Supplementary information for:

2,2'-Bipyridine-α,α'-trifluoromethyl-diol ligand: synthesis and application in the asymmetric Et₂Zn alkylation of aldehydes

Samuel Lauzon and Thierry Ollevier^{*}

Département de chimie, Université Laval, 1045 avenue de la Médecine Québec, QC, G1V 0A6, Canada

E-mail: thierry.ollevier@chm.ulaval.ca

Table of contents

General information S-3
Preparation of 1-(6-bromopyridin-2-yl)-2,2,2-trifluoroethan-1-one (8) and 1-(6-bromopyridin-2-yl)-2,2,2-trifluoroethane-1,1-diol (8')S-4
Asymmetric reduction of α -CF $_3$ ketone 8 : Optimization studiesS-5
Preparation of racemic 1-(6-bromopyridin-2-yl)-2,2,2-trifluoroethan-1-ol (9) S-6
Preparation of 1-(6-bromopyridin-2-yl)-2,2,2-trifluoroethyl (2S)-2-(4-isobutylphenyl)propanoate diastereoisomers (11 and 12) S-7
Preparation of enantioenriched 1-(6-bromopyridin-2-yl)-2,2,2-trifluoroethan-1-ol (9) S-9
Preparation of 1,1'-([2,2'-bipyridine]-6,6'-diyl)bis(2,2,2-trifluoroethan-1-ol) (1)
Preparation of [2,2'-bipyridine]-6,6'-diylbis(2,2,2-trifluoroethane-1,1-diyl) dibenzoate (14) S-11
General procedure for the asymmetric ethylation reaction of benzaldehyde catalyzed by Zn ^{II} complexes: Optimization studies
General procedure for the asymmetric ethylation reaction of aldehydes catalyzed by Zn ^{II} complexes: Synthesis of alcohols (16a–v)
Asymmetric ethylation reaction of benzaldehyde catalyzed by Zn ^{II} complexes: Control experiments
General procedure for the synthesis of racemates (16a-v)S-28
Procedure for the resolution of 2-(4-isobutylphenyl)propanoic acid (10) S-28
Preparation of (+)-(S)-ethyl 2-(4-isobutylphenyl)propanoate (18)

Crystallization procedure for (R)-9	. S-31
Crystallization procedure for (<i>R</i> , <i>R</i>)- 1	. S-31
Crystallization procedure for $[(R,R)-1\cdot Zn\cdot 2H_2O]^{2+}\cdot 2OTf^{-}$. S-31
References	. S-32
¹ H, ¹³ C{H}, and ¹⁹ F NMR spectra	. S-33
HPLC chromatograms	. S-69
Crystallographic data	. S-98

General information

All solvents were commercially available and they were distilled from CaH_2 (CH₂Cl₂) or Na/benzophenone (Et₂O, PhMe) prior to use. N,N-Dimethylformamide (DMF) was dried from P_2O_5 and distilled under reduced pressure (90 °C, 30 mmHg) prior to use. Triethylamine (Et₃N) was distilled from CaH₂ prior to use. Ibuprofen rac-10 was purchased from The Upjohn Company[®]. (–)-(S)- α -Methylbenzylamine **13** (98% *ee*) and diethylzinc solution (1.0 M in hexane) were purchased from Sigma-Aldrich[®]. Aldehydes **15a–v** were purchased from commercial suppliers (Sigma-Aldrich®, Alfa Aesar®, and TCI®) and they were distilled under reduced pressure prior to use. Other reagents were purchased directly from commercial suppliers (Sigma-Aldrich®, Alfa Aesar®, VWR®, TCI®, Strem®, and Acros®) and they were used without further purifications, unless otherwise noted. Thin-layer chromatography (TLC) was carried out on commercial silica gel plates (Silicycle F254, 250 or 1000 μ m) and compounds were visualized using UV light absorbance (254 nm) and/or aqueous KMnO₄. Flash column chromatography was performed on silica gel (Silicycle, 230–400 mesh) or Biotage[®] Isolera[™] One automated chromatography system using a normal phase cartridge (Biotage[®]SNAP Ultra 25g packed with Biotage[®]HP-Sphere[™] 25 μm). ¹H, ¹³C{H}, and ¹⁹F NMR spectra were recorded on an Agilent Technologies DD2 500 MHz spectrometers in CDCl₃. For ¹H NMR, chemical shifts were reported in ppm downfield from tetramethylsilane (TMS) served as internal standard (δ = 0 ppm). Coupling constant are measured in hertz (Hz). For ¹³C{H} NMR, CDCl₃ was used as internal standard (δ = 77.23 ppm) and spectra were obtained with complete proton decoupling. For ¹⁹F NMR, no external standard was used. High-resolution mass spectra (HRMS) were recorded on an LC/MS-TOF (time of flight) Agilent 6210 mass spectrometer using electrospray ionization (ESI) or atmospheric pressure photoionization (APPI). IR spectra were recorded on an ABB MB3000 FT-IR spectrometer with ABB MIRacle[™] Diamond ATR accessory and they were reported in reciprocal centimeters (cm^{-1}) . Melting point (mp) are uncorrected and they were recorded on a MEL-TEMP[®] capillary melting point apparatus. Enantiomeric ratios were determined on an Agilent 1100 Series HPLC system (hexane/iPrOH solvent mixture) using Daicel ChiralCel® OJ-H and Daicel ChiralPak® AD-H columns. Optical rotations were measured on a Jasco DIP-360 digital polarimeter using a sodium lamp at ambient temperature.

Preparation of 1-(6-bromopyridin-2-yl)-2,2,2-trifluoroethan-1-one (8) and 1-(6-bromopyridin-2-yl)-2,2,2-trifluoroethane-1,1-diol (8'):

To a vacuum flame-dried 500 mL flask under argon, 2,6-dibromopyridine (7.11 g, 30.0 mmol, 1.0 equiv) was added to Et₂O (120 mL). The mixture was cooled to -78 °C before nbutyllithium (14.4 mL, 36.0 mmol, 1.2 equiv; 2.5 M in hexane) was added dropwise. The brown-yellow solution was stirred at -78 °C for 1 h. Ethyl 2,2,2-trifluoroacetate (3.9 mL, 33.0 mmol, 1.1 equiv) was added dropwise and the mixture was stirred at -78 °C for 2 h. The reaction was warmed to 22 °C and an aqueous solution of saturated NH₄Cl (15 mL) was added. The aqueous layer was extracted with Et₂O (3 x 75 mL) and dried over MgSO₄. The drying agent was removed by filtration and the filtrate was concentrated in vacuo (bath temperature 30 °C). Noteworthily, a minimal amount of aqueous solutions should be use during the workup to prevent the loss of $\mathbf{8}'$. The crude product was purified by silica gel column chromatography using a gradient elution of hexane/EtOAc = 95:5–80:20 to give an 8:92 mixture of compounds 8 and 8' as a light yellow solid (6.68 g, 24.7 mmol, 82% yield). mp = 68–70 °C. R_f = 0.32 (hexane/EtOAc = 80:20). ¹H NMR (500 MHz, CDCl₃): δ_H 8.13 (dd, J = 4.8, 3.7 Hz, 0.08H, 8), 7.81 (m, 0.08H, 8), 7.80 (m, 0.08H, 8), 7.78 - 7.73 (m, 1.84H, 8'), 7.64 (dd, J = 6.9, 1.9 Hz, 0.92H, **8'**), 4.95 (s, 1.84H, **8'**) ppm. ${}^{13}C{H}$ NMR (126 MHz, CDCl₃): δ_C 179.5 (q, J = 35.3 Hz, 8), 154.1, 148.8, 142.0, 140.3, 140.1, 139.3, 133.8, 129.8, 124.0 (m, 8), 122.4 (q, J = 287.5 Hz, 8'), 121.3 (q, J = 1.8 Hz, 8'), 116.3 (q, J = 290.9 Hz, 8), 91.8 (q, J = 33.5 Hz, **8'**) ppm. ¹⁹F NMR (470 MHz, CDCl₃): δ_F –72.2 (s, 0.24F, **8**), –84.2 (s, 2.78F, **8'**) ppm. IR (Diamond): 3342, 1738, 1562, 1412, 1196, 1126, 1059, 953, 808, 716 cm⁻¹. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₇H₄BrF₃NO 253.9423; Found 253.9429. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₇H₆BrF₃NO₂ 271.9529; Found 271.9534.

S-4

Asymmetric reduction of α -CF₃ ketone 8: Optimization studies

Scheme S1 Asymmetric hydroboration of $\mathbf{8} - (-)$ -Ipc₂BCl. Conditions: $\mathbf{8}$ (0.500 mmol), (-)-Ipc₂BCl (0.600 mmol), THF (0.5 mL), 22 °C, 24 h.

Table S1 Asymmetric transfer hydrogenation – RuCl(p-cymene)[(S,S)-TsDPEN]^a

	F ₃ C-	Br [(S N H O Se 8	5,S)- Ru^{II}] (x ICO ₂ H (4.3 c Et ₃ N (2.5 ec olvent, T (°C	mol %) equiv) quiv) ;), t (h)	F ₃ C ^{···} OH (S)-9		$\begin{array}{c} CI - Ru \\ H_2N & NTs \\ Ph & Ph \\ [(S,S)-RuII] \end{array}$
Entry	solvent	x (mol %)	т (°С)	t (h)	Conv. ^b (%)	Yield (%)	ee ^c (%)
1	neat	1	22	1	78	68	34
2	neat	1	-20	48	NR	_	_
3	CH_2CI_2	2	-20	24	20	14	44
4	PhMe	2	-20	68	32	27	46
5	Et ₂ O	2	-20	68	32	21	40
6	THF	2	-20	68	34	23	62
7	MeCN	2	-20	68	71	58	26
8	DMF	10	-20	48	100	91	42
9	THF	10	-20	21	89	74	64
10	THF	10	-78	94	5	4	92
11 ^{<i>d</i>}	THF	15	-30	336	87	76	60

^{*a*} Conditions: **8** (0.500 mmol), [Ru(*S*,*S*)-Ts-DPEN(*p*-cymene)]Cl (0.0500–0.750 mmol), HCO₂H (2.15 mmol), Et₃N (1.25 mmol), solvent (0.5 mL). ^{*b*} Conversion determined by ¹⁹F NMR. ^{*c*} Determined by chiral HPLC (OJ–H column). ^{*d*} Using **8** (5.00 mmol), HCO₂H (43.0 mmol), and Et₃N (25.0 mmol).

	$F_3C - N - Br$ O B	(<i>S</i> , <i>S</i> , <i>S</i>)- P=O (5 n BH ₃ ·Me ₂ S (1.2 c THF, T (°C), t	$ \begin{array}{c} \text{nol \%} \\ \text{equiv} \\ \text{(h)} \\ \hline \\ F_3C \\ \hline \\ OH \\ (R)-9 \end{array} $	—Br	$\begin{array}{c} Ph \\ OH \\ OH \\ HO \\ Ph \\ Ph \\ (S,S,S)-P=0 \end{array}$
Entry	T (°C)	t (h)	Conv. ^{<i>b</i>} (%)	Yield (%)	ee ^c (%)
1	70	1	53	44	10
2	22	3	43	33	14
3 ^d	22	19	41	31	16

Table S2 Asymmetric transfer hydrogenation – tris((S)-prolinol)P=O/BH₃·Me₂S^a

^{*a*} Conditions: **8** (0.500 mmol), tris((*S*)-prolinol)phosphine oxide (0.0250 mmol), BH₃·Me₂S (0.600 mmol; 2.0 M in THF), THF (2.0 mL). ^{*b*} Conversion determined by ¹⁹F NMR. ^{*c*} Determined by chiral HPLC (OJ–H column). ^{*d*} **8** was treated with BF₃·Et₂O (0.500 mmol) at 22 °C for 1 h (pre-complexation) and the corresponding adduct was used as the substrate. **Preparation of racemic 1-(6-bromopyridin-2-yl)-2,2,2-trifluoroethan-1-ol (9):**

To a 500 mL flask, the mixture of compounds **8** and **8'** (6.63 g, 24.5 mmol, 1.0 equiv; **8/8'** = 8:92) was added to MeOH (250 mL). The mixture was cooled to 0 °C before sodium borohydride (1.85 g, 49.0 mmol, 2.0 equiv) was added in one portion. The reaction was stirred at 0 °C for 10 min, and it was further stirred at 22 °C for 30 min. Then, an aqueous solution of saturated NH₄Cl (35 mL) was slowly added to quench the reaction. The aqueous layer was extracted with Et₂O (3 x 75 mL). The combined organic layers were washed with brine (50 mL) and dried over MgSO₄. The drying agent was removed by filtration and the filtrate was concentrated *in vacuo* (bath temperature 30 °C). The crude product was purified by silica gel column chromatography using a gradient elution of hexane/EtOAc = 90:10–80:20 to give compound **9** as a white solid (6.17 g, 24.1 mmol, 98% yield). mp = 68–70 °C. *R*_f = 0.25 (hexane/EtOAc = 90:10). ¹H NMR (500 MHz, CDCl₃): δ_{H} 7.67 (dd, *J* = 7.7, 7.7 Hz, 1H),

7.58 (m, 1H), 7.41 (m, 1H), 5.03 (p, J = 6.6 Hz, 1H), 4.77 (d, J = 7.6 Hz, 1H) ppm. ¹³C{H} NMR (126 MHz, CDCl₃): δ_{C} 152.8 (q, J = 1.8 Hz), 141.2, 139.5, 129.1, 123.7 (q, J = 283.2 Hz), 121.5 (q, J = 1.8 Hz), 70.8 (q, J = 32.1 Hz) ppm. ¹⁹F NMR (470 MHz, CDCl₃) δ_{F} –77.9 (d, J = 6.6 Hz, 3F) ppm. IR (Diamond): 3157, 2926, 2876, 1560, 1416, 1252, 1126, 997, 791, 681 cm⁻¹. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₇H₆BrF₃NO 255.9579; Found 255.9578.

