Supporting Information

$n_N\to\pi^*{}_{Ar}$ interactions stabilize the E-ac isomers of arylhydrazides and facilitate their S_NAr autocyclizations

Jugal Kishore Rai Deka^b, Debajit Kalita^a, Biwajit Sahariah^a and Bani Kanta Sarma^a*

^aNew Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India

^bDepartment of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri, Uttar Pradesh 201314, India

Table of contents	Page No.
A. General experimental information	S2
B. X-ray crystal structure determination method	S2-S3
C. 2D NOESY studies	S 3
D. Computational studies	S 3
E. Synthetic protocols and characterization	S4-S27
F. Supplementary figure and tables	S28-S37
G. Kinetics studies	S38-S41
H. 2D NOESY spectra	S42-S77
I. Cartesian coordinates	S78-S93
J. NMR Spectra for all newly synthesized compounds	S94-S157
K. References	S158-S159

A. General Experimental Information.

All reagents were purchased from commercial sources (Sigma-Aldrich, Alfa Aesar, Spectrochem, CDH, BLD pharm and TCI) and were used without further purification. Anhydrous solvents for reaction purposes were purchased from commercial sources (Chemlabs, Finar and Rankem) and were used without further purification. Column chromatography was performed on silica gel (100-200 mesh particle size) as a stationary phase using commercial solvents as mobile phase (hexane and ethylacetate). The reactions were monitored by thin layer chromatography (TLC) on silica gel 60 F₂₅₄ (Merck). The NMR spectra were recorded in CDCl₃, [CD₃]₂SO, CD₃OD, CD₃CN and D₂O or as stated deuterated solvents. ¹H (400 MHz), ¹³C (100 MHz) and ¹⁹F (376 MHz) NMR were obtained on Bruker 400 MHz NMR spectrometer using tetramethylsilane (TMS) as an internal standard. ¹H and ¹⁹F NMR spectra were recorded at ambient temperature in five different deutrated solvents which are CDCl₃, [CD₃]₂SO, CD₃OD, CD₃CN and D₂O. ¹³C NMR spectra were recorded only in CDCl₃ at ambient temperature. Chemical shifts (δ) are reported in part per million (ppm) relative to residual undeuterated solvent as an internal reference (¹H: δ 7.26 ppm for CDCl₃; ¹³C: δ 77.16 ppm for CDCl₃, δ 2.50 ppm for [CD₃]₂SO, δ 3.31 ppm for CD₃OD, δ 1.94 ppm for CD₃CN, δ 4.79 ppm for D₂O). Chemical shifts for fluorine are reported in parts per million from CFCl₃, $[CF_3]_2$ SO, CF₃OF, CF₃CN, F₂O (δ 0 ppm) as the external standard. Abbreviations of NMR peak multiplicities were explained as s = singlet, d = doublet, t = triplet, q = quartet, m =multiplet, brs and brd = broad singlet and doublet signals. NMR data were processed by using MestReNova software. HRMS data were obtained using "6540 UHD Accurate-Mass Q-TOF LC/MS system (Agilent Technologies, Santa Clara, CA, USA) equipped with Agilent 1290 UPLC system". In case of isotopic pattern, we reported the highest intensity peak mass.

B. X-ray crystal structure determination method

Single crystal structures of the compounds were determined by measuring x-ray intensity data on a D8 venture *APEX* 3¹ X-ray diffractometer equipped with monochromatised micro-focus sources of Mo K α radiation (λ = 0.71073 Å). Data collection were done in phi (ϕ) and omega (ω) scan strategy at room temperature (295-302K). Data was processed by SAINT² and absorption correction was done using SADABS³ implemented in APEX 3. The structures were solved by using XSHELL program based on SHELX⁴ program implemented in APEX 3 and Olex2 1.3 (Dolomanov et al., 2009) (compiled 2020.06.28 svn.raecde09e for Olexsys, GUI svn.r6132). The non-hydrogen atoms were refined anisotropically and all the hydrogen atoms were assigned in idealized locations. All the structures were deposited in the CCDC⁵ (CCDC No: **2087868-2087870**, **2088424**, **2093749** and **2093793**) database.

C. 2D-NOESY studies

2D gradient Nuclear Overhauser Effect Spectroscopy (NOESY) 1 H- 1 H Correlation (spin-lattice relaxation) NMR experiments were performed on a Bruker 400 MHz spectrometer using the following parameters – 5 mm PABBO BB/ probe, noesygpphpp pulse sequence, NS = 4 or 8 (number of scans, 8*n), DS = 32 (numbers of dummy scans were run prior to acquisition), D1= 1.98976004 sec (relaxation delay or mixing time between 1- 5 sec) and P1= 12.85 usec (1 H 90° pulse).

D. Computational Studies

All the calculations were performed by using Gaussian09 suite quantum chemistry program.⁶ We optimized each conformer using the hybrid Minnesota functional (M06-2X)/6-311+G(2d,p) level of theory.⁷ Frequency calculations were also done at the same level of theory. The stabilization energies due to the orbital interactions were evaluated using Natural Bond Orbital (NBO)⁸ analyses. Noncovalent Interaction (NCI)⁹ analyses were done with Multiwfn¹⁰ software. For the NCI plots, we used VMD¹¹ graphical visualization software. To visualize the structures and determine the crystallographic parameters, Chemcraft¹² graphical visualization software was used. We observed that two π^* (C=C) acceptor orbitals of the phenyl rings are involved in the $n_{N\beta} \rightarrow \pi^*_{Ar}$ interaction (Figure S3). There are four and eight isomers possible in symmetrical ($R_2 = R_3$) (Figure S1) and unsymmetrical ($R_2 \neq R_3$) (Figure S2) acylhydrazides, respectively, depending on whether the two substituents on the β -nitrogen atom R_2 and R_3 are same or different. In the unsymmetrical arylhydrazides (Figure S2), we used additional bH and fH designations for the isomers. For this purpose, the molecules were viewed by keeping the R-CO-N-N moiety in the plane of the screen by keeping R to the left and N-N to the right of the CO group and the viewer. In such a view, if the hydrogen on the βnitrogen was pointed towards the viewer (frontside) fH designation was used and if the hydrogen on the β-nitrogen was pointed away from the viewer (backside) bH designation was used.

E. Synthetic protocols and characterizations

1. General Scheme for the synthesis of *N*,*N*'-dimethyl-monoacylhydrazines 7-12:

Procedure:

x mg of 1,2-Dimethylhydrazine-dihydrochloride [y mmol (3 eqv.)] were neutralized by using x' μ L of N, N-diisopropylethylamine [DIEA-y' mmol (7 eqv.)] in CH₂Cl₂ (15 mL) at room temperature and stirred for 15 minutes. The reaction mixture was allowed to cool to 0° C and stirred for another 5 minutes. Then x'' mg/ μ L of Acyl chloride [y'' mmol (1 eqv.)] in CH₂Cl₂ (2 mL) were added drop-wise manner to a reaction mixture over 10 minutes and stirred for another 30 minutes. The solvent was evaporated to dryness by using the rotary evaporator. Then the reaction mixture was dissolved in CH₂Cl₂ and washed twice with water, then a 10% citric acid solution followed by a saturated sodium bicarbonate (NaHCO₃) solution and finally with brine solution. The organic layer was dried over Na₂SO₄ and evaporated under reduced pressure. The final residue was then purified by the Column chromatography using Silica Gel (100-200 Mesh) and gradient of Hexane and ethyl acetate as an eluent.

Compound 7: 4-(dimethylamino)-*N*, *N*[']-dimethylbenzohydrazide.

 $x = 217 \text{ mg of } 1,2\text{-Dimethylhydrazine-dihydrochloride } [y = 1.63 \text{ mmol } (3 \text{ eqv.})], x' = 652 \ \mu\text{L}$ of N, N-diisopropylethylamine [DIEA (y') = 3.81 mmol (7 eqv.)] and x" = 100 mg of 4-(dimethylamino)benzoyl chloride [y" = 0.545 mmol (1 eqv.)]. Yield (%): 85 % as a semi-liquid.

¹H NMR 400 MHz (20mM, CDCl₃) δ ppm Z(trans)-sc rotamer (~100 %): 7.46 [d, 2H, *J* = 8.0 Hz, Ph-N(CH₃)₂], 6.66 [d, 2H, *J* = 8.0 Hz, Ph-N(CH₃)₂], 5.46 [brs, 1H, NH-(CH₃)], 3.22 [s, 3H, C(O)NCH₃], 3.00 [s, 6H, N(CH₃)₂], 2.65 [s, 3H, H₃C-N(H)]; ¹H NMR 400 MHz [20mM, (CD₃)₂SO] δ ppm Z(trans)-sc rotamer (~100 %): 7.49 [d, 2H, *J* = 12.0 Hz, Ph-N(CH₃)₂], 6.65 [d, 2H, *J* = 8.0 Hz, Ph-N(CH₃)₂], 5.06 [brs, 1H, NH-(CH₃)], 3.07 [s, 3H, C(O)NCH₃], 2.94 [s, 6H, N(CH₃)₂], 2.45 [s, 3H, H₃C-N(H)]; ¹H NMR 400 MHz (20mM, CD₃OD) δ ppm Z(trans)-sc rotamer (~100 %): 7.48 [brd, 2H, *J* = 8.0 Hz, Ph-N(CH₃)₂], 6.73 [d, 2H, *J* = 8.0 Hz, Ph-N(CH₃)₂], 3.22 [s, 3H, C(O)NCH₃], 3.00 [s, 6H, N(CH₃)₂], 2.59 [s, 3H, H₃C-N(H)]; ¹H NMR 400 MHz (20mM, CD₃CN) δ ppm Z(trans)-sc rotamer (~100 %): 7.45 [brd, 2H, *J* = 8.0 Hz, Ph-N(CH₃)₂], 6.79 [d, 2H, *J* = 8.0 Hz, Ph-N(CH₃)₂], 3.12 [s, 3H, C(O)NCH₃], 2.96 [s, 6H, N(CH₃)₂], 2.53 [s, 3H, H₃C-N(H)]; ¹H NMR 400 MHz (20mM, D₂O) δ ppm Z(trans)-sc rotamer (~100 %): 7.48 [d, 2H, *J* = 12.0 Hz, Ph-N(CH₃)₂], 7.02 [d, 2H, *J* = 8.0 Hz, Ph-N(CH₃)₂], 3.23 [s, 3H, H₃C-N(H)]; ¹H NMR 400 MHz (20mM, D₂O) δ ppm Z(trans)-sc rotamer (~100 %): 7.48 [d, 2H, *J* = 12.0 Hz, Ph-N(CH₃)₂], 7.02 [d, 2H, *J* = 8.0 Hz, Ph-N(CH₃)₂], 3.23 [s, 3H, C(O)NCH₃], 2.99 [s, 6H, N(CH₃)₂], 2.62 [brs, 3H, H₃C-N(H)]; ¹³C NMR (100 MHz, CDCl₃) δ ppm Z(trans)-sc rotamer [~100 %]: 170.8, 151.7, 129.7, 121.8, 111.0, 40.3, 38.5, 36.3; HRMS [M + H]⁺ calcd. for, C₁₁H₁₈N₃O, m/z: 208.1450; found m/z: 208.1445.

Z(trans)-sc ~100%

Compound 8: 4-methoxy-*N*, *N*[']-dimethylbenzohydrazide.

 $x = 234 \text{ mg of } 1,2\text{-Dimethylhydrazine-dihydrochloride } [y = 1.76 \text{ mmol } (3 \text{ eqv.})], x' = 702 \ \mu\text{L}$ of N, N-diisopropylethylamine [DIEA (y') = 4.10 mmol (7 eqv.)] and x'' = 79 \ \mu\text{L} of 4methoxybenzoyl chloride [y'' = 0.586 mmol (1 eqv.)]. Yield (%): 82 % as a semi-liquid.

¹H NMR 400 MHz (20mM, CDCl₃) δ ppm Z(trans)-sc rotamer (~100 %): 7.48 (brd, 2H, J = 8.0 Hz, Ph-OCH₃), 6.90 (d, 2H, J = 8.0 Hz, Ph-OCH₃), 5.76 [brs, 1H, NH-(CH₃)], 3.83 [s, 3H, O-CH₃], 3.19 [s, 3H, C(O)NCH₃], 2.65 [s, 3H, H₃C-N(H)]; ¹H NMR 400 MHz [20mM, $(CD_3)_2SO$ [δ ppm Z(trans)-sc rotamer (~100 %): 7.51 (brd, 2H, J = 8.0 Hz, Ph-OCH₃), 6.91 (brd, 2H, J = 8.0 Hz, Ph-OCH₃), 4.86 [brs, 1H, NH-(CH₃)], 3.78 [s, 3H, O-CH₃], 3.08 [s, 3H, C(O)NCH₃], 2.44 [brd, 3H, H₃C-N(H)]; ¹H NMR 400 MHz (20mM, CD₃OD) δ ppm Z(trans)sc rotamer (~100 %): 7.52 (brs, 2H, Ph-OCH₃), 6.95 (brd, 2H, J = 8.0 Hz, Ph-OCH₃), 3.83 [s, 3H, O-CH₃], 3.20 [s, 3H, C(O)NCH₃], 2.58 [brs, 3H, H₃C-N(H)]; ¹H NMR 400 MHz (20mM, CD₃CN) δ ppm Z(trans)-sc rotamer (~100 %): 7.49 (brd, 2H, J = 8.0 Hz, Ph-OCH₃), 6.92 (d, 2H, J = 12.0 Hz, Ph-OCH₃), 3.81 [s, 3H, O-CH₃], 3.11 [s, 3H, C(O)NCH₃], 2.52 [s, 3H, H₃C-N(H)]; ¹H NMR 400 MHz (20mM, D₂O) δ ppm Z(trans)-sc rotamer (58 %): 7.48 (d, 2H, J = 8.0 Hz, Ph-OCH₃), 7.07 (brs, 2H, Ph-OCH₃), 3.89 [s, 3H, O-CH₃], 3.18 [s, 3H, C(O)NCH₃], 2.66 [s, 3H, H₃C-N(H)]; E(cis)-ac rotamer (42 %): 7.48 (d, 2H, J = 12.0 Hz, Ph-OCH₃), 7.07 (brs, 2H, Ph-OCH₃), 3.89 [s, 3H, O-CH₃], 3.25 [s, 3H, C(O)NCH₃], 2.54 [s, 3H, H₃C-N(H)]; ¹³C NMR (100 MHz, CDCl₃) δ ppm Z(trans)-sc rotamer [~100 %]: 170.0, 161.0, 129.6, 127.4, 113.5, 55.3, 38.0, 36.1; HRMS $[M + H]^+$ calcd. for, $C_{10}H_{15}N_2O_2$, m/z: 195.1134; found m/z: 195.1139.

Z(trans)-sc ~100%

Compound **9**: *N*, *N*[']-dimethylbenzohydrazide.

 $x = 284 \text{ mg of 1,2-Dimethylhydrazine-dihydrochloride } [y = 2.13 \text{ mmol } (3 \text{ eqv.})], x' = 851 \mu L$ of N, N-diisopropylethylamine [DIEA (y') = 4.98 mmol (7 eqv.)] and x" = 83 μ L of benzoyl chloride [y" = 0.711 mmol (1 eqv.)]. Yield (%): 86 % as a semi-liquid.

¹H NMR 400 MHz (20mM, CDCl₃) δ ppm Z(trans)-sc rotamer (~100 %): 7.46-7.42 (m, 5H, Ph), 5.78 [brs, 1H, NH-(CH₃)], 3.15 [brs, 3H, C(O)NCH₃], 2.67 [s, 3H, H₃C-N(H)]; ¹H NMR 400 MHz [20mM, (CD₃)₂SO] δ ppm (~100 %): 7.45 (brd, 2H, *J* = 8.0 Hz, Ph), 7.36 (brs, 3H, Ph), 4.84 [brs, 1H, NH-(CH₃)], 3.10 [brs, 3H, C(O)NCH₃], 2.40 [brs, 3H, H₃C-N(H)]; ¹H NMR 400 MHz (20mM, CD₃OD) δ ppm E(cis)-ac rotamer (56 %): 7.48-7.39 (m, 5H, Ph), 3.24 [brs, 3H, C(O)NCH₃], 2.49 [brs, 3H, H₃C-(NH)]; Z(trans)-sc rotamer (44 %): 7.48-7.39 (m, 5H, Ph), 3.13 [brs, 3H, C(O)NCH₃], 2.66 [brs, 3H, H₃C-(NH)]; ¹H NMR 400 MHz (20mM, CD₃CN) δ ppm E(cis)-ac rotamer (59 %): 7.44-7.39 (m, 5H, Ph), 3.90 [brs, 1H, H-N(CH₃)], 3.13 [brs, 3H, C(O)NCH₃], 2.49 [brs, 3H, H₃C-(NH)]; Z(trans)-sc rotamer (41 %): 7.44-7.39 (m, 5H, Ph), 5.65 [brs, 1H, H-N(CH₃)], 3.13 [brs, 3H, C(O)NCH₃], 2.49 [brs, 3H, H₃C-(NH)]; Z(trans)-sc rotamer (41 %): 7.44-7.39 (m, 5H, Ph), 5.65 [brs, 1H, H-N(CH₃)], 3.13 [brs, 3H, C(O)NCH₃], 2.49 [brs, 3H, H₃C-(NH)]; Z(trans)-sc rotamer (41 %): 7.44-7.39 (m, 5H, Ph), 5.65 [brs, 1H, H-N(CH₃)], 3.13 [brs, 3H, C(O)NCH₃], 2.49 [brs, 3H, H₃C-(NH)]; Z(trans)-sc rotamer (50 %): 7.56-7.43 (m, 5H, Ph), 3.13 [s, 3H, C(O)NCH₃], 2.51 [s, 3H, H₃C-(NH)]; Z(trans)-sc rotamer (50 %): 7.56-7.43 (m, 5H, Ph), 3.13 [s, 3H, C(O)NCH₃], 2.67 [s, 3H, H₃C-(NH)]; ¹³C NMR (100 MHz, CDCl₃) δ ppm [~100 %]: 169.6, 135.3, 130.1, 128.4, 127.4, 37.8, 36.1; HRMS [M + H]⁺ calcd. for, C₉H₁₃N₂O, m/z: 165.1028; found m/z: 165.1031.

Compound **10**: *N*, *N*[']-dimethyl-4-(trifluoromethyl)benzohydrazide.

 $x = 191 \text{ mg of } 1,2\text{-Dimethylhydrazine-dihydrochloride } [y = 1.44 \text{ mmol } (3 \text{ eqv.})], x' = 574 \mu L$ of N, N-diisopropylethylamine [DIEA (y') = 3.36 mmol (7 eqv.)] and x'' = 71 μ L of 4-(trifluoromethyl)benzoyl chloride [y'' = 0.479 mmol (1 eqv.)]. Yield (%): 84 % as a solid.

¹H NMR 400 MHz (20mM, CDCl₃) δ ppm Z(trans)-sc rotamer (59 %): 7.66-7.59 (m, 4H, Ph-CF₃), 5.87 [brs, 1H, NH-(CH₃)], 3.11 [brs, 3H, C(O)NCH₃], 2.69 [brd, 3H, J = 4.0 Hz, H₃C-(NH)]; E(cis)-ac rotamer (41 %): 7.66-7.59 (m, 4H, Ph-CF₃), 3.37 [brs, 1H, NH-(CH₃)], 3.28 [brs, 3H, C(O)NCH₃], 2.59 [brs, 3H, H₃C-(NH)]; ¹⁹F NMR 376 MHz (20mM, CDCl₃) δ ppm Z(trans)-sc rotamer (59 %): -62.95 (s, 3F, Ph-CF₃); E(cis)-ac rotamer (41 %): -62.84 (s, 3F, Ph-CF₃); ¹H NMR 400 MHz [20mM, (CD₃)₂SO] δ ppm E(cis)-ac rotamer (~100 %): 7.72 (d, 2H, J = 8.0 Hz, Ph-CF₃), 7.63 (d, 2H, J = 8.0 Hz, Ph-CF₃), 4.92 [q, 1H, J = 4.0 Hz, NH-(CH₃)], 3.13 [s, 3H, C(O)NCH₃], 2.39 [brd, 3H, J = 8.0 Hz, H₃C-N(H)]; ¹⁹F NMR 376 MHz [20mM, (CD₃)₂SO] δ ppm E(cis)-ac rotamer (~100 %): -61.14 (s, 3F, Ph-CF₃); ¹H NMR 400 MHz (20mM, CD₃OD) δ ppm E(cis)-ac rotamer (74 %): 7.67 (brs, 4H, Ph-CF₃), 3.26 [s, 3H, C(O)NCH₃], 2.49 [s, 3H, H₃C-(NH)]; Z(trans)-sc rotamer (26 %): 7.78 (brs, 2H, Ph-CF₃), 7.67 (brs, 2H, Ph-CF₃), 3.10 [s, 3H, C(O)NCH₃], 2.68 [s, 3H, H₃C-(NH)]; ¹⁹F NMR 376 MHz (20mM, CD₃OD) δ ppm E(cis)-ac rotamer (74 %): -64.30 (s, 3F, Ph-CF₃); Z(trans)-sc rotamer (26 %): -64.47 (s, 3F, Ph-CF₃);¹H NMR 400 MHz (20mM, CD₃CN) δ ppm E(cis)-ac rotamer (76 %): 7.74-7.60 (m, 4H, Ph-CF₃), 3.93 [brs, 1H, H-N(CH₃)], 3.17 [s, 3H, C(O)NCH₃], 2.46 [brd, 3H, J = 4.0 Hz, H₃C-(NH)]; Z(trans)-sc rotamer (24 %): 7.74-7.60 (m, 4H, Ph-CF₃), 5.75 [brs, 1H, H-N(CH₃)], 3.01 [s, 3H, C(O)NCH₃], 2.61 [s, 3H, H₃C-(NH)]; ¹⁹F NMR 376 MHz (20mM, CD₃CN) δ ppm E(cis)-ac rotamer (76 %): -63.20 (s, 3F, Ph-CF₃); Z(trans)-sc rotamer (24 %): -63.36 (s, 3F, Ph-CF₃); ¹H NMR 400 MHz (20mM, D₂O) δ ppm E(cis)-ac rotamer (57 %): 7.80 (d, 2H, J = 8.0 Hz, Ph-CF₃), 7.60 (d, 2H, J = 8.0 Hz, Ph-CF₃), 3.28 [s, 3H, C(O)NCH₃], 2.51 [s, 3H, H₃C-(NH)]; Z(trans)-sc rotamer (43 %): 7.84 (d, 2H, J = 8.0 Hz, Ph-CF₃), 7.64 (d, 2H, J = 8.0 Hz, Ph-CF₃), 3.11 [s, 3H, C(O)NCH₃], 2.68 [s, 3H, H₃C-(NH)]; ¹⁹F NMR 376 MHz (20mM, D₂O) δ ppm E(cis)-ac rotamer (57 %): -62.69 (s, 3F, Ph-CF₃); Z(trans)-sc rotamer (43 %): -62.85 (s, 3F, Ph-CF₃); ¹³C NMR (100 MHz, CDCl₃) δ ppm [Z(trans)-sc (59 %)]: 168.2, 138.9, 132.1 (q, ²*J*_{CF} = 30.0 Hz), 128.0-127.8 (m), 125.7 (brq, ³*J*_{CF} = 4.0 Hz), 121.1 (q, ¹*J*_{CF} = 267.0 Hz), 37.8, 36.1; [E(cis)-ac (41 %)]: 171.2, 140.0, 132.1 (q, ²*J*_{CF} = 30.0 Hz), 128.0-127.8 (m), 124.8 (brq, ³*J*_{CF} = 4.0 Hz), 121.1 (q, ¹*J*_{CF} = 267.0 Hz), 36.1, 32.9; HRMS [M + H]⁺ calcd. for, C₁₀H₁₂F₃N₂O, m/z: 233.0902; found m/z: 233.0905.

Compound **11:** 4-cyano-*N*, *N*[']-dimethylbenzohydrazide.

