0	3.853925	3.161485	-0.724382
						38	6	0	1.537986	2.525863	-0.931697
1	6	0	2.232289	-3.376125	-0.47531	39	6	0	1.164255	3.858796	-0.807099
2	1	0	2.601433	-4.06024	0.291732	40	6	0	3.478673	4.496732	-0.596288
3	6	0	0.158551	-2.397163	-1.237178	41	1	0	4.9051	2.886956	-0.696765
4	1	0	-0.93185	-2.434773	-1.192353	42	1	0	0.772382	1.761021	-1.051358
5	6	0	0.719793	-1.494607	-0.143364	43	1	0	0.113586	4.127663	-0.83798

44 1 0 4.238933

5.259477 -0.463842

-0.45891

6

1

0

0.74347 -0.452071

69	-0.541873	5.888248	1.836858	0	1	45
70	1.171274	-1.600045	-0.060696	0	6	46
71	1.9979	-1.181086	0.523453	0	1	47
72	1.399614	-2.647184	-0.268456	0	1	48
73	1.025871	-0.875679	-1.333239	0	7	49
74	1.336338	0.526854	-1.326859	0	6	50
75	2.623284	0.941413	-0.97827	0	6	51
76	2.969784	2.287854	-1.015904	0	6	52
77	2.04123	3.232495	-1.446415	0	6	53
78	0.766689	2.824422	-1.819353	0	6	54
79	0.390489	1.481314	-1.734813	0	6	55
80	3.357477	0.191745	-0.700704	0	1	56
	3.971281	2.593476	-0.733593	0	1	57
	2.310381	4.281628	-1.497879	0	1	58
	0.035036	3.541717	-2.175869	0	1	59
	-1.027384	1.183834	-2.113414	0	6	60
	1.457407	-1.7014	-2.732762	0	16	61
	2.84471	-1.425347	-3.099622	0	8	62
	1.045065	-3.085253	-2.514786	0	8	63
	0.407444	-0.955038	-3.94257	0	6	64
	-1.634894	1.815653	-2.946336	0	8	65
	-1.592104	0.210441	-1.386582	0	8	66
	-2.507831	0.10888	-1.695891	0	1	67
	0.892159	0.097422	-4.713825	0	6	68

69	6	0	-5.625768	0.704068	0.036499
70	6	0	-5.769191	0.272522	-1.28551
71	6	0	-4.993214	-0.802642	-1.736346
72	6	0	-4.074839	-1.421072	-0.89928
73	6	0	-6.713025	0.97506	-2.222562
74	1	0	-4.59546	0.430104	1.91823
75	1	0	-6.231662	1.528941	0.398602
76	1	0	-5.110884	-1.155586	-2.756435
77	1	0	-3.474143	-2.256788	-1.243283
78	1	0	-6.17763	1.760583	-2.766049
79	1	0	-7.535096	1.445838	-1.680065
80	1	0	-7.127235	0.284692	-2.960226

< Transition State model of Enantioselective Michael Reaction of β -Nitrostyrene with Propionaldehyde using Catalyst 10 >

To identify the promising TS model for the enantioselective Michael reaction of β -nitrostyrene with propionaldehyde using catalyst **10**, various TS models consisting of **10**-enamine generated from catalyst **10** and propionaldehyde, and β -nitrostyrene were explored based on previous studies and the results in Scheme 5. The energetically favored TS models consisting by hydrogen bonding interaction between **10**-enamine and β -nitrostyrene (**TS-I** and **TS-J**) were identified at the B3LYP/6-311G** level according to the SCRF method based on PCM (*i*-PrOH). The TS models (**TS-I** and **TS-J**) were further optimized at the M06-02X/6-31G* level according to the SCRF method based on PCM (*i*-PrOH) to find the most energetically favored TS model (**TS-I**).

Figure S3. Optimized geometries for the transition states of Michael reaction of β -nitrostyrene with propionaldehyde using catalyst 10.

TS-I						14	1	0	-0.003602	0.817878	-0.740921
M062X/6-3	31G*					15	1	0	-0.140768	-0.731875	0.067586
E(RM062X	() = -2575.7	77237 Har	tree			16	6	0	2.235799	-0.568531	1.689106
EE+Therma	al Free Ener	rgy of Corr	ection = -257	5.132327 Har	tree	17	6	0	3.594062	-0.81199	1.806633
						18	6	0	4.068858	-2.1253	2.364354
Center	Atomic	Atomic	Coord	linates (Angst	troms)	19	1	0	4.246349	0.046681	1.940153
Number	Number	Туре	Х	Y	Ζ	20	1	0	4.114627	-2.107946	3.458031
						21	1	0	5.075019	-2.363249	2.006546
1	7	0	1.722545	0.612317	1.338128	22	1	0	3.398996	-2.937149	2.065096
2	6	0	2.521499	1.840668	1.258743	23	1	0	1.50681	-1.370418	1.807012
3	6	0	1.506738	2.882413	0.800786	24	7	0	-1.854691	0.497943	0.186058
4	6	0	0.223308	2.431054	1.50719	25	6	0	-2.579035	0.255682	1.396421
5	6	0	0.274544	0.901638	1.404426	26	6	0	-2.634884	-1.044367	1.90926
6	6	0	-0.392274	0.327231	0.156516	27	6	0	-3.28535	-1.283277	3.120211
7	1	0	3.356423	1.703774	0.571005	28	6	0	-3.909944	-0.243715	3.801536
8	1	0	2.92609	2.077371	2.252549	29	6	0	-3.856399	1.050059	3.287957
9	1	0	1.387101	2.829517	-0.286245	30	6	0	-3.177309	1.301026	2.100716
10	1	0	1.804816	3.898484	1.062123	31	6	0	-1.903026	-2.187564	1.251983
11	1	0	-0.682745	2.843796	1.055948	32	1	0	-3.307283	-2.292829	3.518721
12	1	0	0.248225	2.73241	2.558313	33	1	0	-4.427181	-0.441153	4.734
13	1	0	-0.144101	0.415684	2.291764	34	1	0	-4.327244	1.86959	3.819795

