Electronic Supplementary Information

Visible-Light-Promoted 3,5-Dimethoxyphenyl Glycoside

Activation and Glycosylation

Yafei Cao,^{‡a} Minmin Zhou,^{‡b} Run-Ze Mao,^a You Zou,^a Feng Xia,^a Da-Ke Liu,^a Jianhui Liu,^b Qin Li,^a De-Cai Xiong,^{*ac} and Xin-Shan Ye^{*a}

^aState Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China. ^bSchool of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China. ^cState Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, Jiangsu, China.

^{*t}</sup><i>These authors contributed equally to this work.*</sup>

*E-mail: xinshan@bjmu.edu.cn; decai@bjmu.edu.cn.

Table of Contents

1	General information	3
2	Optimization of reaction conditions	3
3	Glycosylation procedures	7
4	Preparation of glycosyl donors	7
5	Characterization data for coupled products	18
6	One-pot synthesis of trisaccharide 31	29
7	Mechanistic studies	30
8	References	32
9	Spectra of compounds	34

1 General information

All chemicals were purchased as reagent grade and used without further purification except noted. All solvents were purified before use. CH₂Cl₂, CH₃CN, and pyridine were refluxed over CaH₂ and distilled. Methanol was distilled from magnesium. DMF was stirred with CaH₂ and distilled under reduced pressure. Toluene was refluxed over sodium and distilled. Ether was distilled with potassium and sodium. Reactions were performed in oven-dried glassware with freshly distilled solvents under an argon atmosphere except noted. Thin-layer chromatography (TLC) was performed on silica gel-coated aluminum plates (60 F254, E. Merck). Compounds were visualized by UV light (254 nm) and charring with a solution of (NH₄)₆Mo₇O₂₄·4H₂O (24.00 g, 19.4 mmol) and Ce(NH₄)₂(NO₃)₆ (0.50 g, 0.9 mmol) in sulfuric acid (5%, 500 mL) or KMnO₄ (1.5 g, 19.4 mmol) and K₂CO₃ (10 g, 19.4 mmol) in aqueous NaOH (5%, 2.5 mL) and water (150 mL). Column chromatography was performed on silica gel (200-300 mesh). ¹H NMR spectra were recorded with the Avance III-400 or III-600 (Bruker) and the chemical shifts were referenced to the peak of solvent or TMS (0 ppm). ¹³C NMR spectra were recorded using the same NMR spectrometers and the chemical shifts were reported relative to solvent or TMS (0 ppm). Assignments of resonances in ¹H and ¹³C NMR spectra were done using ¹H-¹H COSY, HSQC and HMBC experiments. The following standard abbreviations are used to indicate multiplicity: s = singlet, d = doublet, t = triplet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets and br = broad. Optical rotations were obtained on a Hanon P850 Automatic Polarimeter. HRMS experiments were performed on a Waters Xevo G2 Q-TOF spectrometer or a Bruker APEX IV FTMS instrument.

2 Optimization of reaction conditions

Table S1 Preliminary optimization of O-glycosylation conditions^a

		F ₃ C TFO ^O S	$ \begin{array}{c} F_{3}C\\ BF_{4} & S\\ \hline & S\\ 4b \end{array} $		4d CF ₃		
Entry	Donor/	Activator	Photocat.		Vis	Additive	Vield
	Acceptor	(equiv.)	(equiv.)		(h)	(equiv.)	Tiera
1	1.5/1.0	4a (3.0)	Ru(bpy) ₃ PF ₆ ((5%)	12 h	-	62%
2	1.5/1.0	4b (3.0)	Ru(bpy)3PF6((5%)	12 h	-	43%
3	1.5/1.0	CBr ₄ (3.0)	Ru(bpy) ₃ PF ₆ ((5%)	12 h	-	not found
4	1.5/1.0	Cl ₃ CBr (3.0)	Ru(bpy)3PF6((5%)	12 h	-	trace
5	1.5/1.0	$O_2(1 \text{ atm})$	Ru(bpy) ₃ PF ₆ ((5%)	12 h	-	not found
6	1.5/1.0	4a (3.0)	Ir(bpy) ₃ (5%	(0)	12 h	-	40%
7	1.5/1.0	4c (3.0)	Ru(bpy)3PF6((5%)	12 h	-	not found
8	1.5/1.0	4d (3.0)	Ru(bpy) ₃ PF ₆ ((5%)	12 h	-	trace

^aGeneral conditions: 0.03 mmol of 1c, 0.02 mmol of 2a (1.0 equiv.), photocat. (5 mol%), activator,
3 Å MS, 2.0 mL of MeCN under the irradiation of blue LEDs (28 W). Yield was determined by ¹H
NMR using 1,3,5-trimethoxybenzene as an internal standard.

BnO BnO	OBn 0 0 0 0 0 0 0 0 0	OMe HO BnO OMe OMe BnO OM 2a	Ru(bpy) ₃ (I <u>reagent (tr</u> blue LEDs	PF ₆) ₂ (5mo riflate salt) s, 3Å or 4Å	ol%), Umemoto's B , additive MS	nO BnO BnO BnO BnO BnO	0 0 BnO1 5 OMe
Entry	Donor/ Acceptor	Umemoto's reagent (triflate salt) (equiv.)	Solvent (0.01 M)	Vis (h)	Additive (equiv.)	Temp. (°C)	Yield ^b
1	1.5/1.0	3.0	MeCN	12	TTBP (1.5)	rt	50%
2	1.5/1.0	3.0	MeCN	12	Cu(OTf) ₂ (1.5)	rt	12%
3	1.5/1.0	3.0	MeCN	12	CuI (1.5)	rt	trace
4	1.5/1.0	3.0	MeCN	12	DIPEA (1.5)	rt	26%
5	1.5/1.0	3.0	MeCN	12	DTBMP (1.5)	rt	21%
6	1.5/1.0	3.0	MeCN	12	HFIP (1.5)	rt	57%
7	1.5/1.0	3.0	MeCN ^c	12	-	rt	72%

Table S2 Optimization of O-glycosylation conditions^a

8	1.5/1.0	4.5	MeCN	12	-	rt	52%
9	1.5/1.0	3.0	MeCN ^c	12	no Ar	rt	46%
10	1.5/1.0	3.0	MeCN	12	no Ar	rt	32%
11	1.5/1.0	3.0	MeCN	12	-	-30	90%
12	1.5/1.0	3.0	DCM	12	-	-30	27%
13	1.5/1.0	3.0	THF	12	-	-30	not found
14	1.5/1.0	3.0	DCE	12	-	-30	30%
15	1.5/1.0	3.0	1,4- dioxane	12	-	-30	trace
16	1.5/1.0	3.0	DMF	12	-	-30	not found
17	1.5/1.0	3.0	DMSO	12	-	-30	5%
18	1.1/1.0	2.2	MeCN	12	-	-30	63%
19	1.3/1.0	2.6	MeCN	12	-	-30	80%
20	1.5/1.0	3.0	MeCN ^c	12	-	-30	57%
21	1.5/1.0	3.0	MeCN	12	-	-50	90%
22	1.5/1.0	3.0	MeCN	4	-	-30	78%
23	1.5/1.0	3.0	MeCN	8	-	-30	85%
24	1.5/1.0	3.0	MeCN	24	-	-30	78%
25	1.5/1.0	2.0	MeCN	12	-	-30	93%
26	1.5/1.0	1.5	MeCN	12	-	-30	95%
27	1.5/1.0	4.5	MeCN	12	-	-30	54%

^{*a*}General conditions: **1c**, 0.02 mmol of **2a** (1.0 equiv.), $Ru(bpy)_3(PF_6)_2$ (5 mol%), Umemoto's reagent (triflate salt), 3 Å (for MeCN) or 4 Å (for other solvents) MS, under the irradiation of blue LEDs (28 W). ^{*b*}Yield was determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard. ^{*c*}0.005 M.

Table S3 Screening of the N-glycosylation conditions with 2,6-dichloropurine^a

3	12	$Li_2CO_3(1.5)$	rt	74%
4	12	KOH (1.5)	rt	85%
5	6	KOH (1.5)	rt	30%
6	24	KOH (1.5)	rt	78%
7	36	KOH (1.5)	rt	81%
8	12	KOH (1.5)	-30	58%
9	12	KOH (1.5)	40	83%

^{*a*}General conditions: 0.03 mmol of donor **1c** (1.5 equiv.), 2,6-dichloropurine (1.0 equiv.), Ru(bpy)₃(PF₆)₂ (5 mol%), Umemoto's reagent (triflate salt) (3.0 equiv.), 3 Å MS (200 mg), MeCN (2.0 mL) under the irradiation of blue LEDs (28 W) for 12 h. ^{*b*}Yield was determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

Table S4 Screening of the N-glycosylation conditions with thymine^a

^{*a*}General conditions: 0.02 mmol of thymine (1.0 equiv.), BSTFA (3.0 equiv.) in MeCN (2.0 mL), stirred at room temperature, then addition of **1c** (1.5 equiv), Ru(bpy)₃(PF₆)₂ (5 mol%), Umemoto's reagent (triflate salt) (3.0 equiv.), under the irradiation of blue LEDs (28 W). ^{*b*}Yield was determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard. ^{*c*}Without the activation by BSTFA. ^{*d*}0.02 mmol of **1c** (1.0 equiv.), thymine (3.0 equiv.), BSTFA (9.0 equiv.), Ru(bpy)₃(PF₆)₂ (5 mol%), Umemoto's reagent (triflate salt) (2.0 equiv.).

3 Glycosylation procedures

General procedure A for O-glycosylations:

A mixture of glycosyl donor (0.03 mmol, 1.5 equiv.), acceptor (0.02 mmol, 1.0 equiv.), $Ru(bpy)_3(PF_6)_2$ (0.001 mmol, 5 mol%) and Umemoto's reagent (0.03 mmol, 1.5 equiv.) was dissolved in dry MeCN (2.0 mL) containing freshly activated 3 Å molecular sieves (200 mg). The mixture was stirred under argon for 0.5 h. Subsequently, the reaction mixture was cooled to -30 °C and irradiated by blue LEDs (28W) for 12 h. After which, it was filtered through Celite. The solvent was removed in vacuo and the residue was purified by flash column chromatography on silica gel to give the product. The α/β ratio was determined by ¹H NMR.

General procedure B for N-glycosylation of purine:

A mixture of glycosyl donor (0.03 mmol, 1.5 equiv.), purine (0.02 mmol, 1.0 equiv.), Ru(bpy)₃(PF₆)₂ (0.001 mmol, 5 mol%), Umemoto's reagent (0.06 mmol, 3.0 equiv.) and KOH (0.03 mmol, 1.5 equiv.) was dissolved in dry MeCN (2.0 mL) containing freshly activated 3 Å molecular sieves (200 mg). The mixture was stirred under argon for 0.5 h. Subsequently, the reaction mixture was irradiated by blue LEDs (28 W) for 12 h. After which, it was filtered through Celite. The solvent was removed in vacuo and the residue was purified by flash column chromatography on silica gel to give the product. The α/β ratio was determined by ¹H NMR.