 $x = 241 \text{ mg of } 1,2\text{-Dimethylhydrazine-dihydrochloride } [y = 1.81 \text{ mmol } (3 \text{ eqv.})], x' = 723 \ \mu\text{L}$ of N, N-diisopropylethylamine [DIEA (y') = 4.23 mmol (7 eqv.)] and x" = 100 mg of 4cyanobenzoyl chloride [y" = 0.604 mmol (1 eqv.)]. Yield (%): 80 % as a light yellow solid.

¹H NMR 400 MHz (20mM, CDCl₃) δ ppm E(cis)-ac rotamer (55 %): 7.71-7.58 (m, 4H, Ph-CN), 3.41 [s, 1H, NH-(CH₃)], 3.28 [s, 3H, C(O)NCH₃], 2.58 [s, 3H, H₃C-(NH)]; Z(trans)-sc rotamer (45 %): 7.71-7.58 (m, 4H, Ph-CN), 5.71 [s, 1H, NH-(CH₃)], 3.10 [s, 3H, C(O)NCH₃], 2.69 [s, 3H, H₃C-(NH)]; ¹H NMR 400 MHz [20mM, (CD₃)₂SO] δ ppm E(cis)-ac rotamer (~100 %): 7.83 (d, 2H, J = 8.0 Hz, Ph-CN), 7.58 (d, 2H, J = 8.0 Hz, Ph-CN), 4.94 [q, 1H, J = 4.0 Hz, NH-(CH₃)], 3.11 [s, 3H, C(O)NCH₃], 2.38 [brd, 3H, J = 4.0 Hz, H₃C-N(H)]; ¹H NMR 400 MHz (20mM, CD₃OD) δ ppm E(cis)-ac rotamer (78 %): 7.74 (d, 2H, J = 8.0 Hz, Ph-CN), 7.64 (d, 2H, J = 8.0 Hz, Ph-CN), 3.25 [s, 3H, C(O)NCH₃], 2.48 [s, 3H, H₃C-(NH)]; Z(trans)-sc rotamer (22 %): 7.84 (brs, 2H, Ph-CN), 7.64 (d, 2H, J = 8.0 Hz, Ph-CN), 3.09 [s, 3H, C(O)NCH₃], 2.67 [s, 3H, H₃C-(NH)]; ¹H NMR 400 MHz (20mM, CD₃CN) δ ppm E(cis)-ac rotamer (80 %): 7.71 (d, 2H, J = 8.0 Hz, Ph-CN), 7.57 (d, 2H, J = 8.0 Hz, Ph-CN), 3.94 [brq, 1H, J = 4.0 Hz, NH-(CH₃)], 3.16 [s, 3H, C(O)NCH₃], 2.45 [brd, 3H, J = 4.0 Hz, H₃C-(NH)]; Z(trans)-sc rotamer (20 %): 7.78 (brs, 2H, Ph-CN), 7.57 (d, 2H, J = 8.0 Hz, Ph-CN), 5.61 [brs, 1H, NH-(CH₃)], 2.99 [s, 3H, C(O)NCH₃], 2.60 [s, 3H, H₃C-(NH)]; ¹H NMR 400 MHz (20mM, D₂O) δ ppm E(cis)-ac rotamer (62 %): 7.84 (d, 2H, J = 8.0 Hz, Ph-CN), 7.58 (d, 2H, J = 8.0Hz, Ph-CN), 3.26 [s, 3H, C(O)NCH₃], 2.50 [s, 3H, H₃C-(NH)]; Z(trans)-sc rotamer (38 %): 7.89 (d, 2H, J = 8.0 Hz, Ph-CN), 7.63 (d, 2H, J = 8.0 Hz, Ph-CN), 3.10 [s, 3H, C(O)NCH₃], 2.67 [s, 3H, H₃C-(NH)]; ¹³C NMR (100 MHz, CDCl₃) δ ppm E(cis)-ac rotamer (55 %): 170.7, 140.9, 131.5, 128.4, 118.6, 112.8, 35.8, 32.6; Z(trans)-sc rotamer (45 %): 167.5, 139.6, 132.4, 128.0, 118.1, 113.8, 37.6, 36.0; HRMS [M + H]⁺ calcd. for, C₁₀H₁₂N₃O, m/z: 190.0980; found m/z: 190.0982.

Compound **12**: *N*, *N*[']-dimethyl-4-nitrobenzohydrazide.

 $x = 215 \text{ mg of } 1,2\text{-Dimethylhydrazine-dihydrochloride } [y = 1.62 \text{ mmol } (3 \text{ eqv.})], x' = 645 \mu L$ of N, N-diisopropylethylamine [DIEA (y') = 3.77 mmol (7 eqv.)] and x'' = 100 mg of 4nitrobenzoyl chloride [y'' = 0.539 mmol (1 eqv.)]. Yield (%): 82 % as a light yellow solid.

¹H NMR 400 MHz (20mM, CDCl₃) δ ppm E(cis)-ac rotamer (57 %): 8.23 (brd, 2H, *J* = 8.0 Hz, Ph-NO₂), 7.67 (brd, 2H, *J* = 8.0 Hz, Ph-NO₂), 3.42 [brs, 1H, NH-(CH₃)], 3.30 [s, 3H, C(O)NCH₃], 2.59 [s, 3H, H₃C-(NH)]; Z(trans)-sc rotamer (43 %): 8.28 (brd, 2H, *J* = 8.0 Hz, Ph-NO₂), 7.67 (brd, 2H, *J* = 8.0 Hz, Ph-NO₂), 5.73 [brs, 1H, NH-(CH₃)], 3.11 [s, 3H, C(O)NCH₃], 2.71 [s, 3H, H₃C-(NH)]; ¹H NMR 400 MHz [20mM, (CD₃)₂SO] δ ppm E(cis)-ac rotamer (~100 %): 8.21 (d, 2H, *J* = 8.0 Hz, Ph-NO₂), 7.67 (d, 2H, *J* = 8.0 Hz, Ph-NO₂), 4.97 [q, 1H, *J* = 8.0 Hz, NH-(CH₃)], 3.13 [s, 3H, C(O)NCH₃], 2.39 [brd, 3H, *J* = 4.0 Hz, H₃C-N(H)];

¹H NMR 400 MHz (20mM, CD₃OD) δ ppm E(cis)-ac rotamer (81 %): 8.24 (brd, 2H, J = 8.0 Hz, Ph-NO₂), 7.70 (brd, 2H, J = 8.0 Hz, Ph-NO₂), 3.26 [s, 3H, C(O)NCH₃], 2.49 [s, 3H, H₃C-(NH)]; Z(trans)-sc rotamer (19 %): 8.33 (brd, 2H, J = 8.0 Hz, Ph-NO₂), 7.70 (brd, 2H, J = 8.0 Hz, Ph-NO₂), 4.57 [brs, 1H, NH-(CH₃)], 3.10 [s, 3H, C(O)NCH₃], 2.69 [s, 3H, H₃C-(NH)]; ¹H NMR 400 MHz (20mM, CD₃CN) δ ppm E(cis)-ac rotamer (83 %): 8.19 (d, 2H, J = 8.0 Hz, Ph-NO₂), 7.64 (brd, 2H, J = 8.0 Hz, Ph-NO₂), 3.96 [brq, 1H, J = 8.0 Hz, NH-(CH₃)], 3.18 [s, 3H, C(O)NCH₃], 2.46 [brd, 3H, J = 4.0 Hz, H₃C-(NH)]; Z(trans)-sc rotamer (17 %): 8.25 (brd, 2H, J = 8.0 Hz, Ph-NO₂), 7.64 (brd, 2H, J = 8.0 Hz, H₃C-(NH)]; Z(trans)-sc rotamer (17 %): 8.25 (brd, 2H, J = 8.0 Hz, Ph-NO₂), 7.64 (brd, 2H, J = 8.0 Hz, Ph-NO₂), 5.62 [brs, 1H, NH-(CH₃)], 3.01 [s, 3H, C(O)NCH₃], 2.62 [s, 3H, H₃C-(NH)]; ¹H NMR 400 MHz (20mM, D₂O) δ ppm E(cis)-ac rotamer (63 %): 8.31 (d, 2H, J = 8.0 Hz, Ph-NO₂), 7.65 (d, 2H, J = 8.0 Hz, Ph-NO₂), 3.27 [s, 3H, C(O)NCH₃], 2.50 [brd, 3H, J = 4.0 Hz, Ph-NO₂), 7.65 (d, 2H, J = 8.0 Hz, Ph-NO₂), 3.27 [s, 3H, C(O)NCH₃], 2.50 [brd, 3H, J = 4.0 Hz, Ph-NO₂), 3.10 [s, 3H, C(O)NCH₃], 2.50 [brd, 3H, J = 4.0 Hz, Ph-NO₂), 3.10 [s, 3H, C(O)NCH₃], 2.50 [brd, 3H, J = 4.0 Hz, Ph-NO₂), 3.10 [s, 3H, C(O)NCH₃], 2.50 [brd, 3H, J = 4.0 Hz, Ph-NO₂), 3.10 [s, 3H, C(O)NCH₃], 2.67 [s, 3H, H₃C-(NH)]; ¹³C NMR (100 MHz, CDCl₃) δ ppm E(cis)-ac rotamer (57 %): 170.6, 148.2, 142.9, 128.7, 123.0, 35.9, 32.7; Minor rotamer (45 %): 167.4, 148.7, 141.6, 128.5, 123.94, 37.7, 36.2; HRMS [M + H]⁺ calcd. for, C₉H₁₂N₃O₃, m/z: 210.0879; found m/z: 210.0883.

2. General Scheme for the synthesis of *N*, *N'*, *N'*-trimethyl-monoacylhydrazines 1-6:

Procedure: (Reductive Amination)

x mg/ μ L of *N*, *N*-dimethylbenzohydrazide derivatives (**7-12**) [y mmol (1 eqv.)] and x' μ L of 37% formaldehyde solution [y' mmol (3 eqv.)] were dissolved in CH₃OH (5-10 mL) at room temperature and stirred for 1 hr. Then x" mg of sodiumcyanoborohydride [y" mmol (3 eqv.)] were added slowly to the above reaction mixture and stirred for another 2 hr. The solvent was evaporated to dryness by using the rotary evaporator. Then the reaction mixture was dissolved in CH₂Cl₂ and washed twice with water, then a 10% citric acid solution followed by a saturated sodium bicarbonate (NaHCO₃) solution and finally with brine solution. The organic layer was dried over Na₂SO₄ and evaporated under reduced pressure. The final residue was then purified by the Column chromatography using Silica Gel (100-200 Mesh) and gradient of Hexane and ethyl acetate as an eluent.

100 μ L of 4-(dimethylamino)-*N*, *N*[']-dimethylbenzohydrazide (**7**) [0.482 mmol (1 eqv.)], 109 μ L of 37% formaldehyde solution [1.45 mmol (3 eqv.)] and 91 mg of sodiumcyanoborohydride [1.45 mmol (3 eqv.)]. Yield (%): 69 % as a solid.

¹H NMR 400 MHz (20mM, CDCl₃) δ ppm [E(cis)-ac: ~100 %]: 7.66 [d, 2H, J = 8.0 Hz, Ph-N(CH₃)₂], 6.64 [d, 2H, J = 12.0 Hz, Ph-N(CH₃)₂], 3.00 [s, 3H, C(O)N-CH₃], 2.99 [s, 6H, Ph-N(CH₃)₂], 2.52 [s, 6H, N(CH₃)₂]; ¹H NMR 400 MHz [20mM, (CD₃)₂SO] δ ppm [E(cis)-ac: ~100 %]: 7.48 [d, 2H, J = 8.0 Hz, Ph-N(CH₃)₂], 6.64 [d, 2H, J = 12.0 Hz, Ph-N(CH₃)₂], 2.94 [s, 6H, Ph-N(CH₃)₂], 2.87 [s, 3H, C(O)N-CH₃], 2.43 [s, 6H, N(CH₃)₂]; ¹H NMR 400 MHz (20 mM, CD₃OD) δ ppm [E(cis)-ac: ~100 %]: 7.55 [d, 2H, J = 8.0 Hz, Ph-N(CH₃)₂], 6.69 [d, 2H, J = 8.0 Hz, Ph-N(CH₃)₂], 3.01 [s, 3H, C(O)N-CH₃], 2.99 [s, 6H, Ph-N(CH₃)₂], 2.53 [s, 6H, N(CH₃)₂]; ¹H NMR 400 MHz (20 mM, CD₃CN) δ ppm [E(cis)-ac: ~100 %]: 7.51 [d, 2H, J = 8.0 Hz, Ph-N(CH₃)₂], 6.67 [d, 2H, J = 12.0 Hz, Ph-N(CH₃)₂], 2.96 [s, 6H, Ph-N(CH₃)₂], 2.92 [s, 3H, C(O)N-CH₃], 2.46 [s, 6H, N(CH₃)₂]; ¹³C NMR (100 MHz, CDCl₃) δ ppm [E(cis)-ac: ~100 %]: 171.8, 151.6, 130.6, 122.8, 110.4, 43.3, 40.3, 23.5; HRMS [M + H]⁺ calcd. for, C₁₂H₂₀N₃O, m/z: 222.1606; found m/z: 222.1607.

Compound 2: 4-methoxy-*N*, *N'*, *N'*-trimethylbenzohydrazide.

100 μ L of 4-methoxy-*N*, *N*[']-dimethylbenzohydrazide (**8**) [0.515 mmol (1 eqv.)], 117 μ L of 37% formaldehyde solution [1.54 mmol (3 eqv.)] and 97 mg of sodiumcyanoborohydride [1.54 mmol (3 eqv.)]. Yield (%): 67 % as a solid.

¹H NMR 400 MHz (20mM, CDCl₃) δ ppm [E(cis)-ac: ~100 %]: 7.60 (d, 2H, *J* = 8.0 Hz, Ph-OCH₃), 6.86 (d, 2H, *J* = 8.0 Hz, Ph-OCH₃), 3.83 (s, 3H, OCH₃), 3.02 [s, 3H, C(O)N-CH₃], 2.50 [s, 6H, N(CH₃)₂]; ¹H NMR 400 MHz [20mM, (CD₃)₂SO] δ ppm [E(cis)-ac: ~100 %]: 7.48 (d, 2H, *J* = 8.0 Hz, Ph-OCH₃), 6.90 (d, 2H, *J* = 8.0 Hz, Ph-OCH₃), 3.78 (s, 3H, OCH₃), 2.90 [s, 3H, C(O)N-CH₃], 2.42 [s, 6H, N(CH₃)₂]; ¹H NMR 400 MHz (20 mM, CD₃OD) δ ppm [E(cis)-ac: ~100 %]: 7.54 [d, 2H, *J* = 8.0 Hz, Ph-OCH₃], 6.91 [d, 2H, *J* = 8.0 Hz, Ph-OCH₃], 3.83 [s, 3H, OCH₃], 3.02 [s, 3H, C(O)N-CH₃], 2.51 [s, 6H, N(CH₃)₂]; ¹H NMR 400 MHz (20 mM, CD₃CN) δ ppm [E(cis)-ac: ~100 %]: 7.51 [d, 2H, *J* = 12.0 Hz, Ph-OCH₃], 6.89 [d, 2H, *J* = 8.0 Hz, Ph-OCH₃], 3.81 [s, 3H, OCH₃], 2.94 [s, 3H, C(O)N-CH₃], 2.45 [s, 6H, N(CH₃)₂]; ¹³C NMR (100 MHz, CDCl₃) δ ppm [E(cis)-ac: ~100 %]: 171.7, 160.8, 130.2, 128.4, 112.8, 55.4, 43.2, 23.2; HRMS [M + H]⁺ calcd. for, C₁₁H₁₇N₂O₂, m/z: 209.1290; found m/z: 209.1292.

E(cis)-ac: ~100 %

Compound **3**: *N*, *N'*, *N'*-trimethylbenzohydrazide.

100 μ L of *N*, *N*[']-dimethylbenzohydrazide (**9**) [0.609 mmol (1 eqv.)], 138 μ L of 37% formaldehyde solution [1.83 mmol (3 eqv.)] and 115 mg of sodiumcyanoborohydride [1.83 mmol (3 eqv.)]. Yield (%): 66 % as a solid.

¹H NMR 400 MHz (20mM, CDCl₃) δ ppm [E(cis)-ac: ~100 %]: 7.52-7.50 (m, 2H, Ph), 7.39-7.33 (m, 3H, Ph), 3.04 [s, 3H, C(O)N-CH₃], 2.48 [s, 6H, N(CH₃)₂]; ¹H NMR 400 MHz (20mM, [CD₃]₂SO) δ ppm [E(cis)-ac: ~100 %]: 7.43-7.34 (m, 5H, Ph), 2.92 [s, 3H, C(O)N-CH₃], 2.40 [s, 6H, N(CH₃)₂]; ¹H NMR 400 MHz (20 mM, CD₃OD) δ ppm [E(cis)-ac: ~100 %]: 7.48-7.45 (m, 2H, Ph), 7.40-7.35 (m, 3H, Ph), 3.04 [s, 3H, C(O)N-CH₃], 2.48 [s, 6H, N(CH₃)₂]; ¹H NMR 400 MHz (20 mM, CD₃CN) δ ppm [E(cis)-ac: ~100 %]: 7.45-7.34 (m, 5H, Ph), 2.96 [s, 3H, C(O)N-CH₃], 2.43 [s, 6H, N(CH₃)₂]; ¹³C NMR (100 MHz, CDCl₃) δ ppm [E(cis)-ac: ~100 %]: 171.6, 136.9, 129.4, 127.6, 127.5, 43.2, 22.9; HRMS [M + H]⁺ calcd. for, C₁₀H₁₅N₂O, m/z: 179.1184; found m/z: 179.1184.

Compound 4: *N*, *N'*, *N'*-trimethyl-4-(trifluoromethyl)benzohydrazide.

100 μ L of *N*, *N*[']-dimethyl-4-(trifluoromethyl)benzohydrazide (**10**) [0.431 mmol (1 eqv.)], 98 μ L of 37% formaldehyde solution [1.29 mmol (3 eqv.)] and 81 mg of sodiumcyanoborohydride [1.29 mmol (3 eqv.)]. Yield (%): 65 % as a solid.

¹H NMR 400 MHz (20mM, CDCl₃) δ ppm [E(cis)-ac: ~100 %]: 7.63-7.57 (m, 4H, Ph-CF₃), 3.05 [s, 3H, C(O)N-CH₃], 2.47 [s, 6H, N(CH₃)₂]; ¹⁹F NMR 376 MHz (20mM, CDCl₃) δ ppm [E(cis)-ac: ~100 %]: -62.76 (s, 3F, Ph-CF₃); ¹H NMR 400 MHz (20mM, [CD₃]₂SO) δ ppm [E(cis)-ac: ~100 %]: 7.73 (d, 2H, *J* = 8.0 Hz, Ph-CF₃), 7.61 (d, 2H, *J* = 8.0 Hz, Ph-CF₃), 2.95 [s, 3H, C(O)N-CH₃], 2.40 [s, 6H, N(CH₃)₂]; ¹⁹F NMR 376 MHz (20mM, [CD₃]₂SO) δ ppm [E(cis)-ac: ~100 %]: -61.11 (s, 3F, Ph-CF₃); ¹H NMR 400 MHz (20mM, CD₃OD) δ ppm [E(cis)-ac: ~100 %]: -61.11 (s, 3F, Ph-CF₃); ¹H NMR 400 MHz (20mM, CD₃OD) δ ppm [E(cis)-ac: ~100 %]: 7.69 (d, 2H, *J* = 8.0 Hz, Ph-CF₃), 7.62 (d, 2H, *J* = 8.0 Hz, Ph-CF₃), 3.07 [s, 3H, C(O)N-CH₃], 2.49 [s, 6H, N(CH₃)₂]; ¹⁹F NMR 376 MHz (20mM, CD₃OD) δ ppm [E(cis)-ac: ~100 %]: -64.28 (s, 3F, Ph-CF₃); ¹H NMR 400 MHz (20mM, CD₃CN) δ ppm [E(cis)-ac: ~100 %]: 7.68 (d, 2H, *J* = 8.0 Hz, Ph-CF₃), 7.59 (d, 2H, *J* = 8.0 Hz, Ph-CF₃), 2.98 [s, 3H, C(O)N-CH₃], 2.42 [s, 6H, N(CH₃)₂]; ¹⁹F NMR 376 MHz (20mM, CD₃CN) δ ppm [E(cis)-ac: ~100 %]: -64.28 (s, 3F, Ph-CF₃); ¹³C NMR (100 MHz, CDCl₃) δ ppm [E(cis)-ac: ~100 %]: -7.68 (d, 2H, *J* = 8.0 Hz, Ph-CF₃), 7.59 (d, 2H, *J* = 8.0 Hz, Ph-CF₃), 2.98 [s, 3H, C(O)N-CH₃], 2.42 [s, 6H, N(CH₃)₂]; ¹⁹F NMR 376 MHz (20mM, CD₃CN) δ ppm [E(cis)-ac: ~100 %]: -64.28 (s, 3F, Ph-CF₃); ¹³C NMR (100 MHz, CDCl₃) δ ppm [E(cis)-ac: ~100 %]: -7.64.8 (m, m) (20 mHz, 127.6, 124.7 (q, ³*J*_{CF} = 3.0 Hz), 124.11 (q, ¹*J*_{CF} = 270.0 Hz), 43.2, 22.9; HRMS [M + H]⁺ calcd. for, C₁₁H₁₄F₃N₂O, m/z: 247.1058; found m/z: 247.1064.

Compound 5: 4-cyano-*N*, *N'*, *N'*-trimethylbenzohydrazide.

100 mg of 4-cyano-*N*, *N*[']-dimethylbenzohydrazide (**11**) [0.529 mmol (1 eqv.)], 120 μ L of 37% formaldehyde solution [1.59 mmol (3 eqv.)] and 100 mg of sodiumcyanoborohydride [1.59 mmol (3 eqv.)]. Yield (%): 65 % as a solid.

¹H NMR 400 MHz (20mM, CDCl₃) δ ppm [E(cis)-ac: ~100 %]: 7.65 (d, 2H, *J* = 8.0 Hz, Ph-CN), 7.56 (d, 2H, *J* = 8.0 Hz, Ph-CN), 3.05 [s, 3H, C(O)N-CH₃], 2.46 [s, 6H, N(CH₃)₂]; ¹H NMR 400 MHz [20mM, (CD₃)₂SO] δ ppm [E(cis)-ac: ~100 %]: 7.84 (d, 2H, *J* = 8.0 Hz, Ph-CN), 7.57 (d, 2H, *J* = 8.0 Hz, Ph-CN), 2.94 [s, 3H, C(O)N-CH₃], 2.39 [s, 6H, N(CH₃)₂]; ¹H NMR 400 MHz (20 mM, CD₃OD) δ ppm [E(cis)-ac: ~100 %]: 7.75 (d, 2H, *J* = 8.0 Hz, Ph-CN), 7.60 (d, 2H, *J* = 8.0 Hz, Ph-CN), 3.06 [s, 3H, C(O)N-CH₃], 2.47 [s, 6H, N(CH₃)₂]; ¹H NMR 400 MHz (20 mM, CD₃CN) δ ppm [E(cis)-ac: ~100 %]: 7.72 (d, 2H, *J* = 8.0 Hz, Ph-CN), 7.56 (d, 2H, *J* = 12.0 Hz, Ph-CN), 2.97 [s, 3H, C(O)-NCH₃], 2.41 [s, 6H, N(CH₃)₂]; ¹³C NMR (100 MHz, CDCl₃) δ ppm [E(cis)-ac: ~100 %]: 170.7, 141.4, 131.6, 127.8, 118.7, 112.9, 43.2, 23.0; HRMS [M + H]⁺ calcd. for, C₁₁H₁₄N₃O, m/z: 204.1137; found m/z: 204.1139.

Compound 6: N, N', N'-trimethyl-4-nitrobenzohydrazide.

100 mg of *N*, *N*[']-dimethyl-4-nitrobenzohydrazide (**12**) [0.478 mmol (1 eqv.)], 108 μ L of 37% formaldehyde solution [1.43 mmol (3 eqv.)] and 90 mg of sodiumcyanoborohydride [1.43 mmol (3 eqv.)]. Yield (%): 62 % as a solid.