Preparation of 1-(6-bromopyridin-2-yl)-2,2,2-trifluoroethyl (2S)-2-(4-

isobutylphenyl)propanoate diastereoisomers (11 and 12):

To a vacuum flame-dried 250 mL flask under argon, *rac*-**9** (6.14 g, 24.0 mmol, 1.0 equiv), (*S*)-**10** (4.95 g, 24.0 mmol, 1.0 equiv, 93% *ee*), 4-*N*,*N*-dimethylaminopyridine (293 mg, 2.40 mmol, 0.10 equiv), and *N*,*N*'-dicyclohexylcarbodiimide (5.94 g, 28.8 mmol, 1.2 equiv) were subsequently added to CH_2Cl_2 (120 mL) and the reaction was stirred at 22 °C for 24 h. The mixture was filtered through a plug of silica, washed with CH_2Cl_2 (3 x 50 mL), and the filtrate was concentrated *in vacuo* (bath temperature 35 °C). The crude product was purified by silica gel column chromatography using a gradient elution of hexane/EtOAc = 100:0–95:5.

(+)-(*R*)-1-(6-Bromopyridin-2-yl)-2,2,2-trifluoroethyl (*S*)-2-(4-isobutylphenyl)propanoate (11):

Product was obtained as a light yellow oil (4.35 g, 9.79 mmol, 41% yield, 92% *ee*). The following characterization was performed using (*S*,*S*)-**11** in 98% *ee*: R_f = 0.70 (hexane/EtOAc = 90:10). The *ee* was determined by HPLC [Daicel ChiralCel[®] OJ–H, hexane/*i*PrOH = 98:2, flow rate = 0.5 mL/min, λ = 220 nm]: $t_R(S,R)$ = 12.8 min, $t_R(R,S)$ = 18.0 min; racemate: $t_R(S,R)$ = 12.9 min, $t_R(R,S)$ = 18.6 min. [α]_D²² =

+105.1 (*c* = 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃): δ_H 7.43 (m, 1H), 7.31 (dd, *J* = 7.9, 7.9 Hz,

1H), 7.17 (dt, J = 8.1, 2.0 Hz, 2H), 7.10 (dt, J = 8.1, 2.0 Hz, 2H), 6.78 (m, 1H), 6.17 (q, J = 6.6 Hz, 1H), 3.90 (q, J = 7.2 Hz, 1H), 2.47 (d, J = 7.2 Hz, 2H), 1.86 (m, 1H), 1.55 (d, J = 7.2 Hz, 3H), 0.91 (d, J = 6.6 Hz, 6H) ppm. ¹³C{H} NMR (126 MHz, CDCl₃): $\delta_{\rm C}$ 171.9, 152.2 (m), 141.5, 141.1, 138.9, 136.5, 129.5, 128.9, 127.4, 122.6 (q, J = 281.3 Hz), 120.5, 72.4 (q, J = 32.7 Hz), 45.0, 44.7, 30.2, 22.3, 22.3, 17.8 ppm. ¹⁹F NMR (470 MHz, CDCl₃) $\delta_{\rm F}$ –74.98 (d, J = 6.6 Hz, 3F) ppm. IR (Diamond): 2955, 2935, 2870, 1755, 1437, 1186, 1138, 1072, 791, 685 cm⁻¹. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₀H₂₂BrF₃NO₂ 444.0781; Found 444.0778.

(+)-(*S*)-1-(6-Bromopyridin-2-yl)-2,2,2-trifluoroethyl (*S*)-2-(4-isobutylphenyl)propanoate (12):

Product was obtained as a light yellow oil (4.49 g, 10.1 mmol, 42% yield, 91% *ee*). The following characterization was performed using (*S*,*S*)-**12** in 98% *ee*: R_f = 0.57 (hexane/EtOAc = 90:10). The *ee* was determined by HPLC [Daicel ChiralCel® OJ–H, hexane/*i*PrOH = 98:2, flow rate = 0.5 mL/min, λ = 220 nm]: $t_R(S,S)$ = 18.1 min, $t_R(R,R)$ = 19.6 min; racemate: $t_R(S,S)$ = 18.2 min, $t_R(R,R)$ = 19.6 min. [α]_D²² =

+9.6 (*c* = 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃): $\delta_{\rm H}$ 7.54 (dd, *J* = 7.9, 7.9 Hz, 1H), 7.51 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.27 (m, 1H), 7.24 (dt, *J* = 8.1, 2.0 Hz, 2H), 7.13 (dt, *J* = 8.1, 2.0 Hz, 2H), 6.16 (q, *J* = 6.6 Hz, 1H), 3.89 (q, *J* = 7.2 Hz, 1H), 2.47 (d, *J* = 7.2 Hz, 2H), 1.86 (m, 1H), 1.58 (d, *J* = 7.2 Hz, 3H), 0.90 (d, *J* = 6.6 Hz, 6H) ppm. ¹³C{H} NMR (126 MHz, CDCl₃): $\delta_{\rm C}$ 172.2, 152.2 (m), 141.7, 141.1, 139.2, 136.2, 129.5, 129.1, 127.3, 122.6 (q, *J* = 281.5 Hz), 121.2, 72.4 (q, *J* = 32.8 Hz), 45.0, 44.9, 30.2, 22.3, 22.3, 17.9 ppm. ¹⁹F NMR (470 MHz, CDCl₃) $\delta_{\rm F}$ –75.04 (d, *J* = 6.6 Hz, 3F) ppm. IR (Diamond): 2955, 2934, 2870, 1755, 1437, 1186, 1138, 1072, 793, 685 cm⁻¹. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₀H₂₂BrF₃NO₂ 444.0781; Found 444.0774.

The resolution of *rac*-**9** was also investigated using enantiopure (*S*)-mandelic acid *O*-acetate¹ and (*S*)-mandelic acid *O*-*tert*-butyldimethylsilyl ether² but they both led to inseparable diastereoisomers by silica gel column chromatography.

Preparation of enantioenriched 1-(6-bromopyridin-2-yl)-2,2,2-trifluoroethan-1-ol (9):

To a 250 mL flask, (*R*,*S*)-**11** (4.35 g, 9.79 mmol, 1.0 equiv, 92% *ee*) or (*S*,*S*)-**12** (4.49 g, 10.1 mmol, 1.0 equiv, 91% *ee*) was added to MeOH (100 mL). Anhydrous potassium carbonate (1.2 equiv) was added in one portion and the reaction was stirred at 22 °C for 2 h. Distilled water (40 mL) was added to quench the reaction, the mixture was concentrated *in vacuo* (bath temperature 45 °C), and the residue was extracted with EtOAc (3 x 50 mL). The combined organic layers were washed with brine (1 x 20 mL) and dried over MgSO₄. The drying agent was removed by filtration and the filtrate was concentrated *in vacuo* (bath temperature 40 °C). The crude product was purified by silica gel column chromatography using a gradient elution of hexane/EtOAc = 95:5–80:20. Characterization of (*R*)-**9** and (*S*)-**9**: *see the section for the preparation of rac-9.*

(+)-(R)-1-(6-Bromopyridin-2-yl)-2,2,2-trifluoroethan-1-ol (9):

Product was obtained as a white solid (2.43 g, 9.49 mmol, 97% yield, 92% *ee*). Recrystallization from hot hexane (63.0 mL, 70 °C) afforded the enantiomerically enriched compound (R)-**9** as white crystals (1.81 g, 7.07

mmol, 72% yield, 96% *ee*). The following characterization was performed using (*R*)-**9** in >99.5% *ee*: The *ee* was determined by HPLC [Daicel ChiralCel® OJ–H, hexane/*i*PrOH = 95:5, flow rate = 0.5 mL/min, λ = 254 nm]: $t_R(R)$ = 38.8 min; racemate: $t_R(S)$ = 30.3 min, $t_R(R)$ = 38.8 min. [α]_D²² = +3.9 (*c* = 1.0, CHCl₃). The absolute configuration of **9** was determined as being *R* from single crystal X-ray analysis (CCDC 2098867).

(-)-(S)-1-(6-Bromopyridin-2-yl)-2,2,2-trifluoroethan-1-ol (9):

Product was obtained as a white solid (2.53 g, 9.88 mmol, 98% yield, 91% *ee*). Recrystallization from hot hexane (66.0 mL, 70 °C) afforded the enantiomerically enriched compound (*S*)-**9** as white crystals (1.98 g, 7.73

mmol, 77% yield, >99.5% *ee*). The *ee* was determined by HPLC [Daicel ChiralCel[®] OJ–H, hexane/*i*PrOH = 95:5, flow rate = 0.5 mL/min, λ = 254 nm]: $t_{R}(S)$ = 30.4 min; racemate: $t_{R}(S)$ = 30.3 min, $t_{R}(R)$ = 38.8 min. [α]_D²² = -4.1 (*c* = 1.0, CHCl₃); [α]_D²² = +8.0 (*c* = 1.0, EtOH).

Preparation of 1,1'-([2,2'-bipyridine]-6,6'-diyl)bis(2,2,2-trifluoroethan-1-ol) (1):

To a vacuum flame-dried 250 mL flask under argon, freshly distilled DMF (8.0 mL per mmol of **9**) was added, and the solvent was degassed five times according to the *freeze-pump*thaw cycling method. NiCl₂·6H₂O (1.2 equiv) was added and the mixture was stirred at 70 °C. Triphenylphosphine (4.8 equiv) and zinc powder (1.3 equiv) were subsequently added and the reaction was stirred at 70 °C for 1 h. (R)-9 (1.79 g, 7.00 mmol, 1.0 equiv, 96% ee) or (S)-9 (1.92 g, 7.50 mmol, 1.0 equiv, >99.5% ee) was added at 70 °C and the reaction was stirred for an additional 2 h. The mixture was cooled to 22 °C before an aqueous ammonia solution (13.5 mL per mmol of 9; 5 wt%) was added to quench the reaction. The brown precipitate was extracted EtOAc (3 x 100 mL). The combined organic layers were washed with brine (1 x 100 mL) and dried over MgSO₄. The drying agent was removed by filtration and the filtrate was concentrated in vacuo (bath temperature 40 °C). The crude product was purified by silica gel column chromatography using a gradient elution of hexane/EtOAc = 90:10–70:30. A non-negligible quantity of 1 was lost during the purification due to the presence of highly polarized CF₃ groups, which initiate aggregation and precipitation of the material on silica gel. Also, persistent organics contaminants, *i.e.* triphenylphosphine and DMF, were removed by recrystallization. Characterization of (R,R)-1 or (S,S)-1: mp = 182-184 °C. R_f = 0.41 (hexane/EtOAc = 70:30). ¹H NMR (500 MHz, CDCl₃): δ_H 8.50 (m, 2H), 8.01 (dd, J = 7.8, 7.8 Hz, 2H), 7.53 (m, 2H), 5.36 (d, J = 7.2 Hz, 2H), 5.15 (p, J = 6.7 Hz, 2H) ppm. ¹³C{H} NMR (126 MHz, CDCl₃): δ_{C} 153.7, 150.9 (m), 138.6, 124.0 (q, J = 283.2 Hz), 123.3 (m), 121.9, 70.8 (q, J = 31.8 Hz) ppm. ¹⁹F NMR (470 MHz, CDCl₃) δ_{F} –77.9 (d, J = 6.6 Hz, 6F) ppm. IR (Diamond): 3373, 2934, 1574, 1448, 1356, 1261, 1124, 1078, 797, 694 cm⁻¹. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₄H₁₁F₆N₂O₂ 353.0719; Found 353.0719. Stereoselectivities were determined based on the *ee* and *de* obtained on the corresponding dibenzoate **14** (*see the procedure described below*).