35	1	0	-3.100643	2.312445	1.716218	
36	16	0	-2.613124	1.165524	-1.134901	
37	8	0	-4.044239	1.02303	-0.899523	
38	8	0	-1.990382	0.600324	-2.32357	
39	6	0	-2.213446	2.896013	-1.135448	
40	6	0	-3.053967	3.797776	-0.486336	
41	6	0	-2.677344	5.133584	-0.411324	
42	6	0	-1.477541	5.578748	-0.978417	
43	6	0	-0.666548	4.65533	-1.646401	
44	6	0	-1.028251	3.315508	-1.736454	
45	6	0	-1.088913	7.031228	-0.908373	
46	1	0	-3.991832	3.456375	-0.060153	
47	1	0	-3.326188	5.843953	0.092117	
48	1	0	0.259333	4.989738	-2.10519	
49	1	0	-0.408356	2.605486	-2.275258	
50	1	0	-1.494494	7.505052	-0.012296	
51	1	0	-1.480354	7.571493	-1.776167	
52	1	0	-0.003418	7.149189	-0.906803	
53	8	0	-0.801103	-2.525508	1.679806	
54	7	0	-2.534966	-2.843804	0.245671	
55	6	0	-1.790573	-3.888233	-0.442863	
56	6	0	-2.749045	-4.930098	-1.015121	
57	8	0	-3.748808	-4.32057	-1.805418	
58	6	0	-4.530852	-3.439555	-1.016257	
59	6	0	-3.67928	-2.296215	-0.487055	
60	1	0	-1.13047	-4.368468	0.283637	
61	1	0	-2.190782	-5.614308	-1.655953	
62	1	0	-3.207883	-5.492143	-0.189488	
63	1	0	-5.322462	-3.048755	-1.657905	
64	1	0	-4.984962	-3.991848	-0.180187	
65	1	0	-3.309756	-1.692198	-1.324301	
66	1	0	-4.266316	-1.657311	0.174177	
67	6	0	-0.867194	-3.335563	-1.533941	
68	8	0	-0.161936	-4.067087	-2.193812	
69	8	0	-0.936633	-2.024547	-1.647651	
70	1	0	-0.138305	-1.639731	-2.102761	
71	6	0	4.176928	-0.991534	-0.339599	
72	6	0	3.244781	-0.419538	-1.197114	

73	7	0	2.059377	-1.084942	-1.386478
74	8	0	1.264848	-0.683102	-2.284236
75	8	0	1.783768	-2.066819	-0.676614
76	1	0	4.052681	-2.055152	-0.161499
77	1	0	3.361701	0.482049	-1.77876
78	6	0	5.560811	-0.481865	-0.27258
79	6	0	6.603099	-1.380776	-0.011236
80	6	0	7.922871	-0.941724	0.049451
81	6	0	8.220018	0.403452	-0.150118
82	6	0	7.191202	1.306961	-0.419041
83	6	0	5.874211	0.86929	-0.479685
84	1	0	6.377215	-2.434753	0.121769
85	1	0	8.717741	-1.652803	0.248106
86	1	0	9.247448	0.748295	-0.100798
87	1	0	7.416859	2.355695	-0.580943
88	1	0	5.086377	1.585474	-0.693717

TS-J

M062X/6-31G*

E(RM062X) = -2575.773918 Hartree

EE+Thermal Free Energy of Correction = -2575.130046 Hartree

Center	Atomic	Atomic	Coordinates (Angstroms)				
Number	Number	Туре	X Y		Ζ		
1	7	0	1.945928	-1.586286	-0.88814		
2	6	0	2.5566	-2.72292	-0.191939		
3	6	0	1.352013	-3.370913	0.478558		
4	6	0	0.273352	-3.24074	-0.602578		
5	6	0	0.519754	-1.84456	-1.203852		
6	6	0	-0.382755	-0.747459	-0.61979		
7	1	0	3.319782	-2.378878	0.505634		
8	1	0	3.025934	-3.398469	-0.921276		
9	1	0	1.078185	-2.790598	1.36688		
10	1	0	1.540042	-4.402574	0.777125		
11	1	0	-0.742302	-3.340223	-0.212663		
12	1	0	0.416955	-4.008979	-1.368083		