General procedure C for N-glycosylation of pyrimidine:

To a suspension of pyrimidine (0.06 mmol, 3.0 equiv.) in dry MeCN (2.0 mL), bis(trimethylsilyl)trifluoroacetamide (BSTFA, 0.18 mmol, 9.0 equiv.) was added at room temperature under argon. After stirring for 0.5 h, glycosyl donor (0.02 mmol, 1.0 equiv.), Ru(bpy)₃(PF₆)₂ (0.001 mmol, 5 mol%), Umemoto's reagent (0.04 mmol, 2.0 equiv.) were added. The mixture was irradiated by blue LEDs (28 W) for 12 h. After which, it was filtered through Celite. The solvent was removed in vacuo and the residue was purified by flash column chromatography on silica gel to give the product. The α/β ratio was determined by ¹H NMR.

4 Preparation of glycosyl donors

Phenyl 2,3,4,6-tetra-*O*-benzyl-β-D-glucopyranoside (1a)

To a solution of phenyl β -D-glucopyranoside (S1) (1.00 g, 3.91 mmol) in DMF (20 mL), sodium hydride (60% in mineral oil, 0.938 g, 23.5 mmol) was added portionwise at 0 °C under argon. The mixture was stirred for 0.5 h. Benzyl bromide (2.79 mL, 31.25 mmol) was added dropwise. After stirring for 18 h at room temperature, it was quenched by the addition of MeOH (5 mL) and concentrated in vacuo. The residue was diluted with CH₂Cl₂ and washed with water (3 x 100 mL) and saturated aqueous NaCl solution. The organic layer was dried over Na₂SO₄ and filtered. The solvent was removed in vacuo and the residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 15:1) to yield product **1a** (2.29 g, 95%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.25 (m, 20H), 7.21 – 7.16 (m, 2H), 7.11 – 7.02 (m, 3H), 5.05 (d, *J* = 10.9 Hz, 1H), 5.02 – 4.99 (m, 1H), 4.95 (d, *J* = 10.9 Hz, 1H), 4.88 – 4.79 (m, 3H), 4.62 – 4.55 (m, 2H), 4.53 (d, *J* = 12.1 Hz, 1H), 3.80 (dd, *J* = 10.8, 1.6 Hz, 1H), 3.77 – 3.64 (m, 4H), 3.64 – 3.58 (m, 1H). The ¹H NMR data coincide with the previous report.¹

4-Methoxyphenyl 2,3,4,6-tetra-*O*-benzyl-β-D-glucopyranoside (1b)

To a solution of 2,3,4,6-tetra-*O*-benzyl- β -D-glucopyranose (**S2**) (1.00 g, 1.85 mmol), 4methoxyphenol (0.344 g, 2.78 mmol) and PPh₃ (0.27 g, 1.85 mmol) in dry CH₂Cl₂ (10 mL), diethyl azodicarboxylate (DEAD, 0.291 mL, 1.85 mmol) was added at 0 °C under argon. The mixture was allowed rising to room temperature slowly. After stirring for 12 h, the reaction mixture was concentrated in vacuo. The residue was diluted with CH₂Cl₂ and washed with water (3 x 100 mL) and saturated aqueous NaCl solution. The organic layer was dried over Na₂SO₄ and filtered. The solvent was removed in vacuo and the residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 15:1) to yield product **1b** (0.933 g, 78%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.13 (m, 18H), 7.10 (d, *J* = 7.3 Hz, 2H), 6.96 (d, *J* = 8.9 Hz, 2H), 6.72 (d, *J* = 8.9 Hz, 2H), 4.97 (d, *J* = 10.9 Hz, 1H), 4.87 (d, *J* = 10.9 Hz, 1H), 4.84 – 4.69 (m, 4H), 4.55 - 4.41 (m, 3H), 3.74 - 3.53 (m, 8H), 3.53 - 3.45 (m, 1H). The ¹H NMR data coincide with the previous report.²

3,5-Dimethoxyphenyl 2,3,4,6-tetra-O-benzyl-β-D-glucopyranoside (1c)

It was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 15:1) to yield product 1c (0.876 g, 70%) as a white solid, following the same procedure for the synthesis of 1b. $[\alpha]^{25}_{D}$ = -12.0 (c = 0.1, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.16 (m, 18H), 7.13 – 7.06 (m, 2H), 6.20 (d, *J* = 2.1 Hz, 2H), 6.10 (t, *J* = 2.1 Hz, 1H), 4.95 (d, *J* = 11.0 Hz, 1H), 4.90 (dd, *J* = 5.4, 2.1 Hz, 1H), 4.87 (d, *J* = 10.9 Hz, 1H), 4.80 – 4.70 (m, 3H), 4.53 – 4.46 (m, 2H), 4.43 (d, *J* = 12.0 Hz, 1H), 3.75 – 3.49 (m, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 161.51, 159.34, 138.61, 138.38, 138.17, 138.13, 128.55, 128.54, 128.52, 128.45, 128.35, 128.07, 128.02, 127.96, 127.89, 127.80, 127.72, 101.80, 95.79, 95.18, 84.80, 82.09, 77.81, 77.37, 75.91, 75.28, 75.18, 75.16, 73.68, 69.01, 55.45. ESI-HRMS calculated for C₄₂H₄₈NO₈ [M+NH₄] ⁺ 694.3380, found 694.3383.

3,4-Dimethoxyphenyl 2,3,4,6-tetra-*O*-benzyl-β-D-glucopyranoside (1d)

It was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 15:1) to yield product **1d** (0.814 g, 65%) as a white solid, following the same procedure for the synthesis of **1b**. $[\alpha]^{25}_{D}$ = -60.0 (c = 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.28 (m, 25H), 7.24 – 7.19 (m, 2H), 6.76 (d, *J* = 8.7 Hz, 1H), 6.71 (d, *J* = 2.7 Hz, 1H), 6.67 (dd, *J* = 8.7, 2.7 Hz, 1H), 5.07 (d, *J* = 11.0 Hz, 1H), 4.97 (d, *J* = 10.9 Hz, 1H), 4.93 – 4.89 (m, 1H), 4.89 – 4.82 (m, 3H), 4.62 – 4.52 (m, 3H), 3.86 (s, 3H), 3.83 – 3.58 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 151.96, 149.61, 144.94, 138.53, 138.37, 138.12, 138.04, 128.45, 128.43, 128.37, 128.18, 127.98, 127.91, 127.85, 127.79, 127.70, 127.64, 111.72, 108.21, 102.93, 102.89, 84.78, 82.19, 77.88, 75.80, 75.16, 75.07, 73.55,

69.07, 56.34, 55.82. ESI-HRMS calculated for C₄₂H₄₈NO₈ [M+NH₄] + 694.3380, found 694.3378.

3,4,5-Trimethoxyphenyl 2,3,4,6-tetra-*O*-benzyl-β-D-glucopyranoside (1e)

It was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 15:1) to yield product **1e** (0.876 g, 67%) as a white solid, following the same procedure for the synthesis of **1b**. $[\alpha]^{25}_{D}$ = -12.0 (c = 0.1, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.18 (m, 18H), 7.11 (d, *J* = 5.3 Hz, 2H), 6.27 (s, 2H), 4.95 (d, *J* = 11.0 Hz, 1H), 4.90 – 4.81 (m, 2H), 4.81 – 4.71 (m, 3H), 4.51 – 4.39 (m, 3H), 3.81 – 3.45 (m, 17H). ¹³C NMR (101 MHz, CDCl₃) δ 154.15, 153.63, 138.49, 138.37, 137.99, 137.97, 133.82, 128.50, 128.49, 128.47, 128.44, 128.18, 128.00, 127.96, 127.92, 127.85, 127.78, 102.66, 95.21, 84.81, 82.18, 77.92, 77.36, 75.85, 75.23, 75.12, 73.63, 69.20, 61.02, 55.99. ESI-HRMS calculated for C₄₃H₅₀NO₉ [M+NH₄]⁺ 724.3486, found 724.3491.

3,5-Dimethoxyphenyl 2,3,4,6-tetra-O-benzoyl-β-D-glucopyranoside (1f)

To a mixed solution of HClO₄ (70% in water, 24 µL) and Ac₂O (8 mL), D-glucose (2.00 g, 11.1 mmol) was added portionwise over 10 min at 0 °C. After the mixture was stirred for 1 h, 33% HBr/AcOH (9.5 mL) was added. After stirring for 2 h at room temperature, the mixture was diluted with CH₂Cl₂ and washed with water (3 x 100 mL), saturated aqueous NaHCO₃ solution (3 x 100 mL) and saturated aqueous NaCl solution. The organic layer was dried over Na₂SO₄ and filtered. The solvent was removed in vacuo and the crude product **S4** was afforded without further purification.

The above crude product and tetraethylammonium bromide (TEAB, 0.179 g, 0.556 mmol) were dissolved in CHCl₃ (30 mL). A solution of 3,5-dimethoxyphenol (2.57 g, 16.7 mmol, dissolved in 21.2 mL of 1.25 M aqueous NaOH) was added. The mixture was refluxed overnight. The organic layer was washed with water (2 x 100 mL), saturated aqueous NH₄Cl solution (100 mL) and saturated aqueous NaCl solution. The organic layer was dried over Na₂SO₄ and filtered. The solvent was removed in vacuo and the residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3:1) to yield product **S5** (1.88 g, 35%, over three steps) as a white solid. $[\alpha]^{25}_{D} = -25.2$ (c = 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 6.21 – 6.15 (m, 3H), 5.34 – 5.22 (m, 2H), 5.14 (t, *J* = 9.2 Hz, 1H), 5.07 (d, *J* = 7.2 Hz, 1H), 4.27 (dd, *J* = 12.1, 5.5 Hz, 1H), 4.17 (d, *J* = 12.1 Hz, 1H), 3.90 – 3.82 (m, 1H), 3.76 (s, 6H), 2.08 (s, 3H), 2.06 (s, 3H), 2.05 (s, 3H), 2.03 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.73, 170.31, 169.53, 169.44, 161.57, 158.66, 98.89, 95.82, 95.13, 77.36, 72.87, 72.20, 71.22, 68.47, 62.13, 55.54, 20.76, 20.72. ESI-HRMS calculated for C₂₂H₂₉O₁₂ [M+H] ⁺ 485.1659, found 485.1663.