¹H NMR 400 MHz (20mM, CDCl₃) δ ppm [E(cis)-ac: ~100 %]: 8.22 (d, 2H, *J* = 8.0 Hz, Ph-NO₂), 7.62 (d, 2H, *J* = 8.0 Hz, Ph-NO₂), 3.06 [s, 3H, C(O)N-CH₃], 2.47 [s, 6H, N(CH₃)₂]; ¹H NMR 400 MHz [20mM, (CD₃)₂SO] δ ppm [E(cis)-ac: ~100 %]: 8.21 (d, 2H, *J* = 8.0 Hz, Ph-NO₂), 7.66 (d, 2H, *J* = 8.0 Hz, Ph-NO₂), 2.96 [s, 3H, C(O)N-CH₃], 2.39 [s, 6H, N(CH₃)₂]; ¹H NMR 400 MHz (20mM, CD₃OD) δ ppm [E(cis)-ac: ~100 %]: 8.25 (d, 2H, *J* = 8.0 Hz, Ph-NO₂), 7.67 (d, 2H, *J* = 8.0 Hz, Ph-NO₂), 3.07 [s, 3H, C(O)N-CH₃], 2.48 [s, 6H, N(CH₃)₂]; ¹H NMR 400 MHz (20mM, CD₃CN) δ ppm [E(cis)-ac: ~100 %]: 8.20 (d, 2H, *J* = 8.0 Hz, Ph-NO₂), 7.62 (d, 2H, *J* = 8.0 Hz, Ph-NO₂), 2.99 [s, 3H, C(O)N-CH₃], 2.42 [s, 6H, N(CH₃)₂]; ¹³C NMR (100 MHz, CDCl₃) δ ppm [E(cis)-ac: ~100 %]: 170.5, 148.1, 143.4, 128.0, 123.1, 43.2, 23.0; HRMS [M + H]⁺ calcd. for, C₁₀H₁₄N₃O₃, m/z: 224.1035; found m/z: 224.1034.

E(cis)-ac: ~100 %

Compound 13: 2,3,4,5,6-pentafluoro-N, N', N'-trimethylbenzohydrazide.

100 mg of 2,3,4,5,6-pentafluoro-*N*, *N'*-dimethylbenzohydrazide (**14**) [0.393 mmol (1 eqv.)], 89 μ L of 37% formaldehyde solution [1.18 mmol (3 eqv.)] and 74 mg of sodiumcyanoborohydride [1.18 mmol (3 eqv.)]. Yield (%): 50 % as a white solid.

¹H NMR 400 MHz (20mM, CDCl₃) δ ppm [E(cis)-ac: ~100 %]: 3.08 [s, 3H, C(O)N-CH₃], 2.47 [s, 6H, N(CH₃)₂]; ¹⁹F NMR 376 MHz (20mM, CDCl₃) δ ppm [E(cis)-ac: ~100 %]: -142.44 to -142.54 (m, 2F, Ph-F5), -154.77 (t, 1F, J = 19 Hz, Ph-F5), -161.66 to -161.81 (m, 2F, Ph-F5); ¹H NMR 400 MHz [20mM, (CD₃)₂SO] δ ppm [E(cis)-ac: ~100 %]: 3.02 [s, 3H, C(O)N-CH₃], 2.42 [s, 6H, N(CH₃)₂]; ¹⁹F NMR 376 MHz [20mM, (CD₃)₂SO] δ ppm [E(cis)-ac: ~100 %]: 3.02 [s, 3H, C(O)N-CH₃], 143.65 to -143.74 (m, 2F, Ph-F5), -154.58 (t, 1F, J = 23 Hz, Ph-F5), -161.59 to -161.75 (m, 2F, Ph-F5); ¹H NMR 400 MHz (20mM, CD₃OD) δ ppm [E(cis)-ac: ~100 %]: 3.10 [s, 3H, C(O)N-

CH₃], 2.50 [s, 6H, N(CH₃)₂]; ¹⁹F NMR 376 MHz [20mM, (CD₃)₂SO] δ ppm [E(cis)-ac: ~100 %]: -145.13 to -145.22 (m, 2F, Ph-F5), -157.61 (t, 1F, *J* = 19 Hz, Ph-F5), -164.57 to -164.69 (m, 2F, Ph-F5); ¹H NMR 400 MHz (20mM, CD₃CN) δ ppm [E(cis)-ac: ~100 %]: 3.03 [s, 3H, C(O)N-CH₃], 2.44 [s, 6H, N(CH₃)₂]; ¹⁹F NMR 376 MHz [20mM, (CD₃)₂SO] δ ppm [E(cis)-ac: ~100 %]: -144.81 to -144.90 (m, 2F, Ph-F5), -157.60 (t, 1F, *J* = 19 Hz, Ph-F5), -163.83 to -163.97 (m, 2F, Ph-F5); ¹³C NMR (100 MHz, CDCl₃) δ ppm [E(cis)-ac: ~100 %]: 160.5, 144.3-144.0 (m, Ph-F5), 142.5-142.3 (m, Ph-F5), 141.8-141.5 (m, Ph-F5), 140.0-139.7 (m, Ph-F5), 138.9-138.6 (m, Ph-F5), 136.6-136.1 (m, Ph-F5), 141.2-113.5 (m, Ph-F5), 43.6, 22.9; HRMS [M + H]⁺ calcd. for, C₁₀H₁₀ F₅N₂O, m/z: 269.0713; found m/z: 269.0702.

3. General Scheme for the synthesis of *N*,*N*'-dimethyl-monoacylhydrazines 14-18:

Procedure:

A. x mg of 1,2-Dimethylhydrazine-dihydrochloride [y mmol (3 eqv.)] were neutralized by using x' μL of N, N-diisopropylethylamine [DIEA-y' mmol (7 eqv.)] in CH₂Cl₂ (15 mL) at room temperature and stirred for 15 minutes. The reaction mixture was allowed to cool to

 0° C and stirred for another 5 minutes. Then x" mg/ µL of Acyl chloride [y" mmol (1 eqv.)] in CH₂Cl₂ (2 mL) were added drop-wise manner to a reaction mixture over 10 minutes and stirred for another 30 minutes. The solvent was evaporated to dryness by using the rotary evaporator. Then the reaction mixture was dissolved in CH₂Cl₂ and washed twice with water, then a 10% citric acid solution followed by a saturated sodium bicarbonate (NaHCO₃) solution and finally with brine solution. The organic layer was dried over Na₂SO₄ and evaporated under reduced pressure and the temperature of the rota-vapor need to be maintained less than 40°C. The final residue was then purified by the Column chromatography using Silica Gel (100-200 Mesh) and gradient of Hexane and ethyl acetate as an eluent.

B. In two-neck Rb flask, x mg of substituted benzoic acid [y mmol (1.2 eqv.)] were activated by using x' μL of *N*,*N*'-diisopropylcarbodiimide (DIC) coupling reagent [y' mmol (1.2 eqv.)] in CH₂Cl₂ (10 mL) at room temperature and stirred for 1 hr (reaction mixture 1). In another two-neck Rb flask, x" mg of 1,2-Dimethylhydrazine-dihydrochloride [y" mmol (1 eqv.)] were neutralized by using x" μL of N, N-diisopropylethylamine [DIEA-y" mmol (2.5 eqv.)] in CH₂Cl₂ (10 mL) at room temperature and stirred for 1 hr (reaction mixture 2). Then both the reaction mixture was allowed to cool to 0° C and stirred for another 5 minutes. Then the reaction mixture 1 was slowly added into the rb flask of the reaction mixture 2 and stirred for another 1hr at 0° C. DIC-Urea were filtered off from the final reaction mixture. Then the solvent was evaporated to dryness by using the rotary evaporator. Then the reaction mixture was dissolved in CH₂Cl₂ and washed twice with water, then a 10% citric acid solution followed by a saturated sodium bicarbonate (NaHCO₃) solution and finally with brine solution. The organic layer was dried over Na₂SO₄ and evaporated under reduced pressure and the temperature of the rota-vapour need to be maintained less than 40°C. The final

residue was then purified by the Column chromatography using Silica Gel (100-200 Mesh) and gradient of Hexane and ethyl acetate as an eluent.

Compound 14: 2,3,4,5,6-pentafluoro-N, N'-dimethylbenzohydrazide.

A. $x = 173 \text{ mg of } 1,2\text{-Dimethylhydrazine-dihydrochloride } [y = 1.30 \text{ mmol } (3 \text{ eqv.})], x' = 519 \text{ }\mu\text{L}$ of N, N-diisopropylethylamine [DIEA (y') = 3.05 mmol (7 eqv.)] and x'' = 63 μL of 2,3,4,5,6pentafluorobenzoyl chloride [y'' = 0.434 mmol (1 eqv.)]. Yield (%): 85 % as a white solid.

¹H NMR 400 MHz (20mM, CDCl₃) δ ppm E(cis)-ac rotamer (82 %): 3.54 [brs, 1H, HN-(CH₃)], 3.30 [s, 3H, C(O)NCH₃], 2.58 [brs, 3H, H₃C-(NH)]; Z(trans)-sc rotamer (18 %): 3.08 [s, 3H, C(O)NCH₃], 2.70 [s, 3H, H₃C-(NH)]; ¹⁹F NMR 376 MHz (20mM, CDCl₃) δ ppm [E(cis)-ac: 82 %]: -141.72 [brdd, 2F, J = 11.0 Hz, ortho-F (F5-Ph)], -154.34 [t, 1F, J = 23.0 Hz, para-F (F5-Ph)], -161.74 to -161.88 [m, 2F, meta-F (F5-Ph)]; Z(trans)-sc rotamer (18 %): -140.65 [brdd, 2F, J = 11.0 Hz, ortho-F (F5-Ph)], -150.97 [t, 1F, J = 23.0 Hz, para-F (F5-Ph)], -159.48 to -159.63 [m, 2F, meta-F (F5-Ph)]; ¹H NMR 400 MHz (20mM, [CD₃]₂SO) δ ppm E(cis)-ac rotamer (~100%): 5.32 [q, 1H, J = 8.0 Hz, HN-(CH₃)], 3.16 [s, 3H, C(O)NCH₃], 2.38 [d, 3H, J = 4.0 Hz, H₃C-(NH)]; ¹⁹F NMR 376 MHz (20mM, [CD₃]₂SO) δ ppm [E(cis)-ac: ~100 %]]: -143.03 [brdd, 2F, J = 15.0 Hz, ortho-F (F5-Ph)], -154.77 [t, 1F, J = 23.0 Hz, para-F (F5-Ph)], -161.98 to -162.13 [m, 2F, meta-F (F5-Ph)]; ¹H NMR 400 MHz (20mM, CD₃OD) δ ppm E(cis)ac rotamer (94 %): 3.26 [s, 3H, C(O)NCH₃], 2.49 [d, 3H, J = 4.0 Hz, H₃C-(NH)]; Z(trans)-sc rotamer (6 %): 3.10 [s, 3H, C(O)NCH₃], 2.67 [s, 3H, H₃C-(NH)]; ¹⁹F NMR 376 MHz (20mM, CDCl₃) δ ppm [E(cis)-ac: 94 %]: -144.52 to -144.60 [m, 2F, ortho-F (F5-Ph)], -157.65 [t, 1F, J = 19.0 Hz, para-F (F5-Ph)], -164.91 to -165.04 [m, 2F, meta-F (F5-Ph)]; Z(trans)-sc rotamer (6 %): -144.22 to -144.25 [m, 2F, ortho-F (F5-Ph)], -154.68 [t, 1F, J = 19.0 Hz, para-F (F5-Ph)], -162.93 to -163.05 [m, 2F, meta-F (F5-Ph)]; ¹H NMR 400 MHz (20mM, CD₃CN) δ ppm E(cis)-ac rotamer (92 %): 4.21 [brq, 1H, J = 4.0 Hz, HN-(CH₃)], 3.20 [s, 3H, C(O)NCH₃], 2.46 $[d, 3H, J = 4.0 Hz, H_3C-(NH)];$ Z(trans)-sc rotamer (8 %): 3.02 [s, 3H, C(O)NCH₃], 2.61 [s, 3H, H₃C-(NH)]; ¹⁹F NMR 376 MHz (20mM, CDCl₃) δ ppm [E(cis)-ac: 92 %]: -144.20 to -144.28 [m, 2F, ortho-F (F5-Ph)], -157.27 [t, 1F, J = 19.0 Hz, para-F (F5-Ph)], -164.03 to -164.16 [m, 2F, meta-F (F5-Ph)]; Z(trans)-sc rotamer (8 %): -143.83 to -143.91 [m, 2F, ortho-F (F5-Ph)], -154.96 [t, 1F, J = 19.0 Hz, para-F (F5-Ph)], -162.30 to -162.44 [m, 2F, meta-F (F5-Ph)]; ¹H NMR 400 MHz (20mM, D₂O) δ ppm E(cis)-ac rotamer (76 %): 3.29 [s, 3H, C(O)NCH₃], 2.51 [s, 3H, H₃C-(NH)]; Z(trans)-sc rotamer (24 %): 3.14 [s, 3H, C(O)NCH₃], 2.66 [s, 3H, H₃C-(NH)]; ¹⁹F NMR 376 MHz (20mM, D₂O) δ ppm [E(cis)-ac: 76 %]: -142.67 to -142.78 [m, 2F, ortho-F (F5-Ph)], -153.23 [t, 1F, J = 23.0 Hz, para-F (F5-Ph)], -161.31 to -161.46 [m, 2F, meta-F (F5-Ph)]; Z(trans)-sc rotamer (24 %): -142.04 [m, 2F, ortho-F (F5-Ph)], -150.98 [t, 1F, J = 23.0 Hz, para-F (F5-Ph)], -160.25 to -160.39 [m, 2F, meta-F (F5-Ph)]; 13 C NMR (100 MHz, CDCl₃) δ ppm [E(cis)-ac: 82 %]: 161.0, 144.3-144.1 (m, Ph-F5), 142.8-142.4 (m, Ph-F5), 141.9-141.6 (m, Ph-F5), 140.3-139.9 (m, Ph-F5), 138.9-138.5 (m, Ph-F5), 136.4-136.0 (m, Ph-F5), 113.3-112.8 (m, Ph-F5), 35.89, 31.97; [Z(trans)-sc: 18 %]: 156.9, 144.3-144.1 (m, Ph-F5), 142.8-142.4 (m, Ph-F5), 141.9-141.6 (m, Ph-F5), 140.3-139.9 (m, Ph-F5), 138.9-138.5 (m, Ph-F5), 136.4-136.0 (m, Ph-F5), 113.3-112.8 (m, Ph-F5), 36.3, 36.1; HRMS $[M + H]^+$ calcd. for, C₉H₈F₅N₂O, m/z: 255.0557; found m/z: 255.0565.

Compound 15: 2-fluoro-*N*,*N*'-dimethylbenzohydrazide.

B. x = 158 mg of 2-fluorobenzoic acid [y = 1.13 mmol (1.2 eqv.)], x' = 210 μ L of *N*,*N'*-diisopropylcarbodiimide (DIC) coupling reagent [y' = 1.35 mmol (1.2 eqv.)], x" = 150 mg of 1,2-Dimethylhydrazine-dihydrochloride [y" = 1.13 mmol (1 eqv.)] and x"' = 482 μ L of N, N-diisopropylethylamine [DIEA-y" = 2.82 mmol (2.5 eqv.)]. Yield (%): 89 % as a white semisolid.

¹H NMR 400 MHz (20mM, CDCl₃) δ ppm Z(trans)-sc rotamer (63 %): 7.45-7.32 [m, 2H, Ph(ortho-F)], 7.24-7.02 [m, 2H, Ph(ortho-F)], 3.07 [brd, J = 4.0 Hz, 3H, C(O)N-CH₃], 2.70 [s, 3H, H₃C-(NH)]; E(cis)-ac rotamer (37 %): 7.45-7.32 [m, 2H, Ph(ortho-F)], 7.24-7.02 [m, 2H, Ph(ortho-F)], 3.28 [s, 3H, C(O)N-CH₃], 2.54 [s, 3H, H₃C-(NH)]; ¹⁹F NMR 376 MHz (20mM, CDCl₃) δ ppm Z(trans)-sc rotamer (63 %): -114.91 to -114.97 (m, 1F, J_{FC}, meta-NO₂-Ph-F); [E(cis)-ac: 37 %]: -113.74 to -113.79 (m, 1F, J_{FC}, meta-NO₂-Ph-F); ¹H NMR 400 MHz (20mM, [CD₃]₂SO) δ ppm E(cis)-ac rotamer (86 %): 7.40-7.35 [m, 1H, Ph(ortho-F)], 7.31-7.27 [m, 1H, Ph(ortho-F)], 7.20-7.14 [m, 2H, Ph(ortho-F)], 4.93 [q, 1H, J = 4.0 Hz, (CH₃)N-H] 3.11 [s, 3H, $C(O)N-CH_3$], 2.33 [d, 3H, J = 8.0 Hz, $H_3C-(NH)$]; Z(trans)-sc rotamer (14 %): 7.89-7.84 [m, 1H, Ph(ortho-F)], 7.67-7.61 [m, 1H, Ph(ortho-F)], 7.54-7.49 [m, 1H, Ph(ortho-F)], 7.31-7.27 [m, 1H, Ph(ortho-F)], 5.87 [brs, 1H, (CH₃)N-H] 2.92 [s, 3H, C(O)N-CH₃], 2.54 [s, 3H, H₃C-(NH)]; ¹⁹F NMR 376 MHz [20mM, (CD₃)₂SO] δ ppm [E(cis)-ac: 86 %]: -115.28 to -115.34 (m, 1F, J_{FC}, meta-NO₂-Ph-F); [Z(trans)-sc: 14 %]: -116.60 to -116.66 (m, 1F, J_{FC}, meta-NO₂-Ph-F); ¹³C NMR (100 MHz, CDCl₃) δ ppm [Z(trans)-sc: 63 %]: 164.7, 158.4 (d, ¹J_{FC}, J = 247 Hz), 134.6 (d, ${}^{3}J_{FC}$, J = 8.0 Hz), 131.8 (d, ${}^{2}J_{FC}$, J = 8.0 Hz), 129.2 (d, ${}^{4}J_{FC}$, J = 3.0 Hz), 124.7 (d, ${}^{3}J_{FC}$, J = 3.0 Hz), 116.0 (d, ${}^{2}J_{FC}$, J = 21.0 Hz), 36.5 [d, J = 3.0 Hz, C(O)N-CH₃...F-Ph] 36.1; [E(cis)-ac: 37 %]: 168.8, 158.5 (d, ${}^{1}J_{FC}$, J = 246 Hz), 132.6 (brd, ${}^{3}J_{FC}$), 130.6 (d, ${}^{2}J_{FC}$, J = 8.0Hz), 128.6 (d, ${}^{3}J_{FC}$, J = 4.0 Hz), 124.0 (d, ${}^{4}J_{FC}$, J = 3.0 Hz), 115.2 (d, ${}^{2}J_{FC}$, J = 22.0 Hz), 35.7 [brd, J = 4.0 Hz, (H)N-CH₃...F-Ph], 32.3; HRMS [M + H]⁺ calcd. for, C₉H₁₂FN₂O, m/z: 183.0934; found m/z: 183.0929.

Compound **17**: 2-fluoro-*N*,*N*'-dimethyl-4-nitrobenzohydrazide.

B. x = 250 mg of 2-fluoro-4-nitrobenzoic acid [y = 1.35 mmol (1.2 eqv.)], x' = 210 μ L of *N*,*N'*-diisopropylcarbodiimide (DIC) coupling reagent [y' = 1.35 mmol (1.2 eqv.)], x" = 150 mg of 1,2-Dimethylhydrazine-dihydrochloride [y" = 1.13 mmol (1 eqv.)] and x"' = 482 μ L of N, N-diisopropylethylamine [DIEA-y"' = 2.82 mmol (2.5 eqv.)]. Yield (%): 82 % as an off-white semisolid.

¹H NMR 400 MHz (20mM, CDCl₃) δ ppm E(cis)-ac rotamer (75 %): 8.06 (dd, 1H, J = 8.0 Hz, meta-NO₂-Ph-F), 7.92 (dd, 1H, J = 8.0 Hz, meta-NO₂-Ph-F), 7.53 (dd, 1H, J = 8.0 Hz, meta-NO₂-Ph-F), 3.52 [brq, J = 8.0 Hz, 1H, (CH₃)N-H] 3.29 [s, 3H, C(O)N-CH₃], 2.55 [d, 3H, J = 4.0 Hz, Ph-F···H₃C-(NH)]; Z(trans)-sc rotamer (25 %): 8.12 (dd, 1H, J = 8.0 Hz, meta-NO₂-Ph-F), 8.02 (dd, 1H, J = 8.0 Hz, meta-NO₂-Ph-F), 7.63 (dd, 1H, J = 8.0 Hz, meta-NO₂-Ph-F), 3.06 [d, 3H, C(O)N-CH₃···F-Ph], 2.71 [s, 3H, (H₃C)N-H]; ¹⁹F NMR 376 MHz (20mM, CDCl₃) δ ppm [E(cis)-ac: 75 %]: -109.48 (dd, 1F, J = 8.0 Hz, meta-NO₂-Ph-F); Z(trans)-sc rotamer (25 %): -110.48 (t, 1F, J = 8.0 Hz, meta-NO₂-Ph-F); ¹H NMR 400 MHz [20mM, (CD₃)₂SO] δ ppm E(cis)-ac rotamer (~100 %): 8.13-8.07 (m, 2H, meta-NO₂-Ph-F), 7.64-7.61 (m, 1H, meta-NO₂-Ph-F), 5.11 [q, 1H, J = 4.0 Hz, (CH₃)N-H], 3.14 [s, 3H, C(O)-NCH₃], 2.34 [d, J = 8.0 Hz, 3H, (H)N-CH₃]; ¹⁹F NMR 376 MHz (20mM, [CD₃]₂SO) δ ppm [E(cis)-ac: ~100 %]: -111.46 (dd, J = 8.0 Hz, 1F, meta-NO₂-Ph-F); ¹³C NMR (100 MHz, CDCl₃) δ ppm [E(cis)-ac: 75 %]: 166.7, 158.2 (d, ¹J_{FC}, J = 250 Hz), 132.8 (d, ²J_{FC}, J = 18.0 Hz), 129.2 (d, ³J_{FC}, J = 4.0 Hz), 119.4 (d, ⁴J_{FC}, J = 4.0 Hz), 111.2 (d, ²J_{FC}, J = 28.0 Hz), 35.6 [d, J = 1.0 Hz, (H)N-CH₃···F-Ph], 32.0; [Z(trans)-sc: 25 %]: 162.6, 158.1 (d, ¹J_{FC}, J = 250 Hz), 148.8 (d, ²J_{FC}, J = 8.0 Hz), 130.3 (d,

 ${}^{3}J_{FC}$, J = 4.0 Hz), 120.0 (d, ${}^{4}J_{FC}$, J = 3.0 Hz), 112.2 (d, ${}^{2}J_{FC}$, J = 27.0 Hz), 36.6 [d, J = 3.0 Hz, C(O)N-CH₃...F-Ph] 36.1; HRMS [M + H]⁺ calcd. for, C₉H₁₀FN₃O₃, m/z: 228.0784; found m/z: 228.0795.

Compound **18**: 2-fluoro-*N*,*N*'-dimethyl-4-nitrobenzohydrazide.

B. x = 223 mg of 4-cyano-2-fluorobenzoic acid [y = 1.35 mmol (1.2 eqv.)], x' = 210 μ L of *N*,*N'*-diisopropylcarbodiimide (DIC) coupling reagent [y' = 1.35 mmol (1.2 eqv.)], x" = 150 mg of 1,2-Dimethylhydrazine-dihydrochloride [y" = 1.13 mmol (1 eqv.)] and x"' = 482 μ L of N, N-diisopropylethylamine [DIEA-y"' = 2.82 mmol (2.5 eqv.)]. Yield (%): 83 % as an off-white semisolid.