13	1	0	0.402643	-1.84196	-2.291611	51	1	0	-0.414762	6.237697	0.419213
14	1	0	-0.680786	-0.989699	0.403862	52	1	0	-2.054252	5.914984	1.011277
15	1	0	0.156926	0.203118	-0.562475	53	8	0	-4.264898	0.697282	-0.081896
16	6	0	2.644716	-0.667695	-1.564226	54	7	0	-3.452606	-0.514865	1.65683
17	6	0	4.020508	-0.539537	-1.52865	55	6	0	-3.431578	0.646205	2.536745
18	6	0	4.706793	0.40988	-2.471772	56	6	0	-3.992068	0.262373	3.902123
19	1	0	4.594848	-1.393387	-1.179214	57	8	0	-3.301625	-0.85349	4.433121
20	1	0	4.969248	-0.08229	-3.413762	58	6	0	-3.420176	-1.981704	3.586039
21	1	0	5.637034	0.793166	-2.041666	59	6	0	-2.804394	-1.694219	2.222604
22	1	0	4.061175	1.262067	-2.704554	60	1	0	-4.042475	1.426493	2.074223
23	1	0	2.035798	0.035528	-2.133166	61	1	0	-3.854903	1.086458	4.602232
24	7	0	-1.602645	-0.518786	-1.403496	62	1	0	-5.062415	0.035916	3.799625
25	6	0	-2.597948	-1.547395	-1.486292	63	1	0	-2.894423	-2.804788	4.073448
26	6	0	-3.646971	-1.537218	-0.562254	64	1	0	-4.479131	-2.252988	3.460119
27	6	0	-4.589283	-2.566017	-0.572641	65	1	0	-1.728312	-1.499616	2.344367
28	6	0	-4.495842	-3.589459	-1.511516	66	1	0	-2.932434	-2.547722	1.556839
29	6	0	-3.461762	-3.587407	-2.445766	67	6	0	-1.997209	1.18003	2.673084
30	6	0	-2.512113	-2.570947	-2.430703	68	8	0	-1.570917	1.679519	3.690206
31	6	0	-3.803683	-0.350819	0.353321	69	8	0	-1.306688	1.028439	1.555556
32	1	0	-5.399568	-2.55646	0.150487	70	1	0	-0.325191	1.092914	1.726632
33	1	0	-5.233706	-4.384333	-1.517867	71	6	0	4.301182	0.489609	0.446046
34	1	0	-3.390999	-4.379369	-3.183246	72	6	0	3.302323	0.133155	1.339387
35	1	0	-1.699512	-2.563806	-3.151327	73	7	0	2.060114	0.695078	1.197705
36	16	0	-1.460376	0.567744	-2.662113	74	8	0	1.173443	0.416778	2.050754
37	8	0	-2.671053	0.438496	-3.462801	75	8	0	1.823338	1.4675	0.252198
38	8	0	-0.152166	0.383608	-3.297904	76	1	0	4.143739	1.414339	-0.100669
39	6	0	-1.439546	2.15287	-1.87639	77	1	0	3.394098	-0.556358	2.164588
40	6	0	-2.653423	2.755636	-1.547108	78	6	0	5.703183	0.104955	0.696202
41	6	0	-2.630646	3.982455	-0.900877	79	6	0	6.726142	0.994042	0.344149
42	6	0	-1.418892	4.609442	-0.577767	80	6	0	8.059019	0.674312	0.589846
43	6	0	-0.22177	3.980472	-0.924084	81	6	0	8.385519	-0.541113	1.184299
44	6	0	-0.221477	2.75302	-1.580619	82	6	0	7.37377	-1.436134	1.535934
45	6	0	-1.422219	5.943847	0.119709	83	6	0	6.044104	-1.116899	1.293819
46	1	0	-3.587118	2.256233	-1.775146	84	1	0	6.470728	1.948384	-0.107484
47	1	0	-3.567177	4.465758	-0.637614	85	1	0	8.839892	1.376222	0.317183
48	1	0	0.724545	4.4517	-0.67687	86	1	0	9.423581	-0.793747	1.37286
49	1	0	0.709888	2.266809	-1.848636	87	1	0	7.623959	-2.386015	1.996338
50	1	0	-1.822575	6.720936	-0.538436	88	1	0	5.266743	-1.826277	1.56423

< Distortion/Interaction Analysis of TS-Cat 10 and TS-Cat 1e >

To support the origin of the enantioselectivity differences between Cat **10** and Cat **1e** for Michael reaction of β -nitrostyrene with proionaldehyde, a flexibility of TS models was considered by distortion/interaction analysis at the M06-02X/6-31G* level according to the SCRF method based on PCM (i-PrOH).

E_{int-TS-Cat 10} - E_{int-TS-Cat 1e} = +1.4 kcal/mol

Figure S4. Distortion/interaction analysis of the transition states of Michael reaction of β -nitrostyrene with propionaldehyde between catalyst 10 and catalyst 1e.

β-Nitrosty	rene (2a)					11	8	0	-2.99623	8 2.534391	-0.06511
M062X/6-3	31G*					12	1	0	-2.12716	4 0.306383	-0.07963
E(RM062X	C) = -513.94	5300 Hartı	ee			13	1	0	0.66202	9 1.624501	0.067358
EE+Therm	al Free Ener	rgy of Corr	ection $= -513$.842351 Harti	ree	14	1	0	2.59943	4 0.295896	0.117628
						15	1	0	3.75763	5 -1.892325	0.115728
Center	Atomic	Atomic	Coord	linates (Angst	roms)	16	1	0	2.43612	7 -3.990848	0.012404
Number	Number	Туре	Х	Y	Ζ	17	1	0	-0.04036	9 -3.891261	-0.088673
						18	1	0	-1.19678	9 -1.721047	-0.087128
1	7	0	-1.783817	2.381159	-0.017585						
2	6	0	-1.311713	1.012524	-0.029229						
3	6	0	-0.000706	0.76384	0.019879	1o-enamin	e				
4	6	0	0.625782	-0.55689	0.015675	M062X/6-3	1G*				
5	6	0	2.024227	-0.624202	0.072495	E(RM062X	() = - 2061.8	319190 Ha	rtree		
6	6	0	2.674655	-1.853546	0.071417	EE+Therma	al Free Ene	rgy of Cor	rection = -2	061.307672 Ha	rtree
7	6	0	1.932202	-3.030029	0.013421						
8	6	0	0.537871	-2.974717	-0.043504	Center	Atomic	Atomic	Co	ordinates (Angs	troms)
9	6	0	-0.112891	-1.749352	-0.042537	Number	Number	Туре	Х	Y	Z
10	8	0	-0.980764	3.300478	0.037393						