To a suspension of S5 (1.50 g, 3.10 mmol) in MeOH (10 mL), 30% NaOMe/MeOH was added dropwise for maintaining the pH at 9-10. When TLC indicated the compound S5 was disappeared completely, the mixture was neutralized by the addition of Amberlyst (R) 15 and filtered. The filtrate was evaporated in vacuo and the crude product was afforded without further purification. The above crude product was dissolved in pyridine (20 mL). BzCl (2.15 mL, 18.6 mmol) was added dropwise at 0 °C. After stirring overnight, the solvent was removed in vacuo. The residue was diluted with CH₂Cl₂ and washed with water (3 x 100 mL), saturated aqueous NaHCO₃ solution (2 x 100 mL) and saturated aqueous NaCl solution. The organic layer was dried over Na₂SO₄ and filtered. The solvent was removed in vacuo and the residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 4:1) to yield product **1f** (2.18 g, 96%, over two steps) as a white solid. $[\alpha]^{25}_{D} = -116$ (c = 0.1, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.06 – 8.00 (m, 2H), 7.99 – 7.90 (m, 4H), 7.89 - 7.83 (m, 2H), 7.57 - 7.25 (m, 12H), 6.21 (d, J = 2.1 Hz, 2H), 6.14 (t, J = 2.1Hz, 1H), 6.00 (t, J = 9.5 Hz, 1H), 5.80 (dd, J = 9.5, 7.8 Hz, 1H), 5.73 (t, J = 9.6 Hz, 1H), 5.44 (d, J = 7.7 Hz, 1H), 4.69 (dd, *J* = 12.1, 2.7 Hz, 1H), 4.51 (dd, *J* = 12.1, 6.4 Hz, 1H), 4.36 (ddd, *J* = 9.2, 6.3, 2.6 Hz, 1H), 3.62 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 166.25, 165.85, 165.34, 165.22, 161.52, 158.82, 133.65, 133.45, 133.43, 133.20, 129.98, 129.95, 129.93, 129.90, 129.61, 129.20, 128.84, 128.77, 128.56, 128.50, 128.44, 99.59, 95.98, 95.50, 77.37, 72.90, 72.80, 71.80, 69.63, 63.44, 55.41. ESI-HRMS calculated for C₄₂H₃₇O₁₂ [M+H]⁺ 733.2285, found 733.2280.

3,5-Dimethoxyphenyl 2,3,4,6-tetra-O-benzyl-β-D-galactopyranoside (1g)

It was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3:1) to yield product **S8** (1.83 g, 34%, over three steps) as a colorless syrup, following the same procedure for the synthesis of **S5**. $[\alpha]^{25}_{D}$ = -3.68 (c = 0.3, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 6.16 (s, 3H), 5.49 – 5.40 (m, 2H), 5.09 (dd, *J* = 10.4, 3.4 Hz, 1H), 5.02 (d, *J* = 8.0 Hz, 1H), 4.23 – 4.12 (m, 2H), 4.04 (t, *J* = 6.5 Hz, 1H), 3.74 (s, 6H), 2.16 (s, 3H), 2.05 (s, 3H), 2.04 (s, 3H), 1.99 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.48, 170.31, 170.16, 169.51, 161.54, 158.72, 99.42, 95.78, 95.08, 77.36, 71.23, 70.94, 68.68, 67.04, 61.60, 55.49, 20.83, 20.72, 20.65. ESI-HRMS calculated for C₂₂H₂₉O₁₂ [M+H]⁺ 485.1659, found 485.1657.

To a suspension of **S8** (1.50 g, 3.10 mmol) in MeOH (10 mL), 30% NaOMe/MeOH was added dropwise for maintaining the pH at 9-10. When TLC indicated the compound **S8** was disappeared completely, the mixture was neutralized by the addition of Amberlyst (R) 15 and filtered. The filtrate was evaporated in vacuo and the crude product was afforded without further purification.

To a solution of the above crude product in DMF (20 mL), sodium hydride (60% in mineral oil, 0.745 g, 18.6 mmol) was added portionwise at 0 °C under argon. The mixture was stirred for 0.5 h. Benzyl bromide (1.62 mL, 14.8 mmol) was added dropwise. After stirring for 18 h at room temperature, it was quenched by the addition of MeOH (5 mL) and concentrated in vacuo. The residue was diluted with CH₂Cl₂ and washed with water (3 x 100 mL) and saturated aqueous NaCl solution. The organic layer was dried over Na₂SO₄ and filtered. The solvent was removed in vacuo and the residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc

= 15:1) to yield product **1g** (1.87 g, 89%) as a white solid. $[\alpha]^{25}_{D}$ = -34.0 (c = 0.1, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.22 (m, 20H), 6.26 (d, *J* = 2.2 Hz, 2H), 6.15 (t, *J* = 2.2 Hz, 1H), 5.01 – 4.92 (m, 3H), 4.84 (d, *J* = 10.9 Hz, 1H), 4.77 (d, *J* = 11.8 Hz, 1H), 4.73 (d, *J* = 11.8 Hz, 1H), 4.63 (d, *J* = 11.7 Hz, 1H), 4.45 (d, *J* = 11.6 Hz, 1H), 4.38 (d, *J* = 11.6 Hz, 1H), 4.09 (dd, *J* = 9.7, 7.7 Hz, 1H), 3.93 (d, *J* = 2.8 Hz, 1H), 3.68 (s, 6H), 3.67 – 3.57 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 161.44, 159.44, 138.70, 138.53, 137.99, 128.52, 128.40, 128.33, 128.04, 127.89, 127.76, 127.72, 127.69, 102.10, 95.95, 95.07, 82.27, 79.30, 74.69, 74.00, 73.76, 73.60, 73.22, 69.04, 55.44. ESI-HRMS calculated for C₄₂H₄₅O₈ [M+H] ⁺ 677.3114, found 677.3118.

3,5-Dimethoxyphenyl 2,3,4,6-tetra-O-benzoyl-β-D-galactopyranoside (1k)

It was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3:1) to yield product **1k** (2.20 g, 97%, over two steps) as a colorless syrup, following the same procedure for the synthesis of **1f**. [α]²⁵_D = 14.0 (c = 0.1, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.15 (dt, *J* = 8.4, 1.7 Hz, 2H), 8.07 (dt, *J* = 8.4, 1.8 Hz, 2H), 7.99 (dt, *J* = 8.4, 1.6 Hz, 2H), 7.84 (dd, *J* = 8.4, 1.4 Hz, 2H), 7.69 – 7.62 (m, 1H), 7.59 (td, *J* = 7.2, 1.4 Hz, 1H), 7.56 – 7.42 (m, 6H), 7.39 (t, *J* = 7.8 Hz, 2H), 7.29 (d, *J* = 7.9 Hz, 3H), 6.26 (d, *J* = 2.2 Hz, 2H), 6.18 (t, *J* = 2.2 Hz, 1H), 6.14 – 6.04 (m, 2H), 5.71 (dd, *J* = 10.4, 3.5 Hz, 1H), 5.42 (d, *J* = 8.0 Hz, 1H), 4.67 (dd, *J* = 11.2, 7.2 Hz, 1H), 4.62 – 4.49 (m, 2H), 3.67 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 166.11, 165.56, 165.52, 165.28, 161.43, 158.83, 133.68, 133.34, 133.23, 130.08, 129.87, 129.82, 129.77, 129.39, 129.21, 128.91, 128.71, 128.66, 128.46, 128.42, 128.32, 100.05, 95.99, 95.48, 71.94, 71.68, 69.53, 68.08, 62.56, 55.32. ESI-HRMS calculated for C₄₂H₃₇O₁₂ [M+H]⁺ 733.2285, found 733.2288.

3,5-Dimethoxyphenyl 2,3,4,6-tetra-O-benzyl-α-D-mannopyranoside (1h)

To a solution of D-mannose (2.0 g, 11.1 mmol) in pyridine (30 mL), Ac₂O (30 mL) was added. After stirring overnight, the solvent was evaporated in vacuo. The residue was diluted with CH_2Cl_2 and washed with water (3 x 100 mL), saturated aqueous NaHCO₃ solution (2 x 100 mL) and saturated aqueous NaCl solution. The organic layer was dried over Na₂SO₄ and filtered. The solvent was removed in vacuo and the crude product was dissolved in dry CH_2Cl_2 (30 mL). Trimethylsilyl iodide (TMSI, 2.37 mL, 16.7 mmol) was added and the reaction mixture was refluxed under argon. When TLC indicated the reaction was complete, the solvent was removed in vacuo. The glycol iodide **S10** was afforded without further purification.

To a solution of **S10** in CH₂Cl₂ (35 mL), NaOH (0.666 g, 16.7 mmol) and 3,5-dimethoxyphenol (2.57 g, 16.7 mmol) were added under argon. The mixture was stirred till TLC indicated the glycol iodide was disappeared completely. The reaction mixture was washed with water (3 x 100 mL) and saturated aqueous NaCl solution. The organic layer was dried over Na₂SO₄ and filtered. The solvent was removed in vacuo and the residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3:1) to yield product **S11** (3.77 g, 70%, over three steps) as a colorless syrup. $[\alpha]^{25}{}_{D}$ = -9.12 (c = 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 6.32 (d, *J* = 2.3 Hz, 2H), 6.25 (t, *J* = 2.3 Hz, 1H), 5.43 (d, *J* = 2.6 Hz, 1H), 5.30 (dd, *J* = 10.5, 9.0 Hz, 1H), 5.10 (dd, *J* = 9.9, 4.0 Hz, 1H), 4.34 (dd, *J* = 4.0, 2.7 Hz, 1H), 4.23 (dd, *J* = 12.1, 5.2 Hz, 1H), 4.15 (dd, *J* = 12.2, 2.8 Hz, 1H), 3.75 (s, 6H), 3.67 (ddd, *J* = 9.5, 5.1, 2.8 Hz, 1H), 2.12 (s, 3H), 2.08 (s, 3H), 2.05 (s, 3H), 1.85 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.74, 170.20, 169.59, 161.11, 154.50, 124.45, 101.22, 97.41, 97.07, 76.00, 71.73, 70.21, 65.71, 62.61, 55.49, 24.27, 20.84, 20.80, 20.75. ESI-HRMS calculated for C₂₂H₂₉O₁₂ [M+H]⁺ 485.1659, found 485.1656.

Compound S11 (2.00 g, 4.13 mmol) was dissolved in dry CH₂Cl₂ (20 mL) containing freshly

activated 4 Å molecular sieves (2.00 g), and stirred under argon for 0.5 h. TMSOTf (74.7 µL, 0.04 mmol) was added at 0 °C. When TLC indicated the compound **S11** was disappeared completely, the reaction was quenched by Et₃N (1 mL) and filtered through Celite. The solvent was removed in vacuo and the residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 4:1) to yield product **S12** (0.940 g, 47%) as a colorless syrup. $[\alpha]^{25}_{D} = 50.0$ (c = 0.1, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 6.28 (d, *J* = 1.7 Hz, 2H), 6.18 (d, *J* = 1.9 Hz, 1H), 5.55 (dd, *J* = 10.0, 3.1 Hz, 1H), 5.50 (s, 1H), 5.46 – 5.41 (m, 1H), 5.36 (t, *J* = 10.2 Hz, 1H), 4.30 (dd, *J* = 12.5, 5.6 Hz, 1H), 4.14 – 4.03 (m, 2H), 3.76 (s, 6H), 2.20 (s, 3H), 2.06 (s, 6H), 2.04 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.56, 169.94, 169.71, 161.49, 157.36, 95.77, 95.40, 95.17, 69.37, 69.14, 68.90, 65.95, 62.12, 55.42, 29.69, 20.86, 20.68, 20.59. ESI-HRMS calculated for C₂₂H₂₉O₁₂ [M+H]⁺ 485.1659, found 485.1659.