¹H NMR 400 MHz (20mM, CDCl₃) δ ppm E(cis)-ac rotamer (71 %): 7.55-7.54 (m, 1H, meta-CN-Ph-F), 7.47-7.43 (m, 1H, meta-CN-Ph-F), 7.35-7.33 (d, 1H, J = 8.0 Hz, meta-CN-Ph-F), 3.51 [brq, J = 4.0 Hz, 1H, (CH₃)N-H] 3.28 [s, 3H, C(O)N-CH₃], 2.55 [d, 3H, J = 4.0 Hz, Ph-F···H₃C-(NH)]; Z(trans)-sc rotamer (29 %): 7.47-7.43 (m, 3H, meta-CN-Ph-F), 3.05 [bd, 3H, C(O)N-CH₃···F-Ph], 2.70 [s, 3H, (H₃C)N-H]; ¹⁹F NMR 376 MHz (20mM, CDCl₃) δ ppm [E(cis)-ac: 71 %]: -110.51 to -110.54 (m, 1F, meta-NO₂-Ph-F); Z(trans)-sc rotamer (29 %): -111.63 to -111.65 (m, 1F, meta-NO₂-Ph-F); ¹H NMR 400 MHz [20mM, (CD₃)₂SO] δ ppm E(cis)-ac rotamer (~100 %): 7.85 (dd, 1H, J = 8.0 Hz, meta-CN-Ph-F), 7.70 (dd, 1H, J = 8.0Hz, meta-CN-Ph-F), 7.53 (t, 1H, J = 8.0 Hz, meta-CN-Ph-F), 5.06 [q, 1H, J = 4.0 Hz, (CH₃)N-H], 3.12 [s, 3H, C(O)-NCH₃], 2.33 [d, J = 4.0 Hz, 3H, (H)N-CH₃]; ¹⁹F NMR 376 MHz (20mM, [CD₃]₂SO) δ ppm [E(cis)-ac: ~100 %]: -113.26 (dd, J = 8.0 Hz, 1F, meta-CN-Ph-F); ¹³C NMR (100 MHz, CDCl₃) δ ppm [E(cis)-ac: 71 %]: 166.9, 158.0 (d, ¹J_{FC}, *J* = 249.0 Hz), 131.3 (d, ²J_{FC}, *J* = 18.0 Hz), 129.6 (d, ³J_{FC}, *J* = 4.0 Hz), 128.2 (d, ⁴J_{FC}, *J* = 4.0 Hz), 119.0 (d, ²J_{FC}, *J* = 25.0 Hz), 117.5 (d, ⁴J_{FC}, *J* = 3.0 Hz), 113.9 (d, ³J_{FC}, *J* = 9.0 Hz), 35.6 [d, *J* = 1.0 Hz, (H)N-CH₃...F-Ph], 32.0; [Z(trans)-sc: 29 %]: 162.7, 158.2 (d, ¹J_{FC}, *J* = 197.0 Hz), 128.8 (d, ²J_{FC}, *J* = 18.0 Hz), 130.5 (d, ³J_{FC}, *J* = 5.0 Hz), 128.8 (d, ⁴J_{FC}, *J* = 4.0 Hz), 120.0 (d, ²J_{FC}, *J* = 25.0 Hz), 116.9 (d, ⁴J_{FC}, *J* = 3.0 Hz), 115.4 (d, ³J_{FC}, *J* = 9.0 Hz), 36.5[d, *J* = 3.0 Hz, C(O)N-CH₃...F-Ph], 36.8; HRMS [M + H]⁺ calcd. for, C₁₀H₁₁FN₃O, m/z: 208.0886; found m/z: 208.0897.

Cyclic compounds:

Compound 14C: 4, 5, 6, 7-tetrafluoro-1, 2-dimethyl-1H-indazol-3(2H)-one.

Yield (%): 95 % as a white solid.

¹H NMR 400 MHz (20mM, CDCl₃) δ ppm (~100 %): 3.40 [s, 3H, C(O)-N_a-CH₃], 3.34 [s, 3H, N_β-CH₃]; ¹⁹F NMR 376 MHz (20mM, CDCl₃) δ ppm (~100 %): -143.27 to -143.39 (m, 1F, PhF₄), -149.04 (td, 1F, *J* = 19.0 Hz), -156.16 (t, 1F, *J* = 19.0 Hz), -163.04 (td, 1F, *J* = 19.0 Hz); ¹H NMR 400 MHz [20mM, (CD₃)₂SO] δ ppm (~100 %): 3.36 [s, 3H, C(O)-N_a-CH₃], 3.33 [s, 3H, N_β-CH₃]; ¹⁹F NMR 376 MHz [20mM, (CD₃)₂SO] δ ppm (~100 %): -146.55 to -146.67 (m, 1F), -151.38 (td, 1F, *J* = 19.0 Hz), -156.47 (t, 1F, *J* = 19.0 Hz), -165.71 (td, 1F, *J* = 19.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ ppm (~100 %): 159.0 (d, ${}^{3}J_{C-F4}$ = 3.0 Hz), 143.9 (dtd, ${}^{1}J_{CF}$ = 254 Hz, ${}^{2}J_{CF}$ = 15.0 Hz, ${}^{3}J_{CF}$ = 3.0 Hz), 142.7 (ddt, ${}^{1}J_{CF}$ = 260 Hz, ${}^{2}J_{CF}$ = 12.0 Hz, ${}^{3}J_{CF}$ = 3.0 Hz), 136.5 (dt, ${}^{1}J_{CF}$ = 248 Hz, ${}^{2}J_{CF}$ = 15.0 Hz), 134.9 (ddd, ${}^{1}J_{CF}$ = 250 Hz, ${}^{2}J_{CF}$ = 15.0 Hz, ${}^{2}J_{CF}$ = 15.0 Hz, ${}^{3}J_{CF}$ = 15.0 Hz), 134.3-134.1 (m), 105.0 (d, ${}^{2}J_{C-F4}$ = 15.0 Hz), 38.2 (d, *J* = 5.0 Hz, F1…H₃C-Nβ), 29.1; HRMS [M + H]⁺ calcd. for, C₉H₇F₄N₂O, m/z; 235.0495; found m/z; 235.0493.

Compound **16C**: 1, 2-dimethyl-5-nitro-*1H*-indazol-3(2*H*)-one.

Yield (%): 96 % as a yellow solid.

¹H NMR 400 MHz (20mM, CDCl₃) δ ppm (~100 %): 8.78 (d, 1H, J = 4.0 Hz, para-NO₂-Ph), 8.40 (dd, 1H, J = 8.0 Hz, para-NO₂-Ph), 7.22 (d, 1H, J = 12.0 Hz, para-NO₂-Ph), 3.52 [s, 3H, C(O)-N_α-CH₃], 3.47 [s, 3H, N_β-CH₃]; ¹H NMR 400 MHz [20mM, (CD₃)₂SO] δ ppm (~100 %): 8.46 (d, 1H, J = 4.0 Hz, para-NO₂-Ph), 8.37 (dd, 1H, J = 8.0 Hz, para-NO₂-Ph), 7.68 (d, 1H, J = 12.0 Hz, para-NO₂-Ph), 3.60 [s, 3H, C(O)-N_α-CH₃], 3.45 [s, 3H, N_β-CH₃]; ¹³C NMR (100 MHz, CDCl₃) δ ppm (~100 %): 161.4, 150.4, 142.7, 127.4, 121.6, 117.5, 110.7, 35.9, 29.3; HRMS [M + H]⁺ calcd. for, C₉H₁₀N₃O₃, m/z: 208.0722; found m/z: 208.0721.

Compound **17C**: 1, 2-dimethyl-6-nitro-*1H*-indazol-3(2*H*)-one.

Yield (%): 93 % as an orange solid.

¹H NMR 400 MHz (20mM, CDCl₃) δ ppm (~100 %): 8.09 (brs, 1H, meta-NO₂-Ph), 8.01-8.00 (m, 1H, meta-NO₂-Ph), 3.51 [s, 3H, C(O)-N_α-CH₃], 3.40 [s, 3H, N_β-CH₃]; ¹H NMR 400 MHz [20mM, (CD₃)₂SO] δ ppm (~100 %): 8.53 (brs, 1H, meta-NO₂-Ph), 7.91 (m, 2H, meta-NO₂-Ph-F), 3.49 [s, 3H, C(O)-N_α-CH₃], 3.43 [s, 3H, N_β-CH₃]; ¹³C NMR (100 MHz, CDCl₃) δ ppm (~100 %): 161.1, 150.8, 148.8, 125.5, 123.0, 117.0, 107.4, 37.2, 29.4; HRMS [M + H]⁺ calcd. for, C₉H₁₀N₃O₃, m/z: 208.0722; found m/z: 208.0732.

Compound **18C**: 1, 2-dimethyl-3-oxo-2, 3-dihydro-*1H*-indazole-6-carbonitrile.

Yield (%): 90 % as an off-white solid.

¹H NMR 400 MHz (20mM, CDCl₃) δ ppm (~100 %): 7.95 (d, 1H, J = 8.0 Hz, meta-CN-Ph), 7.50 (s, 1H, meta-CN-Ph), 7.41 (d, 1H, J = 8.0 Hz, meta-CN-Ph), 3.49 [s, 3H, C(O)-N_α-CH₃], 3.33 [s, 3H, N_β-CH₃]; ¹H NMR 400 MHz [20mM, (CD₃)₂SO] δ ppm (~100 %): 8.21 (s, 1H, meta-CN-Ph), 7.85 (d, 1H, J = 8.0 Hz, meta-CN-Ph), 7.51 (d, 1H, J = 8.0 Hz, meta-CN-Ph), 3.41 [s, 3H, C(O)-N_α-CH₃], 3.40 [s, 3H, N_β-CH₃]; ¹³C NMR (100 MHz, CDCl₃) δ ppm (~100 %): 161.4, 148.7, 125.4, 125.1, 121.8, 118.4, 115.8, 115.4, 37.3, 29.3; HRMS [M + H]⁺ calcd. for, C₁₀H₁₀N₃O, m/z: 188.0824; found m/z: 188.0835.

F. Supplementary figures and tables.

Figure S1. Four different rotamers were possible based on E/Z isomerisation of the amide bond, the lone pair of β -nitrogen and when the both substituent at β -nitrogen are same (R₂ = R₃).

ac = anticlinal, sc = synclinal fH = frontside β -hydrogen, bH = backside β -hydrogen

Unsymmetrical N_α-Acyl-hydrazines

Figure S2. Eight different rotamers were possible based on E/Z isomerisation of the amide bond, the lone pair of β -nitrogen and when the both substituent at β -nitrogen are different (R₂ \neq R₃).

R	N ^{-N} , CH ₃ CH ₃ CH ₃ Z-ac	R N C CH ₃ N N C CH ₃ CH ₃ Z-sc	O N C H ₃ E-ac	CH ₃ O	H ₃ C CH ₃ N CH ₃ E-sc
Comp			Confor	mation	
	R	Z-ac	Z-sc	E-ac	E-sc
1	NMe ₂ Ph	4.02	1.34	0.00	4.12
2	OMePh	4.56	1.84	0.00	4.49
3	Ph	4.16	1.36	0.00	4.23
4	CF ₃ Ph	4.96	1.99	0.00	4.88
5	CNPh	4.99	2.10	0.00	4.90
6	NO ₂ Ph	5.05	2.25	0.00	4.77

Table S1. Zero-point corrected relative electronic energies $\Delta(E+ZPE)$ of **1-6** in kcal·mol⁻¹.

Table S2. Relative electronic energies ΔE of **1-6** in kcal·mol⁻¹.

R		R K N CH3	N ^N CH ₃	°CH ₃ O ^R CH ₃ O	H ₃ C CH ₃ N C CH ₃
Z	2-ac	Z-sc	E-ac		E-sc
Comp			Confor	mation	
	R	Z-ac	Z-sc	E-ac	E-sc
1	NMe ₂ Ph	4.27	1.28	0.00	4.29
2	OMePh	4.42	1.50	0.00	4.66
3	Ph	4.37	1.39	0.00	4.35
4	CF ₃ Ph	4.88	1.93	0.00	4.93
5	CNPh	5.03	2.10	0.00	5.14
6	NO_2Ph	5.10	2.20	0.00	5.19

Table S3. Relative Gibbs free energies ΔG of **1-6** in kcal·mol⁻¹.

R	N ^{-N} , CH ₃ CH ₃ CH ₃ Z-ac	R N N CH ₃ R CH ₃ N CH ₃ CH ₃ Z-sc	O N CH ₃ E-ac	CH ₃ O	H ₃ C CH ₃ N CH ₃ E-sc
Comp			Conform	nation	
	R	Z-ac	Z-sc	E-ac	E-sc
1	NMe ₂ Ph	3.89	1.20	0.00	4.04
2	OMePh	4.71	1.99	0.00	4.13
3	Ph	4.11	1.20	0.00	3.95
4	CF_3Ph	5.21	1.82	0.00	4.79
5	CNPh	5.02	1.96	0.00	4.49
6	NO ₂ Ph	5.22	2.29	0.00	4.24

CH ₃ CH ₃ CH ₃									
				E-ac					
Comp	R	$E^2 n_{N\beta} \rightarrow \pi^*_{Ar}$	σ_P	ΔN_{β}	ΔC_{Ph}	d _{N···C}	E ²	d _{0c}	
							<i>п</i> о→ σ* с-н		
		kcal.mol ⁻¹		Å	Å	Å	kcal.mol ⁻¹	Å	
1	NMe ₂ -Ph	1.27	-0.83	0.406	0.033	2.845	1.23	2.635	
2	OMe-Ph	1.44	-0.27	0.407	0.034	2.833	1.17	2.644	
3	Ph	1.47	0.00	0.407	0.035	2.826	1.11	2.653	
4	CF₃-Ph	1.60	0.54	0.409	0.035	2.816	1.06	2.659	
5	CN-Ph	1.62	0.66	0.410	0.036	2.815	1.06	2.661	
6	NO2-Ph	1.66	0.78	0.411	0.035	2.812	1.03	2.665	

Table S4. Optimized structural parameters and NBO stabilization energies of the E-ac conformers of **1-6** computed at M06-2X/6-311+G(2d,p) level of theory.

 E^2 = Second order perturbation energies calculated as kcal.mol⁻¹, $n_{N\beta} \rightarrow \pi^*_{Ar}$ = lone pair of β-nitrogen delocalized into the antibonding π orbital of the Ph ring, σ_P = Hammett constant, ΔN_β = Pyramidiality at β-nitrogen, ΔC_{Ph} = Pyramidiality at Cipso in aromatic Ph ring, $d_{N\cdots C}$ = distances between β-nitrogen and Cipso of the Ph ring in Angstrom (Å), NBO values were observed at above 0.05 kcal.mol⁻¹ threshold.

Figure S3. $n_{N\beta} \rightarrow \pi^*_{Ar}$ interaction NBO orbital overlaps involving the β -nitrogen lone pair $(n_{N\beta})$ and two different antibonding $\pi^*_{C=C}$ orbitals of the phenyl ring in **3**.

Table S5. X-ray crystallographic structural parameters and NBO stabilization energies of the E-ac conformers of **2-3** and **5-6** computed using crystallographic atomic coordinates.

$ \begin{array}{c} R \\ O \\ N \\ C \\ H_{3} \\ C \\ H_{3} \\ E-ac \end{array} $							
Comp	R	$E^2 n_N \rightarrow \pi^*_{Ar}$	σ_P	ΔN _β Å	ΔC _{Ph} Å	d _{N…C} Å	
2	OMe-Ph	1.67	-0.27	0.421	0.041	2 785	
3	Ph	2.09	0.00	0.421	0.032	2.712	
5	CN-Ph	2.48	0.66	0.416	0.035	2.694	
6	NO ₂ -Ph	2.53	0.78	0.425	0.037	2.691	

NBO values were observed at above 0.05 kcal.mol⁻¹ threshold.

Figure S4. (A) Increase in the $n_N \rightarrow \pi^*_{Ar}$ interactions from 2, 3 to 5, 6 with increase in electron withdrawing ability of the p-substituent in the phenyl ring. (B) Positive pyramidality of the donor nitrogen vs $n_N \rightarrow \pi^*_{Ar}$ interactions of 2, 3 to 5, 6. (C) Positive pyramidality of the phenyl carbon vs $n_N \rightarrow \pi^*_{Ar}$ interactions of 2, 3 to 5, 6 and (D) Increase in the $n_N \rightarrow \pi^*_{Ar}$ interactions from 2, 3 to 5, 6 with decrease in donor-acceptor distance (N···C).

Figure S5. (A) Pictorial representations of $n_{N\beta} \rightarrow \sigma^*_{N-CH3}$ and $n_{N\beta} \rightarrow \sigma^*_{N-C(O)}$ interactions in the E-ac and Z-sc isomers, respectively. (B) NBO $n_{N\beta} \rightarrow \sigma^*_{N-CH3}$ orbital interaction in the E-ac isomer of **3** and (B) $n_{N\beta} \rightarrow \sigma^*_{N-C(O)}$ orbital interaction in the Z-sc isomer of **3**.

Comp	E-ac	(cis)	Z-sc (trans)	Z-ac (trans)		E-sc (cis)	
	$E^2 \: n_{N\beta} \to$	$E^2 \: n_{N\beta} \to$	$E^2 \: n_{N\beta} \to$	$E^2 \: n_{N\beta} \to$	$E^2 \: n_{N\beta} \to$	$E^2 \: n_{N\beta} \to$	$E^2 \: n_{N\beta} \to$	$E^2 \: n_{N\beta} \to$
	$\sigma^*_{N\alpha}$ -CH3	σ* Nα-C(O)	$\sigma^*_{N\alpha}$ -CH3	σ* _{Nα-C(O)}	$\sigma^*_{N\alpha}$ -CH3	σ* _{Nα-C(O)}	$\sigma^*_{N\alpha}$ -CH3	$\sigma^*_{N\alpha}-C(O)$
				kcal.	mol ⁻¹			
1	10.12	2.16	1.59	9.15	9.74	1.47	2.90	7.78
2	10.13	2.16	1.63	9.18	9.77	1.50	2.92	7.93
3	10.16	2.18	1.66	9.17	9.76	1.51	3.04	8.11
4	10.23	2.19	1.66	9.20	9.79	1.49	3.15	8.33
5	10.27	2.20	1.67	9.21	9.80	1.50	3.14	8.36
6	10.32	2.23	1.67	9.22	9.82	1.51	3.25	8.45

Table S6. NBO stabilization energies due to anomeric interactions in the E-ac, Z-sc, Z-ac and E-sc isomers of **1-6**. [cis and trans denotes for the amide bond $O=C-N\alpha-CH_3$]

Table S7. Sum of NBO stabilization energies listed in Table S6.

Comp	R	E-ac (cis)	Z-sc (trans)	Z-ac (trans)	E-sc (cis)
			Overall E ²	(kcal.mol ⁻¹)	
1	NMe ₂ -Ph	12.28	10.74	11.21	10.68
2	OMe-Ph	12.29	10.81	11.27	10.85
3	Ph	12.34	10.83	11.27	11.15
4	CF₃-Ph	12.42	10.86	11.28	11.48
5	CN-Ph	12.47	10.88	11.30	11.50
6	NO ₂ -Ph	12.55	10.89	11.33	11.70

Figure S6. Noncovalent Interaction (NCI) plot showing the $n_N \rightarrow \pi^*_{Ar}$ interaction (red circle marked region) for the optimized geometries of arylhydrazides 1-6. The reduced density gradient (RDG) isosurface is 0.5 a.u. and colour scale is $-0.04 < \sin(\lambda_2)\rho < 0.04$ a.u.

Figure S7. Noncovalent Interaction (NCI) plot showing the $n_N \rightarrow \pi^*_{Ar}$ interaction (red circle marked region) for the crystal geometries of arylhydrazides 2-3 and 5-6. The reduced density gradient (RDG) isosurface is 0.5 a.u. and colour scale is $-0.04 < \sin(\lambda_2)\rho < 0.04$ a.u.

Table S8. Zero-point corrected relative electronic energies Δ (E+ZPE) of **7**, **9** and **12** in kcal.mol⁻¹.

Comp	Conformation									
	R	Z-sc-fH	E-ac-fH	E-sc-fH	Z-ac-fH	Z-sc-bH	E-ac-bH	E-sc-bH	Z-ac-bH	
7	NMe_2Ph	0.00	1.66	3.28	6.00	1.00	1.84	2.11	5.81	
9	Ph	0.00	1.37	3.18	6.05	0.53	1.12	1.83	5.41	
12	NO_2Ph	0.00	0.81	NP	5.74	0.53	0.54	1.88	5.51	

Table S9. Average zero-point corrected relative electronic energies Δ (E+ZPE) of **7**, **9** and **12** in kcal.mol⁻¹.

Comp		Conformation							
	R	Z-sc	E-ac	E-sc	Z-ac				
			Ave	erage					
7	NMe ₂ Ph	0.50	1.75	2.70	5.91				
9	Ph	0.27	1.25	2.51	5.73				
12	NO_2Ph	0.27	0.68	1.88	5.63				

Comp	Conformation									
	R	Z-sc-fH	E-ac-fH	E-sc-fH	Z-ac-fH	Z-sc-bH	E-ac-bH	E-sc-bH	Z-ac-bH	
7	NMe_2Ph	0.00	1.98	3.51	6.40	0.64	1.81	2.19	5.87	
9	Ph	0.00	1.78	3.52	6.40	0.49	1.53	1.98	5.76	
12	NO ₂ Ph	0.00	0.76	NP	6.22	0.36	0.45	2.13	5.50	

Table S10. Relative electronic energies ΔE of **7**, **9** and **12** in kcal·mol⁻¹.

Table S11. Average Relative electronic energies ΔE of **7**, **9** and **12** in kcal·mol⁻¹.

Comp	Conformation								
	R	Z-sc	E-ac	E-sc	Z-ac				
			Average						
7	NMe ₂ Ph	0.32	1.90	2.85	6.14				
9	Ph	0.25	1.66	2.75	6.08				
12	NO_2Ph	0.18	0.61	2.13	5.86				

Table S12. Relative Gibbs free energy ΔG of **7**, **9** and **12** in kcal·mol⁻¹.

Comp		Conformation							
	R	Z-sc-fH	E-ac-fH	E-sc-fH	Z-ac-fH	Z-sc-bH	E-ac-bH	E-sc-bH	Z-ac-bH
7	NMe₂Ph	0.00	1.91	3.43	6.06	1.48	2.20	2.33	6.17
9	Ph	0.00	1.72	3.14	6.27	1.05	1.37	2.27	5.87
12	NO ₂ Ph	0.00	1.00	NP	5.46	0.78	0.52	1.75	5.91

Table S13. Average relative Gibbs free energy ΔG of **7**, **9** and **12** in kcal·mol⁻¹.

Comp	Conformation					
	R	Z-sc	E-ac	E-sc	Z-ac	
		Average				
7	NMe ₂ Ph	0.74	2.06	2.88	6.12	
9	Ph	0.53	1.55	2.71	6.07	
12	NO₂Ph	0.39	0.76	1.75	5.69	

Comp	Crystallization Solvents	CCDC	Resolution (Å)
2	Ethyl acetate (rt)	2087868	0.81
5	Dichloromethane (rt)	2093749	0.81
6	Ethyl acetate (rt)	2087869	0.80
11	Methanol (rt)	2093793	0.81
12	Acetonitrile (rt)	2087870	0.80
17C	DMSO-d ₆ (50 °C)	2088424	0.81

Table S14. Details of Crystallization conditions and their CCDC number. All compounds were crystallized at room temperature except compound **17C**.

Table S15. Details of Crystal Structures for 2, 5-6, 11-12 and 17C.