1	7	0	4.015601	-1.97028	0.355154	39 6 0 0.93531 2.309907 -0.767505
2	6	0	4.371581	-3.03473	1.280511	40 6 0 -0.002824 3.156999 -0.176153
3	6	0	3.080326	-3.255032	2.067781	41 6 0 0.377493 4.452363 0.148559
4	6	0	1.998969	-3.013046	1.008007	42 6 0 1.675586 4.910604 -0.108837
5	6	0	2.56682	-1.856262	0.174884	43 6 0 2.592909 4.039356 -0.703915
6	6	0	2.109944	-0.484482	0.682924	44 6 0 2.233418 2.737511 -1.036577
7	1	0	5.216583	-2.736787	1.911268	45 6 0 2.061903 6.327223 0.22251
8	1	0	4.670306	-3.944309	0.732795	46 1 0 -1.011761 2.805655 0.015397
9	1	0	3.005803	-2.517244	2.873617	47 1 0 -0.343696 5.122013 0.607482
10	1	0	3.02724	-4.249076	2.515107	48 1 0 3.600716 4.38493 -0.912796
11	1	0	1.009067	-2.778927	1.405935	49 1 0 2.939203 2.065605 -1.513886
12	1	0	1.898384	-3.900281	0.374921	50 1 0 1.742254 7.004837 -0.575486
13	1	0	2.288854	-1.940259	-0.880846	51 1 0 3.143306 6.427016 0.332133
14	1	0	2.190041	-0.45373	1.772753	52 1 0 1.583614 6.658796 1.146749
15	1	0	2.771047	0.297336	0.289598	53 8 0 -1.196761 -2.631068 0.335655
16	6	0	4.875508	-1.598247	-0.659541	54 7 0 -3.009778 -1.444726 -0.338665
17	6	0	6.158797	-1.965355	-0.796361	55 6 0 -3.728776 -0.195089 -0.495469
18	6	0	7.031214	-1.475929	-1.91601	56 6 0 -3.973965 0.080225 -1.987739
19	1	0	6.607375	-2.636742	-0.067804	57 8 0 -4.624225 -1.015088 -2.597259
20	1	0	7.428438	-2.303768	-2.514258	58 6 0 -3.794769 -2.166078 -2.541241
21	1	0	7.895774	-0.912978	-1.545449	59 6 0 -3.552116 -2.572654 -1.096777
22	1	0	6.471642	-0.819044	-2.588507	60 1 0 -3.132154 0.630056 -0.097036
23	1	0	4.422855	-0.923157	-1.38737	61 1 0 -4.617543 0.952663 -2.104665
24	7	0	0.702129	-0.213491	0.324629	62 1 0 -3.002444 0.266957 -2.459892
25	6	0	-0.237291	0.084392	1.36693	63 1 0 -4.31293 -2.962685 -3.078564
26	6	0	-1.503248	-0.514664	1.36207	64 1 0 -2.836814 -1.957386 -3.039729
27	6	0	-2.408924	-0.200487	2.377945	65 1 0 -4.49855 -2.876454 -0.635805
28	6	0	-2.064405	0.692757	3.388244	66 1 0 -2.839651 -3.393692 -1.033488
29	6	0	-0.808644	1.293438	3.382948	67 6 0 -5.047043 -0.238205 0.275023
30	6	0	0.096194	0.998893	2.368067	68 8 0 -5.393065 -1.126875 1.015984
31	6	0	-1.865254	-1.605913	0.3853	69 8 0 -5.780179 0.854928 0.044002
32	1	0	-3.383343	-0.680788	2.379041	70 1 0 -6.597518 0.785226 0.563798
33	1	0	-2.774414	0.916242	4.176936	
34	1	0	-0.534462	1.998987	4.159612	
35	1	0	1.068197	1.483038	2.342709	TS-Cat 10-β-Nitrostyrene
36	16	0	0.486746	0.629862	-1.10246	M062X/6-31G*
37	8	0	-0.942983	0.594396	-1.390988	E(RM062X) = -513.927272 Hartree

EE+Thermal Free Energy of Correction = -513.823928 Hartree

-2.05067

38

8

0 1.448301

0.081793

Center	Atomic	Atomic	Coord	linates (Angst	troms)
Number	Number	Туре	Х	Y	Z
			-0 637453	0 476443	
2	6	0	-1 590604	-0.469023	0.01228
-	7	0	-2.901806	-0.066367	0.061473
4	8	0	-3 768195	-0.849621	0 545833
5	8	0	-3.218421	1.055354	-0.369162
6	1	0	-0.941415	1.511489	-0.225541
7	1	0	-1.414607	-1.49242	0.306434
, 8	6	0	0.803908	0 202248	-0 183551
9	6	0	1 664944	1 261894	0 130253
10	6	0	3 028945	1.043046	0 303039
11	6	0	3 552413	-0 23927	0 164226
12	6	0	2 70356	-1 304066	-0 140352
12	6	0	1 34251	-1.086133	-0.312832
13	1	0	1 256381	2 259505	0.262272
14	1	0	3 680072	1 874712	0.550580
15	1	0	4.615362	0.411764	0.205020
10	1	0	2 104582	2 206725	0.293929
17	1	0	0.605857	-2.500725	-0.244436
18	1	0	0.093837	-1.920917	-0.54595
ſS-Cat 1₀	-enamine				
A062X/6-3	31G*				
E(RM062X	X = -2061.8	03207 Har	tree		
E+Therm	al Free Ene	rgy of Corr	ection = -206	1.286851 Hai	tree
Center	Atomic	Atomic	Coord	linates (Angst	troms)
Number	Number	Туре	Х	Y	Z
1	7	0	-0.865068	3.188273	0.127863
2	6	0	-2.188938	3.759771	-0.144594
3	6	0	-3.089028	2.530533	-0.203836
4	6	0	-2.467955	1.610979	0.853808
5	6	0	-0.959375	1.815469	0.667607
6	6	0	-0.30761	0.857574	-0.327133

7	1	0	-2.167366	4.337567	-1.068989
8	1	0	-2.472424	4.43137	0.677576
9	1	0	-3.025983	2.073306	-1.196669
10	1	0	-4.134391	2.768678	-0.003705
11	1	0	-2.759002	0.563893	0.736294
12	1	0	-2.764866	1.936926	1.854757
13	1	0	-0.417884	1.769974	1.618134
14	1	0	-0.849824	0.871103	-1.277404
15	1	0	0.708317	1.196088	-0.542004
16	6	0	0.23892	3.9297	0.239732
17	6	0	0.300567	5.272084	-0.095181
18	6	0	1.541946	6.060723	0.218337
19	1	0	-0.636406	5.820693	-0.136792
20	1	0	1.523961	6.455211	1.239406
21	1	0	1.642553	6.91839	-0.453445
22	1	0	2.434043	5.436219	0.110964
23	1	0	1.131005	3.383409	0.546489
24	7	0	-0.282623	-0.525933	0.176815
25	6	0	0.059457	-0.783955	1.542373
26	6	0	1.357886	-0.509273	1.983829
27	6	0	1.686845	-0.698215	3.326466
28	6	0	0.742657	-1.192713	4.220329
29	6	0	-0.54925	-1.469017	3.778613
30	6	0	-0.893843	-1.24705	2.449825
31	6	0	2.390674	0.106478	1.073485
32	1	0	2.692295	-0.464716	3.66267
33	1	0	1.011487	-1.351882	5.25879
34	1	0	-1.296478	-1.840344	4.471393
35	1	0	-1.908339	-1.424904	2.109457
36	16	0	-0.850046	-1.747413	-0.798805
37	8	0	-0.517785	-2.996146	-0.124961
38	8	0	-0.378228	-1.477557	-2.149641
39	6	0	-2.618249	-1.587247	-0.845089
40	6	0	-3.397362	-2.277636	0.080839
41	6	0	-4.770954	-2.065718	0.094702
42	6	0	-5.374117	-1.178791	-0.804657
43	6	0	-4.569714	-0.519521	-1.740024
44	6	0	-3.194196	-0.721809	-1.773083