(-)-(1*R*,1'*R*)-1,1'-([2,2'-Bipyridine]-6,6'-diyl)bis(2,2,2-trifluoroethan-1-ol) (1):

Product was obtained as a white solid (862 mg, 2.45 mmol, 70% yield). Recrystallization from hot hexane/EtOAc = 90:10 (85 mL, 77 °C) afforded the diastereo- and enantiomerically enriched

compound (*R*,*R*)-**1** as white crystals (513 mg, 1.46 mmol, 42% yield, 97% *de*, >99.5% *ee*). $[\alpha]_D^{22} = -8.3$ (*c* = 1.7, EtOH). (CCDC 2098890)

(+)-(1*S*,1'*S*)-1,1'-([2,2'-Bipyridine]-6,6'-diyl)bis(2,2,2-trifluoroethan-1-ol) (1):

Product was obtained as a white solid (1.03 g, 2.92 mmol, 78% yield). Recrystallization from hot hexane/EtOAc = 90:10 (100 mL, 77 °C) afforded the diastereo- and enantiomerically enriched

compound (*S*,*S*)-**1** as white crystals (680 mg, 1.93 mmol, 51% yield, >99.5% *de*, >99.5% *ee*). [α]_D²² = +8.8 (*c* = 1.7, EtOH).

Preparation of [2,2'-bipyridine]-6,6'-diylbis(2,2,2-trifluoroethane-1,1-diyl) dibenzoate (14):

Following the procedure described for the preparation of esters (R,S)-**11** and (S,S)-**12**: (R,R)-**1** or (S,S)-**1** (35.2 mg, 0.100 mmol, 1.0 equiv), benzoic acid (29.3 mg, 0.240 mmol, 2.4 equiv), DCC (49.5 mg, 0.240 mmol, 2.4 equiv), DMAP (3.1 mg, 0.0250 mmol, 0.25 equiv), CH_2Cl_2 (1.0 mL), 22 °C, 3 h. After the filtration through a plug of silica, the crude product was sufficiently pure to be injected into the HPLC instrument without a prior purification. Characterization of (*R*,*R*)-**14** or (*S*,*S*)-**14**: *R*_f = 0.55 (hexane/EtOAc = 90:10). ¹H NMR (500 MHz, CDCl₃): $\delta_{\rm H}$ 8.56 (m, 2H), 8.19 – 8.17 (m, 4H), 7.90 (dd, *J* = 7.8, 7.8 Hz, 2H), 7.66 (m, 2H), 7.61 (m, 2H), 7.54 – 7.51 (m, 4H), 6.59 (q, *J* = 6.7 Hz, 2H) ppm. ¹³C{H} NMR (126 MHz, CDCl₃): $\delta_{\rm C}$ 164.4, 155.2, 150.7 (m), 138.0, 134.0, 130.1, 128.7, 128.6, 123.2 (q, *J* = 281.3 Hz), 122.4, 122.0, 73.5 (q, *J* = 32.4 Hz) ppm. ¹⁹F NMR (470 MHz, CDCl₃) $\delta_{\rm F}$ –74.7 (d, *J* = 6.8 Hz, 6F) ppm. IR (Diamond): 2978, 2934, 1736, 1441, 1244, 1178, 1134, 1090, 800, 706 cm⁻¹. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₈H₁₉F₆N₂O₄ 561.1244; Found 561.1246.

(+)-(1R,1'R)-[2,2'-Bipyridine]-6,6'-diylbis(2,2,2-trifluoroethane-1,1-diyl) dibenzoate (14):

Product was obtained as a colorless sticky oil (53.1 mg, 0.0947 mmol, 95% yield, 97% *de*, >99.5% *ee*). *ee* and *de* were determined by HPLC [Daicel ChiralPak® AD–H, hexane/*i*PrOH = 80:20, flow rate = 1.0 mL/min, λ = 254 nm]: $t_R(R,R)$ = 7.5 min, $t_R(meso)$ = 16.7 min; racemate: $t_R(R,R)$ = 7.5 min, $t_R(meso)$ = 16.4

min, $t_{R}(S,S) = 36.4$ min. $[\alpha]_{D}^{22} = +201.7$ (c = 1.0, CHCl₃).

(-)-(1*S*,1'*S*)-[2,2'-Bipyridine]-6,6'-diylbis(2,2,2-trifluoroethane-1,1-diyl) dibenzoate (14):

Product was obtained as a colorless sticky oil (51.5 mg, 0.0919 mmol, 92% yield, >99.5% *de*, >99.5% *ee*). *ee* and *de* were determined by HPLC [Daicel ChiralPak® AD–H, hexane/*i*PrOH = 80:20, flow rate = 1.0 mL/min, λ = 254 nm]: $t_{\rm R}(meso)$ = 16.5 min, $t_{\rm R}(S,S)$ = 35.8 min; racemate: $t_{\rm R}(R,R)$ = 7.5 min, $t_{\rm R}(meso)$ = 16.4

min, $t_{\rm R}(S,S) = 36.4$ min. $[\alpha]_{\rm D}^{22} = -202.6$ (c = 1.0, CHCl₃).

General procedure for the asymmetric ethylation reaction of benzaldehyde catalyzed by Zn^{II} complexes: Optimization studies

To a vacuum flame-dried test tube under argon atmosphere, (*R*,*R*)-1 (4.4 mg, 0.0125 mmol, 0.050 equiv) and benzaldehyde **15a** (25 μ L, 0.250 mmol, 1.0 equiv) were added to the desired solvent and the mixture was stirred at the specified temperature for 10 min. A diethylzinc solution (0.5 mL, 0.500 mmol, 2.0 equiv; 1.0 M in hexane) was added dropwise and the reaction was stirred at -78–22 °C for 5–120 h. An aqueous solution of HCl (2 mL; 1.0 M) was added to quench the reaction and the aqueous layer was extracted with Et₂O (3 x 5 mL) The combined organic layers were washed with brine (2 mL) and dried over MgSO₄. The drying agent was removed by filtration, and the filtrate was concentrated *in vacuo* (bath temperature 30 °C). The crude reaction product was purified by a normal phase column chromatography (Biotage®SNAP Ultra 25g/Biotage®HP-SphereTM 25 μ m) using a gradient elution of hexane/EtOAc = 98:2–90:10 to give alcohol (*S*)-**16a**.

	O H + Et ₂ Zn (2.0 equiv	$F_{3}C = (5 \text{ mol } \%)$ $OH H$ solvent/hexa 0 °C, t (h)	$ \begin{array}{c} \hline (R,R)-1 \\ \hline (CF_3) \\ HO \\ ne \\ \hline (S)-16a \end{array} $	
Entry	solvent/hexane	t (h)	Yield (%)	ee ^b (%)
1	MeCN (1:1)	72	16	67
2	THF (1:1)	72	10	17
3	CH ₂ Cl ₂ (1:1)	48	59	85
4	Et ₂ O (1:1)	40	88	94
5	hexane	21	85	85
6	PhCl (1:1)	17	84	93
7	PhMe (1:1)	17	88	94

Table S3 Screening of solvents^a

^{*a*} Conditions: (*R*,*R*)-**1** (0.0125 mmol), **15a** (0.250 mmol), Et₂Zn (0.500 mmol), solvent (0.5 mL), 0 °C. ^{*b*} Determined by chiral HPLC (OJ–H column).

Table S4 Screening of temperatures^a

	H 15a	+ Et_2Zn (5 mc) (2.0 equiv) $F_3C - (5 mc)$ (5.0 mc) (5	$(R,R)-1$ $(R,R)-1$ (F_3)	i Et Sa
Entry	T (°C)	t (h)	Yield (%)	ee ^b (%)
1	22	5	89	89
2	0	17	88	94
3	-25	48	99	95
4	-78	96	<5	70

^{*a*} Conditions: (*R*,*R*)-**1** (0.0125 mmol), **15a** (0.250 mmol), Et₂Zn (0.500 mmol), PhMe (0.5 mL).

^b Determined by chiral HPLC (OJ–H column).

Table S5 Screening of concentrations and toluene proportions in hexane^a

	0 15a	+ Et ₂ 2 H (2.0 ec	F₃C∙ Zn quiv)	N N (5 mol %) OH HO PhMe/hexane (x:y) 0 °C, t (h)	OH Et (S)-16a	
Entry	[15 a] (M)	X	у	t (h)	Yield (%)	ee ^b (%)
1	0.250	1	1	17	88	94
2	0.250	1	3	21	90	92
3	0.375	1	3	17	83	92
4	0.050	1	1	120	69	93
5	0.050	2	1	120	55	92
6	0.050	4	1	120	38	90

^{*a*} Conditions: (*R*,*R*)-**1** (0.0125 mmol), **15a** (0.250 mmol), Et₂Zn (0.500 mmol), PhMe (0.17–4.0 mL) and hexane (0.00–2.0 mL), 0 °C. ^{*b*} Determined by chiral HPLC (OJ–H column).

General procedure for the asymmetric ethylation reaction of aldehydes catalyzed by Zn^{II} complexes: Synthesis of alcohols (16a–v)

To a vacuum flame-dried test tube under argon atmosphere, (S,S)-1 (8.8 mg, 0.0250 mmol, 0.050 equiv) and aldehyde 15a-v (0.500 mmol, 1.0 equiv) were added to PhMe (1.0 mL) and the mixture was stirred at 0 °C for 10 min. To the resulting homogeneous solution, a diethylzinc solution (1.0 mL, 1.00 mmol, 2.0 equiv; 1.0 M in hexane) was added dropwise at 0 °C and the reaction was stirred at 0 °C for their respective reaction time. An aqueous solution of HCl (10 mL; 1.0 M) was added to quench the reaction and the aqueous layer was extracted with Et_2O (3 x 20 mL) The combined organic layers were washed with brine (10 mL) and dried over MgSO₄. The drying agent was removed by filtration, and the filtrate was concentrated in vacuo (bath temperature 30 °C). The crude reaction product was purified by a normal phase column chromatography (Biotage[®]SNAP Ultra 25g/Biotage[®]HP-Sphere[™] $25 \,\mu\text{m}$) using a gradient elution of hexane/EtOAc = 98:2-90:10 to give alcohols **16a-q**, **16t**, and 16u. For alcohols 16r and 16s, the reaction was also quenched with HCl (5 mL; 1.0 M), but the aqueous layer was basified with aqueous saturated NaHCO₃ (10 mL) before it was extracted with EtOAc (3 x 20 mL). Also, the crude reaction product was purified using a gradient elution of hexane/EtOAc = 80:20–30:70. Absolute configurations were assigned by comparison of the optical rotation of a previous assignment, except for optically active **16c**, **16g**, and **16n** (unknown absolute configurations).

(+)-(*R*)-1-Phenylpropan-1-ol (16a):³

Product was obtained as a colorless oil (63.4 mg, 0.466 mmol, 93% yield, 95% *ee*). Reaction time = 17 h. R_f = 0.23 (hexane/EtOAc = 90:10). The *ee* was determined by HPLC [Daicel ChiralCel[®] OJ–H, hexane/*i*PrOH

= 98:2, flow rate = 0.8 mL/min, λ = 220 nm]: $t_R(S)$ = 22.6 min, $t_R(R)$ = 24.1 min; racemate: $t_R(S)$ = 22.4 min, $t_R(R)$ = 24.3 min. $[\alpha]_D^{22}$ = +48.0 (c = 0.90, CHCl₃) (lit.⁴ $[\alpha]_D^{26}$ = +40.3 (c = 1.21, CHCl₃), 96% *ee* of (R)-**16a**). ¹H NMR (500 MHz, CDCl₃): δ_H 7.38 – 7.35 (m, 4H), 7.29 (m, 1H),

S-15

4.62 (dd, J = 6.6, 6.6 Hz, 1H), 1.89 – 1.81 (m, 2H), 1.77 (m, 1H), 0.94 (dd, J = 7.4, 7.4 Hz, 3H) ppm. ¹³C{H} NMR (126 MHz, CDCl₃): δ_{C} 144.6, 128.4, 127.5, 126.0, 76.0, 31.9, 10.2 ppm. IR (Diamond): 3352, 2964, 2876, 1452, 1331, 1202, 1095, 1013, 972, 698 cm⁻¹.

(+)-(*R*)-1-(4-Methoxyphenyl)propan-1-ol (16b):³

Product was obtained as a colorless oil (77.4 mg, 0.466 mmol, 93% yield, 93% *ee*). Reaction time = 24 h. R_f = 0.17 (hexane/EtOAc = 90:10). The *ee* was determined by HPLC [Daicel ChiralPak® AD–H, hexane/*i*PrOH = 98:2, flow rate = 0.8 mL/min, λ = 220 nm]: $t_R(R)$ = 28.0 min, $t_R(S)$ = 31.5 min; racemate: $t_R(R)$ = 28.3 min, $t_R(S)$ = 31.8 min. $[\alpha]_D^{22}$ = +39.5 (*c* = 1.00, CHCl₃) (lit.⁴ $[\alpha]_D^{26}$ = +38.9 (*c* = 1.23, CHCl₃), 96% *ee* of (*R*)-**16b**). ¹H NMR (500 MHz, CDCl₃): δ_H 7.28 (d, *J* = 8.6 Hz, 2H), 6.90 (d, *J* = 8.6 Hz, 2H), 4.56 (ddd, *J* = 6.8, 6.8, 2.6 Hz, 1H), 3.82 (s, 3H), 1.83 (m, 1H), 1.79 – 1.69 (m, 2H), 0.91 (dd, *J* = 7.4, 7.4 Hz, 3H) ppm. ¹³C{H} NMR (126 MHz, CDCl₃): δ_C 158.9, 136.9, 127.2, 113.7, 75.6, 55.2, 31.8, 10.2 ppm. IR (Diamond): 3373, 2962, 2835, 1610, 1512, 1464, 1244, 1173, 1036, 827 cm⁻¹.

