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S1 A brief introduction to the equation of motion formalism
In order to model excited states in CC theory, the equation of motion (EOM) formalism15–17 can be
applied. EOM-CC17–20 uses a linear ansatz to parametrize the k-th state

|Ψk〉 = R̂(k) |CC〉 , (1)

where the operator R̂(k) generates the targeted state k from the initial CC reference state,

|Ψ0〉 = eT̂ |Φ0〉 . (2)

In this work, the cluster operator T̂ is restricted to electron pair excitations of pCCD, T̂ = T̂ pCCD.
All equations below are, however, expressed in their general form exploiting some CC reference state.
The explicit form of the operator R̂(k) determines the EOM flavor, like electron excitation, ionization,
electron attachment, or spin flip.

Specifically for electronically excited (EE) states, the operator R̂(k) is particle- and spin-conserving
and contains 1 hole (h) and 1 particle (p) operators, 2h2p operators, etc.,

R̂EE(k) =
∑
ia

rai (k)â†î+
1

4

∑
ijab

rabij (k)â†b̂†ĵ î+ . . . = R̂1h1p(k) + R̂2h2p(k) + . . .

In the ionization potential (IP) EOM-CC formalism, the operator R̂(k) is composed of 1h oper-
ators, 2h1p operators, etc.,

R̂IP(k) =
∑
i

ri(k)̂i+
1

2

∑
ija

r a
ij (k)â†ĵ î+ . . . = R̂1h(k) + R̂2h1p(k) + . . .

Thus, the single ionization problem annihilates electrons in the (occupied) levels i and may perform
electron excitations from occupied to virtual spin orbitals. In the double (D)IP-EOM flavor, the
operator R̂(k) contains 2h operators, 3h1p operators, etc.,

R̂DIP(k) =
1

2

∑
i

rij(k)ĵ î+
1

6

∑
ijka

r a
ijk (k)â†k̂ĵî+ . . . = R̂2h(k) + R̂3h1p(k) + . . .

In the double ionization problem, we thus annihilate two electrons in the occupied spin orbitals i, j.
In the electron attachment variant of EOM-CC, the role of particle and hole operators (or lines in

the corresponding diagrams, respectively) is reversed. Specifically, in electron affinity (EA) EOM-CC,
the operator R̂(k) contains 1p operators, 1h2p operators, etc.,

R̂EA(k) =
∑
a

ra(k)â† +
1

2

∑
abi

rabi (k)â†b̂†î+ . . . = R̂1p(k) + R̂1h2p(k) + . . . ,

while the double (D)EA-EOM-CC ansatz includes 2p operators, 1h3p operators, etc.,

R̂DEA(k) =
1

2

∑
ab

rab(k)â†b̂† +
1

6

∑
abci

rabci (k)â†b̂†ĉ†î+ . . . = R̂2p(k) + R̂1h3p(k) + . . .
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While the standard formulations of the IP and EA flavors of EOM-CC exploit a closed-shell reference,
the spin-flip18,21 (SF) variant uses a high-spin reference and spin-flipping R̂(k) operators, that is,
excitation operators that include a spin-flip of one electron (α→ β),

R̂SF
1 (k) =

∑
iā

rai (k)ˆ̄a†î

R̂SF
2 (k) =

1

2

∑
ijāb

rabij (k)ˆ̄a†îb̂†ĵ +
1

2

∑
ij̄āb̄

rabij (k)ˆ̄a†îˆ̄b†ˆ̄j

Thus, R̂SF(k) reduces the Ms value by one with respect to the high-spin reference state to target
low-spin states,

R̂SF
Ms=−1(k) = R̂SF

1 (k) + R̂SF
2 (k) + . . .

To arrive at the EOM-CC working equations, we employ the normal-product form of the Hamil-
tonian, ĤN = Ĥ − 〈Φ0|Ĥ|Φ0〉. The Schrödinger equation for the ground state (k = 0) then reads

ĤN |Ψ0〉 = ∆E0 |Ψ0〉 , (3)

where ∆E0 is the correlation energy with respect to the CC reference determinant |Φ0〉. The excited
(or ionized, etc.) states are obtained from solving the corresponding EOM equations

ĤN R̂(k) |Ψ0〉 = ∆EkR̂(k) |Ψ0〉

ĤN R̂(k)eT̂ |Φ0〉 = ∆EkR̂(k)eT̂ |Φ0〉 , (4)

where ∆Ek is the energy difference with respect to the Fermi vacuum expectation value |Φ0〉. Sub-
tracting the CC equations for the ground state from eq. (4), we obtain the well-known EOM equations
for the R̂ amplitudes,