45	6	0	-6.864964	-0.971686	-0.7938	3	6	0	1.506738	2.882413	0.800786
46	1	0	-2.93248	-2.977278	0.767981	4	6	0	0.223308	2.431054	1.50719
47	1	0	-5.386505	-2.599672	0.812383	5	6	0	0.274544	0.901638	1.404426
48	1	0	-5.026232	0.159201	-2.454516	6	6	0	-0.392274	0.327231	0.156516
49	1	0	-2.575318	-0.226492	-2.514947	7	1	0	3.356423	1.703774	0.571005
50	1	0	-7.276445	-1.12112	0.206356	8	1	0	2.92609	2.077371	2.252549
51	1	0	-7.352703	-1.686546	-1.464073	9	1	0	1.387101	2.829517	-0.286245
52	1	0	-7.125905	0.032494	-1.134017	10	1	0	1.804816	3.898484	1.062123
53	8	0	2.581484	1.32046	1.10972	11	1	0	-0.682745	2.843796	1.055948
54	7	0	3.120089	-0.730415	0.292314	12	1	0	0.248225	2.73241	2.558313
55	6	0	4.053169	-0.125262	-0.646931	13	1	0	-0.144101	0.415684	2.291764
56	6	0	5.21022	-1.080276	-0.931204	14	1	0	-0.003602	0.817878	-0.740921
57	8	0	4.734923	-2.349328	-1.330229	15	1	0	-0.140768	-0.731875	0.067586
58	6	0	3.969292	-2.936993	-0.291473	16	6	0	2.235799	-0.568531	1.689106
59	6	0	2.725641	-2.10877	-0.008925	17	6	0	3.594062	-0.81199	1.806633
60	1	0	4.445078	0.78849	-0.193466	18	6	0	4.068858	-2.1253	2.364354
61	1	0	5.811199	-0.678974	-1.748668	19	1	0	4.246349	0.046681	1.940153
62	1	0	5.832163	-1.173996	-0.029816	20	1	0	4.114627	-2.107946	3.458031
63	1	0	3.683886	-3.935579	-0.626816	21	1	0	5.075019	-2.363249	2.006546
64	1	0	4.580993	-3.024112	0.61874	22	1	0	3.398996	-2.937149	2.065096
65	1	0	2.073892	-2.107796	-0.890734	23	1	0	1.50681	-1.370418	1.807012
66	1	0	2.173484	-2.524848	0.834899	24	7	0	-1.854691	0.497943	0.186058
67	6	0	3.377596	0.319559	-1.948568	25	6	0	-2.579035	0.255682	1.396421
68	8	0	4.005874	0.858467	-2.833323	26	6	0	-2.634884	-1.044367	1.90926
69	8	0	2.086852	0.055067	-1.971744	27	6	0	-3.28535	-1.283277	3.120211
70	1	0	1.597314	0.60907	-2.639553	28	6	0	-3.909944	-0.243715	3.801536
						29	6	0	-3.856399	1.050059	3.287957
						30	6	0	-3.177309	1.301026	2.100716
TS-Cat 10						31	6	0	-1.903026	-2.187564	1.251983
M062X/6-3	31G*					32	1	0	-3.307283	-2.292829	3.518721
E(RM062X	K) = -2575.7	77237 Har	tree			33	1	0	-4.427181	-0.441153	4.734
EE+Therm	al Free Ene	rgy of Cori	rection = -257	5.132327 Har	tree	34	1	0	-4.327244	1.86959	3.819795
						35	1	0	-3.100643	2.312445	1.716218
Center	Atomic	Atomic	Coord	linates (Angst	roms)	36	16	0	-2.613124	1.165524	-1.134901
Number	Number	Туре	Х	Y	Z	37	8	0	-4.044239	1.02303	-0.899523
						38	8	0	-1.990382	0.600324	-2.32357
1	7	0	1.722545	0.612317	1.338128	39	6	0	-2.213446	2.896013	-1.135448
2	6	0	2.521499	1.840668	1.258743	40	6	0	-3.053967	3.797776	-0.486336