(+)-1-(4-(*tert*-Butyl)phenyl)propan-1-ol (16c):

Me

Product was obtained as a white solid (91.4 mg, 0.475 mmol, 95% yield, 92% *ee*). Reaction time = 48 h. R_f = 0.30 (hexane/EtOAc = 90:10). mp = 42–44 °C. The *ee* was determined by HPLC [Daicel ChiralPak® AD–

H, hexane/*i*PrOH = 98:2, flow rate = 0.8 mL/min, λ = 220 nm]: t_R (major) = 14.5 min, t_R (minor) = 16.1 min; racemate: t_R (*enant*-A) = 14.7 min, t_R (*enant*-B) = 16.3 min. $[\alpha]_D^{22}$ = +34.5 (*c* = 1.00, CHCl₃). ¹H NMR (500 MHz, CDCl₃): δ_H 7.39 (d, *J* = 8.1 Hz, 2H), 7.29 (d, *J* = 8.1 Hz, 2H), 4.59 (ddd, *J* = 6.6, 6.6, 3.3 Hz, 1H), 1.84 (m, 1H), 1.81 – 1.72 (m, 2H), 1.33 (s, 9H), 0.94 (dd, *J* = 7.4, 7.4 Hz, 3H) ppm. ¹³C{H} NMR (126 MHz, CDCl₃): δ_C 150.4, 141.7, 125.8, 125.3, 75.8, 34.5, 31.7, 31.4, 10.3 ppm. IR (Diamond): 3265, 2962, 2878, 1512, 1462, 1333, 1269, 1111, 1009, 829 cm⁻¹. HRMS (APPI-TOF) m/z: [M+H]⁺[-H₂O] Calcd for C₁₃H₁₉ 175.1481; Found 175.1480. **(+)-(***R***)-1-(***p***-Tolyl)propan-1-ol (16d):³**

Product was obtained as a colorless oil (67.9 mg, 0.452 mmol, 90% yield, 95% *ee*). Reaction time = 17 h. R_f = 0.26 (hexane/EtOAc = 90:10). The *ee* was determined by HPLC [Daicel ChiralPak[®] AD-H,

S-16

hexane/*i*PrOH = 98:2, flow rate = 0.8 mL/min, λ = 220 nm]: $t_R(R)$ = 17.7 min, $t_R(S)$ = 20.3 min; racemate: $t_R(R)$ = 18.1 min, $t_R(S)$ = 20.8 min. $[\alpha]_D^{22}$ = +44.2 (c = 1.00, CHCl₃) (lit.⁵ $[\alpha]_D^{20}$ = +26.3 (c = 1.00, CHCl₃), 94% *ee* of (R)-**16d**). ¹H NMR (500 MHz, CDCl₃): δ_H 7.25 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 4.58 (ddd, J = 6.7, 6.7, 3.2 Hz, 1H), 2.36 (s, 3H), 1.83 (m, 1H), 1.79 – 1.71 (m, 2H), 0.92 (dd, J = 7.4, 7.4 Hz, 3H) ppm. ¹³C{H} NMR (126 MHz, CDCl₃): δ_C 141.7, 137.1, 129.1, 126.0, 75.8, 31.8, 21.1, 10.2 ppm. IR (Diamond): 3356, 2962, 2876, 1514, 1454, 1200, 1095, 1040, 972, 814 cm⁻¹.

(+)-(*R*)-1-(Naphthalen-2-yl)propan-1-ol (16e):³

Product was obtained as a white solid (92.5 mg, 0.497 mmol, 99% yield, 86% *ee*). Reaction time = 41 h. R_f = 0.18 (hexane/EtOAc = 90:10). mp = 36–38 °C (lit.⁶ mp = 37–38 °C). The *ee* was determined by HPLC

[Daicel ChiralPak® AD–H, hexane/*i*PrOH = 98:2, flow rate = 0.8 mL/min, λ = 220 nm]: $t_R(R)$ = 34.8 min, $t_R(S)$ = 37.0 min; racemate: $t_R(R)$ = 34.3 min, $t_R(S)$ = 36.2 min. $[\alpha]_D^{22}$ = +36.0 (c = 1.00, CHCl₃) (lit.⁵ $[\alpha]_D^{20}$ = +32.8 (c = 1.00, CHCl₃), 95% *ee* of (R)-**16e**). ¹H NMR (500 MHz, CDCl₃): δ_H 7.86 – 7.84 (m, 3H), 7.80 (m, 1H), 7.51 – 7.46 (m, 3H), 4.80 (ddd, J = 6.6, 6.6, 3.3 Hz, 1H), 1.97 – 1.90 (m, 2H), 1.86 (m, 1H), 0.96 (dd, J = 7.4, 7.4 Hz, 3H) ppm. ¹³C{H} NMR (126 MHz, CDCl₃): δ_C 142.0, 133.3, 133.01, 128.2, 128.0, 127.7, 126.1, 125.8, 124.8, 124.3, 76.1, 31.8, 10.2 ppm. IR (Diamond): 3254, 2928, 2864, 1454, 1331, 1128, 1018, 891, 825, 743 cm⁻¹.

(+)-(R)-1-(4-Chlorophenyl)propan-1-ol (16f):³

Product was obtained as a colorless oil (83.3 mg, 0.488 mmol, 98% yield, 93% *ee*). Reaction time = 17 h. R_f = 0.22 (hexane/EtOAc = 90:10). The *ee* was determined by HPLC [Daicel ChiralPak® AD–H, hexane/*i*PrOH = 98:2, flow rate = 0.8 mL/min, λ = 220 nm]: $t_R(R)$ = 19.8 min, $t_R(S)$ = 20.8 min; racemate: $t_R(R)$ = 19.7 min, $t_R(S)$ = 20.7 min. $[\alpha]_D^{22}$ = +38.3 (*c* = 1.00, CHCl₃) (lit.⁴ $[\alpha]_D^{26}$ = +30.6 (*c* = 2.08, CHCl₃), 96% *ee* of (*R*)-**16f**). ¹H NMR (500 MHz, CDCl₃): δ_H 7.33 (d, *J* = 8.5 Hz, 2H), 7.29 (d, *J* = 8.5 Hz, 2H), 4.60 (ddd, *J* = 6.6, 6.6, 3.4 Hz, 1H), 1.84 (m, 1H), 1.82 – 1.69 (m, 2H), 0.92 (dd, *J* = 7.4, 7.4 Hz, 3H) ppm. ¹³C{H} NMR (126 MHz, CDCl₃): δ_C 143.0, 133.0, 128.5, 127.4, 75.2, 31.9, 10.0 ppm. IR (Diamond): 3354, 2966, 2878, 1597, 1491, 1410, 1323, 1090, 1013, 822 cm⁻¹.

(+)-1-(4-(Trifluoromethoxy)phenyl)propan-1-ol (16g):

Product was obtained as a colorless oil (101.7 mg, 0.462 mmol, 92% yield, 95% *ee*). Reaction time = 17 h. R_f = 0.24 (hexane/EtOAc = 90:10). The *ee* was determined by HPLC [Daicel ChiralPak® AD–H, hexane/iPrOH = 99:1, flow rate = 0.5 mL/min, λ = 220 nm]: t_R (major) = 40.8 min, t_R (minor) = 42.0 min; racemate: t_R (*enant*-A) = 39.6 min, t_R (*enant*-B) = 40.8 min. [α]_D²² = +29.2 (*c* = 1.00, CHCl₃) ¹H NMR (500 MHz, CDCl₃): δ_H 7.38 (d, *J* = 8.3 Hz, 2H), 7.20 (d, *J* = 8.3 Hz, 2H), 4.64 (ddd, *J* = 6.3, 6.3, 3.1 Hz, 1H), 1.88 – 1.79 (m, 2H), 1.75 (m, 1H), 0.93 (dd, *J* = 7.4, 7.4 Hz, 3H) ppm. ¹³C{H} NMR (126 MHz, CDCl₃): δ_C 148.4 (q, *J* = 1.8 Hz), 143.2, 127.32, 120.8, 120.5 (q, *J* = 256.8 Hz), 75.16, 31.94, 9.91 ppm. ¹⁹F NMR (470 MHz, CDCl₃) δ_F –57.9 (s, 3F) ppm. IR (Diamond): 3340, 2970, 2881, 1510, 1254, 1211, 1155, 1018, 976, 851 cm⁻¹. HRMS (APPI-TOF) m/z: [M+H]⁺[-H₂O] Calcd for C₁₀H₁₀F₃O 203.0678; Found 203.0686.

(+)-(R)-1-(4-(Trifluoromethyl)phenyl)propan-1-ol (16h):³

Product was obtained as a colorless oil (99.6 mg, 0.488 mmol, 98% yield, 90% *ee*). Reaction time = 17 h. R_f = 0.24 (hexane/EtOAc = 90:10). The *ee* was determined by HPLC [Daicel ChiralPak® AD–H, hexane/iPrOH = 98:2, flow rate = 0.8 mL/min, λ = 220 nm]: $t_R(R)$ = 15.7 min, $t_R(S)$ = 16.5 min; racemate: $t_R(R)$ = 15.7 min, $t_R(S)$ = 16.5 min. $[\alpha]_D^{22}$ = +29.4 (*c* = 1.00, CHCl₃) (lit.⁷ $[\alpha]_D^{25}$ = +15.8 (*c* = 1.30, CHCl₃), 72% *ee* of (*R*)-**16h**). ¹H NMR (500 MHz, CDCl₃): δ_H 7.62 (d, *J* = 8.3 Hz, 2H), 7.47 (d, *J* = 8.3 Hz, 2H), 4.70 (ddd, *J* = 6.4, 6.4, 2.0 Hz, 1H), 1.92 (m, 1H), 1.87 – 1.73 (m, 2H), 0.94 (dd, *J* = 7.4, 7.4 Hz, 3H) ppm. ¹³C{H} NMR (126 MHz, CDCl₃): δ_C 148.5 (m), 129.6 (q, *J* = 32.3 Hz), 126.2, 125.3 (q, *J* = 3.8 Hz), 124.2 (q, *J* = 271.6 Hz), 75.2, 31.9, 9.8 ppm. ¹⁹F NMR (470 MHz, CDCl₃) δ_F –62.5 (s, 3F) ppm. IR (Diamond): 3352, 2972, 2881, 1418, 1323, 1163, 1117, 1067, 1016, 845 cm⁻¹.

(+)-(R)-4-(1-Hydroxypropyl)benzonitrile (16i):⁸

Product was obtained as a colorless oil (79.0 mg, 0.490 mmol, 98% OH yield, 91% ee). Reaction time = 17 h. R_f = 0.09 (hexane/EtOAc = 90:10). Et

The ee was determined by HPLC [Daicel ChiralPak[®] AD-H, hexane/*i*PrOH = 98:2, flow rate = 0.8 mL/min, λ = 220 nm]: $t_R(R)$ = 47.0 min, $t_R(S)$ = 50.8 min; racemate: $t_{\rm R}(R) = 48.7 \text{ min}, t_{\rm R}(S) = 52.1 \text{ min}, [\alpha]_{\rm D}^{22} = +36.1 (c = 1.00, {\rm CHCl}_3) (lit.⁵ [\alpha]_{\rm D}^{20} =$ +28.8 (c = 1.00, CHCl₃), 94% ee of (R)-16i). ¹H NMR (500 MHz, CDCl₃): δ_{H} 7.65 (d, J = 8.3 Hz, 2H), 7.47 (d, J = 8.3 Hz, 2H), 4.70 (ddd, J = 6.4, 6.4, 3.8 Hz, 1H), 1.95 (m, 1H), 1.83 – 1.73 (m, 2H), 0.94 (dd, J = 7.4, 7.4 Hz, 3H) ppm. ¹³C{H} NMR (126 MHz, CDCl₃): $\delta_{\rm C}$ 150.3, 132.1, 126.7, 118.9, 110.7, 74.8, 32.0, 9.8 ppm. IR (Diamond): 3425, 2966, 2878, 2228, 1609, 1408, 1202, 1097, 978, 829 cm⁻¹.

(+)-(R)-1-(2-Methoxyphenyl)propan-1-ol (16j):9

OMe OH

NC

Product was obtained as a colorless oil (78.0 mg, 0.469 mmol, 94% yield, 89% *ee*). Reaction time = 17 h. R_f = 0.27 (hexane/EtOAc = 90:10).