	2	5	6
Empirical	C11 H16 N2 O2	C11 H13 N3 O	C10 H13 N3 O3
formula			
Formula weight	208.26	203.24	223.23
Temperature	299 K	299 K	298 K
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å
Crystal system	Monoclinic	Monoclinic	Orthorhombic
Space group	P 21/n	P 21/n	P b c a
Unit cell	a = 9.779 (3), α = 90.00°	a = 6.6018 (4), α = 90.00°	$a = 6.0949 (2)$ $\alpha = 90^{\circ}$
dimensions	$b = 12.795 (4), \beta = 116.78^{\circ}$	$b = 13.8377$ (10), $\beta =$	$b = 9.8024(3)$ $\beta = 90^{\circ}$
	(10)	90.58° (2)	$c = 18.4664 (5) \gamma = 90^{\circ}$
	c = 10.020 (3), γ = 90.00°	c = 12.6315 (8), γ = 90.00°	
Volume	1119.2 (6) Å ³	1153.9 (13) Å ³	1103.27 (6) Å ³
Ζ	4	4	4
Density	1.236 g/cm ³	1.170 g/cm ³	1.344 g/cm ³
Absorption	0.086	0.078	0.101
coefficient			
F (000)	448.0	432.0	472.0

Crystal size	0.065 X 0.120 X 0.170	0.066 X 0.099 X 0.236	0.115 X 0.172 X 0.278
Theta max.	26.13	25.91	26.15
Theta min.	2.78	3.23	2.35
Reflections	17371	10384	9571
collected			
Independent	2186	2272	2246
reflections			
Absorption	Multi-scan with SADABS	Multi-scan with SADABS	Multi-scan with
correction			SADABS
Max. and min.	0.971 and 0.907	0.971 and 0.854	0.971 and 0.877
Transmission			
Goodness-of-fit	1.071	1.090	1.079
on F^2			
R1 (I> 2σ (I))	0.0429	0.0456	0.0365
wR2 (I > 2σ (I))	0.1127	0.1245	0.0833
R1 (all data)	0.0560	0.0655	0.0473
wR2 (all data)	0.1238	0.1410	0.0914
R _{int} (all data)	0.0377	0.0310	0.0331

	11	12	17C
Empirical	C10 H11 N3 O	C9 H11 N3 O3	C9 H9 N3 O3
formula			
Formula weight	189.21	209.21	207.19
Temperature	297 K	295 K	302 K
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å
Crystal system	Monoclinic	Monoclinic	Orthorhombic
Space group	P 21/c	P 21/c	P n a 21
Unit cell	a = 7.4997 (6), α = 90.00°	$a = 6.8686 (9), \alpha = 90.00^{\circ}$	$a = 12.3475$ (8), $\alpha =$
dimensions	b = 18.7572 (15), β =	b = 21.053 (3), β = 95.02	90.00°
	100.33 (3)°	(4)°	$b = 18.8728$ (11), $\beta =$
	$c = 7.4345 (7), \gamma = 90.00^{\circ}$	c = 7.1521 (9), γ = 90.00°	90.00°
			c = 3.9943 (2), γ =
			90.00°
Volume	1028.9 (15) Å ³	1030.2 (2) Å ³	930.80 (9) Å ³
Ζ	4	4	4
-----------------------------	------------------------	------------------------	------------------------
Density	1.222 g/cm^3	1.349 g/cm^3	1.479 g/cm^3
Absorption	0.083	0.104	0.114
coefficient			
F (000)	400.0	440.0	432.0
Crystal size	0.085 X 0.205 X 0.270	0.038 X 0.154 X 0.222	0.078 X 0.117 X 0.320
Theta max.	22.98	26.37	25.62
Theta min.	2.76	1.96	2.72
Reflections	26107	13985	9432
collected			
Independent	2016	1079	1811
reflections			
Absorption	Multi-scan with SADABS	Multi-scan with SADABS	Multi-scan with
correction			SADABS
Max. and min.	0.971 and 0.900	0.970 and 0.881	0.971 and 0.862
Transmission			
Goodness-of-fit	1.128	1.050	1.113
on F^2			
R1 (I>2σ (I))	0.0586	0.0503	0.0348
wR2 (I > 2σ (I))	0.1639	0.1092	0.0860
R1 (all data)	0.1110	0.1246	0.0440
wR2 (all data)	0.2200	0.1519	0.0937
R _{int} (all data)	0.0682	0.0851	0.0325

G. Kinetics Studies for arylhydrazides 14-18.

The cyclization reactions of *N*,*N'*-dimethylarylhydrazides **14-18** were carried out in a sealed NMR tubes by ¹H NMR spectroscopy at ambient temperatures (between 22-25 °C). These reactions were performed in $[CD_3]_2SO$ and $CDCl_3$. Compound **15** was performed with base t-BuOK (3 eqv.) in $[CD_3]_2SO$. Solvent-dependent reactions studies were also performed for compound **14** in D₂O and $[CD_3]_2CO$. ¹H NMR Spectra were recorded at various time intervals and the formation of the products for cyclization reaction and the half-life (t_{1/2}) values of arylhydrazides were calculated from the relative integration of the peak in arylhydrazide and the corresponding cyclic indazolone.

Figure S8: ¹H NMR spectra of **14** and **14C** were recorded in DMSO-d⁶ at (A) 0 hr and (B) 40 hrs.

Similarly, ¹H NMR of the compounds **15-18** were integrated to find out the percentage of product formation and their $t_{1/2}$ values.

SL.		Co	omp 14C [(C	D ₃) ₂ SO]	Comp 15C [(CD ₃) ₂ SO + t-BuOK]					
110		¹ H-in	tergating		14C		¹ H-in		15C	
		1	peak							
	Time	Να-	Na-CH ₃	Sum	Product	Time	Να-	Na-CH ₃	Sum	Product
		CH_3	14C	(14 +	formed		CH_3	15C	(15 +	formed
		14		14C)			15		15C)	
	hrs			hrs	%	hrs			hrs	%
1	0	3.00	0.00	3.00	0	0	3.00	0.00	3.00	0
2	24	3.00	1.80	4.80	38	2	3.00	0.45	3.45	13
3	33	3.00	2.30	5.30	43	4	3.00	0.48	3.48	14
4	40	3.00	3.00	6.00	50	23	3.00	1.05	4.05	26
5	46	3.00	3.86	6.86	56	33	3.00	1.23	4.23	29
6	70	3.00	7.21	10.21	71	48	3.00	1.67	4.67	36
7	118	3.00	18.40	21.40	86	122	3.00	3.00	6.00	50
8	142	3.00	29.24	32.24	91	144	3.00	3.43	6.43	53
9	166	3.00	41.66	44.66	93	172	3.00	3.82	6.82	56
10	190	3.00	58.40	61.40	95	194	3.00	4.28	7.28	59
11	214	3.00	79.12	82.12	96	218	3.00	4.54	7.54	60
12	246	3.00	154.15	157.15	98	288	3.00	5.80	8.80	66
13	299	3.00	205.36	208.36	99	315	3.00	6.20	9.20	67
14	321	3.00	294.25	297.25	99	338	3.00	6.50	9.50	68
15	-	-	-	-	-	363	3.00	6.77	9.77	69
16	-	-	-	-	-	387	3.00	7.44	10.44	71

Table S16. ¹H nmr integration values of arylhydrazide 14-15 & 17-18 and cyclic indazolone14C-15C & 17C-18C were recorded at different intervals of time.

SL. No	Comp 17C [(CD ₃) ₂ SO]						Comp 18C [(CD ₃) ₂ SO]				
110		¹ H-in	itergating		17C		¹ H-in	18C			
	реак			~				peak	~		
	Time	Να-	$N\alpha$ -CH ₃	Sum	Product	Time	Να-	Na-CH ₃	Sum	Product	
		CH_3	17C	(17 +	formed		CH ₃	18C	(18 +	formed	
		17		17C)			18		18C)		
	hrs			hrs	%	hrs			hrs	%	
1	0	3.00	0.00	3.00	0	0	3.00	0.00	3.00	0	
2	18	3.00	0.14	3.14	5	23	3.00	0.16	3.16	5	
3	71	3.00	0.44	3.44	13	47	3.00	0.23	3.23	7	
4	138	3.00	0.86	3.86	22	118	3.00	0.52	3.52	15	
5	184	3.00	1.28	4.28	30	166	3.00	0.80	3.80	21	
6	233	3.00	1.77	4.77	37	191	3.00	1.00	4.00	25	
7	282	3.00	2.40	5.40	44	286	3.00	1.62	4.62	35	
8	328	3.00	3.00	6.00	50	334	3.00	1.86	4.86	38	
9	377	3.00	3.80	6.80	56	382	3.00	1.96	4.96	40	
10	400	3.00	4.19	7.19	58	405	3.00	2.10	5.10	41	
11	448	3.00	5.35	8.35	64	453	3.00	2.40	5.40	44	
12	496	3.00	6.60	9.60	69	502	3.00	2.71	5.71	47	
13	546	3.00	7.75	10.75	72	550	3.00	2.90	5.90	49	
14	616	3.00	10.05	13.05	77	580	3.00	3.00	6.00	50	
15	664	3.00	11.50	14.50	79	622	3.00	3.40	6.40	53	
16	689	3.00	12.75	15.75	81	670	3.00	3.60	6.60	55	
17	784	3.00	19.00	22.00	86	863	3.00	4.85	7.85	62	
18	880	3.00	23.05	26.05	88	1056	3.00	7.15	10.15	70	
19	952	3.00	24.50	27.50	89	1127	3.00	8.06	11.06	73	
20	1000	3.00	28.38	31.38	90	1319	3.00	11.60	14.60	79	
21	1048	3.00	30.00	33.00	91	1470	3.00	14.73	17.73	83	

22	1120	3.00	32.15	35.15	92	1654	3.00	21.00	24.00	88
23	1168	3.00	39.10	42.10	93	1729	3.00	23.85	26.85	89
24	1360	3.00	54.08	57.08	95	-	-	-	-	-
25	1624	3.00	80.04	83.04	96	-	-	-	-	-

SL.	Comp 14C [(CD ₃) ₂ CO]						Comp 14C [D ₂ O]				
110	¹ H-intergating				14C ¹ H-intergating					14C	
	Time	Na-	Na-CH ³	Sum	Product	Time	Nα-	Na-CH ₂	Sum	Product	
	Time	CH ₃	14C	(14 +	formed	Time	CH ₃	14C	(14 +	formed	
		14		14C)			14		14C)		
	hrs			hrs	%	hrs			hrs	%	
1	0	3.00	0.00	3.00	0	0	3.00	0.00	3.00	0	
2	23	3.00	0.08	3.08	3	23	3.00	0.09	3.09	3	
3	47	3.00	0.12	3.12	4	47	3.00	0.15	3.15	5	
4	95	3.00	0.19	3.19	6	95	3.00	0.22	3.22	7	
5	161	3.00	0.33	3.33	10	161	3.00	0.29	3.29	9	
6	203	3.00	0.39	3.39	12	203	3.00	0.38	3.38	11	
7	252	3.00	0.48	3.48	14	252	3.00	0.45	3.45	13	
8	348	3.00	0.68	3.68	18	349	3.00	0.61	3.61	17	
9	395	3.00	0.81	3.81	21	395	3.00	0.66	3.66	18	
10	444	3.00	0.95	3.95	24	444	3.00	0.75	3.75	20	
11	492	3.00	1.08	4.08	26	492	3.00	0.88	3.88	23	
12	538	3.00	1.25	4.25	29	538	3.00	0.96	3.96	24	
13	612	3.00	1.48	4.48	33	588	3.00	1.09	4.09	27	
14	659	3.00	1.66	4.66	36	659	3.00	1.29	4.29	30	
15	706	3.00	1.98	4.98	40	705	3.00	1.45	4.45	33	
16	755	3.00	2.15	5.15	42	755	3.00	1.54	4.54	34	
17	826	3.00	2.37	5.37	44	863	3.00	1.91	4.91	39	
18	863	3.00	2.56	5.56	46	910	3.00	2.09	5.09	41	
19	910	3.00	2.68	5.68	47	1006	3.00	2.40	5.40	44	
20	1006	3.00	3.10	6.10	51	1054	3.00	2.56	5.56	46	
21	1030	3.00	3.35	6.35	53	1103	3.00	2.70	5.70	47	
22	1078	3.00	3.65	6.65	55	1174	3.00	2.88	5.88	49	
23	1126	3.00	3.80	6.80	56	1222	3.00	3.00	6.00	50	
24	1173	3.00	4.06	7.06	58	1270	3.00	3.07	6.07	51	
25	1221	3.00	4.26	7.26	59	1342	3.00	3.25	6.25	52	
26	1270	3.00	4.52	7.52	60	1390	3.00	3.51	6.51	54	
27	1341	3.00	4.90	7.90	62	1582	3.00	3.88	6.88	56	
28	1389	3.00	5.04	8.04	63	1773	3.00	4.50	7.50	60	
29	1582	3.00	6.39	9.39	68	1844	3.00	4.81	7.81	62	
30	1774	3.00	7.56	10.56	72	2036	3.00	5.88	8.88	66	
31	1845	3.00	8.16	11.16	73	2189	3.00	7.10	10.10	70	
32	2037	3.00	10.59	13.59	78	2372	3.00	8.29	11.29	73	
33	2189	3.00	12.39	15.39	81	2447	3.00	9.09	12.09	75	
34	2371	3.00	15.84	15.84	84	-	-	-	-	-	
35	2446	3.00	21.18	18.18	86	-	-	-	-	-	

Figure S9. A) ¹H NMR spectra of **16** was recorded at 0 min. in CDCl₃ and showing their populations in %. B) ¹H NMR spectra of **16** recorded at 0 min. in $(CD_3)_2SO$ and showing their population in %.

H. 2D-NOESY spectra of the newly synthesized compounds.

Figure S10 (B). 2D ¹H-¹H NOESY Correlation enlarged spectra for **1** 4-(dimethylamino)-N, N', N'-trimethylbenzohydrazide in CDCl₃.

Figure S11 (A). 2D NOESY full spectra for **1** 4- (dimethylamino)-*N*, *N'*, *N'*-trimethylbenzohydrazide in [CD₃]₂SO.

Figure S11 (B). 2D ¹H-¹H NOESY Correlation enlarged spectra for **1** 4-(dimethylamino)-N, N', N'-trimethylbenzohydrazide in [CD₃]₂SO.

Figure S12 (B). 2D 1 H- 1 H NOESY Correlation enlarged spectra for **1** 4-(dimethylamino)-*N*, *N*', *N*'-trimethylbenzohydrazide in CD₃OD.

Figure S13 (**A**). 2D NOESY full spectra for **1** 4- (dimethylamino)-*N*, *N'*, *N'*-trimethylbenzohydrazide in CD₃CN.

Figure S13 (B). 2D ¹H-¹H NOESY Correlation enlarged spectra for **1** 4-(dimethylamino)-N, N', N'-trimethylbenzohydrazide in CD₃CN.

Figure S14 (B). 2D ¹H-¹H NOESY Correlation enlarged spectra for **2** 4-methoxy-*N*, *N'*, *N'*-trimethylbenzohydrazide in CDCl₃.

Compound 2

Figure S15 (A). 2D NOESY full spectra for **2** 4-methoxy-*N*, *N'*, *N'*-trimethylbenzohydrazide in [CD₃]₂SO.

Figure S15 (B). 2D ¹H-¹H NOESY Correlation enlarged spectra for **2** 4-methoxy-*N*, *N'*, *N'*-trimethylbenzohydrazide in [CD₃]₂SO.

Figure S16 (B). 2D 1 H- 1 H NOESY Correlation enlarged spectra for 3 *N*, *N'*, *N'*-trimethylbenzohydrazide in CDCl₃.

Figure S17 (B). 2D 1 H- 1 H NOESY Correlation enlarged spectra for 3 *N*, *N'*, *N'*-trimethylbenzohydrazide in [CD₃]₂SO.

Figure S18 (B). 2D 1 H- 1 H NOESY Correlation enlarged spectra for 3 *N*, *N'*, *N'*-trimethylbenzohydrazide in CD₃OD.

Compound 3

Figure S19 (A). 2D NOESY full spectra for **3** *N*, *N'*, *N'*-trimethylbenzohydrazide in CD₃CN.

Figure S19 (B). 2D ¹H-¹H NOESY Correlation enlarged spectra for **3** N, N', N'-trimethylbenzohydrazide in CD₃CN.

Figure S20 (B). 2D 1 H- 1 H NOESY Correlation enlarged spectra for 4 *N*, *N'*, *N'*-trimethyl-4-(trifluoromethyl)benzohydrazide in CDCl₃.

Figure S21 (B). 2D 1 H- 1 H NOESY Correlation enlarged spectra for 4 *N*, *N'*, *N'*-trimethyl-4-(trifluoromethyl)benzohydrazide in [CD₃]₂SO.

Compound 5

Figure S22 (A). 2D NOESY full spectra for **5** 4-cyano-*N*, *N'*, *N'*-trimethylbenzohydrazide in CDCl₃.

Figure S22 (B). 2D ¹H-¹H NOESY Correlation enlarged spectra for **5** 4-cyano-*N*, *N'*, *N'*-trimethylbenzohydrazide in CDCl₃.

Figure S23 (B). 2D ¹H-¹H NOESY Correlation enlarged spectra for **5** 4-cyano-*N*, *N'*, *N'*-trimethylbenzohydrazide in [CD₃]₂SO.

Figure S24 (A). 2D NOESY full spectra for **5** 4-cyano-*N*, *N'*, *N'*-trimethylbenzohydrazide in CD₃OD.

Figure S24 (B). 2D 1 H- 1 H NOESY Correlation enlarged spectra for 5 4-cyano-*N*, *N'*, *N'*-trimethylbenzohydrazide in CD₃OD.

Compound 5

Figure S25 (A). 2D NOESY full spectra for **5** 4-cyano-*N*, *N'*, *N'*-trimethylbenzohydrazide in CD₃CN.

Figure S25 (B). 2D 1 H- 1 H NOESY Correlation enlarged spectra for 5 4-cyano-*N*, *N'*, *N'*-trimethylbenzohydrazide in CD₃CN.

Figure S26 (B). 2D 1 H- 1 H NOESY Correlation enlarged spectra for 6 *N*, *N'*, *N'*-trimethyl-4-nitrobenzohydrazide in CDCl₃.

Figure S27 (B). 2D 1 H- 1 H NOESY Correlation enlarged spectra for 6 *N*, *N'*, *N'*-trimethyl-4-nitrobenzohydrazide in [CD₃]₂SO.

Figure S28 (A). 2D NOESY full spectra for **7** 4- (dimethylamino)-*N*, *N*[']-dimethylbenzohydrazide in CDCl₃.

Figure S28 (B). 2D ¹H-¹H NOESY Correlation enlarged spectra for **7** 4-(dimethylamino)-N, N-dimethylbenzohydrazide in CDCl₃.

Figure S29 (B). 2D ¹H-¹H NOESY Correlation enlarged spectra for **7** 4-(dimethylamino)-N, N'-dimethylbenzohydrazide in [CD₃]₂SO.

Figure S30 (B). 2D 1 H- 1 H NOESY Correlation enlarged spectra for **7** 4-(dimethylamino)-*N*, *N*-dimethylbenzohydrazide in CD₃OD.

Figure S31 (B). 2D ¹H-¹H NOESY Correlation enlarged spectra for **7** 4-(dimethylamino)-N, N-dimethylbenzohydrazide in CD₃CN.

Figure S32 (B). 2D ¹H-¹H NOESY Correlation enlarged spectra for **7** 4-(dimethylamino)-N, N-dimethylbenzohydrazide in D₂O.

Figure S33 (B). 2D ¹H-¹H NOESY Correlation enlarged spectra for 8 4-methoxy-*N*, *N*[']dimethylbenzohydrazide in CDCl₃.

7.0

d

e

CDCl₃

100

7.5

3.19, 7.48

3.0

3.5

Chemical Shift (ppm)

4.0

7.0

7.5

2.5

Compound 8

Figure S34 (**A**). 2D NOESY full spectra for **8** 4-methoxy-N, N'-dimethylbenzohydrazide in [CD₃]₂SO.

Figure S34 (B). 2D 1 H- 1 H NOESY Correlation enlarged spectra for 8 4-methoxy-*N*, N'-dimethylbenzohydrazide in [CD₃]₂SO.

Figure S35 (B). 2D ¹H-¹H NOESY Correlation enlarged spectra for **8** 4-methoxy-N, N'-dimethylbenzohydrazide in D₂O.

Compound 10

Figure S36 (A). 2D NOESY full spectra for **10** *N*, *N*[']-dimethyl-4-(trifluoromethyl)benzohydrazide in [CD₃]₂SO.

Figure S36 (B). 2D ¹H-¹H NOESY Correlation enlarged spectra for **10** N, N'-dimethyl-4-(trifluoromethyl)benzohydrazide in [CD₃]₂SO.

Compound 11

Figure S37 (A). 2D NOESY full spectra for **11** 4-cyano-N, N'-dimethylbenzohydrazide in [CD₃]₂SO.

Figure S37 (B). 2D 1 H- 1 H NOESY Correlation enlarged spectra for 11 4-cyano-*N*, *N*-dimethylbenzohydrazide in [CD₃]₂SO.

Figure S38 (B). 2D 1 H- 1 H NOESY Correlation enlarged spectra for 12 *N*, *N*[']-dimethyl-4-nitrobenzohydrazide in CDCl₃.

Figure S39 (B). 2D ¹H-¹H NOESY Correlation enlarged spectra for **12** N, N'-dimethyl-4nitrobenzohydrazide in [CD₃]₂SO.

Figure S40 (B). 2D ¹H-¹H NOESY Correlation enlarged spectra for 12 N, N'-dimethyl-4nitrobenzohydrazide in CD₃OD.

Compound 12

Figure S41 (A). 2D NOESY full spectra for **12** *N*, *N*[']-dimethyl-4-nitrobenzohydrazide in CD₃CN.

Figure S41 (B). 2D 1 H- 1 H NOESY Correlation enlarged spectra for 12 *N*, *N*[']-dimethyl-4-nitrobenzohydrazide in CD₃CN.

Figure S42 (B). 2D ¹H-¹H NOESY Correlation enlarged spectra for **12** N, N'-dimethyl-4nitrobenzohydrazide in D₂O.

Figure S43 (**A**). 2D NOESY full spectra for **15** 2-fluoro-N, N'-dimethylbenzohydrazide in [CD₃]₂SO.

Figure S43 (B). 2D ¹H-¹H NOESY Correlation enlarged spectra for **15** 2-fluoro-N, N'-dimethylbenzohydrazide in [CD₃]₂SO.

Compound 17

Figure S44 (A). 2D NOESY full spectra for **17** 2-fluoro-N, N'-dimethyl-4-nitrobenzohydrazide in CDCl₃.

Figure S44 (B). 2D ¹H-¹H NOESY Correlation enlarged spectra for **17** 2-fluoro-N, N'-dimethyl-4-nitrobenzohydrazide in CDCl₃.

Figure S45 (B). 2D ¹H-¹H NOESY Correlation enlarged spectra for **18** 4-cyano-2-fluoro-N, N-dimethylbenzohydrazide in [CD₃]₂SO.