[ĤN , R̂] |Ψ0〉 = ωR̂ |Ψ0〉 , (5)

where ω = ∆E−∆E0 is the change in energy associated with the, for instance, excitation or (single,
double, etc.) ionization process with respect to the CC ground state. The total electronic energies
of the targeted (ionized, etc.) states are then deduced from the total energy of the CC reference
function E0 and the excitation (or ionization, etc.) energy, Ek = E0 + ω. Since R̂ and T̂ commute,
eq. (5) can be simplified as

e−T̂ ĤNe
T̂ R̂(k) |Φ0〉 = ωR̂(k) |Φ0〉
ĤN R̂(k) |Φ0〉 = ωR̂(k) |Φ0〉 , (6)

where we introduced the similarity transformed Hamiltonian of CC theory in its normal-product form
ĤN = e−T̂ ĤNe

T̂ . The excitation, ionization, etc. energies are thus the eigenvalues of a non-Hermitian
matrix, which can be iteratively diagonalized using, for instance, non-Hermitian extensions of the
Davidson algorithm to determine the lowest-lying states.
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The Sz = −1
2 IP-EOM manifold

The diagonalization of the matrix representation of the similarity-transformed Hamiltonian ĤN of
the Sz = −1

2
IP-EOM model can be performed in a specific configurational subspace spanned by the

Slater determinants |Φi〉 ,
∣∣Φ a

ij

〉
,
∣∣∣Φ ā

ij̄

〉
containing N − 1 electrons,

〈Φi| ĤN |Φk〉 〈Φi| ĤN

∣∣Φ b
kl

〉
〈Φi| ĤN

∣∣∣Φ b̄
kl̄

〉
〈
Φ a

ij

∣∣ ĤN |Φk〉
〈
Φ a

ij

∣∣ ĤN

∣∣Φ b
kl

〉 〈
Φ a

ij

∣∣ ĤN

∣∣∣Φ b̄
kl̄

〉〈
Φ ā

ij̄

∣∣∣ ĤN |Φk〉
〈

Φ ā
ij̄

∣∣∣ ĤN

∣∣Φ b
kl

〉 〈
Φ ā

ij̄

∣∣∣ ĤN

∣∣∣Φ b̄
kl̄

〉
 . (7)

The R̂Sz=− 1
2 excitation operator generates a projection manifold that contains, for example, the

following open-shell configurations

IP

|Φi〉
∣∣Φ a

ij

〉 ∣∣∣Φ ā
ij̄

〉

The Sz = −3
2 IP-EOM manifold

The diagonalization of the matrix representation of the similarity-transformed Hamiltonian ĤN of
the Sz = −3

2
IP-EOM model can be performed in a specific configurational subspace spanned by the

Slater determinants
∣∣Φ ā

ij

〉
containing N − 1 electrons,[〈

Φ ā
ij

∣∣ ĤN |Φ c̄
lm〉
]
. (8)

The R̂Sz=− 3
2 excitation operator generates a projection manifold that contains, for example, the

following open-shell configurations

IP

∣∣Φ ā
ij

〉
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The Sz = −1 DIP-EOM manifold

The diagonalization of the matrix representation of the similarity-transformed Hamiltonian ĤN of
the Sz = −1 DIP-EOM model can be performed in a specific configurational subspace spanned by
the Slater determinants spanned by |Φij〉 ,

∣∣Φ a
ijk

〉
,
∣∣∣Φ ā

ijk̄

〉
for N − 2 electrons,

 〈Φij| ĤN |Φlm〉 〈Φij| ĤN |Φ c
lmn〉 〈Φij| ĤN |Φ c̄

lmn̄〉〈
Φ a

ijk

∣∣ ĤN |Φlm〉
〈
Φ a

ijk

∣∣ ĤN |Φ c
lmn〉

〈
Φ a

ijk

∣∣ ĤN |Φ c̄
lmn̄〉〈

Φ ā

ijk̄

∣∣∣ ĤN |Φlm〉
〈

Φ ā

ijk̄

∣∣∣ ĤN |Φ c
lmn〉

〈
Φ ā

ijk̄

∣∣∣ ĤN |Φ c̄
lmn̄〉

 . (9)

The R̂Sz=−1 excitation operator generates a projection manifold that contains, for example, the
following open-shell configurations

DIP

|Φij〉
∣∣Φ a

ijk

〉 ∣∣∣Φ ā

ijk̄

〉

The Sz = −2 DIP-EOM manifold

The diagonalization of the matrix representation of the similarity-transformed Hamiltonian ĤN of
the Sz = −2 DIP-EOM model can be performed in a specific configurational subspace spanned by
the Slater determinants

∣∣Φ ā
ijk

〉
containing N − 2 electrons,[〈

Φ ā
ijk

∣∣ ĤN |Φ c̄
lmn〉

]
. (10)