It was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 15:1) to yield product **1h** (1.99 g, 90%, over two steps) as a white solid, following the same procedure as the synthesis of **1g**. [α]²⁵_D = 53.5 (c = 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.26 (m, 18H), 7.21 (dd, *J* = 7.2, 1.7 Hz, 2H), 6.27 (d, *J* = 2.1 Hz, 2H), 6.17 (t, *J* = 2.1 Hz, 1H), 5.61 (s, 1H), 4.94 (d, *J* = 10.7 Hz, 1H), 4.82 (s, 2H), 4.77 – 4.64 (m, 3H), 4.58 (d, *J* = 10.8 Hz, 1H), 4.49 (d, *J* = 11.9 Hz, 1H), 4.18 (M, 1H), 4.13 (dd, *J* = 9.3, 2.7 Hz, 1H), 4.01 – 3.97 (m, 1H), 3.90 (dd, *J* = 9.2, 4.3 Hz, 1H), 3.84 (dd, *J* = 10.9, 4.4 Hz, 1H), 3.77 – 3.70 (m, 7H). ¹³C NMR (101 MHz, CDCl₃) δ 161.55, 158.22, 138.60, 138.58, 138.44, 138.28, 128.51, 128.44, 128.36, 128.06, 127.98, 127.95, 127.80, 127.78, 127.74, 127.72, 127.57, 96.48, 95.23, 95.11, 80.14, 75.27, 74.83, 74.61, 73.45, 72.89, 72.64, 72.51, 69.16, 55.49. ESI-HRMS calculated for C₄₂H₄₈NO₈ [M+NH₄]⁺ 694.3380, found 694.3377.

15 / 73

It was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5:1) to yield product **S15** (3.22 g, 62%, over three steps) as a colorless syrup, following the same procedure as the synthesis of **S11**. $[\alpha]^{25}_{D}$ = 5.00 (c = 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 6.32 (d, *J* = 2.1 Hz, 2H), 6.25 (t, *J* = 2.1 Hz, 1H), 5.36 (d, *J* = 2.2 Hz, 1H), 5.10 – 5.03 (m, 2H), 4.32 (s, 1H), 3.74 (s, 6H), 3.56 – 3.45 (m, 1H), 2.11 (s, 3H), 2.06 (s, 3H), 1.84 (s, 3H), 1.23 (d, *J* = 6.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.25, 169.89, 161.03, 154.57, 124.37, 101.13, 97.14, 96.97, 76.26, 70.39, 70.32, 69.35, 55.43, 24.38, 20.86, 20.75, 17.60. ESI-HRMS calculated for C₂₀H₂₇O₁₀ [M+H]⁺ 427.1604, found 427.1606.

It was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5:1) to yield product **1i** (0.866 g, 43%) as a white solid, following the same procedure as the synthesis of **S12**. $[\alpha]^{25}_{D} = 50.0 (c = 0.1, CHCl_3)$. ¹H NMR (400 MHz, CDCl_3) δ 6.27 (d, J = 2.1 Hz, 2H), 6.17 (t, J = 2.1 Hz, 1H), 5.50 (dd, J = 10.1, 3.4 Hz, 1H), 5.44 – 5.37 (m, 2H), 5.15 (t, J = 10.0 Hz, 1H), 4.06 – 3.93 (m, 1H), 3.76 (s, 6H), 2.19 (s, 3H), 2.06 (s, 3H), 2.03 (s, 3H), 1.22 (d, J = 6.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.08, 170.08, 170.02, 161.54, 157.72, 95.70, 95.23, 95.06, 71.02, 69.71, 68.99, 67.22, 55.46, 20.92, 20.82, 20.78, 17.54. ESI-HRMS calculated for C₂₀H₂₇O₁₀ [M+H]⁺ 427.1604, found 427.1601.

3,5-Dimethoxyphenyl 2,3,4-tri-O-benzyl-α-L-rhamnopyranoside (1j)

It was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 15:1) to yield product **1j** (1.85 g, 92%, over two steps) as a colorless syrup, following the same procedure as the synthesis of **1g**. $[\alpha]^{25}_{D}$ = 50.0 (c = 0.3, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.24 (m, 15H), 6.19 (d, *J* = 2.2 Hz, 2H), 6.13 (t, *J* = 2.1 Hz, 1H), 5.46 (d, *J* = 1.7 Hz, 1H), 4.96 (d, *J* = 10.8 Hz, 1H), 4.82 (d, *J* = 12.4 Hz, 1H), 4.77 (d, *J* = 12.4 Hz, 1H), 4.73 – 4.64 (m, 3H), 4.05 (dd, *J* = 9.2, 3.1 Hz, 1H), 3.97 – 3.93 (m, 1H), 3.84 – 3.76 (m, 1H), 3.76 – 3.65 (m, 7H), 1.31 (d, *J* = 6.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.52, 158.22, 138.62, 138.23, 128.55, 128.52, 128.51, 128.13,

128.08, 127.91, 127.80, 127.76, 127.74, 96.33, 95.07, 94.76, 80.55, 80.07, 74.73, 73.09, 72.50, 68.95, 55.48, 18.23. ESI-HRMS calculated for C₃₅H₃₉O₇ [M+H]⁺ 571.2696, found 571.2690.

3,5-Dimethoxyphenyl 2,3,4-tri-O-benzoyl-β-D-glucopyranoside (11)

To a suspension of **S5** (1.50 g, 3.10 mmol) in MeOH (10 mL), 30% NaOMe/MeOH was added dropwise to adjust the pH to 9-10. After the disappearance of **S5**, the mixture was neutralized by the addition of Amberlyst (R) 15 and filtered. The filtrate was evaporated in vacuo and the crude product was afforded without further purification. The above crude product was dissolved in (10 mL) DMF. Imidazole (0.42g, 6.20 mmol) and TBDPSCI (0.97 mL, 3.72 mmol) were added. After stirring for 6 h, the reaction was quenched by MeOH (2.0 mL). The solvent was removed in vacuo. The residue was diluted with 20 mL of CH₂Cl₂ and washed with water (20 mL), 1 M HCl (3 x 20 mL), saturated aqueous NaHCO₃ solution (2 x 20 mL) and saturated aqueous NaCl solution. The organic layer was dried over Na₂SO₄ and filtered. The crude product was dissolved in pyridine (3 x 100 mL), saturated aqueous NaHCO₃ solution (2 x 100 mL) and saturated aqueous NaCl solution. The organic layer was dried over Na₂SO₄ and filtered. The filtrate was evaporated in vacuo and the crude product was dried over Na₂SO₄ and filtered. The filtrate was evaporated in vacuo and the crude product was dried over Na₂SO₄ and filtered. The filtrate was evaporated in vacuo and the crude product was dried over Na₂SO₄ and filtered. The filtrate was evaporated in vacuo and the crude product was dried over Na₂SO₄ and filtered. The filtrate was evaporated in vacuo and the crude product was afforded without further purification.

To a solution of the above crude product in CH₂Cl₂ (20 mL), AcOH (0.71 mL, 12.4 mmol) and TBAF (1 M in THF, 6.2 mL) was added. The mixture was stirred for 7 h at room temperature. Then, the reaction mixture was diluted with CH₂Cl₂ and washed with water (3 x 100 mL), saturated aqueous NaHCO₃ solution (2 x 100 mL) and saturated aqueous NaCl solution. The organic layer was dried over Na₂SO₄ and filtered. The solvent was removed in vacuo and the residue was purified by flash column chromatography on silica gel (petroleum ether: EtOAc = 5: 1) to yield product **11** (1.05 g, 54%) as a white solid. $[\alpha]^{25}_{D} = 21.1$ (c = 0.1, CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ 7.95 (d, *J* = 8.2 Hz, 4H), 7.88 – 7.84 (m, 2H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.51 (t, *J* = 7.4 Hz, 1H), 7.44 (t, *J* = 7.4 Hz, 1H), 7.40 (t, *J* = 7.8 Hz, 2H), 7.37 (t, *J* = 7.8 Hz, 2H), 7.30 (t, *J* = 7.8 Hz, 2H), 6.18 (d, *J*

= 2.1 Hz, 2H), 6.17 – 6.14 (m, 1H), 6.00 (t, J = 9.6 Hz, 1H), 5.75 (dd, J = 9.7, 7.9 Hz, 1H), 5.58 (t, J = 9.7 Hz, 1H), 5.41 (d, J = 7.9 Hz, 1H), 3.95 (ddd, J = 9.8, 4.8, 2.3 Hz, 1H), 3.92 – 3.87 (m, 1H), 3.82 – 3.76 (m, 1H), 3.70 (s, 6H), 2.56 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 165.95, 165.81, 165.11, 161.44, 158.70, 133.76, 133.35, 129.97, 129.84, 129.80, 129.11, 128.78, 128.56, 128.53, 128.42, 128.37, 99.42, 95.74, 95.48, 75.06, 72.70, 71.69, 69.31, 61.39, 55.41. ESI-HRMS calculated for C₃₅H₃₃O₁₁ [M+H] ⁺ 629.2023, found 629.2025.

5 Characterization data for coupled products

Methyl2,3,4-tri-O-benzyl-6-O-(2,3,4,6-tetra-O-benzyl-α/β-D-glucopyranosyl)-α-D-glucopyranoside (5)

Compound **5** was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.17 (m, 37.53H), 5.01 – 4.87 (m, 3.44H), 4.83 – 4.40 (m, 13.86H), 4.35 (d, *J* = 7.8 Hz, 1.01H), 4.21 – 4.13 (m, 1.07H), 4.02 – 3.96 (m, 1.07H), 3.85 – 3.40 (m, 11.82H), 3.35 (s, 0.22H), 3.32 (s, 3.00H). The ¹H NMR data coincide with the previous report.³

Methyl2,3,6-tri-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-α/β-D-glucopyranosyl)-α-D-glucopyranoside (6)

Compound **6** was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.32 (m, 1.91H), 7.23 – 7.09 (m, 46.82H), 7.05 – 7.00 (m, 0.91H), 5.62 (d, J = 3.6 Hz, 0.33H), 5.02 (d, J = 11.3 Hz, 1.00H), 4.96 (d, J = 11.7 Hz, 0.35H),

4.83 - 4.60 (m, 9.06H), 4.56 - 4.27 (m, 11.01H), 4.20 (d, J = 12.1 Hz, 0.35H), 4.05 - 3.93 (m, 0.77H), 3.92 - 3.73 (m, 4.08H), 3.68 - 3.36 (m, 10.20H), 3.34 - 3.26 (m, 5.26H), 3.24 - 3.18 (m, 1.18H). The ¹H NMR data coincide with the previous report.⁴

Methyl2,4,6-tri-O-benzyl-3-O-(2,3,4,6-tetra-O-benzyl-α/β-D-glucopyranosyl)-α-D-glucopyranoside (7)