79	-0.411324	5.133584	-2.677344	0	6	41
80	-0.978417	5.578748	-1.477541	0	6	42
81	-1.646401	4.65533	-0.666548	0	6	43
82	-1.736454	3.315508	-1.028251	0	6	44
83	-0.908373	7.031228	-1.088913	0	6	45
84	-0.060153	3.456375	-3.991832	0	1	46
85	0.092117	5.843953	-3.326188	0	1	47
86	-2.10519	4.989738	0.259333	0	1	48
87	-2.275258	2.605486	-0.408356	0	1	49
88	-0.012296	7.505052	-1.494494	0	1	50
	-1.776167	7.571493	-1.480354	0	1	51
	-0.906803	7.149189	-0.003418	0	1	52
1e-enamin	1.679806	-2.525508	-0.801103	0	8	53
M062X/6-3	0.245671	-2.843804	-2.534966	0	7	54
E(RM062X	-0.442863	-3.888233	-1.790573	0	6	55
EE+Therm	-1.015121	-4.930098	-2.749045	0	6	56
	-1.805418	-4.32057	-3.748808	0	8	57
Center	-1.016257	-3.439555	-4.530852	0	6	58
Number	-0.487055	-2.296215	-3.67928	0	6	59
	0.283637	-4.368468	-1.13047	0	1	60
1	-1.655953	-5.614308	-2.190782	0	1	61
2	-0.189488	-5.492143	-3.207883	0	1	62
3	-1.657905	-3.048755	-5.322462	0	1	63
4	-0.180187	-3.991848	-4.984962	0	1	64
5	-1.324301	-1.692198	-3.309756	0	1	65
6	0.174177	-1.657311	-4.266316	0	1	66
7	-1.533941	-3.335563	-0.867194	0	6	67
8	-2.193812	-4.067087	-0.161936	0	8	68
9	-1.647651	-2.024547	-0.936633	0	8	69
10	-2.102761	-1.639731	-0.138305	0	1	70
11	-0.339599	-0.991534	4.176928	0	6	71
12	-1.197114	-0.419538	3.244781	0	6	72
13	-1.386478	-1.084942	2.059377	0	7	73
14	-2.284236	-0.683102	1.264848	0	8	74
15	-0.676614	-2.066819	1.783768	0	8	75
16	-0.161499	-2.055152	4.052681	0	1	76
17	-1.77876	0.482049	3.361701	0	1	77
18	-0.27258	-0.481865	5.560811	0	6	78

79	6	0	6.603099	-1.380776	-0.011236
80	6	0	7.922871	-0.941724	0.049451
81	6	0	8.220018	0.403452	-0.150118
82	6	0	7.191202	1.306961	-0.419041
83	6	0	5.874211	0.86929	-0.479685
84	1	0	6.377215	-2.434753	0.121769
85	1	0	8.717741	-1.652803	0.248106
86	1	0	9.247448	0.748295	-0.100798
87	1	0	7.416859	2.355695	-0.580943
88	1	0	5.086377	1.585474	-0.693717

ıe

31G*

X) = -1662.010234 Hartree

nal Free Energy of Correction = -1661.617099 Hartree

Cen	nter	Atomic	Atomic	Coord	linates (Angst	troms)
Nur	nber	Number	Туре	Х	Y	Z
	1	7	0	3.420793	0.444591	0.662314
	2	6	0	4.331314	-0.313708	1.505768
	3	6	0	3.496317	-1.527132	1.910835
	4	6	0	2.665234	-1.794589	0.650173
	5	6	0	2.343426	-0.388139	0.123243
	6	6	0	0.994656	0.141389	0.622061
	7	1	0	4.662283	0.286711	2.360332
	8	1	0	5.230482	-0.612869	0.941264
	9	1	0	2.846547	-1.266121	2.752656
	10	1	0	4.110043	-2.379072	2.208179
	11	1	0	1.762346	-2.382831	0.833416
	12	1	0	3.267182	-2.33253	-0.088122
	13	1	0	2.325476	-0.363546	-0.972004
	14	1	0	0.888391	-0.047033	1.694659
	15	1	0	0.945802	1.22602	0.477476
	16	6	0	3.868542	1.542348	-0.047842
	17	6	0	5.047297	2.165175	0.10159
	18	6	0	5.431972	3.381982	-0.689308

19	1	0	5.763533	1.794817	0.831384						
20	1	0	6.351098	3.220004	-1.263676	TS-Cat 1e-	β-Nitrosty	rene			
21	1	0	5.61365	4.249068	-0.043711	M062X/6-3	31G*				
22	7	0	-0.120668	-0.508994	-0.080644	E(RM062X	T) = -513.92	28426 Hart	ree		
23	6	0	-0.917478	-1.500539	0.561348	EE+Therma	al Free Ene	rgy of Cori	rection $= -513$.825099 Hart	ree
24	6	0	-1.145812	-2.750527	-0.036948						
25	6	0	-1.97883	-3.670304	0.604077	Center	Atomic	Atomic	Coord	linates (Angs	troms)
26	6	0	-2.547506	-3.381192	1.838549	Number	Number	Туре	Х	Y	Z
27	6	0	-2.307357	-2.146037	2.435698						
28	6	0	-1.51105	-1.205795	1.790808	1	6	0	-0.634577	0.473308	-0.416008
29	6	0	-0.569517	-3.19183	-1.346509	2	6	0	0.805097	0.206795	-0.223071
30	1	0	-2.160599	-4.622121	0.117442	3	6	0	1.653753	1.26444	0.125964
31	1	0	-3.178165	-4.113768	2.32964	4	6	0	3.011722	1.042811	0.341774
32	1	0	-2.755268	-1.904062	3.393433	5	6	0	3.539107	-0.237944	0.205901
33	1	0	-1.352411	-0.224877	2.228655	6	6	0	2.702173	-1.299137	-0.142981
34	16	0	-0.76244	0.295167	-1.38387	7	6	0	1.347563	-1.079217	-0.356124
35	8	0	-1.609648	-0.652915	-2.096849	8	1	0	1.240739	2.261701	0.247875
36	8	0	0.353337	0.951745	-2.054669	9	1	0	3.654951	1.871742	0.617482
37	6	0	-1.805747	1.550535	-0.69416	10	1	0	4.597349	-0.41187	0.369724
38	8	0	-1.100453	-4.024905	-2.046231	11	1	0	3.108551	-2.299068	-0.252248
39	8	0	0.616264	-2.651671	-1.648489	12	1	0	0.708091	-1.912381	-0.634078
40	1	0	0.888346	-3.02467	-2.502787	13	6	0	-1.578671	-0.452045	0.005595
41	6	0	-3.081768	1.196407	-0.252429	14	7	0	-2.895542	-0.069267	0.0764
42	6	0	-3.871364	2.164742	0.351689	15	8	0	-3.723749	-0.869074	0.587631
43	6	0	-3.405271	3.475329	0.522427	16	8	0	-3.250235	1.044912	-0.349413
44	6	0	-2.125651	3.799949	0.065553	17	1	0	-0.941625	1.51405	-0.374046
45	6	0	-1.316093	2.843856	-0.541416	18	1	0	-1.384387	-1.460072	0.338446
46	6	0	-4.273466	4.504857	1.195414						
47	1	0	-3.449071	0.185585	-0.398172						
48	1	0	-4.869459	1.905171	0.692171	TS-Cat 1e-	enamine				
49	1	0	-1.758203	4.815005	0.180758	M062X/6-3	31G*				
50	1	0	-0.327635	3.09713	-0.909951	E(RM062X	C) = -1661.9	92319 Hai	tree		
51	1	0	-5.287316	4.486945	0.787824	EE+Therma	al Free Ene	rgy of Corr	rection $= -166$	1.595543 Ha	rtree
52	1	0	-3.866419	5.509685	1.070826						
53	1	0	-4.348678	4.299772	2.267709	Center	Atomic	Atomic	Coord	linates (Angs	troms)
54	1	0	3.146709	1.912636	-0.777161	Number	Number	Туре	Х	Y	Z
55	1	0	4.64242	3.654405	-1.395837						
						1	7	0	3.50568	-0.100132	0.303374