I. Cartesian Coordinates

	X X							
		E-ac				E-sc		
8	1.957626000	-2.292521000	-0.485057000	8	-2.164877000	-2.140252000	0.709292000	
7	2.696036000	-0.174502000	-0.315859000	7	-2.794256000	0.015234000	0.383834000	
7	2.465476000	1.030585000	0.368788000	7	-2.706697000	1.021744000	-0.599055000	
6	-0.216517000	0.562792000	-0.692296000	6	0.149347000	0.487087000	0.927560000	
6	-1.563680000	0.866583000	-0.642731000	6	1.500238000	0.767749000	0.811177000	
6	-2.495870000	-0.053436000	-0.125923000	6	2.339325000	-0.044272000	0.027193000	
6	-2.003609000	-1.288526000	0.332953000	6	1.765855000	-1.179108000	-0.579442000	
6	-0.656216000	-1.584197000	0.252568000	6	0.421644000	-1.457192000	-0.430838000	
6	0.264034000	-0.664932000	-0.243371000	6	-0.414367000	-0.613870000	0.295529000	
6	1.681518000	-1.114733000	-0.345426000	6	-1.843800000	-0.992682000	0.467662000	
6	4.055264000	-0.701985000	-0.359733000	6	-4.172362000	-0.396872000	0.622296000	
6	2.903476000	0.972589000	1.755670000	6	-2.222476000	0.606785000	-1.903255000	
6	3.008894000	2.173508000	-0.342079000	6	-2.215374000	2.314240000	-0.165591000	
1	0.467834000	1.293462000	-1.100057000	1	-0.470715000	1.116703000	1.553588000	
1	-1.890458000	1.827486000	-1.011902000	1	1.901201000	1.617026000	1.344367000	
1	-2.674482000	-2.027810000	0.744874000	1	2.374344000	-1.855344000	-1.161477000	
1	-0.293832000	-2.551024000	0.579290000	1	0.000201000	-2.348178000	-0.881112000	
1	4.303266000	-1.270202000	0.541208000	1	-4.575914000	-0.950865000	-0.230965000	
1	4.145476000	-1.369064000	-1.212824000	1	-4.209256000	-1.036671000	1.500114000	
1	4.752305000	0.126602000	-0.474146000	1	-4.764061000	0.501649000	0.783541000	
1	3.995645000	0.898771000	1.859255000	1	-2.635740000	-0.373746000	-2.143622000	
1	2.569503000	1.878840000	2.261515000	1	-2.583345000	1.321864000	-2.645653000	
1	2.438873000	0.112996000	2.239655000	1	-1.127230000	0.560062000	-1.967710000	
1	2.667479000	2.146823000	-1.376525000	1	-1.122312000	2.402794000	-0.209018000	
1	2.635987000	3.083071000	0.130927000	1	-2.643621000	3.079703000	-0.817081000	
1	4.107784000	2.212915000	-0.333704000	1	-2.552332000	2.499951000	0.853615000	
7	-3.844498000	0.240327000	-0.086849000	7	3.676937000	0.256810000	-0.140275000	
6	-4.720256000	-0.619388000	0.683146000	6	4.552875000	-0.757207000	-0.693404000	
1	-4.723593000	-1.632102000	0.276420000	1	4.257740000	-1.009274000	-1.713314000	
1	-4.429763000	-0.673374000	1.740146000	1	5.566115000	-0.364578000	-0.733225000	
1	-5.736205000	-0.236730000	0.620620000	1	4.556699000	-1.677976000	-0.096710000	
6	-4.265329000	1.608036000	-0.311585000	6	4.272415000	1.261778000	0.716890000	
1	-5.346498000	1.667200000	-0.210650000	1	5.324041000	1.367260000	0.461167000	
1	-3.808755000	2.308394000	0.399350000	1	3.796673000	2.231645000	0.561773000	
1	-4.010925000	1.931186000	-1.322723000	1	4.194710000	1.004856000	1.781193000	

6	0.792365000	1.467632000	-0.045361000	6	0.690916000	-1.388531000	0.173585000
6	2.158904000	1.277108000	-0.109130000	6	2.067499000	-1.276062000	0.176231000
6	2.720481000	0.005651000	0.116571000	6	2.691041000	-0.048277000	-0.116625000
6	1.838301000	-1.056892000	0.388345000	6	1.860180000	1.055234000	-0.386390000
6	0.471646000	-0.849412000	0.429315000	6	0.483209000	0.927405000	-0.363854000
6	-0.076102000	0.410120000	0.205983000	6	-0.125740000	-0.290022000	-0.076106000
6	-1.534890000	0.707559000	0.329297000	6	-1.602182000	-0.512369000	-0.138733000
6	-2.143424000	-1.208164000	-1.158295000	6	-2.075145000	1.537831000	1.237795000
6	-4.441130000	0.768472000	-0.713450000	6	-4.462935000	-0.606650000	0.835221000
6	-4.458066000	-1.293564000	0.560991000	6	-4.143879000	0.368482000	-1.370746000
1	0.373374000	2.456467000	-0.187242000	1	0.223910000	-2.347496000	0.362602000
1	2.791773000	2.124673000	-0.327134000	1	2.658420000	-2.152501000	0.397417000
1	2.219256000	-2.049475000	0.578160000	1	2.287830000	2.017682000	-0.625328000
1	-0.179272000	-1.685451000	0.659031000	1	-0.125385000	1.794105000	-0.595591000
1	-2.875313000	-1.049869000	-1.953655000	1	-2.771791000	1.479231000	2.076650000
1	-1.155238000	-1.023577000	-1.568156000	1	-1.066458000	1.387336000	1.611007000
1	-2.202008000	-2.250700000	-0.836628000	1	-2.159710000	2.532057000	0.793738000
1	-4.567177000	0.274058000	-1.688365000	1	-4.149716000	-0.511491000	1.875897000
1	-5.431665000	1.009638000	-0.326726000	1	-5.540027000	-0.439290000	0.788781000
1	-3.883636000	1.695319000	-0.835408000	1	-4.230312000	-1.613485000	0.478397000
1	-3.895154000	-1.856871000	1.305188000	1	-3.868515000	-0.586818000	-1.828287000
1	-5.434058000	-1.044242000	0.978045000	1	-5.220296000	0.518288000	-1.466388000
1	-4.617776000	-1.927200000	-0.325483000	1	-3.635252000	1.180590000	-1.890023000
7	4.086081000	-0.190055000	0.089039000	7	4.065400000	0.065474000	-0.157577000
6	4.593234000	-1.546828000	0.054491000	6	4.654417000	1.388508000	-0.192651000
1	4.326427000	-2.085290000	0.965752000	1	4.375059000	1.914858000	-1.107229000
1	4.211354000	-2.112649000	-0.804834000	1	4.352034000	2.002431000	0.665123000
1	5.678618000	-1.518415000	-0.003757000	1	5.737568000	1.293970000	-0.186426000
6	4.929897000	0.863082000	-0.438509000	6	4.870251000	-1.022882000	0.358919000
1	4.675403000	1.123474000	-1.473689000	1	4.660489000	-1.233615000	1.415227000
1	4.852107000	1.764707000	0.171570000	1	4.698841000	-1.936217000	-0.213462000
1	5.966036000	0.534798000	-0.408088000	1	5.921635000	-0.764601000	0.258223000

					ed to	2	
E-ac						E-sc	
8	-1.438118000	2.337519000	-0.366274000	8	1.727904000	-2.260600000	-0.336503000
7	-2.360303000	0.285967000	-0.295516000	7	2.485781000	-0.122761000	-0.310236000
7	-2.223324000	-0.972591000	0.314523000	7	2.418317000	1.039342000	0.483861000
6	0.463937000	-0.677231000	-0.781214000	6	-0.387811000	0.418277000	-1.113932000
6	1.774789000	-1.102561000	-0.752941000	6	-1.718687000	0.787194000	-1.119197000
6	2.756238000	-0.314417000	-0.147391000	6	-2.620153000	0.159251000	-0.259457000
6	2.413353000	0.915065000	0.405625000	6	-2.181042000	-0.859792000	0.583890000
6	1.091593000	1.340423000	0.346949000	6	-0.844478000	-1.234414000	0.560414000
6	0.103344000	0.551760000	-0.223408000	6	0.066248000	-0.587220000	-0.262040000
6	-1.271299000	1.134534000	-0.289391000	6	1.477705000	-1.072440000	-0.290069000
6	-3.671496000	0.924832000	-0.295751000	6	3.844742000	-0.641969000	-0.410238000
6	-2.644443000	-0.959572000	1.708303000	6	1.858855000	0.874883000	1.813240000
6	-2.867596000	-2.023852000	-0.452537000	6	2.021498000	2.263299000	-0.184068000
1	-0.284718000	-1.296852000	-1.254078000	1	0.305365000	0.890818000	-1.798097000
1	2.072318000	-2.045494000	-1.193103000	1	-2.091245000	1.552242000	-1.788024000
1	3.155328000	1.549098000	0.868917000	1	-2.864621000	-1.371127000	1.246136000
1	0.814537000	2.309122000	0.743751000	1	-0.497686000	-2.045274000	1.189662000
1	-3.866937000	1.455321000	0.640411000	1	4.180584000	-1.064535000	0.541696000
1	-3.710640000	1.646692000	-1.107095000	1	3.877172000	-1.421373000	-1.167095000

1 -3.727257000 -0.811648000 1.828292000 1 2.220621000 1.691864000 2.440	027000
	937000
1 -2.374253000 -1.914571000 2.159404000 1 0.760991000 0.885307000 1.828	686000
1 -2.114130000 -0.164523000 2.233277000 1 2.213867000 -0.065421000 2.235	343000
1 -2.534923000 -1.967837000 -1.488603000 1 0.934803000 2.414282000 -0.209	228000
1 -2.567380000 -2.986250000 -0.035987000 1 2.469484000 3.105384000 0.348	483000
1 -3.965640000 -1.971559000 -0.430233000 1 2.407844000 2.254309000 -1.202	526000
8 4.011025000 -0.828087000 -0.153155000 8 -3.900848000 0.597363000 -0.323	566000
6 5.035586000 -0.057951000 0.439432000 6 -4.853562000 -0.034649000 0.506	5281000
1 5.152180000 0.902164000 -0.070127000 1 -4.930087000 -1.100639000 0.276	632000
1 4.834640000 0.114631000 1.500170000 1 -4.603840000 0.095202000 1.562	743000
1 5.949097000 -0.637318000 0.333685000 1 -5.803526000 0.450065000 0.297	504000

2 Z-ac					ja de	$\frac{2}{7-sc}$	
0	1 446202000	1 771562000	0.755272000	0	1 605605000	1 592172000	0.521074000
8	2.088851000	-1.//1302000	-0.755275000	07	-1.003093000	-1.3831/2000	0.331974000
7	2.088831000	0.200037000	0.042737000	7	-2.103004000	0.483089000	-0.247381000
6	-0.745823000	1.015031000	-0.277003000	6	-3.483813000	1.052055000	-0.040218000
6	-2.091541000	1 313777000	-0.450052000	6	2 123676000	1.052055000	0.496839000
6	-3.014856000	0.319255000	-0.067263000	6	2.125070000	0.241699000	0.114614000
6	-2 576834000	-0.978212000	0.185510000	6	2.550027000	-0.996323000	-0.270601000
6	-1 220176000	-1 265731000	0.108553000	6	1 113970000	-1 198644000	-0 270354000
6	-0.291978000	-0.279006000	-0.188574000	6	0.238141000	-0.181114000	0.076559000
6	1.144821000	-0.681250000	-0.320187000	6	-1.225134000	-0.499685000	0.123903000
6	1.885109000	1.224274000	1.120943000	6	-1.806191000	1.592451000	-1.141634000
6	4.195702000	1.103041000	-0.601684000	6	-3.827114000	0.159349000	1.367235000
6	4.043753000	-0.918293000	0.729548000	6	-4.065716000	-0.716891000	-0.891578000
1	-0.037939000	1.790096000	-0.720393000	1	0.092636000	1.847728000	0.779557000
1	-2.460139000	2.308328000	-0.610936000	1	2.543793000	2.207636000	0.816134000
1	-3.274313000	-1.766687000	0.428670000	1	3.144111000	-1.804980000	-0.559043000
1	-0.866206000	-2.276387000	0.270336000	1	0.706666000	-2.166755000	-0.534595000
1	1.997391000	2.250539000	0.763802000	1	-1.954595000	2.549707000	-0.637579000
1	0.893851000	1.108028000	1.548383000	1	-0.786138000	1.525399000	-1.508086000
1	2.617444000	1.051341000	1.912407000	1	-2.488316000	1.545498000	-1.992697000
1	4.394858000	1.751833000	0.265592000	1	-3.364105000	0.966985000	1.933954000
1	5.153710000	0.776082000	-1.006238000	1	-4.910358000	0.251109000	1.457966000
1	3.673343000	1.678460000	-1.365859000	1	-3.508951000	-0.803583000	1.777767000
1	3.418183000	-1.795115000	0.887273000	1	-3.761386000	-1.724879000	-0.597595000
1	5.008638000	-1.248404000	0.343949000	1	-5.151543000	-0.629371000	-0.833180000
1	4.216706000	-0.403354000	1.686464000	1	-3.766594000	-0.535036000	-1.924917000
8	-4.311743000	0.709262000	-0.027708000	8	4.314952000	0.547967000	0.158228000
6	-5.282138000	-0.269201000	0.283258000	6	5.235615000	-0.459212000	-0.207698000
1	-5.279152000	-1.074754000	-0.455769000	1	5.152914000	-1.326449000	0.452617000
1	-5.115949000	-0.686730000	1.279828000	1	5.084467000	-0.772555000	-1.244109000
1	-6.241714000	0.240408000	0.259502000	1	6.222765000	-0.016914000	-0.102970000

3 E-ac					3 E-sc				
8	-0.426970000	2.320960000	-0.424774000	8	-0.814673000	-2.290511000	-0.370696000		
7	-1.540003000	0.364447000	-0.343197000	7	-1.714780000	-0.210018000	-0.339095000		
7	-1.542876000	-0.885018000	0.299658000	7	-1.737878000	0.977846000	0.414008000		
6	1.205189000	-0.831139000	-0.732562000	6	1.611693000	-1.066000000	0.731614000		
6	2.474084000	-1.380240000	-0.629314000	6	2.912202000	-0.594135000	0.813257000		
6	3.470023000	-0.709251000	0.070888000	6	3.343912000	0.408263000	-0.048739000		
6	3.200440000	0.524468000	0.647141000	6	2.474475000	0.931986000	-0.995415000		
6	1.937723000	1.086645000	0.521649000	6	1.164077000	0.475353000	-1.062735000		
6	0.930541000	0.404398000	-0.153114000	6	0.726621000	-0.513464000	-0.190010000		
6	-0.382361000	1.111958000	-0.304964000	6	-0.651984000	-1.089353000	-0.290853000		
6	-2.788645000	1.113276000	-0.429320000	6	-3.037508000	-0.805328000	-0.486789000		
6	-2.026277000	-0.799174000	1.670262000	6	-1.413314000	2.201400000	-0.292204000		
6	-2.240330000	-1.895843000	-0.475240000	6	-1.203564000	0.901921000	1.761826000		
1	0.430532000	-1.355371000	-1.275326000	1	1.267715000	-1.866439000	1.375443000		
1	2.686682000	-2.334745000	-1.094289000	1	3.595054000	-1.013650000	1.541393000		
1	4.457295000	-1.145631000	0.160277000	1	4.362692000	0.770536000	0.009430000		
1	3.976698000	1.054416000	1.184718000	1	2.817717000	1.692199000	-1.685985000		
1	1.717780000	2.063585000	0.933679000	1	0.484387000	0.867220000	-1.808924000		
1	-2.996161000	1.666676000	0.490761000	1	-3.719904000	-0.022710000	-0.811251000		
1	-2.712418000	1.828235000	-1.244026000	1	-2.992110000	-1.599917000	-1.226667000		
1	-3.602831000	0.419609000	-0.631854000	1	-3.390995000	-1.225655000	0.459522000		
1	-3.096015000	-0.553296000	1.733990000	1	-1.791674000	2.135089000	-1.311636000		
1	-1.864379000	-1.762896000	2.153455000	1	-1.915884000	3.030821000	0.210352000		
1	-1.452221000	-0.041602000	2.204585000	1	-0.338106000	2.418910000	-0.317325000		
1	-1.853316000	-1.898946000	-1.493668000	1	-0.111875000	1.009806000	1.807017000		
1	-2.049256000	-2.868923000	-0.021275000	1	-1.653451000	1.702023000	2.353435000		
1	-3.328804000	-1.745379000	-0.510611000	1	-1.487234000	-0.052798000	2.206659000		

3 Z-ac 8 0.575032000 1.741257000 0.800872000					3 Z-sc				
8	0.575032000	-1.741267000	-0.800872000	8	0.810477000	1.565897000	-0.564527000		
7	1.272749000	0.257031000	0.035970000	7	1.279158000	-0.497653000	0.246116000		
7	2.590122000	-0.093540000	-0.315269000	7	2.663523000	-0.358818000	0.029138000		
6	-1.562480000	1.049390000	-0.425499000	6	-1.894666000	1.238524000	0.357868000		
6	-2.909165000	1.366296000	-0.318083000	6	-3.268677000	1.049808000	0.376543000		
6	-3.820224000	0.397977000	0.084304000	6	-3.810837000	-0.156655000	-0.048867000		
6	-3.385741000	-0.892765000	0.359448000	6	-2.976280000	-1.174494000	-0.492710000		
6	-2.042560000	-1.214647000	0.232863000	6	-1.600364000	-0.993995000	-0.490911000		
6	-1.123291000	-0.240522000	-0.141781000	6	-1.054697000	0.211004000	-0.058036000		
6	0.307892000	-0.659482000	-0.325914000	6	0.418675000	0.497343000	-0.130752000		
6	1.100408000	1.223087000	1.117271000	6	0.963411000	-1.603242000	1.135458000		
6	3.379406000	1.078653000	-0.637289000	6	3.265114000	0.676310000	0.865872000		
6	3.219428000	-0.958960000	0.670001000	6	2.999264000	-0.221770000	-1.382557000		

1	-0.850754000	1.800839000	-0.747614000	1	-1.456056000	2.183781000	0.652645000
1	-3.248710000	2.367086000	-0.553504000	1	-3.918588000	1.847600000	0.713285000
1	-4.870274000	0.646864000	0.174393000	1	-4.884016000	-0.301066000	-0.043529000
1	-4.096194000	-1.651063000	0.663785000	1	-3.396959000	-2.107983000	-0.845060000
1	-1.687747000	-2.222250000	0.410299000	1	-0.948152000	-1.785210000	-0.842476000
1	1.218303000	2.247577000	0.757211000	1	1.640473000	-1.566502000	1.990842000
1	0.115913000	1.119178000	1.562893000	1	-0.058434000	-1.526267000	1.494714000
1	1.845399000	1.041056000	1.894593000	1	1.104557000	-2.559636000	0.627944000
1	3.605916000	1.711095000	0.235216000	1	2.972715000	0.507483000	1.903291000
1	4.323765000	0.743156000	-1.066017000	1	4.348920000	0.573215000	0.798362000
1	2.851064000	1.673521000	-1.382232000	1	2.972488000	1.685847000	0.565195000
1	2.587867000	-1.833228000	0.818621000	1	2.694528000	0.741278000	-1.802686000
1	4.177402000	-1.290071000	0.268587000	1	4.080240000	-0.332742000	-1.477733000
1	3.405667000	-0.462207000	1.633909000	1	2.520053000	-1.028680000	-1.936795000

4 E-ac						4 E so	
	2 225 (02000	E-ac	0.00000.0000	0	2 15520 1000	E-SC	0.045440000
8	2.227602000	-2.318484000	-0.399334000	8	2.455204000	-2.230288000	-0.365462000
/	2.943054000	-0.183/42000	-0.311899000	7	3.0452/4000	-0.041591000	-0.303/19000
	2.6/5499000	1.056/03000	0.291/54000		2.861/31000	1.151/08000	0.415123000
6	0.024039000	0.448837000	-0./98831000	6	0.104432000	0.184//4000	-1.119349000
6	-1.326123000	0.738128000	-0.728852000	6	-1.258981000	0.448965000	-1.075828000
6	-2.176941000	-0.106521000	-0.023257000	6	-2.040947000	-0.168039000	-0.1137/9000
6	-1.691140000	-1.248/64000	0.590007000	6	-1.482873000	-1.069/66000	0.787124000
6	-0.338986000	-1.548884000	0.493496000	6	-0.129240000	-1.345002000	0.725968000
6	0.523880000	-0.696948000	-0.182811000	6	0.672972000	-0.69644/000	-0.210244000
6	1.954907000	-1.139115000	-0.295427000	6	2.125211000	-1.064654000	-0.284301000
6	4.316749000	-0.674037000	-0.351808000	6	4.446351000	-0.430701000	-0.413729000
6	3.123709000	1.101527000	1.677197000	6	2.309448000	1.028575000	1.752037000
6	3.185536000	2.166682000	-0.495098000	6	2.380886000	2.295071000	-0.335059000
1	0.690171000	1.105515000	-1.340796000	1	0.723320000	0.648578000	-1.876568000
1	-1.724818000	1.620413000	-1.214443000	1	-1.710692000	1.125998000	-1.788664000
1	-2.362572000	-1.902472000	1.130051000	1	-2.112489000	-1.559011000	1.519904000
1	0.060223000	-2.454105000	0.932610000	1	0.320307000	-2.065061000	1.398403000
1	4.594784000	-1.177181000	0.578180000	1	4.831030000	-0.795176000	0.543182000
1	4.409928000	-1.389482000	-1.164365000	1	4.542953000	-1.220888000	-1.153380000
1	4.986395000	0.165261000	-0.530236000	1	5.011311000	0.446985000	-0.719431000
1	4.217471000	1.059727000	1.774809000	1	2.617944000	1.900401000	2.332343000
1	2.771607000	2.032260000	2.121891000	1	1.213102000	0.973996000	1.769278000
1	2.682341000	0.266803000	2.222558000	1	2.720095000	0.137730000	2.228921000
1	2.846445000	2.063304000	-1.525325000	1	1.286272000	2.348696000	-0.394211000
1	2.784384000	3.092678000	-0.081914000	1	2.738346000	3.202942000	0.155483000
1	4.282133000	2.238356000	-0.489115000	1	2.795286000	2.260454000	-1.341953000
6	-3.633549000	0.244802000	0.037825000	6	-3.504134000	0.143995000	-0.002792000
9	-4.199041000	0.223260000	-1.178406000	9	-4.239713000	-0.964351000	0.148570000
9	-4.328965000	-0.593852000	0.811549000	9	-3.758721000	0.919579000	1.062729000
9	-3.823291000	1.481907000	0.520983000	9	-3.968922000	0.789797000	-1.076824000

4 Z-ac					4				
0	2 180020000	1 772127000	0.782566000	0	2 201522000	1 563863000	0 572512000		
0	-2.180029000	0.203616000	-0.782300000	0	2.291322000	-1.303803000	-0.372313000		
7	-2.070307000	-0.293010000	-0.286463000	7	2.094525000 4.081796000	0.711888000	0.240003000		
6	0.214555000	-0.807180000	-0.500517000	6	-0.207126000	0.423803000	-0 479540000		
6	1 584208000	-0.992290000	-0.433219000	6	-1 589297000	1 030338000	-0 477095000		
6	2.399029000	0.058455000	-0.027701000	6	-2.370331000	-0.023237000	-0.030435000		
6	1.857867000	1.294729000	0.287894000	6	-1.786680000	-1.212925000	0.390583000		
6	0.485703000	1.480640000	0.197799000	6	-0.409922000	-1.344569000	0.365764000		
6	-0.340289000	0.429213000	-0.177007000	6	0.385819000	-0.280581000	-0.050539000		
6	-1.810930000	0.713017000	-0.326639000	6	1.871075000	-0.510802000	-0.129770000		
6	-2.395843000	-1.251725000	1.103026000	6	2.341889000	1.606349000	1.136830000		
6	-4.714123000	-1.295687000	-0.606660000	6	4.415468000	0.299247000	-1.391134000		
6	-4.711560000	0.737091000	0.719743000	6	4.723037000	-0.589373000	0.857126000		
1	-0.427807000	-1.619028000	-0.819828000	1	0.409583000	1.719368000	-0.830360000		
1	2.024370000	-1.946822000	-0.694904000	1	-2.055637000	1.944118000	-0.819933000		
1	2.504343000	2.106276000	0.593386000	1	-2.412006000	-2.030470000	0.727936000		
1	0.040259000	2.445418000	0.404439000	1	0.066894000	-2.272127000	0.655758000		
1	-2.453995000	-2.278735000	0.736601000	1	2.446025000	2.566200000	0.627401000		
1	-1.406365000	-1.081886000	1.516139000	1	1.325995000	1.492933000	1.503547000		
1	-3.123043000	-1.127551000	1.908061000	1	3.024329000	1.594844000	1.988347000		
1	-4.870430000	-1.951154000	0.263609000	1	3.905610000	1.088733000	-1.943030000		
1	-5.690530000	-1.041536000	-1.018866000	1	5.491027000	0.450025000	-1.490354000		
1	-4.147817000	-1.835932000	-1.365137000	1	4.145137000	-0.674250000	-1.810503000		
1	-4.165539000	1.668742000	0.857879000	1	4.457480000	-1.608386000	0.563401000		
1	-5.706664000	0.973864000	0.343152000	1	5.802195000	-0.454404000	0.776200000		
1	-4.824511000	0.221101000	1.684604000	1	4.438480000	-0.424558000	1.897324000		
6	3.878209000	-0.181401000	0.047642000	6	-3.867048000	0.080001000	-0.015003000		
9	4.389346000	-0.496825000	-1.150820000	9	-4.428787000	-0.751052000	-0.904257000		
9	4.545649000	0.885212000	0.495706000	9	-4.370638000	-0.246859000	1.183434000		
9	4.168315000	-1.204349000	0.865710000	9	-4.295180000	1.313290000	-0.302618000		