The ee was determined by HPLC [Daicel ChiralPak[®] AD-H, hexane/*i*PrOH = 98:2, flow rate = 0.8 mL/min, λ = 220 nm]: $t_R(S)$ = 25.1 min, $t_R(R)$ = 26.1 min; racemate: $t_{\rm R}(S) = 25.4 \text{ min}, t_{\rm R}(R) = 26.5 \text{ min}. [\alpha]_{\rm D}^{22} = +18.7 (c = 1.00, {\rm CHCl}_3) (lit.⁴ [\alpha]_{\rm D}^{26} =$ +23.7 (*c* = 1.40, CHCl₃), 95% *ee* of (*R*)-**16j**). ¹H NMR (500 MHz, CDCl₃): δ_H 7.31 (dd, *J* = 7.5, 1.7 Hz, 1H), 7.25 (m, 1H), 6.97 (ddd, J = 7.5, 7.5, 1.1 Hz, 1H), 6.90 (dd, J = 8.2, 0.8 Hz, 1H), 4.79 (dd, J = 6.4, 6.4 Hz, 1H), 3.86 (s, 3H), 2.55 (m, 1H), 1.86 – 1.80 (m, 2H), 0.97 (dd, J = 7.4, 7.4 Hz, 3H) ppm. ¹³C{H} NMR (126 MHz, CDCl₃): δ_C 156.6, 132.5, 128.2, 127.1, 120.7, 110.5, 72.2, 55.2, 30.2, 10.5 ppm. IR (Diamond): 3391, 2964, 2837, 1601, 1489, 1464, 1234, 1028, 972, 750 cm^{-1} .

(-)-(S)-1-(o-Tolyl)propan-1-ol (16k):³

Me OH Product was obtained as a colorless oil (64.9 mg, 0.432 mmol, 86% yield, 86% *ee*). Reaction time = 168 h. R_f = 0.30 (hexane/EtOAc = 90:10).

The ee was determined by HPLC [Daicel ChiralPak® AD-H, hexane/*i*PrOH = 98:2, flow rate = 0.8 mL/min, λ = 220 nm]: $t_R(R)$ = 15.4 min, $t_R(S)$ = 17.6 min; racemate: $t_{\rm R}(R) = 14.9$ min, $t_{\rm R}(S) = 17.0$ min. $[\alpha]_{\rm D}^{22} = -52.0$ (c = 1.00, CHCl₃) (lit.⁵ $[\alpha]_{\rm D}^{20} =$

S-19

+36.3 (*c* = 28.6, CHCl₃), 96% *ee* of (*R*)-**16k**). ¹H NMR (500 MHz, CDCl₃): 7.48 (dd, *J* = 7.7, 1.2 Hz, 1H), 7.24 (m, 1H), 7.18 (ddd, *J* = 7.4, 7.4, 1.5 Hz, 2H), 7.15 (m, 1H), 4.89 (dd, *J* = 6.4, 6.4 Hz, 1H), 2.36 (s, 3H), 1.81 – 1.75 (m, 2H), 1.72 (m, 1H), 1.00 (dd, *J* = 7.4, 7.4 Hz, 3H) ppm. ¹³C{H} NMR (126 MHz, CDCl₃): δ_c 142.8, 134.6, 130.3, 127.1, 126.2, 125.3, 72.0, 30.9, 19.1, 10.4 ppm. IR (Diamond): 3342, 2962, 2876, 1460, 1379, 1265, 1090, 1053, 972, 748 cm⁻¹.

(-)-(S)-1-(Naphthalen-1-yl)propan-1-ol (16l):³

Product was obtained as a colorless oil (70.2 mg, 0.377 mmol, 75% yield, 77% *ee*). Reaction time = 48 h. R_f = 0.27 (hexane/EtOAc = 90:10).

The *ee* was determined by HPLC [Daicel ChiralPak[®] AD–H, hexane/*i*PrOH = 98:2, flow rate = 0.8 mL/min, λ = 220 nm]: $t_R(S)$ = 27.8 min, $t_R(R)$ = 30.9 min; racemate: $t_R(S)$ = 28.3 min, $t_R(R)$ = 31.5 min. [α]_D²² = -50.9 (*c* = 1.00, CHCl₃) (lit.⁴ [α]_D²⁶ = +60.3 (*c* = 1.11, CHCl₃), 97% *ee* of (*R*)-**16l**). ¹H NMR (500 MHz, CDCl₃): δ_H 8.14 (m, 1H), 7.89 (m, 1H), 7.80 (m, 1H), 7.66 (m, 1H), 7.55 – 7.48 (m, 3H), 5.43 (m, 1H), 2.05 (m, 1H), 1.99 – 1.91 (m, 2H), 1.05 (dd, *J* = 7.4, 7.4 Hz, 3H) ppm. ¹³C{H} NMR (126 MHz, CDCl₃): δ_C 140.3, 133.9, 130.6, 128.9, 127.9, 125.9, 125.5, 125.5, 123.3, 123.0, 72.5, 31.1, 10.6 ppm. IR (Diamond): 3356, 2966, 2874, 1510, 1394, 1229, 1167, 1094, 966, 775 cm⁻¹.

(+)-(R)-1-(2-(Trifluoromethyl)phenyl)propan-1-ol (16m):¹⁰

Product was obtained as a colorless oil (22.6 mg, 0.111 mmol, 22% yield, 24% *ee*). Reaction time = 72 h. R_f = 0.28 (hexane/EtOAc = 90:10). The *ee* was determined by HPLC [Daicel ChiralCel® OJ–H, hexane/*i*PrOH

= 98:2, flow rate = 0.8 mL/min, λ = 220 nm]: $t_R(S)$ = 10.0 min, $t_R(R)$ = 11.5 min; racemate: $t_R(S)$ = 10.1 min, $t_R(R)$ = 11.5 min. [α]_D²² = +9.5 (*c* = 0.27, CHCl₃) (lit.¹¹ [α]_D²⁵ = -31.0 (*c* = 2.48, MeOH), 89% *ee* of **16m**). ¹H NMR (500 MHz, CDCl₃): δ_H 7.77 (m, 1H), 7.63 (m 1H), 7.60 (m, 1H), 7.38 (m, 1H), 5.05 (dd, *J* = 6.3, 6.3 Hz, 1H), 1.93 (m, 1H), 1.81 – 1.76 (m, 2H), 1.01 (dd, *J* = 7.4, 7.4 Hz, 3H) ppm. ¹³C{H} NMR (126 MHz, CDCl₃): δ_C 143.9 (m), 132.2, 127.5, 127.4, 127.0 (q, *J* = 30.5 Hz), 125.4 (q, *J* = 5.8 Hz), 124.4 (q, *J* = 273.9 Hz), 70.9 (m), 32.1, 10.5 ppm. ¹⁹F NMR (470 MHz, CDCl₃) δ_F –58.0 (s, 3F) ppm. IR (Diamond): 3387, 2970, 2880, 1454, 1310, 1159, 1115, 1034, 974, 768 cm⁻¹. The absolute configuration of **16m** was assigned as being *R* by comparison of the retention times observed on a ChiralCel[®] OJ–H column with the chromatogram obtained from a ChiralPak[®] OJ–H column of a previous assignment.¹⁰

(-)-1-(2,6-Dichlorophenyl)propan-1-ol (16n):

Product was obtained as a white solid (96.4 mg, 0.470 mmol, 94% yield, 74% *ee*). Reaction time = 72 h. R_f = 0.38 (hexane/EtOAc = 90:10). mp = 38–40 °C. The *ee* was determined by HPLC [Daicel ChiralPak® AD–

H, hexane/*i*PrOH = 98:2, flow rate = 0.8 mL/min, λ = 220 nm]: $t_R(minor)$ = 13.9 min, $t_R(major)$ = 15.3 min; racemate: $t_R(enant-A)$ = 13.7 min, $t_R(enant-B)$ = 15.1 min. $[\alpha]_D^{22}$ = -13.1 (*c* = 1.00, CHCl₃) (lit.⁷ $[\alpha]_D^{25}$ = -16.4 (*c* = 1.82, CHCl₃), 87% *ee* of **16n**). ¹H NMR (500 MHz, CDCl₃): δ_H 7.30 (d, *J* = 8.0 Hz, 2H), 7.14 (dd, *J* = 8.4, 8.4 Hz, 1H), 5.35 (ddd, *J* = 10.4, 8.3, 6.7 Hz, 1H), 2.83 (d, *J* = 10.4 Hz, 1H), 2.10 (ddq, *J* = 13.8, 8.4, 7.4 Hz, 1H), 1.98 (m, 1H), 1.01 (dd, *J* = 7.5, 7.5 Hz, 3H) ppm. ¹³C{H} NMR (126 MHz, CDCl₃): δ_C 137.9, 134.3, 129.3, 128.7, 73.5, 28.6, 10.5 ppm. IR (Diamond): 3254, 2986, 2881, 1560, 1435, 1340, 1200, 1084, 1022, 773 cm⁻¹. HRMS (APPI-TOF) m/z: [M+H]⁺[-H₂O] Calcd for C₉H₉Cl₂ 187.0076; Found 187.0072.

(+)-(R)-1-(3,5-Bis(trifluoromethyl)phenyl)propan-1-ol (160):¹²

Product was obtained as a white solid (130.9 mg, 0.481 mmol, 96% yield, 76% *ee*). Reaction time = 17 h. R_f = 0.30 (hexane/EtOAc = 90:10). mp = 72–74 °C. The *ee* was determined by HPLC [Daicel ChiralPak[®] AD–H, hexane/*i*PrOH = 99:1, flow rate = 0.5 mL/min, λ = 220 nm]: $t_R(R)$ =

19.3 min, $t_R(S) = 20.3$ min; racemate: $t_R(R) = 18.9$ min, $t_R(S) = 20.1$ min. $[\alpha]_D^{22} = +17.4$ (c = 1.00, CHCl₃) (lit.¹³ $[\alpha]_D^{25} = +21.02$ (c = 1.0, CHCl₃), 80% *ee* of (R)-**160**). ¹H NMR (500 MHz, CDCl₃): δ_H 7.83 (m, 2H), 7.80 (m, 1H), 4.79 (ddd, J = 6.4, 6.4, 3.6 Hz, 1H), 2.02 (d, J = 3.6 Hz, 1H), 1.85 – 1.79 (m, 2H), 0.98 (dd, J = 7.4 Hz, 7.4 Hz, 3H) ppm. ¹³C{H} NMR (126 MHz, CDCl₃): δ_C 147.0, 131.6 (q, J = 33.3 Hz), 126.0 (m), 123.3 (q, J = 272.5 Hz), 121.3 (hept, J = 3.8 Hz), 74.6, 32.1, 9.6 ppm. ¹⁹F NMR (470 MHz, CDCl₃) δ_F –62.8 (s, 6F) ppm. IR (Diamond): 3277, 2982, 2885, 1466, 1383, 1275, 1161, 1113, 899, 681 cm⁻¹.

(+)-(R)-1-(Furan-2-yl)propan-1-ol (16p):³

Product was obtained as a yellow oil (44.0 mg, 0.349 mmol, 70% yield, 78% *ee*). Reaction time = 17 h. R_f = 0.25 (hexane/EtOAc = 90:10). The *ee* was determined by HPLC [Daicel ChiralCel[®] OJ–H, hexane/*i*PrOH =

98:2, flow rate = 0.8 mL/min, λ = 220 nm]: $t_R(S)$ = 19.3 min, $t_R(R)$ = 20.2 min; racemate: $t_R(S)$ = 20.3 min, $t_R(R)$ = 21.5 min. [α]_D²² = +14.7 (c = 1.00, CHCl₃) (lit.¹⁴ [α]_D²⁶ = +25.9 (c = 2.10, CHCl₃), 90% *ee* of (R)-**16p**). ¹H NMR (500 MHz, CDCl₃): δ_H 7.39 (m, 1H), 6.34 (dd, J = 3.2, 1.8 Hz, 1H), 6.25 (dd, J = 3.2, 0.7 Hz, 1H), 4.62 (ddd, J = 6.6, 6.6, 6.6 Hz, 1H), 1.96 – 1.83 (m, 3H), 0.97 (dd, J = 7.4, 7.4 Hz, 3H) ppm. ¹³C{H} NMR (126 MHz, CDCl₃): δ_C 156.7, 141.9, 110.1, 105.9, 69.2, 28.6, 9.9 ppm. IR (Diamond): 3360, 2966, 2878, 1504, 1464, 1149, 1007, 980, 879, 733 cm⁻¹.