Compound 7 was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5:1). *a*-isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.14 (m, 31H), 7.12 – 7.08 (m, 2H), 7.00 (d, J = 6.1 Hz, 2H), 5.59 (d, J = 3.4 Hz, 1H), 4.94 (d, J = 11.6 Hz, 1H), 4.90 (d, J = 10.8 Hz, 1H), 4.85 – 4.78 (m, 2H), 4.70 – 4.56 (m, 5H), 4.52 (d, J = 11.5 Hz, 1H), 4.48 – 4.22 (m, 7H), 4.05 (t, J = 9.4 Hz, 1H), 3.81 – 3.50 (m, 10H), 3.32 (s, 3H). **β-isomer**: ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 7.2 Hz, 2H), 7.29 – 7.02 (m, 54H), 5.03 – 4.95 (m, 3H), 4.93 (d, J = 10.8 Hz, 1H), 4.85 – 4.77 (m, 2H), 4.75 (d, J = 10.7 Hz, 1H), 4.58 (d, J = 11.7 Hz, 1H), 4.53 (dd, J = 11.5, 3.5 Hz, 2H), 4.45 – 4.37 (m, 4H), 4.36 – 4.28 (m, 2H), 3.71 – 3.31 (m, 12H), 3.24 (s, 3H). The ¹H NMR data coincide with the previous report.⁴

Methyl 3-*O*-benzyl-4,6-*O*-benzylidene-2-*O*-(2,3,4,6-tetra-*O*-benzyl-α/β-D-glucopyranosyl)-α-D-glucopyranoside (8)

Compound 8 was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5:1). α -isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 4.1 Hz, 2H), 7.39 – 7.24 (m, 41H), 7.23 – 7.11 (m, 9H), 5.56 (s, 1H), 5.04 (d, J = 11.5 Hz, 1H), 4.96 (d, J = 3.7 Hz, 1H), 4.92 (d, J = 11.0

Hz, 1H), 4.83 - 4.73 (m, 5H), 4.65 (d, J = 10.6 Hz, 1H), 4.57 (d, J = 12.3 Hz, 1H), 4.53 - 4.47 (m, 2H), 4.32 (dd, J = 10.3, 4.9 Hz, 1H), 4.10 (t, J = 9.3 Hz, 1H), 3.94 - 3.83 (m, 2H), 3.76 (t, J = 10.2 Hz, 1H), 3.68 - 3.51 (m, 6H), 3.46 - 3.38 (m, 4H). **β-isomer**: ¹H NMR (400 MHz, CDCl₃) δ 7.54 - 7.48 (m, 2H), 7.44 - 7.20 (m, 26H), 7.17 - 7.08 (m, 3H), 7.02 (dd, J = 13.4, 6.2 Hz, 2H), 5.57 (s, 1H), 5.02 (d, J = 10.8 Hz, 1H), 4.92 (d, J = 3.6 Hz, 1H), 4.90 - 4.78 (m, 5H), 4.75 (d, J = 10.3 Hz, 1H), 4.71 (d, J = 12.2 Hz, 1H), 4.53 (d, J = 12.1 Hz, 1H), 4.45 (d, J = 10.9 Hz, 1H), 4.35 - 4.24 (m, 2H), 4.17 - 4.07 (m, 3H), 3.91 - 3.82 (m, 2H), 3.78 - 3.57 (m, 4H), 3.51 - 3.43 (m, 4H), 3.39 (dd, J = 10.9, 1.7 Hz, 1H). The ¹H NMR data coincide with the previous report.⁴

1,2:3,4-Di-*O*-isopropylidene-6-*O*-(2,3,4,6-tetra-*O*-benzyl-α/β-D-glucopyranosyl)-α-D-galactopyranose (9)

Compound **9** was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.39 (m, 2.20H), 7.36 – 7.26 (m, 17.51H), 7.16 – 7.11 (m, 2.18H), 5.57 (d, *J* = 5.0 Hz, 1.00H), 5.52 (d, *J* = 4.6 Hz, 0.09H), 5.05 (d, *J* = 11.2 Hz, 1.14H), 5.01 – 4.93 (m, 1.35H), 4.87 – 4.67 (m, 3.98H), 4.65 – 4.42 (m, 6.12H), 4.34 – 4.29 (m, 1.19H), 4.28 – 4.22 (m, 1.14H), 4.20 – 4.13 (m, 1.15H), 4.12 – 4.06 (m, 1.14H), 3.86 – 3.55 (m, 7.20H), 3.51 – 3.38 (m, 2.40H), 1.56 (s, 3.43H), 1.50 (s, 3.33H), 1.45 (s, 3.31H), 1.31 (s, 6.71H). The ¹H NMR data coincide with the previous report.⁴

(-)-Menthyl 2,3,4,6-tetra-*O*-benzyl-α/β-D-glucopyranoside (10)

Compound **10** was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 10:1). α -isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.25 (m, 31H), 7.16 – 7.09 (m, 2H), 5.02 (d, J = 3.6 Hz, 1H), 4.97 (d, J = 10.9 Hz, 1H), 4.82 (dd, J = 10.8, 6.1 Hz, 2H), 4.73 – 4.60 (m, 3H), 4.49 – 4.41 (m, 2H), 4.05 – 3.93 (m, 2H), 3.75 (dd, J = 10.5, 3.8 Hz, 1H), 3.68 – 3.58 (m, 2H), 3.54

(dd, J = 9.8, 3.6 Hz, 1H), 3.35 (td, J = 10.6, 4.3 Hz, 1H), 2.47 – 2.35 (m, 1H), 2.17 – 2.07 (m, 1H), 1.68 – 1.56 (m, 2H), 1.42 – 1.27 (m, 2H), 1.08 – 0.82 (m, 9H), 0.70 (d, J = 6.9 Hz, 3H). β-isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.26 (m, 26H), 7.23 – 7.17 (m, 2H), 5.00 – 4.89 (m, 2H), 4.86 – 4.75 (m, 2H), 4.69 (d, J = 10.9 Hz, 1H), 4.65 – 4.51 (m, 3H), 4.48 (d, J = 7.8 Hz, 1H), 3.73 – 3.68 (m, 2H), 3.68 – 3.57 (m, 2H), 3.51 (td, J = 10.6, 4.1 Hz, 1H), 3.46 – 3.38 (m, 2H), 2.41 – 2.30 (m, 1H), 2.20 – 2.10 (m, 1H), 1.67 (d, J = 11.8 Hz, 2H), 1.43 – 1.29 (m, 2H), 1.05 – 0.87 (m, 9H), 0.83 (d, J = 6.9 Hz, 3H). The ¹H NMR data coincide with the previous report.⁵

Benzyl *N*-(benzyloxycarbonyl)-*O*-(2,3,4,6-tetra-*O*-benzyl-α/β-D-glucopyranosyl)-L-serinate (11)

Compound **11** was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 4:1). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.09 (m, 40.00H), 6.06 (d, *J* = 8.9 Hz, 0.33H), 5.75 (d, *J* = 8.1 Hz, 1.00H), 5.25 – 5.04 (m, 5.94H), 4.95 -4.87 (m, 1.54H), 4.85 – 4.74 (m, 4.12H), 4.74 – 4.68 (m, 0.63H), 4.68 – 4.32 (m, 10.15H), 4.21 – 4.15 (m, 0.36H), 3.91 – 3.80 (m, 1.90H), 3.76 – 3.55 (m, 6.29H), 3.54 - 3.49 (dd, *J* = 9.7, 3.6 Hz, 0.41H), 3.43 – 3.33 (m, 2.26H). The ¹H NMR data coincide with the previous report.⁵

Methyl 2,3,4-tri-O-benzyl-6-O-(2,3,4,6-tetra-O-benzoyl-β-D-glucopyranosyl)-α-D-

glucopyranoside (12)

Compound **12** was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 8.02 – 7.96 (m, 2H), 7.93 – 7.86 (m, 4H), 7.85 – 7.79 (m, 2H), 7.59 – 7.18 (m, 25H), 7.07 – 7.01 (m, 2H), 5.89 (t, *J* = 9.6 Hz, 1H), 5.67 (t, *J* = 9.7 Hz, 1H), 5.59 (dd, *J* = 9.7, 7.8 Hz, 1H), 4.89 (d, *J* = 10.9 Hz, 1H), 4.82 (d, *J* = 7.8 Hz, 1H), 4.73 (d, *J* = 12.1 Hz, 1H), 4.68 (d, *J* = 10.9 Hz, 1H), 4.64 – 4.57 (m, 2H), 4.55 – 4.47 (m, 3H), 4.28 (d, *J* = 11.1 Hz, 1H), 4.68 (d, *J* = 10.9 Hz, 1H), 4.64 – 4.57 (m, 2H), 4.55 – 4.47 (m, 3H), 4.28 (d, *J* = 11.1 Hz, 1H), 4.68 (d, *J* = 10.9 Hz, 1H), 4.64 – 4.57 (m, 2H), 4.55 – 4.47 (m, 3H), 4.28 (d, *J* = 11.1 Hz, 1H), 4.68 (d, *J* = 10.9 Hz, 1H), 4.64 – 4.57 (m, 2H), 4.55 – 4.47 (m, 3H), 4.28 (d, *J* = 11.1 Hz), 4.64 – 4.57 (m, 2H), 4.55 – 4.47 (m, 3H), 4.28 (d, *J* = 11.1 Hz), 4.55 – 4.47 (m, 3H), 4.28 (d, *J* = 11.1 Hz), 4.55 – 4.47 (m, 3H), 4.28 (d, *J* = 11.1 Hz), 4.55 – 4.47 (m, 3H), 4.28 (d, *J* = 11.1 Hz), 4.55 – 4.57 (m, 2H), 4.55 – 4.47 (m, 3H), 4.28 (d, *J* = 11.1 Hz), 4.55 – 4.57 (m, 2H), 4.55 – 4.47 (m, 3H), 4.28 (d, *J* = 11.1 Hz), 4.55 – 4.57 (m, 2H), 4.55 – 4.47 (m, 3H), 4.28 (d, *J* = 11.1 Hz), 4.55 – 4.57 (m, 2H), 4.55 –

1H), 4.15 (d, J = 9.1 Hz, 1H), 4.13 – 4.06 (m, 1H), 3.88 (t, J = 9.3 Hz, 1H), 3.78 – 3.68 (m, 2H), 3.43 (dd, J = 9.7, 3.5 Hz, 1H), 3.37 (t, J = 9.3 Hz, 1H), 3.21 (s, 3H). The ¹H NMR data coincide with the previous report.⁶

Methyl2,3,4-tri-O-benzyl-6-O-(2,3,4,6-tetra-O-benzyl-α/β-D-galactopyranosyl)-α-D-glucopyranoside (13)