The R̂Sz=−2 excitation operator generates a projection manifold that contains, for example, the
following open-shell configurations

DIP

∣∣Φ ā
ijk

〉
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The Sz = 0 DIP-EOM manifold

The diagonalization of the matrix representation of the similarity-transformed Hamiltonian ĤN of
the Sz = 0 DIP-EOM model can be performed in a specific configurational subspace spanned by the
Slater determinants spanned by

∣∣Φij̄

〉
,
∣∣∣Φ a

ij̄k

〉
,
∣∣∣Φ ā

ij̄k̄

〉
for N − 2 electrons,

〈
Φij̄

∣∣ ĤN |Φlm̄〉
〈
Φij̄

∣∣ ĤN |Φ c
lm̄n〉

〈
Φij̄

∣∣ ĤN |Φ c̄
lm̄n̄〉〈

Φ a
ij̄k

∣∣∣ ĤN |Φlm̄〉
〈

Φ a
ij̄k

∣∣∣ ĤN |Φ c
lm̄n〉

〈
Φ a

ij̄k

∣∣∣ ĤN |Φ c̄
lm̄n̄〉〈

Φ ā

ij̄k̄

∣∣∣ ĤN |Φlm̄〉
〈

Φ ā

ij̄k̄

∣∣∣ ĤN |Φ c
lm̄n〉

〈
Φ ā

ij̄k̄

∣∣∣ ĤN |Φ c̄
lm̄n̄〉

 . (11)

The R̂Sz=0 excitation operator generates a projection manifold that contains, for example, the
following open-shell configurations

DIP

∣∣Φij̄

〉 ∣∣∣Φ a
ij̄k

〉 ∣∣∣Φ ā

ij̄k̄

〉

Note that only the Sz value is constrained in each IP-EOM model. Thus, R̂Sz=0 can be used to de-
scribe singlet and triplet states, R̂Sz=− 1

2 doublet and quartet states, R̂Sz=−1 triplet and quintet states.
By construction, R̂Sz=− 3

2 and R̂Sz=−2 can only describe quartet and quintet states, respectively.

S2 Computational Details
All pCCD, IP-EOM-pCCD, and DIP-EOM-pCCD calculations were performed in a developer version
of the PyBEST software package.1–3 For a direct comparison to reference data, we used Dunning’s
cc-pVTZ4 (CH2, NH

+
2 , SiH2, PH

+
2 , benzyne isomers), cc-pVQZ5 (CH2), and aug-cc-pVDZ6 (N-

N’-dimethylpiperazine; DMP+) basis sets for all atoms. Furthermore, a frozen core was applied in
all pCCD and (D)IP-EOM calculations, where only the valence electrons were considered in the
correlation calculations. In all pCCD calculations, the orbitals were allowed to relax freely within
C1 point group symmetry.

For all open-shell molecules, we performed variational orbital-optimized pCCD calculations for
closed-shell species that were obtained by adding one (two) electron(s) to the molecules in question.
Specifically for DMP+, we optimized pCCD for the corresponding closed-shell uncharged species
DMP. For all singlet-triplet gaps, the pCCD reference wave function was obtained by adding two
electrons in orbital-optimized pCCD calculations.

For CH2, we estimated the complete basis set (CBS) limit values for the adiabatic energy dif-
ferences of the four energetically lowest-lying states for Sz = 0,−1. For that purpose, we applied a
two-point procedure, where the asymptotic value of the total electronic energies in the CBS limit is
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extrapolated using the following fitting function

ECBS = EX + aX−3. (12)

In the above equation, X is the cardinal number of the atomic basis set (X = 3 for the cc-pVTZ
basis, X = 4 for the cc-pVQZ basis, etc.), EX is the corresponding total energy of a specific state,
and a is some fitting parameter. In this work, we approximated the CBS limit for X = 3, 4.

The molecular geometries were taken from refs. 7,8 (CH2), 8,9 (NH +
2 ), 8,10 (SiH2), 8,11 (PH +

2 ),
8 (o-, m-, and p-benzyne), and 12–14 (DMP+).

S3 PES of DMP+
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Figure S1: PESs for (a) IP-EOM-pCCD/aug-cc-pVDZ (bottom) and CCSD(T)/aug-cc-pVDZ12,13

(top) and (b) IP-EOM-pCCD/aug-cc-pVDZ (bottom) and MRCI+Q(11,12)/cc-pVDZ12,13 (top)
scanned for different dihedral angels D1 and D2 as indicated in (c). For all surfaces, the structures
fom refs. 12–14 are used. (c) The relaxed structures of the delocalized (DMP-D+) and localized
(DMP-L+) state of DMP+ including both dihedral angles.