(+)-(R)-1-(Thiophen-2-yl)propan-1-ol (16q):15

OHEt Product was obtained as a colorless oil (67.3 mg, 0.473 mmol, 95% yield, 92% *ee*). Reaction time = 41 h. R_f = 0.28 (Hexane/EtOAc = 90:10). The *ee* was determined by HPLC [Daicel ChiralCel[®] OJ–H, hexane/*i*PrOH

= 98:2, flow rate = 0.8 mL/min, λ = 220 nm]: $t_R(S)$ = 25.2 min, $t_R(R)$ = 29.2 min; racemate: $t_R(S)$ = 24.6 min, $t_R(R)$ = 29.0 min. $[\alpha]_D^{22}$ = +25.9 (c = 1.00, CHCl₃) (lit.¹⁴ $[\alpha]_D^{28}$ = +26.4 (c = 2.20, CHCl₃), 95% *ee* of (R)-**16q**). ¹H NMR (500 MHz, CDCl₃): δ_H 7.26 (dd, J = 4.6, 1.7 Hz, 1H), 7.00 – 6.97 (m, 2H), 4.87 (ddd, J = 6.3, 6.3, 2.3 Hz, 1H), 1.97 – 1.90 (m, 2H), 1.86 (m, 1H), 0.98 (dd, J = 7.4, 7.4 Hz, 3H) ppm. ¹³C{H} NMR (126 MHz, CDCl₃): δ_C 148.7, 126.6, 124.5, 123.8, 71.7, 32.2, 10.2 ppm. IR (Diamond): 3342, 2964, 2876, 1462, 1377, 1229, 1034, 968, 829, 692 cm⁻¹. HRMS (APPI-TOF) m/z: [M+H]⁺[-H₂O] Calcd for C₇H₉S 125.0419; Found 125.0420.

(+)-(*R*)-1-(Pyridin-2-yl)propan-1-ol (16r):¹⁶

Product was obtained as a colorless oil (34.5 mg, 0.251 mmol, 50% yield, 5% *ee*). Reaction time = 17 h. R_f = 0.32 (Hexane/EtOAc = 50:50). The *ee* was determined by HPLC [Daicel ChiralCel[®] OJ–H, hexane/*i*PrOH

= 98:2, flow rate = 0.8 mL/min, λ = 254 nm]: $t_R(R)$ = 14.5 min, $t_R(S)$ = 15.7 min; racemate: $t_R(R)$ = 14.5 min, $t_R(S)$ = 15.6 min. $[\alpha]_D^{22}$ = +1.8 (c = 0.72, CHCl₃) (lit.¹⁷ $[\alpha]_D^{20}$ = +11.7 (c = 1.1, CHCl₃), >99% *ee* of (*R*)-**16r**). ¹H NMR (500 MHz, CDCl₃): $\delta_{\rm H}$ 8.56 (m, 1H), 7.69 (ddd, *J* = 7.7, 7.7, 1.7 Hz, 1H), 7.26 (m, 1H), 7.21 (m, 1H), 4.71 (dd, *J* = 7.2, 4.8 Hz, 1H), 4.19 (s, 1H), 1.90 (m, 1H), 1.73 (m, 1H), 0.96 (dd, *J* = 7.4, 7.4 Hz, 3H) ppm. ¹³C{H} NMR (126 MHz, CDCl₃): $\delta_{\rm C}$ 162.1, 148.1, 136.6, 122.2, 120.4, 73.9, 31.3, 9.4 ppm. IR (Diamond): 3238, 2964, 2876, 1595, 1435, 1327, 1122, 1047, 982, 758 cm⁻¹.

(+)-(*R*)-1-(Pyridin-4-yl)propan-1-ol (16s):³

Product was obtained as a colorless oil (63.9 mg, 0.466 mmol, 93% yield, 3% *ee*). Reaction time = 17 h. R_f = 0.15 (Hexane/EtOAc = 50:50). The *ee* was determined by HPLC [Daicel ChiralCel[®] OJ–H, hexane/*i*PrOH

= 95:5, flow rate = 0.8 mL/min, λ = 254 nm]: $t_R(R)$ = 22.3 min, $t_R(S)$ = 28.3 min; racemate: $t_R(R)$ = 22.6 min, $t_R(S)$ = 28.8 min. $[\alpha]_D{}^{22}$ = +1.8 (c = 1.00, CHCl₃) (lit.¹⁸ $[\alpha]_D{}^{20}$ = +50.4 (c = 0.5, CHCl₃), 85% *ee* of (R)-**16s**). ¹H NMR (500 MHz, CDCl₃): δ_H 8.57 (m, 2H), 7.28 (m, 2H), 4.66 (dd, J = 6.3, 6.3 Hz, 1H), 1.81 – 1.76 (m, 2H), 1.63 (m, 1H), 0.96 (dd, J = 7.4, 7.4 Hz, 3H) ppm. ¹³C{H} NMR (126 MHz, CDCl₃): δ_C 155.0, 148.8, 121.3, 73.7, 31.7, 9.8 ppm. IR (Diamond): 3194, 2966, 2876, 1605, 1414, 1219, 1065, 982, 816, 731 cm⁻¹.

(+)-(*R*,*E*)-1-Phenylpent-1-en-3-ol (16t):³

Product was obtained as a white semi-solid (69.1 mg, 0.426 mmol, 85% yield, 76% *ee*). Reaction time = 24 h. R_f = 0.17 (Hexane/EtOAc = 90:10). The *ee* was determined by HPLC [Daicel ChiralCel® OJ–H, hexane/*i*PrOH = 98:2, flow rate = 0.8 mL/min, λ = 254 nm]: $t_R(S,E)$ = 28.3 min, $t_R(R,E)$ = 30.8 min; racemate: $t_R(S,E)$ = 28.3 min, $t_R(R,E)$ = 31.4 min. $[\alpha]_D^{22}$ = +5.4 (*c* = 1.00, CHCl₃) (lit.⁴ $[\alpha]_D^{26}$ = +18.4 (*c* = 0.61, CHCl₃), 75% *ee* of (*R*,*E*)-**16t**). ¹H NMR (500 MHz, CDCl₃): δ_H 7.41 – 7.39 (m, 2H), 7.35 – 7.32 (m, 2H), 7.25 (m, 1H), 6.59 (d, *J* = 15.9 Hz, 1H), 6.23 (dd, *J* = 15.9, 6.8 Hz, 1H), 4.23 (ddd, *J* = 6.5, 6.5, 6.5 Hz, 1H), 1.74 – 1.64 (m, 2H), 1.60 (m, 1H), 0.99 (dd, *J* = 7.5, 7.5 Hz, 3H) ppm. ¹³C{H} NMR (126 MHz, CDCl₃): δ_C 136.8, 132.4, 130.4, 128.6, 127.6, 126.5, 74.4, 30.2, 9.8 ppm. IR (Diamond): 3431, 2970, 2876, 1450, 1338, 1126, 1072, 960, 752, 692 cm⁻¹.

(-)-(R)-1-Phenylpentan-3-ol (16u):³

Product was obtained as a colorless oil (42.4 mg, 0.258 mmol, 52% yield, 78% *ee*). Reaction time = 20 h. R_f = 0.22 (Hexane/EtOAc = 90:10). The *ee* was determined by HPLC [Daicel ChiralCel[®] OJ–H, hexane/*i*PrOH

= 98:2, flow rate = 0.5 mL/min, λ = 220 nm]: $t_R(R)$ = 29.7 min, $t_R(S)$ = 30.9 min; racemate: $t_R(R)$ = 28.9 min, $t_R(S)$ = 30.0 min. $[\alpha]_D^{22}$ = -21.0 (c = 1.00, CHCl₃) (lit.¹⁹ $[\alpha]_D^{20}$ = -12.2 (c = 2.45, CHCl₃), 55% *ee* of (R)-**16u**). ¹H NMR (500 MHz, CDCl₃): δ_H 7.31 – 7.28 (m, 2H), 7.23 – 7.19 (m, 3H), 3.58 (m, 1H), 2.82 (m, 1H), 2.69 (m, 1H), 1.85 – 1.70 (m, 2H), 1.61 – 1.43 (m, 2H), 1.34 (d, J = 5.0 Hz, 1H), 0.96 (dd, J = 7.5, 7.5, 3H) ppm. ¹³C{H} NMR (126 MHz, CDCl₃): δ_C 142.3, 128.5, 128.4, 125.8, 72.7, 38.6, 32.1, 30.3, 9.9 ppm. IR (Diamond): 3346, 2928, 2876, 1603, 1454, 1119, 1030, 932, 743, 696 cm⁻¹.

(-)-(R)-Hexan-3-yl benzoate (16v):²⁰

In situ generated (R)-hexan-3-ol was transformed into benzoate **16v** according to the following procedure: After the mixture was stirred at 0 °C for 24 h, CH_2Cl_2 (1.0 mL), Et_3N (139 µL, 1.00 mmol, 2.0 equiv), and

benzoyl chloride (174 μL, 1.50 mmol, 3.0 equiv) were successively added into the test tube and the reaction was stirred at 22 °C for another 17 h. Product was obtained as a colorless oil (74.0 mg, 0.359 mmol, 72% yield, 73% *ee*). $R_f = 0.30$ (hexane/EtOAc = 98:2). The *ee* was determined by HPLC [Daicel ChiralPak® AD–H, hexane/*i*PrOH = 100:0, flow rate = 0.5 mL/min, $\lambda = 220$ nm]: $t_R(R) = 20.9$ min, $t_R(S) = 22.9$ min; racemate: $t_R(R) = 19.1$ min, $t_R(S) =$ 20.4 min. $[\alpha]_D^{22} = -3.5$ (c = 1.00, CHCl₃) (lit.²⁰ $[\alpha]_D^{23} = -4.8$ (c = 1.0, CHCl₃), 89% *ee* of (R)-**16v**). ¹H NMR (500 MHz, CDCl₃): $\delta_H 8.08 - 8.06$ (m, 2H), 7.56 (tt, J = 7.2, 1.2 Hz, 1H), 7.47 – 7.43 (m, 2H), 5.11 (m, 1H), 1.74 – 1.59 (m, 4H), 1.49 – 1.35 (m, 2H), 0.96 (dd, J = 7.4, 7.4 Hz, 3H), 0.94 (dd, J = 7.4, 7.4 Hz, 3H) ppm. ¹³C{H} NMR (126 MHz, CDCl₃): δ_C 166.4, 132.7, 130.9, 129.5, 128.3, 75.9, 35.9, 27.1, 18.7, 14.0, 9.7 ppm. IR (Diamond): 2962, 2876, 1715, 1450, 1269, 1105, 1070, 1026, 932, 708 cm⁻¹.

Asymmetric ethylation reaction of benzaldehyde catalyzed by Zn^{II} complexes:

Control experiments

The use of 2,2'-bipyridine- α , α '-CF₃-diol **1** as ligand was necessary, as confirmed by the following experiment. When (*S*)-**9** was used as the chiral source under the optimized reaction conditions (Scheme S2), the ethylation reaction of **15a** occurred in a prolonged reaction time and both the yield and the enantiomeric excess of (*R*)-**16a** were diminished *vs.* (*S*,*S*)-**1** (93%, 95% *ee* of (*R*)-**16a**).

Scheme S2 Zn^{II}-catalyzed ethylation reaction of aldehyde 15a using (*S*)-9. Conditions: (*S*)-9 (0.0250 mmol), 15a (0.250 mmol), Et₂Zn (0.500 mmol), PhMe (0.5 mL), 0 °C, 120 h.

The preformed catalyst $[(R,R)-1\cdot Zn\cdot 2H_2O]^{2+}\cdot 2OTf^-$ was employed in the ethylation reaction of **15a** (Scheme S3). The catalyst was obtained according to the crystallization procedure (described below) giving a homogeneous solution, which afforded the preformed catalyst as a white solid after evaporation of MeCN. Under the optimized reaction conditions, [(R,R)- $1\cdot Zn\cdot 2H_2O]^{2+}\cdot 2OTf^-$ afforded **16a** in a moderate yield (42%) and no enantioselectivity *vs.* the *in situ* generated (*S,S*)-**1**/Zn^{II} catalyst. The low solubility of the preformed catalyst in PhMe suggests that *rac*-**16a** was obtained *via* an uncatalyzed pathway. This hypothesis was also supported by the incomplete conversion of **15a** even for a reaction time of 120 h.

Scheme S3 Zn^{II}-catalyzed ethylation reaction of aldehyde 15a using preformed catalyst $[(R,R)-1\cdot Zn\cdot 2H_2O]^{2+}\cdot 2OTf^-$ (CCDC 2099930). Conditions: (i) (R,R)-1 (0.0250 mmol), Zn(OTf)₂

(0.0250 mmol), MeCN (0.3 mL), 22 °C, 0.5 h; then evaporated to dryness; (ii) **15a** (0.500 mmol), Et₂Zn (1.00 mmol), PhMe (1.0 mL), 0 °C, 120 h.

The feasibility of the general procedure was tested on a 2 mmol scale of benzaldehyde **15a** using the *R*,*R* enantiomer of 2,2'-bipyridine- α , α '-CF₃-diol **1** (Scheme S4). As expected, the reaction was completed in 17 h and (*S*)-**16a** was afforded with 90% yield and 94% *ee*. The recyclability of (*R*,*R*)-**1** was confirmed since the ligand was quantitatively recovered after the purification of (*S*)-**16a** using modified elution conditions (Biotage®SNAP Ultra 25g/Biotage®HP-SphereTM 25 µm; gradient elution of hexane/EtOAc = 98:2–50:50). Importantly, epimerization of the 2,2'-bipyridine- α , α '-CF₃-diol ligand occurred to some extent during the reaction process based on the stereoselectivities obtained measured on recovered (*R*,*R*)-**1** (83% *de*, >99.5% *ee*). Interestingly, whereas the diastereoisomeric purity of the ligand was slightly decreased, its enantiomeric purity was also very slightly increased, as epimerization also occurred on the minor enantiomer.