Compound **13** was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5:1). *a*-isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.14 (m, 35H), 4.98 – 4.89 (m, 3H), 4.80 – 4.68 (m, 6H), 4.65 (d, *J* = 12.1 Hz, 1H), 4.60 – 4.55 (m, 2H), 4.51 (d, *J* = 11.2 Hz, 1H), 4.46 – 4.38 (m, 2H), 4.31 (d, *J* = 7.7 Hz, 1H), 4.14 (dd, *J* = 10.8, 1.7 Hz, 1H), 3.97 (t, *J* = 9.2 Hz, 1H), 3.89 (d, *J* = 2.6 Hz, 1H), 3.88 – 3.79 (m, 2H), 3.65 – 3.43 (m, 7H), 3.30 (s, 3H). **β**-isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.22 (m, 35H), 4.99 (d, *J* = 3.4 Hz, 1H), 4.98 – 4.90 (m, 2H), 4.85 (d, *J* = 11.0 Hz, 1H), 4.80 (dd, *J* = 11.5, 3.4 Hz, 2H), 4.76 – 4.66 (m, 4H), 4.62 – 4.51 (m, 4H), 4.43 (d, *J* = 11.8 Hz, 1H), 4.36 (d, *J* = 11.8 Hz, 1H), 4.03 (dd, *J* = 9.3, 3.4 Hz, 1H), 4.00 – 3.87 (m, 4H), 3.83 – 3.69 (m, 3H), 3.59 (t, *J* = 9.1 Hz, 1H), 3.55 – 3.45 (m, 2H), 3.41 (dd, *J* = 9.6, 3.5 Hz, 1H), 3.29 (s, 3H). The ¹H NMR data coincide with the previous report.⁴

Methyl2,4,6-tri-O-benzyl-3-O-(2,3,4,6-tetra-O-benzyl-α/β-D-galactopyranosyl)-α-D-glucopyranoside (14)

Compound **14** was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.09 (m, 44.02H), 7.07 – 6.97 (m, 2.53H), 5.59 (d, *J* = 3.5 Hz, 0.33H), 5.06 – 4.87 (m, 5.56H), 4.82 – 4.75 (m, 2.19H), 4.75 – 4.29 (m, 14.99H), 4.28 –

22 / 73

4.21 (m, 0.58H), 4.09 - 3.94 (m, 2.08H), 3.86 (dd, J = 9.7, 7.8 Hz, 1.15H), 3.76 (dd, J = 10.3, 3.6 Hz, 1.28H), 3.73 - 3.43 (m, 10.91H), 3.28 (s, 3.01H), 3.24 (s, 0.86H). The ¹H NMR data coincide with the previous report.⁶

Methyl 2-*O*-benzyl-4,6-*O*-benzylidene-3-*O*-(2,3,4,6-tetra-*O*-benzyl-α/β-D-galactopyranosyl)α-D-glucopyranoside (15)

Compound **15** was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5:1). *α*-isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.43 (m, 2H), 7.38 – 7.24 (m, 26H), 7.20 – 7.16 (m, 2H), 5.50 (s, 1H), 5.03 (d, J = 11.0 Hz, 1H), 4.93 (d, J = 11.6 Hz, 1H), 4.82 – 4.75 (m, 3H), 4.68 (s, 2H), 4.60 (d, J = 11.7 Hz, 1H), 4.51 (d, J = 12.1 Hz, 1H), 4.44 (d, J = 3.8 Hz, 1H), 4.36 – 4.26 (m, 2H), 4.26 – 4.16 (m, 2H), 3.89 – 3.82 (m, 2H), 3.82 – 3.75 (m, 1H), 3.71 – 3.64 (m, 2H), 3.64 – 3.56 (m, 2H), 3.48 (dd, J = 9.7, 2.9 Hz, 1H), 3.39 (dd, J = 8.7, 5.4 Hz, 1H), 3.36 – 3.31 (m, 4H). **β**-isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.22 (m, 25H), 7.15 (d, J = 7.2 Hz, 1H), 7.09 (t, J = 7.4 Hz, 2H), 7.02 (d, J = 7.3 Hz, 2H), 5.61 (d, J = 3.4 Hz, 1H), 5.43 (s, 1H), 4.88 (d, J = 11.3 Hz, 1H), 4.85 (d, J = 11.9 Hz, 1H), 4.77 – 4.68 (m, 2H), 4.61 – 4.49 (m, 4H), 4.44 (d, J = 12.3 Hz, 1H), 4.41 – 4.29 (m, 4H), 4.21 (dd, J = 10.1, 4.6 Hz, 1H), 3.64 – 3.56 (m, 2H), 3.53 (t, J = 8.5 Hz, 1H), 3.33 (s, 3H). The ¹H NMR data coincide with the previous report.⁴

Methyl 2,3,4-tri-*O*-benzyl-6-*O*-(2,3,4,6-tetra-*O*-benzyl-α/β-D-mannopyranosyl)-α-Dglucopyranoside (16)

Compound 16 was purified by flash column chromatography on silica gel (petroleum ether/EtOAc

23 / 73

= 5:1). **α-isomer**: ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.19 (m, 33H), 7.16 (dd, J = 6.8, 2.7 Hz, 2H), 5.03 – 4.96 (m, 2H), 4.93 – 4.85 (m, 2H), 4.84 – 4.78 (m, 2H), 4.77 – 4.68 (m, 3H), 4.66 – 4.60 (m, 3H), 4.59 (d, J = 3.5 Hz, 1H), 4.55 – 4.48 (m, 2H), 4.46 (d, J = 12.1 Hz, 1H), 4.03 (d, J = 9.5 Hz, 1H), 3.98 (d, J = 9.2 Hz, 1H), 3.90 – 3.82 (m, 2H), 3.82 – 3.78 (m, 1H), 3.76 – 3.66 (m, 3H), 3.66 – 3.58 (m, 2H), 3.47 (dd, J = 9.6, 3.6 Hz, 1H), 3.44 – 3.38 (m, 1H), 3.33 (s, 3H). **β-isomer**: ¹H NMR (400 MHz, CDCl₃) 7.45 – 7.18 (m, 39H), δ 5.03 (d, J = 10.9 Hz, 1H), 4.96 (d, J = 12.5 Hz, 1H), 4.91 (d, J = 10.8 Hz, 1H), 4.88 – 4.77 (m, 4H), 4.68 (d, J = 12.1 Hz, 1H), 4.65 – 4.47 (m, 7H), 4.18 (dd, J = 10.5, 1.8 Hz, 1H), 4.15 (s, 1H), 4.04 (t, J = 9.2 Hz, 1H), 3.89 – 3.70 (m, 5H), 3.53 (dd, J = 9.7, 3.5 Hz, 1H), 3.51 – 3.41 (m, 3H), 3.41 – 3.38 (m, 1H), 3.35 (s, 3H). The ¹H NMR data coincide with the previous report.⁶

Methyl2,3,6-tri-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-α-D-mannopyranosyl)-α-D-glucopyranoside (17)

Compound **17** was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.12 (m, 35H), 5.29 (d, *J* = 1.9 Hz, 1H), 5.08 (d, *J* = 11.7 Hz, 1H), 4.84 (d, *J* = 10.8 Hz, 1H), 4.67 (d, *J* = 12.1 Hz, 1H), 4.62 – 4.50 (m, 7H), 4.48 (d, *J* = 10.9 Hz, 1H), 4.42 (dd, *J* = 12.0, 1.9 Hz, 2H), 4.30 (d, *J* = 12.1 Hz, 1H), 4.20 (d, *J* = 12.1 Hz, 1H), 3.97 (t, *J* = 9.5 Hz, 1H), 3.86 (dd, *J* = 9.2, 2.8 Hz, 1H), 3.84 – 3.68 (m, 7H), 3.66 (dd, *J* = 10.8, 4.7 Hz, 1H), 3.59 – 3.50 (m, 2H), 3.39 (s, 3H). The ¹H NMR data coincide with the previous report.⁶

Methyl 2,3,4-tri-O-benzyl-6-O-(2,3,4-tri-O-acetyl-α-L-rhamnopyranosyl)-α-D-

glucopyranoside (18)

= 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.19 (m, 15H), 5.20 (dd, *J* = 10.1, 3.5 Hz, 1H), 5.14 (dd, *J* = 3.5, 1.8 Hz, 1H), 4.97 (t, *J* = 9.9 Hz, 1H), 4.92 (d, *J* = 10.9 Hz, 1H), 4.84 (d, *J* = 11.2 Hz, 1H), 4.78 – 4.70 (m, 2H), 4.64 – 4.57 (m, 2H), 4.53 – 4.45 (m, 2H), 3.92 (t, *J* = 9.2 Hz, 1H), 3.84 – 3.74 (m, 2H), 3.70 (dd, *J* = 10.3, 5.6 Hz, 1H), 3.50 – 3.41 (m, 2H), 3.37 – 3.33 (m, 1H), 3.32 (s, 3H), 2.06 (s, 3H), 1.97 (s, 3H), 1.91 (s, 3H), 1.10 (d, *J* = 6.3 Hz, 3H). The ¹H NMR data coincide with the previous report.⁷

Methyl 2,3,4-tri-*O*-benzyl-6-*O*-(2,3,4-tri-*O*-benzyl-α/β-L-rhamnopyranosyl)-α-D-

glucopyranoside (19)

Compound **19** was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 10:1). *a*-isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.16 (m, 30H), 5.03 – 4.90 (m, 2H), 4.79 (d, *J* = 11.9 Hz, 3H), 4.75 – 4.55 (m, 7H), 4.53 (d, *J* = 3.4 Hz, 1H), 4.37 (d, *J* = 11.0 Hz, 1H), 3.95 (t, *J* = 9.2 Hz, 1H), 3.87 – 3.77 (m, 2H), 3.77 – 3.57 (m, 4H), 3.52 – 3.40 (m, 2H), 3.34 (t, *J* = 9.5 Hz, 1H), 3.26 (s, 3H), 1.30 (d, *J* = 6.1 Hz, 3H). **β**-isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.41 (m, 2H), 7.41 – 7.20 (m, 28H), 4.98 (d, *J* = 7.6 Hz, 1H), 4.96 – 4.93 (m, 2H), 4.87 (d, *J* = 11.5 Hz, 2H), 4.84 – 4.74 (m, 3H), 4.70 – 4.58 (m, 3H), 4.53 (d, *J* = 11.9 Hz, 1H), 4.46 (d, *J* = 12.0 Hz, 1H), 4.43 (s, 1H), 4.28 (dd, *J* = 11.1, 3.1 Hz, 1H), 4.01 – 3.92 (m, 2H), 3.74 (d, *J* = 9.8 Hz, 1H), 3.68 – 3.56 (m, 3H), 3.51 – 3.42 (m, 2H), 3.39 – 3.27 (m, 4H), 1.35 (d, *J* = 6.1 Hz, 3H). The ¹H NMR data coincide with the previous report.⁸

2',3',4',6'-Tetra-O-benzyl-α/β-D-glucopyranosyl-2,6-dichloropurine (21)

Compound **21** was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 4:1). α -isomer: [α]²⁵_D = 2.59 (c = 0.2, CHCl₃).¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 1H), 7.46 –