2	6	0	3.784438	1.176743	0.030991	
3	6	0	4.878205	1.866504	0.520436	
4	6	0	5.203864	3.231784	-0.020137	
5	1	0	5.704513	1.279172	0.912114	
6	1	0	5.719348	3.841108	0.728416	
7	1	0	5.862721	3.170921	-0.89222	
8	6	0	4.433746	-1.011325	0.981115	
9	6	0	3.629186	-2.305511	1.070389	
10	6	0	2.845992	-2.303122	-0.24856	
11	6	0	2.450005	-0.833118	-0.430944	
12	1	0	4.723598	-0.607234	1.952027	
13	1	0	5.33864	-1.136736	0.370434	
14	1	0	2.948592	-2.254913	1.926627	
15	1	0	4.266344	-3.182259	1.189517	
16	1	0	1.967882	-2.954042	-0.236961	
17	1	0	3.495958	-2.621089	-1.068374	
18	1	0	2.458338	-0.526967	-1.478565	
19	6	0	1.090738	-0.49139	0.177252	
20	1	0	0.969559	-1.046106	1.111179	
21	1	0	1.04466	0.571546	0.427442	
22	7	0	-0.009196	-0.851102	-0.733118	
23	6	0	-1.019112	-1.799251	-0.362564	
24	6	0	-1.389613	-2.74375	-1.325188	
25	6	0	-2.346248	-3.711561	-1.04386	
26	6	0	-2.918026	-3.781536	0.224534	
27	6	0	-2.527776	-2.871847	1.197622	
28	6	0	-1.608505	-1.857829	0.914777	
29	1	0	-0.907169	-2.703729	-2.293996	
30	1	0	-2.623724	-4.427482	-1.810105	
31	1	0	-3.649812	-4.547239	0.45699	
32	1	0	-2.938844	-2.920568	2.200379	
33	6	0	-1.256575	-0.952581	2.057734	
34	16	0	-0.441895	0.351812	-1.826029	
35	8	0	-1.217251	-0.282094	-2.883632	
36	8	0	0.801256	1.048336	-2.146271	
37	6	0	-1.497683	1.47075	-0.96264	
38	8	0	-1.152473	-1.366546	3.193411	
39	8	0	-1.075585	0.315333	1.711149	

40	1	0	-0.461722	0.72988	2.372594
41	6	0	-2.851163	1.159914	-0.844016
42	6	0	-3.657286	1.98536	-0.072626
43	6	0	-3.126175	3.102281	0.584949
44	6	0	-1.76519	3.386548	0.442161
45	6	0	-0.939559	2.574192	-0.326791
46	6	0	-4.009496	3.967153	1.444692
47	1	0	-3.260548	0.295577	-1.357102
48	1	0	-4.716319	1.763707	0.022342
49	1	0	-1.344377	4.253841	0.942139
50	1	0	0.119594	2.785699	-0.425626
51	1	0	-4.982279	4.126784	0.973526
52	1	0	-3.549939	4.938992	1.633743
53	1	0	-4.188464	3.486213	2.411547
54	1	0	4.293295	3.758564	-0.321183
55	1	0	3.034913	1.685335	-0.575438

TS-Cat 1e

M062X/6-31G*

E(RM062X) = -2175.965255 Hartree

EE+Thermal Free Energy of Correction = -2175.439920 Hartree

Center	Atomic	Atomic	Coordinates (Angstroms)					
Number	Number	Туре	Х	Y	Z			
1	7	0	-1.626871	-1.552387	0.963205			
2	6	0	-2.156412	-0.528817	1.637147			
3	6	0	-3.504312	-0.223284	1.675451			
4	6	0	-4.00687	0.821557	2.633578			
5	1	0	-4.201788	-1.004199	1.384156			
6	1	0	-4.909447	1.307754	2.251089			
7	1	0	-4.265116	0.384853	3.60359			
8	6	0	-2.419747	-2.622254	0.348677			
9	6	0	-1.35384	-3.496611	-0.306721			
10	6	0	-0.193445	-3.413926	0.693114			
11	6	0	-0.213394	-1.950273	1.149518			
12	1	0	-3.139901	-2.205626	-0.356853			