Scheme S4 Scale up of the Zn^{II}-catalyzed ethylation reaction of aldehyde **15a**. Conditions: (*R*,*R*)-**1** (0.100 mmol), **15a** (2.00 mmol), Et₂Zn (4.00 mmol), PhMe (4.0 mL), 0 °C, 17 h.

The protocol using (S,S)-**1**/Zn^{II} catalysis was further extended to the use of Me₂Zn (1.0 M in heptane; Sigma-Aldrich[®]) and Ph₂Zn (0.4 M in THF; prepared from PhMgBr and ZnCl₂ according to a known method)²² for the alkylation of aldehyde **15d** (Scheme S5). Alcohol (*R*)-**16w** and *rac*-**16x** were afforded with respective yields of 21% and 99%, whereas a chiral induction was solely observed using Me₂Zn. Noteworthily, the reaction using Me₂Zn was stopped before complete conversion of **15d** (48 h).

Scheme S5 Zn^{II}-catalyzed alkylation reaction of aldehyde 15d. Conditions: (*S*,*S*)-1 (0.0250 mmol), 15d (0.500 mmol), Me₂Zn or Ph₂Zn (1.00 mmol), PhMe (1.0 mL), 0 °C, 17 h or 48 h. (+)-(R)-1-(p-Tolyl)ethanol (16w):³

Following the general procedure described for the synthesis of alcohols 16a-v: Product was obtained as a colorless oil (14.1 mg, 0.104 mmol, 21% yield, 83% *ee*). Reaction time = 48 h. R_f = 0.23 (Hexane/EtOAc =

90:10). The *ee* was determined by HPLC [Daicel ChiralCel[®] AD–H, hexane/*i*PrOH = 98:2, flow rate = 0.8 mL/min, λ = 220 nm]: $t_R(R)$ = 19.3 min, $t_R(S)$ = 20.8 min; racemate: $t_R(R)$ = 19.1 min, $t_R(S)$ = 20.5 min. $[\alpha]_D^{22}$ = +38.9 (*c* = 0.67, CHCl₃) (lit.²¹ $[\alpha]_D^{22}$ = +56.8 (*c* = 0.41, CHCl₃), 94% *ee* of (*R*)-**16w**). ¹H NMR (500 MHz, CDCl₃): δ_H 7.28 (d, *J* = 8.0 Hz, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 4.89 (q, *J* = 6.4 Hz, 1H), 2.36 (s, 3H), 1.76 (m, 1H), 1.50 (d, *J* = 6.5 Hz, 3H) ppm. ¹³C{H} NMR (126 MHz, CDCl₃): δ_C 143.0, 137.1, 129.2, 125.4, 70.2, 25.1, 21.1 ppm. IR (Diamond): 3348, 2972, 2924, 1514, 1450, 1070, 1009, 897, 816, 727 cm⁻¹.

rac-(p-Tolyl)phenylmethanol (16x):³

Me

Product was obtained in 99% yield (98.3 mg, 0.496 mmol). The ¹H NMR and ¹³C NMR spectra of were in accordance with previously published data and the *ee* was determined by HPLC [Daicel ChiralCel[®] AD–H,

hexane/*i*PrOH = 98:2, flow rate = 0.8 mL/min, λ = 220 nm]: $t_R(enant-A)$ = 29.8 min, $t_R(enant-B)$ = 32.6 min.

General procedure for the synthesis of racemates (16a-v)

Following the procedure described for the preparation of enantioenriched alcohols **16a–v**: *rac*-1-(6-bromopyridin-2-yl)-2,2-dimethylpropan-1-ol (*rac-t*Bu-alcohol; 12.2 mg, 0.0500 mmol, 0.010 equiv), **15a–v** (0.500 mmol, 1.0 equiv), Et₂Zn (1.0 mL, 1.00 mmol, 2.0 equiv; 1.0 M in hexane), PhMe (1.0 mL), 22 °C, 17–168 h.

Having similar polarities, *rac-t*Bu-alcohol was isolated within the fraction of *rac-***16c**, *rac-***16d**, *rac-***16j–m**, and *rac-***16q**. No interference of *rac-t*Bu-alcohol was noted for the HPLC chromatograms of the products.

Procedure for the resolution of 2-(4-isobutylphenyl)propanoic acid (10):²³

(-)-(*S*)- α -Methylbenzylamine **13**, which is a relatively cheap enantiopure chiral precursor, was used as an efficient resolving agent of *rac*-**10** through the resolution of the diastereomeric salts (*S*,*S*)-**17** and (*R*,*S*)-**17**. The efficiency of the resolution relied mainly on the different solubility of (*S*,*S*)-**17** and (*R*,*S*)-**17**. Conceptually, all species are soluble at high temperature and a dynamic equilibrium, between (*S*)-**13** bonded with either the *S* or the *R* enantiomer of **10**, was established. By slowly lowering the temperature, the equilibrium was shifted in favor of (*S*,*S*)-**17**, which has a poor solubility in the chosen solvent. Thus, the unreacted (*R*)-**10** was then removed by filtration from the crystallized (*S*,*S*)-**17** salt. To reach higher diastereomeric enrichment of (*S*,*S*)-**17**, up to four recrystallization cycles were performed and, upon treatment with aqueous HCl, (*S*)-**10** was obtained with an excellent

93% *ee*. Since filtrates are generally enantiomerically impoverished in comparison with the crystals, the purity of the residual (R)-**10** was not verified and the filtrate was discarded.

Diastereomeric salt (S,S)-17 was prepared according to the following procedure (eq. a):

To a 1 L flask, *rac*-**10** (12.3 g, 60.0 mmol, 2.0 equiv) was added to MeCN (600 mL) followed by the addition of (–)-(*S*)- α -methylbenzylamine **13** (3.8 mL, 30.0 mmol, 1.0 equiv, 98% *ee*) at 22 °C. A white precipitate was formed instantly and the mixture was stirred at 82 °C for 1 h. Upon complete solubilization of the precipitate, the magnetic stir bar was removed before the mixture was allowed to cool down as slowly as possible to reach 22 °C. After standing at this temperature overnight, the white crystals were filtered, washed with portions of MeCN, and dried *in vacuo*. Three subsequent recrystallizations from hot MeCN (25 mL per mmol of (*S*,*S*)-**17**, 82°C) afforded the diastereomerically enriched compound as white crystals (7.20 g, 22.0 mmol, 73% yield).

Ibuprofen (S)-**10** *was prepared according to the following procedure (eq. b):*

To a 500 mL flask, (*S*,*S*)-**17** (9.82 g, 30 mmol) was added to EtOAc (200 mL) at 22 °C. An aqueous solution of HCl (100 mL; 2N) was slowly added and the reaction was stirred at 22 °C for 30 min. The aqueous layer was extracted with EtOAc (3 x 100 mL). The combined organic layers were washed with brine (100 mL) and dried over MgSO₄. The drying agent was removed by filtration, and the filtrate was concentrated *in vacuo* (bath temperature 40 °C). The crude product was purified by silica gel column chromatography using a gradient elution of hexane/EtOAc = 95:5–80:20 to give compound **10** as a white solid (6.11 g, 29.6 mmol, 99% yield, 93% *ee*). The following characterization was performed using (*S*)-**10** in 98% *ee*: mp = 42–44 °C (lit.²³ mp = 51–52 °C). *R*_f = 0.16 (Hexane/EtOAc = 90:10). $[\alpha]_0^{22} = +54.6$ (*c* = 1.0, CHCl₃); (lit.²³ $[\alpha]_0^{20} = +52.3$ (*c* = 1.0, CHCl₃), 98% *ee* of (*S*)-**10**). ¹H NMR (500 MHz, CDCl₃): $\delta_{\rm H}$ 10.72 (brs, 1H), 7.23 (dt, *J* = 8.1, 2.0 Hz, 2H), 7.11 (dt, *J* = 8.1, 2.0 Hz, 2H), 3.73 (q, *J* = 7.2 Hz, 1H), 2.46 (d, *J* = 7.2 Hz, 2H), 1.85 (m, 1H), 1.51 (d, *J* = 7.2 Hz, 3H), 0.91 (d, *J* = 6.6 Hz, 6H) ppm. ¹³C{H} NMR (126 MHz, CDCl₃): $\delta_{\rm C}$ 181.6, 140.9, 137.1, 129.5, 127.4, 45.2, 45.1, 30.3, 22.5, 18.2 ppm. IR (Diamond): 2953, 2870, 2633, 1701, 1418, 1281, 1230, 1184, 866,

779 cm⁻¹. The absolute configuration of **10** was assigned as being *S* by comparison of the optical rotation with a previous assignment. The enantioselectivity was determined based on the *ee* obtained on the corresponding propanoate **18** (*see the procedure described below*).

To illustrate the efficiency for the resolution of *rac*-**10** into (*S*)-**10**, the diastereoselective enrichment of (*S*,*S*)-**17** was determined after each recrystallization cycle (Table S6). On a 10 mmol reaction scale, the diastereomeric salt (*S*,*S*)-**17** was recrystallized according to the procedure of equation *a*. A small aliquot (32.7 mg, 0.100 mmol) was hydrolyzed into (*S*)-**10** in the reaction conditions of equation *b* and then, esterified into (*S*)-**18** to verify the *ee*. The recrystallization process was repeated up to 4 cycles with the remaining quantity of (*S*,*S*)-**17**.

Table S6 Recrystallization cycles – yields of (S,S)-17 and enantioselectivities of (S)-10

rac- (20 mr	OH (a) OH (a) (10 mol)	(S,S)-17 $\frac{82 \degree C \bigcirc 22 \degree}{\text{recryst. cycles}}$	$rac{c}{s}$ (b) (S)	он -10
recryst, cycles		(<i>S</i> , <i>S</i>)- 17		(S)- 10
	m (g)	n (mmol)	Yield (%)	ee ^a (%)
1	2.82	8.61	86	68
2	2.68	8.18	82	84
3	2.32	7.08	71	94
4	2.07	6.32	63	98

^{*a*} Determined by chiral HPLC (OJ–H column) from the corresponding (S)-18.

Preparation of (+)-(S)-ethyl 2-(4-isobutylphenyl)propanoate (18):²³

Following the procedure described for the preparation of esters (R,S)-11 and (S,S)-12: (*S*)-10 (20.6 mg, 0.100 mmol, 1.0 equiv), EtOH (7 μL, 0.120 mmol, 1.2 equiv), DCC (24.8 mg, 0.120 mmol, 1.2 equiv), DMAP (3.1 mg, 0.0250 mmol, 0.25 equiv), CH₂Cl₂ (0.5 mL), 22 °C, 30 min. After the filtration through a plug of silica, the crude product was sufficiently pure to be injected into the HPLC instrument without a prior purification. Product was obtained as a colorless oil (22.0 mg, 0.0939 mmol, 94% yield, 93% *ee*). The following characterization was performed using (*S*)-**18** in 98% *ee*: $R_f = 0.42$ (Hexane/EtOAc = 98:2). The *ee* was determined by HPLC [Daicel ChiralCel[®] OJ–H, hexane/iPrOH = 99.5:0.5, flow rate = 0.5 mL/min, $\lambda = 220$ nm]: $t_R(S) = 13.4$ min, $t_R(R) = 14.6$ min; racemate: $t_R(S) = 13.4$ min, $t_R(R) = 14.5$ min. [α]_D²² = +38.0 (*c* = 0.83, CHCl₃) (lit.²³ [α]_D²⁰ = +33.9 (*c* = 1.1, CHCl₃), 76% *ee* of (*S*)-**18**). ¹H NMR (500 MHz, CDCl₃): δ_H 7.21 (dt, *J* = 8.1, 2.0 Hz, 2H), 7.10 (dt, *J* = 8.1, 2.0 Hz, 2H), 4.15 (m, 1H), 4.10 (m, 1H), 3.69 (q, *J* = 7.2 Hz, 1H), 2.45 (d, *J* = 7.2 Hz, 2H), 1.85 (m, 1H), 1.49 (d, *J* = 7.2 Hz, 3H), 1.22 (t, *J* = 7.2 Hz, 3H), 0.90 (d, *J* = 6.6 Hz, 6H) ppm. ¹³C{H} NMR (126 MHz, CDCl₃): δ_C 174.8, 140.4, 137.9, 129.3, 127.1, 60.6, 45.2, 45.1, 30.2, 22.4, 18.6, 14.1 ppm. IR (Diamond): 2955, 2934, 2870, 2120, 1732, 1452, 1200, 1159, 1022, 847 cm⁻¹. The absolute configuration of **18** was assigned as being *S* by comparison of the optical rotation with a previous assignment

Crystallization procedure for (R)-9:

(*R*)-**9** (7.1 mg, 27.7 μ mol) was added to hexane (1.0 mL) and the mixture was heated to 70 °C to solubilize the solid. The solution was slowly cooled down to 22 °C and the crystals were gradually formed. (CCDC 2098867)