7.06 (m, 20H), 6.88 (d, J = 6.8 Hz, 2H), 6.20 (d, J = 4.2 Hz, 1H), 4.79 (s, 2H), 4.72 (d, J = 11.2 Hz, 1H), 4.63 – 4.52 (m, 3H), 4.48 (d, J = 12.1 Hz, 1H), 4.24 (d, J = 12.0 Hz, 1H), 4.12 – 4.04 (m, 2H), 3.94 – 3.87 (m, 1H), 3.87 – 3.78 (m, 1H), 3.70 (dd, J = 10.8, 4.4 Hz, 1H), 3.63 (dd, J = 10.8, 2.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 152.78, 152.63, 151.38, 145.58, 137.69, 137.63, 137.55, 136.14, 130.43, 128.66, 128.50, 128.41, 128.36, 128.32, 128.19, 128.13, 128.09, 127.99, 127.94, 127.76, 79.87, 79.59, 76.40, 76.09, 74.31, 74.10, 73.92, 73.57, 73.54, 68.46. ESI-HRMS calculated for C₃₉H₃₇N₄O₅Cl₂ [M+H]⁺ 711.2141, found 711.2151. **β-isomer**: [α]²⁵_D = -31.6 (c = 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.41 – 7.18 (m, 17H), 7.16 – 7.07 (m, 1H), 7.07 – 6.98 (m, 2H), 6.76 – 6.66 (m, 2H), 5.48 (d, J = 9.0 Hz, 1H), 4.99 (d, J = 10.9 Hz, 1H), 4.94 (d, J = 10.9 Hz, 1H), 4.89 (d, J = 10.7 Hz, 1H), 4.73 – 4.63 (m, 2H), 4.59 – 4.43 (m, 2H), 4.24 (d, J = 12.0 Hz, 1H), 4.13 – 4.02 (m, 1H), 3.96 – 3.81 (m, 2H), 3.81 – 3.63 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.96, 152.52, 151.60, 143.90, 137.87, 137.72, 137.66, 136.35, 130.66, 128.59, 128.55, 128.42, 128.09, 128.08, 128.04, 128.00, 127.99, 127.88, 127.78, 127.72, 85.94, 83.44, 79.41, 78.29, 77.29, 75.97, 75.30, 74.84, 73.56, 68.27. ESI-HRMS calculated for C₃₉H₃₇N₄O₅Cl₂ [M+H]⁺ 711.2141, found 711.2139.

2',3',4',6'-Tetra-O-benzyl-α/β-D-glucopyranosyl-6-chloropurine (22)

Compound **22** was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3:1). **\alpha-isomer**: ¹H NMR (400 MHz, CDCl₃) δ 8.69 (s, 1H), 8.41 (s, 1H), 7.42 – 7.24 (m, 15H), 7.24 – 7.10 (m, 5H), 6.99 – 6.91 (m, 2H), 6.28 (d, *J* = 4.9 Hz, 1H), 4.87 (d, *J* = 11.4 Hz, 1H), 4.82 (d, *J* = 11.4 Hz, 1H), 4.76 (d, *J* = 11.1 Hz, 1H), 4.65 – 4.54 (m, 3H), 4.47 (d, *J* = 12.0 Hz, 1H), 4.34 (d, *J* = 11.9 Hz, 1H), 4.20 – 4.11 (m, 2H), 3.90 – 3.79 (m, 2H), 3.71 (dd, *J* = 10.8, 3.8 Hz, 1H), 3.62 (dd, *J* = 10.8, 2.1 Hz, 1H). **\beta-isomer**: ¹H NMR (400 MHz, CDCl₃) δ 8.68 (s, 1H), 8.03 (s, 1H), 7.40 – 7.24 (m, 15H), 7.24 – 7.18 (m, 2H), 7.16 – 7.08 (m, 1H), 7.05 – 6.95 (m, 2H), 6.66 – 6.60 (m, 2H), 5.59 (d, *J* = 9.0 Hz, 1H), 4.99 (d, *J* = 11.0 Hz, 1H), 4.95 (d, *J* = 11.0 Hz, 1H), 4.89 (d, *J* = 10.7 Hz, 1H), 4.66 (d, *J* = 10.7 Hz, 1H), 4.12 – 4.03 (m, 1H), 3.95 – 3.84 (m, 2H), 3.79 – 3.67 (m, 12.2 Hz, 1H), 4.17 (d, *J* = 11.7 Hz, 1H), 4.12 – 4.03 (m, 1H), 3.95 – 3.84 (m, 2H), 3.79 – 3.67 (m, 12.2 Hz, 1H), 4.17 (d, *J* = 11.7 Hz, 1H), 4.12 – 4.03 (m, 1H), 3.95 – 3.84 (m, 2H), 3.79 – 3.67 (m, 12.2 Hz, 1H), 4.17 (d, *J* = 11.7 Hz, 1H), 4.12 – 4.03 (m, 1H), 3.95 – 3.84 (m, 2H), 3.79 – 3.67 (m, 12.2 Hz, 1H), 4.17 (d, *J* = 11.7 Hz, 1H), 4.12 – 4.03 (m, 1H), 3.95 – 3.84 (m, 2H), 3.79 – 3.67 (m, 12.2 Hz, 1H), 4.17 (d, *J* = 11.7 Hz, 1H), 4.12 – 4.03 (m, 1H), 3.95 – 3.84 (m, 2H), 3.79 – 3.67 (m, 12.2 Hz, 1H), 4.17 (d, *J* = 11.7 Hz, 1H), 4.12 – 4.03 (m, 1H), 3.95 – 3.84 (m, 2H), 3.79 – 3.67 (m, 12.2 Hz, 1H), 4.17 (d, *J* = 11.7 Hz, 1H), 4.12 – 4.03 (m, 1H), 3.95 – 3.84 (m, 2H), 3.79 – 3.67 (m, 12.2 Hz, 1H), 4.17 (d, *J* = 11.7 Hz, 1H), 4.12 – 4.03 (m, 1H), 3.95 – 3.84 (m, 2H), 3.79 – 3.67 (m, 12.2 Hz, 1H), 4.17 (d, *J* = 11.7 Hz, 1H), 4.12 – 4.03 (m, 1H), 3.95 – 3.84 (m, 2H), 3.79 – 3.67 (m, 12.2 Hz, 1H), 4.17 (d, *J* = 11.7 Hz, 1H), 4.12 – 4.03 (m, 1H), 3.95 – 3.84 (m, 2H), 3.79 – 3.67 (m, 12.2 Hz, 1H), 4.18 (d, *J* = 11.2 Hz, 1H), 4.18 (d, *J* = 11.2 Hz, 1H), 4.19 (d, *J* = 11.7 Hz, 1H), 4.19

3H). The ¹H NMR data coincide with the previous report.⁹

1-(2',3',4',6'-Tetra-O-benzyl-α/β-D-glucopyranosyl)-thymine (24)

Compound **24** was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3:1). *a*-isomer: ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.45 (d, *J* = 1.4 Hz, 1H), 7.39 – 7.25 (m, 16H), 7.20 (dd, *J* = 7.2, 2.4 Hz, 2H), 7.16 – 7.09 (m, 2H), 6.04 (d, *J* = 3.2 Hz, 1H), 4.61 – 4.38 (m, 7H), 4.38 – 4.26 (m, 2H), 4.04 (t, *J* = 3.2 Hz, 1H), 3.84 (t, *J* = 3.2 Hz, 1H), 3.74 (dd, *J* = 10.5, 3.0 Hz, 1H), 3.70 – 3.59 (m, 2H), 1.81 (d, *J* = 1.2 Hz, 3H). **β**-isomer: ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.38 – 7.27 (m, 13H), 7.26 – 7.22 (m, 3H), 7.19 – 7.11 (m, 4H), 6.66 (d, *J* = 1.4 Hz, 1H), 5.59 (d, *J* = 9.2 Hz, 1H), 4.94 (s, 2H), 4.84 (d, *J* = 10.8 Hz, 1H), 4.78 (d, *J* = 12.0 Hz, 1H), 4.60 (d, *J* = 10.8 Hz, 1H), 4.57 – 4.44 (m, 3H), 3.86 (t, *J* = 9.0 Hz, 1H), 3.77 – 3.55 (m, 4H), 3.46 (t, *J* = 9.0 Hz, 1H), 1.67 (d, *J* = 1.3 Hz, 3H). The ¹H NMR data coincide with the previous report.¹⁰

1-(2',3',4',6'-Tetra-O-benzyl-α/β-D-glucopyranosyl)-uracil (25)

Compound **25** was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3:1). *a*-isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 1H), 7.61 (d, *J* = 8.2 Hz, 1H), 7.38 – 7.27 (m, 17H), 7.19 (dd, *J* = 7.0, 2.6 Hz, 2H), 7.14 (dd, *J* = 7.0, 2.6 Hz, 2H), 6.03 (d, *J* = 3.3 Hz, 1H), 5.61 (dd, *J* = 8.2, 2.4 Hz, 1H), 4.58 – 4.40 (m, 6H), 4.36 – 4.26 (m, 2H), 4.04 (t, *J* = 3.2 Hz, 1H), 3.84 (t, *J* = 3.2 Hz, 1H), 3.78 – 3.59 (m, 4H). **β-isomer**: ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.38 – 7.25 (m, 16H), 7.22 – 7.13 (m, 4H), 6.91 (d, *J* = 8.2 Hz, 1H), 5.59 (d, *J* = 9.2 Hz, 1H), 5.37 (dd, *J* = 8.1, 2.4 Hz, 1H), 4.93 (s, 2H), 4.84 (d, *J* = 10.8 Hz, 1H), 4.79 (d, *J* = 11.8 Hz, 1H), 4.60 (d, *J* = 10.8 Hz, 1H), 4.56 – 4.43 (m, 3H), 3.85 (t, *J* = 9.0 Hz, 1H), 3.76 – 3.56 (m, 4H), 3.47 (t, *J* = 9.0 Hz, 1H). The ¹H NMR data coincide with the previous report.¹⁰

1-(2',3',4',6'-Tetra-O-benzoyl-β-D-glucopyranosyl)-thymine (26)

Compound **26** was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 8.74 (s, 1H), 8.07 – 8.00 (m, 2H), 7.97 – 7.89 (m, 2H), 7.89 – 7.84 (m, 2H), 7.84 – 7.76 (m, 2H), 7.60 – 7.26 (m, 13H), 6.28 (d, *J* = 9.5 Hz, 1H), 6.09 (t, *J* = 9.6 Hz, 1H), 5.79 (t, *J* = 9.8 Hz, 1H), 5.69 (t, *J* = 9.5 Hz, 1H), 4.67 (dd, *J* = 12.4, 2.7 Hz, 1H), 4.49 (dd, *J* = 12.4, 5.1 Hz, 1H), 4.40 (ddd, *J* = 10.0, 5.0, 2.7 Hz, 1H), 1.93 (d, *J* = 1.2 Hz, 3H). The ¹H NMR data coincide with the previous report.¹⁰

1-(2',3',4',6'-Tetra-O-benzyl-α/β-D-galactopyranosyl)-thymine (27)