13	1	0	-2.969553	-3.167541	1.128336	45	6	0	4.231705	-1.723381	-2.282181
14	1	0	-1.067664	-3.063793	-1.270922	46	6	0	3.215498	-1.178553	-1.492384
15	1	0	-1.701363	-4.515891	-0.477442	47	1	0	3.978258	-2.719308	1.431297
16	1	0	0.774492	-3.684258	0.263083	48	1	0	5.841159	-3.588214	0.043262
17	1	0	-0.386066	-4.074567	1.542881	49	1	0	5.985647	-2.960924	-2.363509
18	1	0	0.05878	-1.838545	2.200587	50	1	0	4.256399	-1.457819	-3.333722
19	6	0	0.676301	-1.039599	0.304887	51	6	0	2.230894	-0.298628	-2.203697
20	1	0	0.618118	-1.35532	-0.739885	52	16	0	2.494283	-0.01846	1.955737
21	1	0	0.31366	-0.009511	0.349169	53	8	0	3.743958	-0.480135	2.544554
22	6	0	-3.73978	0.819946	-0.283323	54	8	0	1.298053	0.110159	2.783757
23	6	0	-5.182156	0.571771	-0.480488	55	6	0	2.794128	1.532417	1.170228
24	6	0	-6.102415	1.553071	-0.092123	56	8	0	1.859796	-0.53667	-3.334002
25	6	0	-7.468007	1.36249	-0.288619	57	8	0	1.816981	0.74108	-1.490838
26	6	0	-7.930903	0.186149	-0.870752	58	1	0	0.915648	0.998812	-1.818495
27	6	0	-7.022171	-0.799103	-1.260356	59	6	0	4.045185	1.765888	0.601944
28	6	0	-5.660172	-0.608736	-1.066751	60	6	0	4.24304	2.941292	-0.109053
29	1	0	-5.741563	2.478382	0.347829	61	6	0	3.208291	3.872247	-0.26594
30	1	0	-8.167784	2.134923	0.012289	62	6	0	1.966993	3.607853	0.31951
31	1	0	-8.994523	0.034173	-1.021023	63	6	0	1.747088	2.437625	1.037204
32	1	0	-7.377861	-1.718799	-1.712671	64	6	0	3.43172	5.126212	-1.069101
33	1	0	-4.963709	-1.386269	-1.36796	65	1	0	4.845987	1.044198	0.727688
34	6	0	-2.82163	0.392496	-1.231811	66	1	0	5.21478	3.144059	-0.549854
35	7	0	-1.536676	0.873294	-1.173438	67	1	0	1.159809	4.325961	0.209815
36	8	0	-0.748564	0.588151	-2.113942	68	1	0	0.779615	2.224909	1.478857
37	8	0	-1.172154	1.578554	-0.215184	69	1	0	4.414033	5.556881	-0.860847
38	1	0	-3.475996	1.725334	0.255077	70	1	0	2.669079	5.876629	-0.853098
39	1	0	-3.019522	-0.262989	-2.065977	71	1	0	3.3913	4.904591	-2.140265
40	7	0	2.080628	-1.107103	0.7423	72	1	0	-3.248723	1.592431	2.80159
41	6	0	3.126729	-1.544291	-0.135634	73	1	0	-1.427808	0.117703	2.126388
42	6	0	4.0757	-2.424808	0.393647						
43	6	0	5.111897	-2.913768	-0.392589						
44	6	0	5.191578	-2.566383	-1.739298						

7. References.

(1) A. Castán, R. Badorrey, J. A. Gálvez, P. López-Ram-de-Víu, M. D. Díaz-de-Villegas, Org. Biomol. Chem. 2018, 16, 924-935.

(2) N. Kaplaneris, G. Koutoulogenis, M. Raftopoulou, C. G. Kokotos, J. Org. Chem. 2015, 80, 5464-5473.

(3) A. Kamal, M. Sathish, V. Srinivasulu, J. Chetna, K. C. Shekar, S. Nekkanti, Y. Tangella, N. Shankaraiah, *Org. Biomol. Chem.* **2014**, *12*, 8008-8018.

(4) B. Tan, X. Zeng, Y. Lu, P. J. Chua, G. Zhong, Org. Lett. 2009, 11, 1927-1930.

(5) C. S. Azad, I. A. Khan, A. K. Narula, Org. Biomol. Chem. 2016, 14, 11454-11461.

(6) A. Lu, R. Wu, Y. Wang, Z. Zhou, G. Wu, J. Fang, C. Tang, *Eur. J. Org. Chem.* 2010, 2057-2061.

(7) Y. Cao, Y. Lai, X. Wang, Y. Li, W. Xiao, Tetrahedron Lett. 2007, 48, 21-24.

(8) J. Borges-González, I. García-Monzón, T. Martín, Adv. Synth. Catal. 2019, 361, 2141-2147.

(9) D. Lu, Y. Gong, W. Wang, Adv. Synth. Catal. 2010, 352, 644-650.

(10) S. Belot, A. Quintard, N. Krause, A. Alexakis, Adv. Synth. Catal. 2010, 352, 667-695.

(11) S. Zhu, S. Yu, D. Ma, Angew. Chem. Int. Ed. 2008, 47, 545-548.

(12) Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

S78

30.0

1.431

98.569

100.000

Area (%)

35.0

25.0 Retention Time [min]

30314

2087889

2118203

High (µV)

821

31067 31888

15.0

peak No.

20.0

17.800

29.808

Area

tR (min)

1

Total

S84

13.0

2.925

97.075

100.000

Area (%)

14.0

11.0 12.0 Retention Time [min]

High (μV)

27563

752017

779580

10.0

tR (min)

1

Total

10.367

12.233

Area

367411

12193580

12560991

9.0

peak No.

 NO_2

peak No.	tk (min)	Area	Hign (μV)	Area (%)
1	24.583	24003197	509747	49.431
2	34.942	24555702	394002	50.569
Total		48558899	903749	100.000

Ph

L	peak no.	ut (iiiiii)	11104	Ingn (per)	1102(70)
Ī	1	28.950	4143022	98976	49.564
I	2	36.717	4215994	80389	50.436
I	Total		8359016	179365	100.000

Ρh

S100

180417

peak No.	tR (min)	Area	High (μV)	Area (%)
1	37.417	8660005	136902	49.039
2	40.683	8999556	144583	50.961
Total		17659561	281485	100.000

Ph

Ph

peak No.	tR (min)	Area	High (µV)	Area (%)
1	18.525	5514121	190306	49.684
2	25.700	5584347	140059	50.316
Total		11098468	330365	100.000

H Ph 6j (97% ee)

CO₂Et

peak No.	tR (min)	Area	High (µV)	Area (%)
1	29.950	10378914	113126	48.726
2	34.283	10921558	91714	51.274
Total		21300472	204840	100.000