S4 Methylene and its isovalent series

S4.1 The electronic structure of CH2, NH +
2 , SiH2, and PH2

The ground state of CH2 and NH +
2 is a triplet state 3B1 with a dominant electronic configuration

(1a1)2(2a1)2(1b2)2(1b1)(3a1). The lowest-lying excited state is a closed-shell singlet state 1A1 with
two main electronic configurations, (1a1)2(2a1)2(1b2)2(3a1)2 and (1a1)2(2a1)2(1b2)2(1b1)2. The second
lowest-lying excited state is an open-shell singlet state 1B1, whose electronic structure features a sim-
ilar leading electronic configuration as the triplet ground state, namely (1a1)2(2a1)2(1b2)2(1b1)(3a1).
Similar to the first 1A1 state, the third excited state is a closed-shell singlet, whose leading electronic
configuration is characterized as (1a1)2(2a1)2(1b2)2(1b1)2 followed by the (1a1)2(2a1)2(1b2)2(3a1)2 con-
figuration. Thus, the electronic structures of the four lowest-lying states differ in their occupation
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of the two valence molecular orbitals 1b1 and 3a1, respectively. While the former (1b1) represents an
sp2-hybridized orbital, the former (3a1) is derived from a p-orbital of the heavy atom center.

In contrast to the CH2 and NH +
2 molecules, the isovalent SiH2 and PH2 species have a closed-shell

singlet ground state 1A1, where the valence part of the electronic configuration has two main electronic
configurations, (4a1)2(2b2)2(5a1)2 followed by (4a1)2(2b2)2(2b1)2. The first excited state is an open-
shell triplet state 3B1, whose dominant electronic configuration features a singly-occupied 5a1 and 2b1

orbital, that is, (4a1)2(2b2)2(5a1)(2b1). Similar to CH2 and NH +
2 , the next excited state is an open-

shell singlet 1B1 state, followed by a closed-shell singlet state 1A1. The 1B1 excited state has a similar
dominant electronic configuration as the lowest-lying triplet state, where the 5a1 and 2b1 valence
orbitals are singly occupied. In the fourth excited state (1A1), the main electronic configurations
have doubly-occupied 2b1 or 5a1 orbitals, which results in (4a1)2(2b2)2(2b1)2 and (4a1)2(2b2)2(5a1)2.

S4.2 CBS results for methylene

Table S1 collects the extrapolated excitation energies to the basis set limit for the CH2 molecule.
DIP-EOM-pCCD underestimates the lowest-lying singlet-triplet gap by approximately 0.2 eV, while
the energy difference between the 3B1 and 1B1 states decreases to 1.547 eV and differs by about 0.12
eV from the experimental reference value. Again, the performance of DIP-EOM-pCCD is comparable,
albeit slightly better than the more expensive DIP-EOM-CCSD approach.

Table S1: Extrapolated total energies (Eh) for the ground state of CH2 and extrapolated excita-
tion energies (eV) for the three lowest-lying excited states obtained by different electronic structure
methods.
CH2

3B1
1A1

1B1 21A1

DIP-EOM-pCCD −39.03537 0.205 1.547 2.598
DIP-EOM-CCSD22 – 0.178 – –
DEA-EOM-CCSD22 – 0.388 – –
CCSD(T)22 – 0.399 – –
Experiment23 0.390 1.425
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S5 Total and relative energies for benzyne isomers
The ground state of the benzyne isomers is a closed-shell singlet, while the lowest-lying excited state
is a triplet state. With increasing diradical character, this singlet-triplet gap reduces in the sequence
ortho→meta→para.

Table S2: Total energies [Eh] for the ground state and the adiabatic excitation energy [eV] to the
lowest-lying triplet state of ortho-, meta, and para-benzyne.

o-benzyne m-benzyne p-benzyne
1A1

3B2
1A1

3B2
1Ag

3B1u

DIP-EOM-pCCD −229.85076 1.398 −229.83641 0.856 −229.81474 0.221
DIP-EOM-CCSD22 – 1.847 – 0.854 – 0.191
DEA-EOM-CCSD22 – 1.565 – 0.794 – 0.147
SF-CIS8 −229.49504 1.007 −229.47187 0.166 −229.46472 0.014
SF-CIS(D)8 −230.45684 1.548 −230.38757 0.842 −230.41234 0.092
SF-OD8 −230.50269 1.632 −230.47817 0.837 −230.45743 0.171
CCSD22 – 1.327 – 0.455 – −0.833
CCSD(T)22 – 1.604 – 0.958 – 0.156
Experiment24 1.628±0.013 0.911±0.014 0.165±0.016
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