5									
		5 E-ac				5 E-sc			
8	1.394503000	-2.318570000	-0.397100000	8	1.673947000	-2.234412000	-0.365335000		
7	2.208651000	-0.219664000	-0.305764000	7	2.336538000	-0.065058000	-0.323669000		
7	1.996592000	1.034664000	0.291037000	7	2.207854000	1.129083000	0.406251000		
6	-0.680004000	0.544968000	-0.792128000	6	-0.606964000	0.248384000	-1.096314000		
6	-2.015832000	0.896951000	-0.723595000	6	-1.959830000	0.545777000	-1.046573000		
6	-2.907897000	0.088941000	-0.017841000	6	-2.757709000	-0.049190000	-0.072308000		
6	-2.466248000	-1.080884000	0.596006000	6	-2.210347000	-0.961637000	0.831654000		
6	-1.131951000	-1.437440000	0.498512000	6	-0.863929000	-1.267920000	0.759078000		
6	-0.231459000	-0.621076000	-0.177681000	6	-0.053840000	-0.644989000	-0.186351000		
6	1.178767000	-1.127648000	-0.291157000	6	1.385631000	-1.058385000	-0.281077000		

6	3.558908000	-0.771794000	-0.347198000	6	3.721620000	-0.498989000	-0.466395000
6	2.447722000	1.066382000	1.676275000	6	1.702439000	1.008149000	1.761659000
6	2.556342000	2.116822000	-0.501499000	6	1.727095000	2.288385000	-0.319203000
1	0.013727000	1.172594000	-1.333622000	1	0.018731000	0.693991000	-1.858802000
1	-2.376836000	1.794363000	-1.208405000	1	-2.402120000	1.231757000	-1.757139000
1	-3.169114000	-1.704515000	1.132293000	1	-2.846341000	-1.427292000	1.572877000
1	-0.771773000	-2.360162000	0.934974000	1	-0.427201000	-1.995212000	1.432197000
1	3.810882000	-1.294549000	0.579249000	1	4.117101000	-0.875081000	0.481522000
1	3.621618000	-1.483869000	-1.165755000	1	3.774976000	-1.292582000	-1.206921000
1	4.266735000	0.037273000	-0.516685000	1	4.306571000	0.360179000	-0.786590000
1	3.538799000	0.978533000	1.773022000	1	2.120192000	0.111573000	2.221343000
1	2.135922000	2.013036000	2.117374000	1	2.041092000	1.874617000	2.332928000
1	1.971991000	0.253441000	2.225517000	1	0.606778000	0.966119000	1.818868000
1	2.215904000	2.021727000	-1.532080000	1	0.632587000	2.366683000	-0.341084000
1	2.194470000	3.061794000	-0.095021000	1	2.120961000	3.184073000	0.165537000
1	3.654885000	2.140883000	-0.492618000	1	2.107015000	2.253003000	-1.339534000
6	-4.293468000	0.464702000	0.067278000	6	-4.158464000	0.269978000	-0.005663000
7	-5.398459000	0.767638000	0.134259000	7	-5.275268000	0.528273000	0.048339000

5 Z-ac					5 Z-sc				
8	-1.350057000	1.757697000	-0.780704000	8	-1.509104000	1.561035000	-0.570360000		
7	-1.913561000	-0.290164000	0.040698000	7	-1.923099000	-0.513215000	0.248437000		
7	-3.255160000	-0.018191000	-0.290465000	7	-3.310137000	-0.419146000	0.024425000		
6	0.965142000	-0.887808000	-0.479579000	6	0.976364000	-0.917284000	-0.482409000		
6	2.329310000	-1.113826000	-0.410432000	6	2.354218000	-1.053187000	-0.484714000		
6	3.176530000	-0.082096000	-0.008665000	6	3.148844000	0.001498000	-0.038247000		
6	2.661468000	1.176360000	0.301170000	6	2.566323000	1.195334000	0.386682000		
6	1.298574000	1.396462000	0.208456000	6	1.189115000	1.327861000	0.364615000		
6	0.444201000	0.363353000	-0.162838000	6	0.388998000	0.268030000	-0.049752000		
6	-1.017601000	0.688808000	-0.319803000	6	-1.095837000	0.505280000	-0.127749000		
6	-1.665704000	-1.259613000	1.105188000	6	-1.574434000	-1.610868000	1.136341000		
6	-3.975004000	-1.234020000	-0.615459000	6	-3.643223000	-0.292649000	-1.389356000		
6	-3.922137000	0.797387000	0.713022000	6	-3.947036000	0.596463000	0.859563000		
1	0.301748000	-1.683208000	-0.797100000	1	0.354956000	-1.732381000	-0.833331000		
1	2.745020000	-2.079354000	-0.666818000	1	2.819813000	-1.966255000	-0.831573000		
1	3.332148000	1.970331000	0.601960000	1	3.196325000	2.009711000	0.719248000		
1	0.877929000	2.373621000	0.408789000	1	0.716519000	2.257430000	0.655144000		
1	-1.742747000	-2.283407000	0.733315000	1	-1.682790000	-2.569294000	0.625203000		
1	-0.677573000	-1.113173000	1.530502000	1	-0.558039000	-1.502143000	1.503401000		
1	-2.398913000	-1.123009000	1.902499000	1	-2.256330000	-1.597990000	1.988145000		
1	-4.152910000	-1.886228000	0.253047000	1	-3.137690000	-1.084748000	-1.941479000		
1	-4.942166000	-0.951669000	-1.030957000	1	-4.719511000	-0.437849000	-1.488308000		
1	-3.421108000	-1.788372000	-1.372941000	1	-3.368140000	0.679562000	-1.808594000		
1	-3.350722000	1.713171000	0.854842000	1	-3.678341000	1.614547000	0.565485000		
1	-4.908105000	1.062714000	0.331660000	1	-5.026638000	0.465174000	0.779421000		
1	-4.054527000	0.284210000	1.676829000	1	-3.662294000	0.430709000	1.899534000		
6	4.592439000	-0.317856000	0.081113000	6	4.579775000	-0.141233000	-0.024712000		
7	5.721445000	-0.508804000	0.156478000	7	5.721286000	-0.257670000	-0.011574000		

	X	6 E-ac	•	6 E-sc				
8	1.818904000	-2.293063000	-0.554625000	8	2.066306000	2.182002000	-0.638425000	
7	2.588329000	-0.190418000	-0.300804000	7	2.704941000	0.034641000	-0.282730000	
7	2.338742000	1.021710000	0.363378000	7	2.530840000	-1.084132000	0.546300000	
6	-0.313312000	0.541739000	-0.781433000	6	-0.483686000	1.394751000	0.583141000	
6	-1.656578000	0.864739000	-0.698221000	6	-1.834507000	1.115819000	0.692941000	
6	-2.506221000	-0.010530000	-0.042635000	6	-2.361486000	0.104289000	-0.093326000	
6	-2.070204000	-1.201611000	0.507595000	6	-1.596639000	-0.623775000	-0.985805000	
6	-0.726974000	-1.522504000	0.393676000	6	-0.240072000	-0.346232000	-1.069074000	
6	0.156508000	-0.648538000	-0.231539000	6	0.319454000	0.648029000	-0.275359000	
6	1.578905000	-1.117258000	-0.365897000	6	1.766040000	1.029439000	-0.401845000	
6	3.951495000	-0.707448000	-0.363295000	6	4.101812000	0.424612000	-0.433390000	
6	2.775110000	0.984926000	1.753377000	6	2.104931000	-2.311358000	-0.097396000	
6	2.881561000	2.160332000	-0.359470000	6	1.949095000	-0.849574000	1.855272000	
1	0.369640000	1.212761000	-1.282730000	1	-0.037851000	2.195334000	1.159832000	
1	-2.052030000	1.775911000	-1.123457000	1	-2.480299000	1.666680000	1.361648000	
1	-2.774982000	-1.856146000	0.999767000	1	-2.063230000	-1.383579000	-1.596404000	
1	-0.348775000	-2.460518000	0.778819000	1	0.381885000	-0.889297000	-1.768367000	
1	4.208805000	-1.278735000	0.532489000	1	4.671897000	-0.466634000	-0.686771000	
1	4.036429000	-1.367340000	-1.222555000	1	4.184521000	1.165327000	-1.223820000	
1	4.641107000	0.126665000	-0.477417000	1	4.491615000	0.850864000	0.495187000	
1	3.866585000	0.910913000	1.856529000	1	2.543131000	-2.363707000	-1.093495000	
1	2.442556000	1.900556000	2.242108000	1	2.476978000	-3.154622000	0.488229000	
1	2.308913000	0.134961000	2.252375000	1	1.014251000	-2.407211000	-0.174776000	
1	2.560174000	2.113256000	-1.399453000	1	0.851289000	-0.829527000	1.850983000	
1	2.488351000	3.071832000	0.091583000	1	2.273241000	-1.651259000	2.521769000	
1	3.978758000	2.211858000	-0.330344000	1	2.323147000	0.095499000	2.250635000	
7	-3.934845000	0.340216000	0.066666000	7	-3.801291000	-0.199824000	0.015404000	
8	-4.661814000	-0.442315000	0.640700000	8	-4.243462000	-1.076963000	-0.695586000	
8	-4.293697000	1.390426000	-0.422994000	8	-4.450550000	0.445128000	0.810460000	

6 Z-ac					6 Z-sc				
8	1.767348000	1.716546000	-0.887273000	8	-1.908330000	-1.501254000	-0.717262000		
7	2.308343000	-0.281792000	0.061666000	7	-2.318815000	0.484529000	0.298410000		
7	3.653432000	-0.045690000	-0.280802000	7	-3.705927000	0.416639000	0.064586000		
6	-0.883629000	1.442280000	0.130637000	6	0.785190000	-1.371993000	0.242011000		
6	-2.250824000	1.244933000	0.229340000	6	2.164350000	-1.251931000	0.275893000		
6	-2.751107000	-0.020019000	-0.026301000	6	2.724247000	-0.025358000	-0.036308000		
6	-1.942436000	-1.087245000	-0.375530000	6	1.963018000	1.077901000	-0.379881000		
6	-0.574983000	-0.878010000	-0.449842000	6	0.583743000	0.947031000	-0.389020000		
6	-0.041968000	0.381768000	-0.189884000	6	-0.007934000	-0.272147000	-0.070494000		
6	1.424553000	0.681767000	-0.361248000	6	-1.494344000	-0.494771000	-0.172957000		
6	2.044068000	-1.189697000	1.175102000	6	-1.968385000	1.493645000	1.285642000		

6	4.328343000	0.817596000	0.676331000	6	-4.346330000	-0.675988000	0.793816000
6	4.359109000	-1.286712000	-0.535081000	6	-4.036456000	0.429169000	-1.355439000
1	-0.452078000	2.422573000	0.286534000	1	0.307156000	-2.322128000	0.442246000
1	-2.927250000	2.046709000	0.488369000	1	2.804630000	-2.085268000	0.527258000
1	-2.386765000	-2.050329000	-0.582157000	1	2.451489000	2.007730000	-0.633509000
1	0.080604000	-1.694437000	-0.726949000	1	-0.034098000	1.794443000	-0.660096000
1	2.775759000	-1.019393000	1.967185000	1	-2.653140000	1.403060000	2.130339000
1	1.056182000	-1.009295000	1.587932000	1	-0.953101000	1.348947000	1.643505000
1	2.110025000	-2.232760000	0.858799000	1	-2.073423000	2.495393000	0.865015000
1	4.448651000	0.359666000	1.669086000	1	-4.045477000	-0.627876000	1.841234000
1	5.319887000	1.044525000	0.284764000	1	-5.424962000	-0.523981000	0.743430000
1	3.770373000	1.748670000	0.760717000	1	-4.094972000	-1.659435000	0.387300000
1	3.794660000	-1.880090000	-1.254214000	1	-3.757652000	-0.496769000	-1.867058000
1	5.326739000	-1.040862000	-0.972071000	1	-5.113051000	0.580092000	-1.441236000
1	4.535136000	-1.886868000	0.370494000	1	-3.533097000	1.272851000	-1.827274000
7	-4.206959000	-0.240776000	0.071586000	7	4.193353000	0.110757000	-0.011713000
8	-4.621253000	-1.354712000	-0.169771000	8	4.659500000	1.193105000	-0.297638000
8	-4.896394000	0.704383000	0.388695000	8	4.840933000	-0.867336000	0.293685000

	× ¥	7 E-ac-bH	K.		nt not	7 E-ac-fH	¢
8	-2.323245000	1.998273000	-0.358590000	8	2.214514000	-2.128315000	-0.486482000
7	-2.902040000	-0.173966000	-0.399603000	7	2.915844000	-0.023953000	-0.087880000
7	-2.601570000	-1.416599000	0.181430000	7	2.673152000	1.071550000	0.756897000
6	0.061237000	-0.653555000	-0.792148000	6	0.006640000	0.704805000	-0.405348000
6	1.427001000	-0.859126000	-0.746944000	6	-1.344519000	0.988290000	-0.346496000
6	2.280141000	0.070670000	-0.122904000	6	-2.272394000	0.010516000	0.058898000
6	1.690520000	1.213857000	0.446296000	6	-1.777330000	-1.273765000	0.348453000
6	0.325751000	1.415040000	0.369721000	6	-0.425592000	-1.544969000	0.259941000
6	-0.515527000	0.483920000	-0.232915000	6	0.493135000	-0.561742000	-0.095459000
6	-1.960878000	0.835907000	-0.322282000	6	1.917052000	-0.977767000	-0.224854000
6	-4.297512000	0.243353000	-0.441731000	6	4.284012000	-0.517043000	-0.154199000
6	-3.041778000	-1.524760000	1.569038000	6	3.174882000	2.326611000	0.218173000
1	-0.563458000	-1.388804000	-1.278947000	1	0.687238000	1.482517000	-0.721938000
1	1.830530000	-1.751515000	-1.202179000	1	-1.676591000	1.978542000	-0.620630000
1	2.297963000	1.956744000	0.941618000	1	-2.448817000	-2.069786000	0.633677000
1	-0.112479000	2.315787000	0.781479000	1	-0.058983000	-2.544054000	0.460529000
1	-4.634115000	0.669964000	0.507470000	1	4.549632000	-1.071688000	0.752562000
1	-4.415896000	1.001551000	-1.211175000	1	4.385601000	-1.186448000	-1.003553000
1	-4.905854000	-0.627579000	-0.688369000	1	4.959396000	0.327551000	-0.276329000
1	-4.118938000	-1.381147000	1.709131000	1	2.639354000	2.556497000	-0.703492000
1	-2.767024000	-2.513783000	1.935176000	1	2.966614000	3.112201000	0.944814000
1	-2.505770000	-0.779745000	2.158830000	1	4.248822000	2.330454000	0.000369000
1	-3.029081000	-2.136399000	-0.391160000	1	3.083819000	0.883271000	1.668491000
7	3.645829000	-0.125462000	-0.084908000	7	-3.617764000	0.302739000	0.171765000
6	4.173151000	-1.426810000	-0.440343000	6	-4.110638000	1.537816000	-0.402994000
1	3.957773000	-1.661419000	-1.484601000	1	-3.915774000	1.605944000	-1.480951000
1	5.254069000	-1.415447000	-0.322590000	1	-5.183897000	1.600820000	-0.239440000
1	3.761134000	-2.229035000	0.184963000	1	-3.652047000	2.400116000	0.083946000
6	4.446620000	0.721934000	0.774922000	6	-4.555552000	-0.792763000	0.314356000
1	5.486848000	0.412321000	0.708261000	1	-4.513173000	-1.493379000	-0.529323000
1	4.390649000	1.763616000	0.453374000	1	-4.360999000	-1.349097000	1.232713000
1	4.131737000	0.668316000	1.824742000	1	-5.563114000	-0.389226000	0.382094000

		7 E-sc-bH	4		×	7 E-sc-fH	ζ.
8	-2.477199000	1.875415000	-0.584526000	8	2.270740000	-2.076562000	-0.627306000
7	-2.905342000	-0.339819000	-0.346866000	7	2.935339000	0.006117000	-0.064781000
7	-2.617214000	-1.459693000	0.466350000	7	2.727488000	1.034768000	0.893454000
6	0.017998000	-0.612363000	-0.929071000	6	0.012431000	0.674556000	-0.557682000
6	1.386101000	-0.805008000	-0.861090000	6	-1.340479000	0.948586000	-0.470455000
6	2.205907000	0.098670000	-0.159214000	6	-2.236824000	-0.004427000	0.048579000
6	1.582538000	1.200915000	0.457022000	6	-1.708783000	-1.252465000	0.430494000
6	0.216673000	1.384934000	0.363427000	6	-0.357706000	-1.514355000	0.318410000
6	-0.591611000	0.473886000	-0.308572000	6	0.531019000	-0.552495000	-0.155487000
6	-2.054905000	0.749586000	-0.405543000	6	1.965102000	-0.943412000	-0.302211000
6	-4.328491000	-0.082458000	-0.487118000	6	4.310649000	-0.468782000	-0.076767000
6	-2.433307000	-1.110033000	1.872501000	6	2.921163000	2.362515000	0.325301000
1	-0.580442000	-1.303985000	-1.513274000	1	0.669690000	1.420279000	-0.986448000
1	1.817591000	-1.654886000	-1.368972000	1	-1.698915000	1.904302000	-0.823208000
1	2.167693000	1.924910000	1.004383000	1	-2.357919000	-2.028522000	0.807655000
1	-0.246206000	2.252249000	0.819020000	1	0.031305000	-2.487844000	0.590546000
1	-4.762045000	0.322980000	0.432771000	1	4.517915000	-1.090594000	0.797941000
1	-4.478813000	0.645458000	-1.279931000	1	4.475656000	-1.053437000	-0.977136000
1	-4.814333000	-1.023387000	-0.734034000	1	4.972579000	0.395114000	-0.071367000
1	-3.360541000	-0.681144000	2.253713000	1	2.321585000	2.559175000	-0.569548000
1	-2.231346000	-2.026814000	2.426730000	1	2.676032000	3.095617000	1.093973000
1	-1.615617000	-0.400215000	2.042674000	1	3.972335000	2.491779000	0.064815000
1	-1.795501000	-1.924276000	0.105248000	1	1.789767000	0.935005000	1.264656000
7	3.571053000	-0.078487000	-0.093788000	7	-3.582111000	0.272760000	0.177514000
6	4.133126000	-1.342268000	-0.523958000	6	-4.113591000	1.454598000	-0.470878000
1	3.955421000	-1.504985000	-1.588928000	1	-3.952446000	1.444886000	-1.556304000
1	5.209034000	-1.323310000	-0.369368000	1	-5.182236000	1.512854000	-0.279164000
1	3.715282000	-2.192973000	0.028962000	1	-3.656373000	2.357620000	-0.062725000
6	4.338903000	0.738250000	0.824118000	6	-4.495164000	-0.823726000	0.435151000
1	5.383703000	0.442091000	0.772699000	1	-4.445737000	-1.598219000	-0.340330000
1	4.280293000	1.793096000	0.548614000	1	-4.280839000	-1.288290000	1.399219000
1	3.996336000	0.633192000	1.861020000	1	-5.510239000	-0.436306000	0.475834000

6	1.753737000	1.233423000	0.320499000	6	1.897021000	1.242835000	0.239477000
6	0.384659000	1.358583000	0.188245000	6	0.541386000	1.499695000	0.181612000
6	-0.409985000	0.277235000	-0.179831000	6	-0.377714000	0.485366000	-0.069685000
6	-1.872447000	0.508981000	-0.377645000	6	-1.821563000	0.843825000	-0.176209000
6	-2.475259000	-1.544611000	0.932115000	6	-2.564092000	-0.979416000	1.320961000
6	-4.839260000	0.402337000	0.490815000	6	-4.858298000	-1.049942000	-0.470983000
1	-0.368922000	-1.777171000	-0.800485000	1	-0.585575000	-1.594241000	-0.550364000
1	2.036158000	-2.021440000	-0.608608000	1	1.794822000	-2.075896000	-0.483368000
1	2.327726000	2.100504000	0.612318000	1	2.573431000	2.060822000	0.438343000
1	-0.092632000	2.316081000	0.357958000	1	0.170508000	2.507790000	0.321360000
1	-2.556727000	-2.552909000	0.515821000	1	-2.822946000	-2.022676000	1.133916000
1	-1.485654000	-1.422287000	1.362146000	1	-1.535460000	-0.934264000	1.665933000
1	-3.211531000	-1.437470000	1.732397000	1	-3.215749000	-0.593185000	2.113610000
1	-4.459662000	1.422569000	0.501117000	1	-4.984438000	-1.703279000	0.401678000
1	-5.874094000	0.419789000	0.149373000	1	-5.844107000	-0.726253000	-0.803873000
1	-4.813614000	-0.006028000	1.508641000	1	-4.395945000	-1.624482000	-1.274265000
1	-4.454563000	-1.276659000	-0.641114000	1	-4.467368000	0.728571000	0.485742000
7	3.757614000	-0.138065000	0.223592000	7	3.742576000	-0.332149000	0.117873000
6	4.568810000	1.052531000	0.380215000	6	4.229262000	-1.606822000	-0.369448000
1	4.471273000	1.740857000	-0.468742000	1	3.999136000	-1.764474000	-1.430644000
1	4.296589000	1.589297000	1.290572000	1	5.308023000	-1.647023000	-0.239179000
1	5.612039000	0.759534000	0.471205000	1	3.796786000	-2.430438000	0.201714000
6	4.397932000	-1.324474000	-0.306873000	6	4.677972000	0.773040000	0.175309000
1	4.012896000	-2.221651000	0.181041000	1	5.688003000	0.377346000	0.250504000
1	4.252766000	-1.430982000	-1.389536000	1	4.619106000	1.419174000	-0.709559000
1	5.464751000	-1.271970000	-0.103159000	1	4.496696000	1.384844000	1.060591000

7 Z-sc-bH						7 Z-sc-fH	ka.
8	2.297935000	-1.501381000	-0.879019000	8	-2.308398000	1.711568000	-0.436054000
7	2.742415000	0.533891000	-0.029897000	7	-2.759528000	-0.346597000	0.372241000
7	4.102603000	0.379588000	-0.367724000	7	-4.135865000	-0.075045000	0.212915000
6	-0.229861000	0.949881000	-0.463961000	6	0.122346000	-0.878106000	-0.272947000
6	-1.603229000	1.071133000	-0.352025000	6	1.491459000	-1.071452000	-0.294378000
6	-2.390574000	-0.015132000	0.071498000	6	2.372466000	-0.020362000	0.022604000
6	-1.733645000	-1.235206000	0.320901000	6	1.808755000	1.237952000	0.309920000
6	-0.363661000	-1.342744000	0.183746000	6	0.439566000	1.416995000	0.304786000
6	0.416449000	-0.249253000	-0.181548000	6	-0.427369000	0.361092000	0.040182000
6	1.880012000	-0.466877000	-0.377901000	6	-1.889078000	0.644489000	-0.016991000
6	2.472940000	1.704673000	0.778327000	6	-2.492773000	-1.342582000	1.397943000
6	4.792883000	-0.469504000	0.609465000	6	-4.556812000	-0.371967000	-1.157221000
1	0.341011000	1.805170000	-0.806318000	1	-0.528705000	-1.704866000	-0.533978000
1	-2.061391000	2.015377000	-0.605612000	1	1.873484000	-2.043315000	-0.569118000
1	-2.295445000	-2.110483000	0.611915000	1	2.442070000	2.084908000	0.528649000
1	0.124185000	-2.295751000	0.348100000	1	0.018097000	2.396104000	0.497477000
1	2.481264000	2.613911000	0.172574000	1	-2.783972000	-2.334185000	1.046210000
1	1.514780000	1.602877000	1.279277000	1	-1.438224000	-1.348183000	1.656577000
1	3.252873000	1.793555000	1.536219000	1	-3.080448000	-1.104173000	2.286005000
1	4.309002000	-1.441084000	0.734802000	1	-4.464784000	-1.444274000	-1.330799000
1	5.816989000	-0.612199000	0.264745000	1	-5.607283000	-0.097009000	-1.255074000
1	4.831520000	0.048246000	1.568876000	1	-3.970257000	0.170511000	-1.904764000
1	4.104775000	-0.104906000	-1.261121000	1	-4.241725000	0.926662000	0.362697000
7	-3.755063000	0.110753000	0.237143000	7	3.737066000	-0.215704000	0.050898000
6	-4.551157000	-1.090478000	0.390297000	6	4.278524000	-1.443081000	-0.495807000