Compound **27** was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3:1). *α*-isomer: $[α]^{25}_{D}$ = -77.8 (c = 0.1, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.42 (d, *J* = 1.3 Hz, 1H), 7.40 – 7.22 (m, 20H), 7.02 (dd, *J* = 6.9, 2.6 Hz, 2H), 6.06 (d, *J* = 1.9 Hz, 1H), 4.67 – 4.47 (m, 7H), 4.35 (d, *J* = 11.5 Hz, 1H), 4.21 – 4.10 (m, 2H), 4.07 (dd, *J* = 6.4, 2.8 Hz, 1H), 3.84 – 3.75 (m, 2H), 3.69 (dd, *J* = 4.0, 2.0 Hz, 1H), 1.84 (d, *J* = 1.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.37, 149.50, 138.70, 138.12, 137.78, 137.65, 136.47, 128.50, 128.49, 128.46, 128.42, 128.37, 128.30, 127.91, 127.88, 127.83, 127.79, 127.62, 127.59, 108.67, 74.98, 74.92, 73.66, 73.57, 73.26, 73.15, 72.26, 71.90, 65.49, 29.70, 12.23. ESI-HRMS calculated for C₃₉H₄₄N₃O₇ [M+NH₄]⁺ 666.3179, found 666.3177. **β**-isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.42 – 7.15 (m, 2H), 6.65 (d, *J* = 1.3 Hz, 1H), 5.56 (d, *J* = 8.9 Hz, 1H), 4.97 (d, *J* = 11.4 Hz, 1H), 4.85 – 4.72 (m, 3H), 4.61 (d, *J* = 11.4 Hz, 1H), 4.56 (d, *J* = 12.0 Hz, 1H), 4.48 (d, *J* = 11.9 Hz, 1H), 4.42 (d, *J* = 11.9 Hz, 1H), 4.00 (dd, *J* = 2.6, 1.0 Hz, 1H), 3.85 (t, *J* = 9.2 Hz, 1H), 3.80 – 3.66 (m, 2H), 3.63 – 3.45 (m, 2H), 1.64 (d, *J* = 1.2 Hz, 3H). The ¹H NMR data coincide with the previous report.¹⁰

N⁴-benzoyl-1-(2',3',4',6'-tetra-O-benzyl-β-D-galactopyranosyl)-cytosine (28)

Compound **28** was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.2 Hz, 2H), 7.67 – 7.58 (m, 1H), 7.58 – 7.48 (m, 2H), 7.41 – 7.24 (m, 17H), 7.17 (tdd, *J* = 9.7, 4.7, 2.0 Hz, 5H), 5.88 (d, *J* = 9.0 Hz, 1H), 4.98 (d, *J* = 11.3 Hz, 1H), 4.84 – 4.71 (m, 3H), 4.61 (d, *J* = 11.3 Hz, 1H), 4.51 (d, *J* = 11.8 Hz, 1H), 4.47 (d, *J* = 11.9 Hz, 1H), 4.42 (d, *J* = 11.9 Hz, 1H), 4.01 (d, *J* = 2.6 Hz, 1H), 3.92 (t, *J* = 9.2 Hz, 1H), 3.85 – 3.71 (m, 2H), 3.63 – 3.46 (m, 2H). The ¹H NMR data coincide with the previous report.¹⁰

1-(2',3',4',6'-Tetra-O-benzoyl-β-D-galactopyranosyl)-uracil (29)

Compound **29** was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, *J* = 2.2 Hz, 1H), 8.09 – 8.03 (m, 2H), 8.03 – 7.96 (m, 2H), 7.94 – 7.85 (m, 2H), 7.82 – 7.73 (m, 2H), 7.73 – 7.65 (m, 1H), 7.65 – 7.39 (m, 8H), 7.35 (t, *J* = 7.8 Hz, 2H), 7.28 – 7.23 (m, 2H), 6.23 (d, *J* = 9.2 Hz, 1H), 6.10 (dd, *J* = 3.3, 1.0 Hz, 1H), 5.99 – 5.87 (m, 2H), 5.83 (dd, *J* = 10.1, 3.3 Hz, 1H), 4.70 – 4.55 (m, 2H), 4.45 (dd, *J* = 10.5, 4.9 Hz, 1H). The ¹H NMR data coincide with the previous report.¹⁰

6 One-pot synthesis of trisaccharide 31

A mixture of donor **30** (42.1 mg, 0.078 mmol), Ph_2SO (8.1 mg, 0.04 mmol), and 2,4,6-tri-*tert*butylpyrimidine (TTBP, 39.7 mg, 0.16 mmol) was dissolved in dry CH_2Cl_2 (2.0 mL), containing

freshly activated 3 Å molecular sieves (400 mg). After stirring for 0.5 h under argon, the reaction mixture was cooled to -72 °C and Tf₂O (6.7 µL, 0.04 mmol) was added. After the disappearance of **30**, a solution of **11** (23.2 mg, 0.06 mmol; CH₂Cl₂, 0.5 mL) was added. The temperature was allowed to slowly warm up to room temperature. After the disappearance of **11**, a solution of **2a** (10.1 mg, 0.04 mmol), Ru(bpy)₃(PF₆)₂ (2.1 mg, 0.003 mmol) and Umemoto's reagent (26.3 mg, 0.06 mmol) in dry MeCN (2.0 mL) were added and stirred for 0.5 h. Subsequently, the reaction mixture was cooled to -30 °C and irradiated by blue LEDs for 12 h. the reaction mixture was filtered through Celite. The solvent was removed in vacuo and the residue was purified by flash column chromatography on silica gel (petroleum ether: EtOAc = 5: 1) to yield product **31** (18.3 mg, 52%) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 7.6 Hz, 2H), 7.90 – 7.80 (m, 4H), 7.76 (d, *J* = 7.6 Hz, 2H), 7.49 (t, *J* = 7.4 Hz, 2H), 7.42 – 7.20 (m, 29H), 7.19 – 7.05 (m, 9H), 7.02 – 6.94 (m, 2H), 5.72 (t, *J* = 9.6 Hz, 1H), 5.42 (dd, *J* = 9.6, 7.9 Hz, 1H), 5.32 – 5.20 (m, 2H), 4.87 (d, *J* = 11.0 Hz, 1H), 4.77 (d, *J* = 11.8 Hz, 1H), 4.74 – 4.60 (m, 5H), 4.60 – 4.42 (m, 6H), 4.38 (d, *J* = 11.3 Hz, 1H), 4.17 (d, *J* = 11.3 Hz, 1H), 3.96 (d, *J* = 10.8 Hz, 1H), 3.88 – 3.71 (m, 6H), 3.69 (d, *J* = 2.8 Hz, 2H), 3.53 – 3.27 (m, 5H), 3.23 (s, 3H). The ¹H NMR data coincide with the previous report.¹¹

7 Mechanistic studies

Control experiments

Table S5 Mechanistic investigations^a

^aGeneral conditions: donor **1c** (0.03 mmol, 1.5 equiv.), acceptor **2a** (0.02 mmol, 1.0 equiv.), Ru(bpy)₃(PF₆)₂ (0.001 mmol, 5 mol%), Umemoto's reagent (triflate salt) (0.03 mmol, 1.5 equiv.), 3 Å MS (for MeCN) or 4 Å MS (for other solvents) (200 mg), solvent (2.0 mL) at room temperature under the irradiation of blue LEDs for 12 h. ^bYield was determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard. ^cNo Ru(bpy)₃(PF₆)₂. ^dNo Umemoto's reagent. ^eNo irradiation.

TEMPO-trapping experiments

Fig. S1 TEMPO-trapping experiments. TEMPO-CF₃ was detected by ¹⁹F NMR analysis.

Fig. S2 The identification of by-product

Light-dark interval experiments

A solution of **1c** (0.09 mmol, 9.1 mg), **2a** (0.06 mmol, 16.1 mg), $[Ru(bpy)_3](PF_6)_2$ (0.003 mmol, 0.9 mg), Umemoto's reagent (triflate salt) (0.09 mmol, 7.9 mg) and 3 Å molecular sieves (600 mg) in MeCN (6.0 mL) was stirred at -30 °C. The reaction mixture was determined by ¹H NMR analysis at 1 h interval after irradiation with blue LEDs or being kept in the dark. Yield was determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

Fig. S3 Light-dark interval experiments

The proposed mechanism

Fig. S4 Proposed mechanism.

8 References

- 1. R. R. France, N. V. Rees, J. D. Wadhawan, A. J. Fairbanks and R. G. Compton, *Org. Biomol. Chem.*, 2004, **2**, 2188-2194.
- 2. M. Koshiba, N. Suzuki, R. Arihara, T. Tsuda, H. Nambu, S. Nakamura and S. Hashimoto, *Chem. Asian. J.*, 2008, **3**, 1664-1677.
- 3. H. Nagai, K. Sasaki, S. Matsumura and K. Toshima, *Carbohydr. Res.*, 2005, 340, 337-353.
- 4. M. H. Zhuo, D. J. Wilbur, E. E. Kwan and C. S. Bennett, *J. Am. Chem. Soc.*, 2019, **141**, 16743-16754.

- 5. M. Krumb, T. Lucas and T. Opatz, *Eur. J. Org. Chem.*, 2019, **2019**, 4517-4521.
- 6. S. A. Geringer and A. V. Demchenko, Org. Biomol. Chem., 2018, 16, 9133-9137.
- B. Mukhopadhyay, S. V. Maurer, N. Rudolph, R. M. van Well, D. A. Russell and R. A. Field, J. Org. Chem., 2005, 70, 9059-9062.
- L. Meng, P. Wu, J. Fang, Y. Xiao, X. Xiao, G. Tu, X. Ma, S. Teng, J. Zeng and Q. Wan, J. Am. Chem. Soc., 2019, 141, 11775-11780.
- 9. S. Schwarz, B. Siewert, R. Csuk and A. P. Rauter, *Eur. J. Med. Chem.*, 2015, **90**, 595-602.
- 10. G. J. Liu, X. T. Zhang and G. W. Xing, Chem. Commun., 2015, 51, 12803-12806.
- 11. L. K. Mydock and A. V. Demchenko, Org. Lett. 2008, 10, 2107–2110.

9 Spectra of compounds

¹H NMR spectrum of compound 1b

¹³C NMR spectrum of compound 1c

¹³C NMR spectrum of compound 1d

¹³C NMR spectrum of compound 1e

¹³C NMR spectrum of compound 1f

¹³C NMR spectrum of compound S8

¹³C NMR spectrum of compound 1g

¹³C NMR spectrum of compound 1k

¹³C NMR spectrum of compound S12

¹³C NMR spectrum of compound 1h

¹³C NMR spectrum of compound 1i

¹³C NMR spectrum of compound 1j

 ^1H NMR spectrum of compound 7β

¹H NMR spectrum of compound 10a

¹H NMR spectrum of compound 11

¹H NMR spectrum of compound 13α

¹H NMR spectrum of compound 14

 $^1\mathrm{H}$ NMR spectrum of compound 15 β

 $^1\mathrm{H}$ NMR spectrum of compound 16 β

¹H NMR spectrum of compound 19β

 ^{13}C NMR spectrum of compound 21α

HSQC NMR spectrum of compound 21α

HMBC NMR spectrum of compound 21β

HMBC NMR spectrum of compound 27α

¹H NMR spectrum of compound 28β

¹H NMR spectrum of compound 31