1	-4.447758000	-1.772920000	-0.462687000	1	4.024340000	-1.578090000	-1.554718000
1	-4.269766000	-1.628817000	1.296986000	1	5.361395000	-1.426219000	-0.398829000
1	-5.597626000	-0.810862000	0.485798000	1	3.911117000	-2.308714000	0.058729000
6	-4.412110000	1.294613000	-0.278081000	6	4.606508000	0.941909000	0.115764000
1	-4.031355000	2.191487000	0.213796000	1	5.641277000	0.608119000	0.107608000
1	-4.278101000	1.411441000	-1.361139000	1	4.452720000	1.627514000	-0.726701000
1	-5.476417000	1.229739000	-0.065020000	1	4.444815000	1.494748000	1.042956000

9 E-ac-bH					X	9 E-ac-fH	
8	-0.904406000	-2.091994000	0.141726000	8	0.731062000	-2.188073000	-0.419259000
7	-1.749565000	-0.027480000	0.432083000	7	1.750722000	-0.207617000	-0.070611000
7	-1.607914000	1.309923000	0.034060000	7	1.665458000	0.953623000	0.713581000
6	1.144758000	0.722887000	0.896711000	6	-1.002751000	0.928291000	-0.524584000
6	2.473207000	1.113074000	0.823466000	6	-2.299962000	1.415973000	-0.479004000
6	3.349084000	0.454126000	-0.030854000	6	-3.324709000	0.627074000	0.029735000
6	2.898793000	-0.613620000	-0.795495000	6	-3.052594000	-0.659947000	0.473311000
6	1.575805000	-1.021474000	-0.703426000	6	-1.759130000	-1.156906000	0.405029000
6	0.689309000	-0.344850000	0.128199000	6	-0.726135000	-0.360494000	-0.078962000
6	-0.702118000	-0.895540000	0.221719000	6	0.624430000	-1.000277000	-0.188299000
6	-3.085821000	-0.606816000	0.469218000	6	3.034625000	-0.892003000	-0.120514000
6	-2.123447000	1.569126000	-1.307012000	6	2.347099000	2.095204000	0.121453000
1	0.462556000	1.239791000	1.556879000	1	-0.207989000	1.544865000	-0.920684000
1	2.826145000	1.935121000	1.433478000	1	-2.512416000	2.414594000	-0.839568000
1	4.383485000	0.768936000	-0.093706000	1	-4.335257000	1.014049000	0.073445000
1	3.580217000	-1.136405000	-1.454751000	1	-3.849454000	-1.281281000	0.861993000
1	1.214466000	-1.874224000	-1.264403000	1	-1.532468000	-2.169365000	0.714481000
1	-3.418281000	-0.944371000	-0.516214000	1	3.235062000	-1.424088000	0.815718000
1	-3.078319000	-1.466073000	1.134582000	1	3.023441000	-1.616335000	-0.929955000
1	-3.775112000	0.147225000	0.850061000	1	3.819764000	-0.160011000	-0.299315000
1	-3.184585000	1.326799000	-1.432116000	1	1.865424000	2.344145000	-0.824350000
1	-1.974014000	2.625746000	-1.527538000	1	2.235143000	2.940948000	0.799802000
1	-1.539814000	0.984629000	-2.019564000	1	3.414963000	1.938906000	-0.066739000
1	-2.076567000	1.890191000	0.721321000	1	2.036802000	0.754623000	1.639459000

9 F-sc-bH					X	9	
		E-sc-bH		E-SC-IH			
8	-1.096831000	-2.055354000	0.042779000	8	0.940299000	-2.126171000	-0.617909000
7	-1.799471000	0.067716000	0.417506000	7	1.793174000	-0.114180000	-0.032346000
7	-1.656591000	1.415695000	0.027330000	7	1.648563000	0.964459000	0.875371000
6	6 1.106817000 0.451991000 1.102666000			6	-1.062866000	0.695362000	-0.858549000
6 2.446789000 0.813487000 1.073399000			6	-2.377562000	1.128157000	-0.752860000	
6	3.273808000	0.330210000	0.067737000	6	-3.268844000	0.450431000	0.068763000
6	2.765692000	-0.533797000	-0.894780000	6	-2.849950000	-0.675040000	0.767412000

6	1.431221000	-0.909963000	-0.855292000	6	-1.541312000	-1.120294000	0.648125000
6	0.592696000	-0.401921000	0.131108000	6	-0.638487000	-0.425014000	-0.150555000
6	-0.830910000	-0.876895000	0.167415000	6	0.753783000	-0.970687000	-0.289569000
6	-3.180125000	-0.378894000	0.498843000	6	3.134673000	-0.675806000	-0.041804000
6	-1.483978000	1.578632000	-1.413823000	6	1.809262000	2.263102000	0.232212000
1	0.465110000	0.804141000	1.903426000	1	-0.371812000	1.205014000	-1.518102000
1	2.846556000	1.466680000	1.838743000	1	-2.707510000	1.990434000	-1.318725000
1	4.317521000	0.617675000	0.041162000	1	-3.546567000	-1.212839000	1.398033000
1	3.413703000	-0.921981000	-1.670351000	1	-1.209344000	-2.013489000	1.163221000
1	1.025331000	-1.606275000	-1.579119000	1	3.321931000	-1.254223000	0.866232000
1	-3.619068000	-0.522083000	-0.493360000	1	3.239043000	-1.323219000	-0.907695000
1	-3.212669000	-1.328926000	1.025478000	1	3.850095000	0.142434000	-0.100868000
1	-3.742896000	0.378456000	1.039016000	1	1.082297000	2.458166000	-0.561127000
1	-2.368548000	1.190659000	-1.919628000	1	1.716756000	3.030804000	1.000407000
1	-1.410977000	2.644774000	-1.628549000	1	2.812367000	2.327102000	-0.190088000
1	-0.596062000	1.071924000	-1.808545000	1	0.738510000	0.893479000	1.316553000
1	-0.882964000	1.826820000	0.532000000	1	-4.292497000	0.792487000	0.155200000

		9 Z-ac-bH				9 Z-ac-fH	
8	1 003514000	-1 619191000	-0 729096000	8	-0 757649000	1 972411000	-0.425460000
7	1 544738000	0 507136000	-0 146348000	7	-1 571371000	-0.082166000	0.149426000
7	2.871948000	0.238150000	-0.525487000	7	-2.863020000	0.403468000	-0.104358000
6	-1.382474000	0.976789000	-0.556732000	6	1.159822000	-1.013264000	-0.487990000
6	-2.749102000	1.172773000	-0.416007000	6	2.480346000	-1.439619000	-0.501388000
6	-3.537473000	0.181700000	0.154578000	6	3.491728000	-0.580015000	-0.091276000
6	-2.960751000	-1.013972000	0.565265000	6	3.183061000	0.712095000	0.315743000
6	-1.598280000	-1.217944000	0.406059000	6	1.865271000	1.144279000	0.312447000
6	-0.800942000	-0.216449000	-0.138054000	6	0.847282000	0.278407000	-0.073427000
6	0.654091000	-0.520509000	-0.355125000	6	-0.552711000	0.821772000	-0.120260000
6	1.348981000	1.591809000	0.804862000	6	-1.452866000	-1.068179000	1.220030000
6	3.629686000	-0.484349000	0.491434000	6	-3.776722000	-0.647615000	-0.517896000
1	-0.766562000	1.744473000	-1.010965000	1	0.368388000	-1.677153000	-0.815947000
1	-3.199481000	2.096395000	-0.757352000	1	2.721245000	-2.440731000	-0.836057000
1	-4.602885000	0.337714000	0.270031000	1	4.521451000	-0.915413000	-0.096341000
1	-3.576226000	-1.791463000	0.999938000	1	3.971767000	1.385465000	0.626756000
1	-1.134919000	-2.155449000	0.687334000	1	1.605360000	2.156682000	0.595392000
1	1.478007000	2.559633000	0.312472000	1	-1.802413000	-2.047873000	0.890611000
1	0.354630000	1.550540000	1.239265000	1	-0.419967000	-1.159061000	1.542081000
1	2.079096000	1.510475000	1.613659000	1	-2.056834000	-0.750788000	2.077194000
1	3.196289000	-1.478328000	0.589930000	1	-3.945934000	-1.431903000	0.230738000
1	4.654380000	-0.587511000	0.135505000	1	-4.734341000	-0.183126000	-0.751423000
1	3.646924000	0.005107000	1.472908000	1	-3.387754000	-1.107210000	-1.426786000
1	3.303413000	1.125840000	-0.754782000	1	-3.210309000	0.895553000	0.716087000

9					9				
		Z-sc-bH		Z-sc-fH					
8	1.034896000	-1.534372000	-0.851338000	8	-1.010092000	-1.767513000	0.239040000		
7	1.560548000	0.509470000	-0.067877000	7	-1.583202000	0.324997000	-0.377108000		
7	2.911461000	0.303774000	-0.414156000	7	-2.942147000	-0.052003000	-0.331068000		
6	-1.407638000	0.967402000	-0.559905000	6	1.202725000	0.961417000	0.565937000		
6	-2.776714000	1.129558000	-0.399850000	6	2.557515000	1.241662000	0.673037000		
6	-3.531268000	0.124208000	0.190311000	6	3.494487000	0.325466000	0.212426000		
6	-2.918622000	-1.053892000	0.599604000	6	3.076215000	-0.880464000	-0.336775000		
6	-1.554205000	-1.225465000	0.420703000	6	1.723033000	-1.170086000	-0.425606000		
6	-0.790327000	-0.207057000	-0.140292000	6	0.781752000	-0.242052000	0.007644000		
6	0.667833000	-0.474219000	-0.368929000	6	-0.664039000	-0.633364000	-0.045354000		
6	1.325783000	1.731243000	0.674397000	6	-1.337220000	1.497284000	-1.200984000		
6	3.586964000	-0.527735000	0.588401000	6	-3.452834000	0.054945000	1.037447000		
1	-0.821652000	1.748986000	-1.029295000	1	0.469242000	1.670110000	0.933210000		
1	-3.254716000	2.039548000	-0.740019000	1	2.882741000	2.172874000	1.119527000		
1	-4.598124000	0.255128000	0.322110000	1	4.551492000	0.547539000	0.290014000		
1	-3.507102000	-1.843721000	1.049168000	1	3.806068000	-1.599136000	-0.687726000		
1	-1.066088000	-2.150592000	0.700951000	1	1.376850000	-2.118031000	-0.818296000		
1	1.369294000	2.603256000	0.018237000	1	-1.712326000	2.394522000	-0.704648000		
1	0.361269000	1.690082000	1.171743000	1	-0.274422000	1.611647000	-1.392023000		
1	2.103327000	1.834335000	1.432697000	1	-1.863996000	1.379320000	-2.148705000		
1	3.084009000	-1.485016000	0.745635000	1	-3.446396000	1.103523000	1.335811000		
1	4.606977000	-0.702130000	0.246699000	1	-4.484637000	-0.296345000	1.041171000		
1	3.637221000	0.019698000	1.530438000	1	-2.867733000	-0.532422000	1.751223000		
1	2.891524000	-0.211571000	-1.290072000	1	-2.968511000	-1.033293000	-0.601270000		

					***	12	•
		E-ac-bH				E-ac-fH	
8	2.179914000	-2.026613000	-0.363476000	8	2.106836000	-2.119365000	-0.540208000
7	2.790281000	0.141015000	-0.387145000	7	2.800332000	-0.030593000	-0.030783000
7	2.468820000	1.405954000	0.127123000	7	2.488591000	1.079742000	0.768390000
6	-0.163988000	0.590244000	-0.893254000	6	-0.089465000	0.673298000	-0.567212000
6	-1.527153000	0.820186000	-0.822666000	6	-1.443801000	0.955425000	-0.524878000
6	-2.299465000	-0.024787000	-0.043572000	6	-2.302736000	-0.009289000	-0.026158000
6	-1.767501000	-1.101022000	0.642564000	6	-1.863329000	-1.247790000	0.404605000
6	-0.405359000	-1.333234000	0.541188000	6	-0.507481000	-1.523327000	0.332722000
6	0.401399000	-0.481815000	-0.207503000	6	0.383747000	-0.561917000	-0.133278000
6	1.853127000	-0.857406000	-0.315216000	6	1.824449000	-0.977784000	-0.239853000
6	4.189186000	-0.265830000	-0.437945000	6	4.184886000	-0.478167000	-0.069402000
6	2.915686000	1.594860000	1.505186000	6	3.006724000	2.333567000	0.236997000
1	0.460893000	1.239914000	-1.488744000	1	0.598695000	1.412109000	-0.951946000
1	-1.996353000	1.636887000	-1.352012000	1	-1.840043000	1.900930000	-0.865993000
1	-2.414153000	-1.737377000	1.229408000	1	-2.574697000	-1.971131000	0.776386000
1	0.048252000	-2.184348000	1.032113000	1	-0.124481000	-2.490646000	0.630119000
1	4.537246000	-0.663336000	0.519048000	1	4.476937000	-0.932123000	0.883486000
1	4.302797000	-1.042331000	-1.189749000	1	4.296309000	-1.220209000	-0.854310000
1	4.786996000	0.603094000	-0.713129000	1	4.830026000	0.372388000	-0.280031000
1	3.994473000	1.466555000	1.643807000	1	4.096656000	2.367818000	0.137555000
1	2.636781000	2.601481000	1.814774000	1	2.566136000	2.510943000	-0.744362000
1	2.388798000	0.882116000	2.140969000	1	2.694189000	3.134617000	0.906376000
7	-3.749437000	0.229473000	0.051298000	7	-3.744661000	0.294341000	0.039983000
8	-4.406057000	-0.520260000	0.742010000	8	-4.479661000	-0.566887000	0.473852000

8	-4.195106000	1.173444000	-0.566474000	8	-4.105732000	1.387459000	-0.342442000
1	2.881034000	2.102495000	-0.484599000	1	2.840933000	0.917127000	1.708717000

						12	•
		E-sc-bH				E-sc-fH	
8	-2.311679000	-1.950228000	0.460465000	8	2.311778000	-1.950277000	0.460224000
7	-2.813033000	0.260062000	0.353541000	7	2.813004000	0.260078000	0.353482000
7	-2.525949000	1.486142000	-0.278226000	7	2.525866000	1.486162000	-0.278164000
6	0.123063000	0.475052000	1.043767000	6	-0.297182000	-1.248574000	-0.634869000
6	1.490217000	0.692241000	0.974685000	6	-1.661694000	-1.031174000	-0.728376000
6	2.228326000	-0.058842000	0.077434000	6	-2.228298000	-0.058873000	0.077474000
6	1.661653000	-1.030983000	-0.728560000	6	-1.490168000	0.692277000	0.974637000
6	0.297134000	-1.248383000	-0.635019000	6	-0.123017000	0.475015000	1.043754000
6	-0.476919000	-0.483636000	0.232339000	6	0.476918000	-0.483742000	0.232403000
6	-1.944365000	-0.800422000	0.335462000	6	1.944355000	-0.800495000	0.335410000
6	-4.233146000	-0.023491000	0.490214000	6	4.233119000	-0.023462000	0.490195000
6	-2.303861000	1.359755000	-1.715570000	6	2.303813000	1.359937000	-1.715525000
1	-0.475201000	1.031180000	1.756424000	1	0.181112000	-2.019272000	-1.225972000
1	1.986016000	1.420796000	1.600025000	1	-2.287323000	-1.601290000	-1.400181000
1	2.287251000	-1.600991000	-1.400488000	1	-1.985930000	1.420932000	1.599880000
1	-0.181153000	-2.019013000	-1.226225000	1	0.475256000	1.031146000	1.756406000
1	-4.676823000	-0.324754000	-0.463286000	1	4.718369000	0.880862000	0.848298000
1	-4.363605000	-0.835639000	1.200388000	1	4.363590000	-0.835417000	1.200517000
1	-4.718461000	0.880740000	0.848407000	1	4.676828000	-0.324868000	-0.463259000
1	-3.206714000	0.957654000	-2.175630000	1	1.455193000	0.717131000	-1.976064000
1	-2.132437000	2.356631000	-2.121161000	1	2.132114000	2.356824000	-2.120974000
1	-1.455047000	0.717173000	-1.976004000	1	3.206778000	0.958158000	-2.175652000
7	3.682033000	0.179188000	-0.013842000	1	1.740145000	1.927655000	0.179998000
8	4.307828000	-0.484011000	-0.812295000	7	-3.682007000	0.179253000	-0.013863000
8	4.156664000	1.024616000	0.714174000	8	-4.156442000	1.025477000	0.713358000
1	-1.740292000	1.927707000	0.179973000	8	-4.307993000	-0.484673000	-0.811557000

6	2.317699000	-1.564646000	-0.917343000	6	-2.386214000	-1.046324000	1.302138000
6	4.700158000	0.406031000	-0.571116000	6	-4.728342000	-1.022098000	-0.470880000
1	0.263620000	-1.739631000	0.967024000	1	-0.500053000	-1.566222000	-0.716369000
1	-2.216289000	-1.953530000	0.777107000	1	1.952832000	-2.034105000	-0.687799000
1	-2.460389000	2.041445000	-0.706178000	1	2.715252000	1.978812000	0.555270000
1	0.028812000	2.279365000	-0.466518000	1	0.253097000	2.468531000	0.470856000
1	2.411489000	-2.562211000	-0.480047000	1	-2.602811000	-2.078292000	1.021623000
1	1.314930000	-1.449814000	-1.318067000	1	-1.353270000	-0.985128000	1.631304000
1	3.026357000	-1.475987000	-1.743626000	1	-3.031950000	-0.768728000	2.141506000
1	4.629774000	0.004300000	-1.589061000	1	-4.266578000	-1.474425000	-1.348669000
1	4.327924000	1.429071000	-0.558454000	1	-4.807681000	-1.779216000	0.318842000
1	5.747353000	0.415082000	-0.270682000	1	-5.733014000	-0.699236000	-0.741287000
7	-3.896483000	-0.108219000	-0.112419000	7	3.876129000	-0.337147000	-0.019820000
8	-4.513828000	0.845047000	-0.536046000	8	4.617020000	0.561895000	0.314811000
8	-4.388936000	-1.166590000	0.216117000	8	4.232497000	-1.453754000	-0.331055000
1	4.354316000	-1.279082000	0.567926000	1	-4.386902000	0.641490000	0.687722000

						12	• •
		Z-sc-bH				Z-sc-fH	
8	2.184092000	-1.458494000	-0.961283000	8	-2.184980000	1.697395000	-0.498115000
7	2.620845000	0.531522000	0.001661000	7	-2.639039000	-0.315688000	0.414291000
7	3.989232000	0.394029000	-0.306087000	7	-4.019012000	-0.053135000	0.286010000
6	-0.341510000	0.933854000	-0.594620000	6	0.219606000	-0.864436000	-0.399106000
6	-1.718837000	1.044089000	-0.489861000	6	1.591365000	-1.055118000	-0.438354000
6	-2.428172000	-0.038661000	-0.002648000	6	2.410468000	-0.006454000	-0.059378000
6	-1.820738000	-1.228613000	0.359189000	6	1.915414000	1.224811000	0.333942000
6	-0.445892000	-1.330211000	0.230587000	6	0.542567000	1.406316000	0.348799000
6	0.298364000	-0.245975000	-0.225010000	6	-0.306909000	0.360207000	0.002216000
6	1.776101000	-0.448968000	-0.410834000	6	-1.781914000	0.643980000	-0.036901000
6	2.314147000	1.695450000	0.809614000	6	-2.335261000	-1.366147000	1.372688000
6	4.659352000	-0.476132000	0.667114000	6	-4.481238000	-0.393272000	-1.062033000
1	0.233701000	1.765829000	-0.981676000	1	-0.444311000	-1.666583000	-0.697594000
1	-2.244283000	1.943231000	-0.777930000	1	2.029491000	-1.989916000	-0.757433000
1	-2.423655000	-2.049207000	0.720760000	1	2.599245000	2.014622000	0.609830000
1	0.064306000	-2.254441000	0.468709000	1	0.113645000	2.363138000	0.616872000
1	2.349475000	2.607733000	0.210544000	1	-2.633243000	-2.338095000	0.974931000
1	1.335807000	1.590389000	1.269536000	1	-1.273673000	-1.381114000	1.600758000
1	3.060573000	1.775739000	1.600583000	1	-2.897075000	-1.178158000	2.287916000
1	4.666981000	0.015655000	1.640517000	1	-3.922374000	0.129606000	-1.843482000
1	4.180910000	-1.454876000	0.752862000	1	-4.390724000	-1.470134000	-1.205505000
1	5.692946000	-0.601575000	0.346383000	1	-5.535468000	-0.126329000	-1.132515000
7	-3.893662000	0.077123000	0.127025000	7	3.872387000	-0.207630000	-0.086848000
8	-4.494448000	-0.884159000	0.556312000	8	4.571409000	0.722741000	0.251747000
8	-4.403198000	1.127112000	-0.201979000	8	4.280575000	-1.291661000	-0.445355000
1	4.019869000	-0.061865000	-1.214065000	1	-4.126483000	0.951008000	0.414591000

J. NMR Spectra of new synthesized compounds.

142.44 142.45 142.45 142.51 142.55 142.53	-154.72 -154.77 -154.77 -164.69 -161.73 -161.73 -161.75
--	---

Compound **13** ¹⁹F NMR-376 MHz, CDCl₃

S143

K. References.

- 1. Bruker APEX 3, Version 2, User Manual S86 EXS053 (Bruker AXS Inc., 2015).
- 2. Siemens, SMART system (Siemens Analytical X-ray Instruments Inc., 1995).
- 3. G. M. Sheldrick, SADABS (Bruker AXS Inc. 2007).
- 4. G. M. Sheldrick, Acta Cryst. Sect. A. 2008, 64 (1), 112–122.
- I. J. Bruno, J. C. Cole, P. R. Edgington, M. Kessler, C. F. Macrae, P. McCabe, J. Pearson and R. Taylor, *Acta Crystallogr. Sect. B.* 2002, 58 (3), 389-397.
- Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, Jr., J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, S35 R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W.; Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian, Inc., Wallingford CT, 2013.
- 7. Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.* 2008, **120**, 215–241.
- 8. E. D. Glendening, A. E. Reed, J. E. Carpenter and J. Weinhold, NBO Version 3.1; University of Wisconsin: Madison.
- E. R. Johnson, S. Keinan, M. -P. Sánchez, J. C. García, A. J. Cohen and W. Yang, J. Am. Chem. Soc. 2010, 132, 6498-6506.

- 10. T. Lu and F. Chen, J. Comput. Chem. 2012, 33, 580-592.
- 11. W. Humphrey, A. Dalke and K. Schulten, J. Molec. Graphics, 1996, 14, 33-38.
- 12. <u>http://www.chemcraftprog.com.</u>
- F. A. Carey and R. J. Sundberg, in *Advanced Organic Chemistry*, Part A: Structure and Mechanisms, 5th Ed. Springer US, 2007, pp. 336-339.