Crystallization procedure for (*R*,*R*)-1:

(R,R)-**1** (5.4 mg, 15.4 µmol) was added to hexane/EtOAc = 90:10 (0.53 mL) and the mixture was heated to 80 °C to solubilize the solid. The solution was slowly cooled down to 22 °C and the crystals were gradually formed. (CCDC 2098890)

Crystallization procedure for $[(R,R)-1\cdot Zn\cdot 2H_2O]^{2+}\cdot 2OTf^{-}$:

Zn(OTf)₂ (5.6 mg, 15.4 μ mol, 1.0 equiv) and (*R*,*R*)-**1** (5.4 mg, 15.4 μ mol, 1.0 equiv) were dissolved in MeCN (0.2 mL). The colorless homogeneous solution was stirred at 22 °C for 0.5 h. Vapor diffusion of diethyl ether (1.0 mL) into this solution afforded the crystals. (CCDC 2099930)

References

- 1. S. Furse, L. Mak, E. W. Tate, R. H. Templer, O. Ces, R. Woscholski and P. R. J. Gaffney, *Org. Biomol. Chem.*, 2015, **13**, 2001–2011.
- 2. O. Kuisle, E. Quiñoá and R. Riguera, J. Org. Chem., 1999, 64, 8063–8075.
- 3. M. Hatano, T. Miyamoto and K. Ishihara, J. Org. Chem., 2006, **71**, 6474–6484.
- 4. J. Zhong, H. Guo, M. Wang, M. Yin and M. Wang, *Tetrahedron: Asymmetry*, 2007, **18**, 734–741.
- 5. C. Yao, P. Wu, Y. Huang, Y. Chen, L. Li and Y.-M. Li, *Org. Biomol. Chem.*, 2020, **18**, 9712–9725.
- 6. B. L. H. Taylor, E. C. Swift, J. D. Waetzig and E. R. Jarvo, *J. Am. Chem. Soc.*, 2011, **133**, 389–391.
- 7. G. Qi and Z. Judeh, M. A., *Tetrahedron: Asymmetry*, 2010, **21**, 429–436.
- 8. Y.-J. Chen, R.-X. Lin and C. Chen, *Tetrahedron: Asymmetry*, 2004, **15**, 3561–3571.
- 9. A. Hui, J. Zhang, J. Fan and Z. Wang, *Tetrahedron: Asymmetry*, 2006, **17**, 2101–2107.
- 10. M. Rouen, P. Chaumont, G. Barozzino-Consiglio, J. Maddaluno and A. Harrison-Marchand, *Chem. Eur. J.*, 2018, **24**, 9238–9242.
- 11. T. Hayase, T. Sugiyama, M. Suzuki, T. Shibata and K. Soai, *J. Fluorine Chem.*, 1997, **84**, 1–5.
- 12. F. Yu, X.-C. Zhang, F.-F. Wu, J.-N. Zhou, W. Fang, J. Wu and A. S. C. Chan, *Org. Biomol. Chem.*, 2011, **9**, 5652–5654.
- 13. M. A. Aga, B. Kumar, A. Rouf, B. A. Shah and S. C. Taneja, *Tetrahedron Lett.*, 2014, **55**, 2639–2641.
- 14. T. Tanaka, Y. Yasuda and M. Hayashi, J. Org. Chem., 2006, **71**, 7091–7093.
- 15. H. Yue, H. Huang, G. Bian, H. Zong, F. Li and L. Song, *Tetrahedron: Asymmetry*, 2014, **25**, 170–180.
- 16. C. J. Moody and C. N. Morfitt, *Synthesis*, 1998, **7**, 1039–1042.
- 17. E. Busto, V. Gotor-Fernández and V. Gotor, *Tetrahedron: Asymmetry*, 2005, **16**, 3427–3435.
- 18. M. Mohebbi, M. Bararjanian, S. N. Ebrahimi, M. Smieško and P. Salehi, *Synthesis*, 2018, **50**, 1841–1848.
- 19. V. Coeffard, H. Müller-Bunz and P. J. Guiry, *Org. Biomol. Chem.*, 2009, **7**, 1723–1734.
- 20. Z.-P. Yang and G. C. Fu, J. Am. Chem. Soc., 2020, 142, 5870–5875.
- 21. D. S. Matharu, D. J. Morris, G. J. Clarkson and M. Wills, *Chem. Commun.*, 2006, 3232–3234.
- 22. A. M. Berman and J. S. Johnson, Org. Synth., 2006, 83, 31–37.
- 23. F. Liu, Q. Bian, J. Mao, Z. Gao, D. Liu, S. Liu, X. Wang, Y. Wang, M. Wang and J. Zhong, *Tetrahedron: Asymmetry*, 2016, **27**, 663–669.

¹H, ¹³C{H}, and ¹⁹F NMR spectra

¹H NMR (500 MHz, CDCl₃) of (*R*)-**9** or (*S*)-**9**

¹⁹F NMR (470 MHz, CDCl₃) of (*R*)-**9** or (*S*)-**9**

¹⁹F NMR (470 MHz, CDCl₃) of (*S*,*S*)-**12**

 $^{13}\text{C}\text{H}$ NMR (126 MHz, CDCl₃) of (*R*,*R*)-**1** or (*S*,*S*)-**1**

¹⁹F NMR (470 MHz, CDCl₃) of (*R*,*R*)-**14** or (*S*,*S*)-**14**

¹³C{H} NMR (126 MHz, CDCl₃) of (*R*)-**16a**

¹³C{H} NMR (126 MHz, CDCl₃) of (*R*)-**16b**

 $^{13}\text{C}\text{H}$ NMR (126 MHz, CDCl3) of (+)-16c

¹³C{H} NMR (126 MHz, CDCl₃) of (*R*)-**16d**

¹³C{H} NMR (126 MHz, CDCl₃) of (*R*)-**16e**

¹³C{H} NMR (126 MHz, CDCl₃) of (*R*)-**16f**

¹³C{H} NMR (126 MHz, CDCl₃) of (+)-**16g**

¹H NMR (500 MHz, CDCl₃) of (*R*)-**16h**

f1 (ppm)

¹⁹F NMR (470 MHz, CDCl₃) of (*R*)-**16h**

¹³C{H} NMR (126 MHz, CDCl₃) of (*R*)-**16i**

¹³C{H} NMR (126 MHz, CDCl₃) of (*R*)-**16j**

¹³C{H} NMR (126 MHz, CDCl₃) of (S)-**16k**

¹³C{H} NMR (126 MHz, CDCl₃) of (S)-**16**I

¹³C{H} NMR (126 MHz, CDCl₃) of (*R*)-**16m**

 ^1H NMR (500 MHz, CDCl₃) of (–)-16n

¹H NMR (500 MHz, CDCl₃) of (*R*)-**160**

¹⁹F NMR (470 MHz, CDCl₃) of (*R*)-**160**

¹³C{H} NMR (126 MHz, CDCl₃) of (*R*)-**16p**

¹³C{H} NMR (126 MHz, CDCl₃) of (*R*)-**16q**

¹³C{H} NMR (126 MHz, CDCl₃) of (*R*)-**16r**

¹³C{H} NMR (126 MHz, CDCl₃) of (*R*)-**16s**

¹³C{H} NMR (126 MHz, CDCl₃) of (*R*)-**16t**

¹³C{H} NMR (126 MHz, CDCl₃) of (*R*)-**16u**

 $^{13}\text{C}\text{H}$ NMR (126 MHz, CDCl₃) of (R)-16v

¹³C{H} NMR (126 MHz, CDCl₃) of (*R*)-**16w**

¹³C{H} NMR (126 MHz, CDCl₃) of (S)-**10**

¹³C{H} NMR (126 MHz, CDCl₃) of (S)-**18**

HPLC chromatograms

>99.5% ee of (S)-9

Racemate of 9

98% ee of (R,S)-**11**

Racemate of 11

98% ee of (S,S)-**12**

Racemate of 12

97% de, >99.5% ee of (R,R)-14

•

Racemate of 14

95% ee of (R)-16a

Racemate of 16a

93% ee of (R)-16b

Racemate of 16b

92% ee of (+)-16c

Racemate of 16c

95% ee of (R)-16d

Racemate of 16d

86% ee of (R)-16e

Racemate of 16e

93% ee of (R)-16f

Racemate of 16f

95% ee of (+)-16g

Racemate of 16g

90% ee of (R)-16h

Racemate of 16h

91% ee of (R)-16i

Racemate of 16i

89% ee of (R)-16j

Racemate of 16j

86% ee of (S)-16k

Racemate of 16k

77% ee of (S)-16l

Racemate of 16I

24% ee of (R)-16m

Racemate of 16m

74% ee of (-)-16n

Racemate of 16n

76% ee of (R)-160

Racemate of 160

78% ee of (R)-16p

Racemate of 16p

92% ee of (R)-16q

Racemate of 16q

5% ee of (R)-16r

Racemate of 16r

3% ee of (R)-16s

Racemate of 16s

76% ee of (R)-16t

Racemate of 16t

78% ee of (R)-16u

Racemate of 16u

73% ee of (R)-**16v**

Racemate of 16v

83% ee of (R)-16w

Racemate of 16w

98% ee of (S)-18

Racemate of 18

Crystallographic data

X-ray structure and crystal data for (R)-9

Table S7 Crystal data and structure refinement for (R)-9

Identification code	(R)- 9
Empirical formula	C ₇ H₅BrF₃NO
Formula weight	256.03
Temperature/K	100
Crystal system	orthorhombic
Space group	P212121
a/Å	7.2520(6)
b/Å	8.5655(8)
c/Å	13.9821(12)
α/°	90
β/°	90
γ/°	90
Volume/ų	868.53(13)
Z	4
$\rho_{calc}g/cm^3$	1.958
µ/mm⁻¹	6.634
F(000)	496.0
Crystal size/mm ³	$0.33 \times 0.14 \times 0.12$
Radiation	CuKα (λ = 1.54178)
2O range for data collection/°	12.118 to 139.916
Index ranges	-8 ≤ h ≤ 8, -9 ≤ k ≤ 10, -17 ≤ l ≤ 17
Reflections collected	22485
Independent reflections	1620 [R_{int} = 0.0322, R_{sigma} = 0.0122]
Data/restraints/parameters	1620/0/122
Goodness-of-fit on F ²	1.173
Final R indexes [I>=2σ (I)]	$R_1 = 0.0172$, $wR_2 = 0.0449$
Final R indexes [all data]	$R_1 = 0.0172$, $wR_2 = 0.0449$
Largest diff. peak/hole / e Å ⁻³	0.43/-0.38
Flack parameter	-0.016(5)

$(A \times 10)$ for (A) 5 . O_{eq} is defined as 175 of of the trace of the of thogonalised O_{ij} tensor							
Atom	X	У	Ζ	U(eq)			
Br1	2824.0(4)	2894.3(3)	5676.7(2)	28.16(11)			
F3	2503(2)	9434(2)	8444.9(11)	30.3(4)			
F2	1187(3)	7477(2)	7753.4(13)	34.2(4)			
F1	1297(3)	9710(2)	7050.4(14)	35.0(4)			
01	5153(3)	9618(2)	6995.6(14)	22.6(4)			
N1	3529(3)	5869(3)	6302.8(15)	17.4(4)			
C1	3292(3)	5060(3)	5506.4(19)	18.9(5)			
C2	3365(4)	5675(3)	4591.3(19)	22.0(6)			
C5	3812(3)	7413(3)	6218.0(18)	15.9(5)			
C6	4105(3)	8271(3)	7155.1(19)	17.3(5)			
C7	2257(4)	8722(3)	7597.5(19)	22.9(5)			
C3	3659(4)	7271(4)	4519.7(18)	23.6(6)			
C4	3871(4)	8160(3)	5338.5(19)	20.3(5)			

Table S8 Fractional atomic coordinates (×10⁴) and equivalent isotropic displacement parameters $(Å^2 \times 10^3)$ for (*R*)-**9**. U_{en} is defined as 1/3 of the trace of the orthogonalised U₁₁ tensor

Table S9 Anisotropic displacement parameters ($Å^2 \times 10^3$) for (*R*)-**9**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$

ractor exporte	ine talkes the it					
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Br1	33.93(17)	19.13(15)	31.43(16)	-6.66(11)	-2.78(12)	-4.31(12)
F3	31.3(9)	35.7(9)	24.0(8)	-12.8(7)	6.3(7)	-2.0(7)
F2	31.9(9)	35.8(11)	34.9(9)	-10.7(7)	14.2(8)	-13.5(8)
F1	30.9(8)	36.8(10)	37.3(10)	-6.1(8)	-5.2(8)	13.9(8)
01	29.5(10)	21.1(9)	17.2(10)	-0.6(8)	1.5(8)	-7.5(8)
N1	16.2(10)	18.3(11)	17.8(10)	-0.8(8)	-0.8(9)	1.9(9)
C1	15.4(11)	17.7(12)	23.6(13)	-3.7(10)	-1.9(9)	2.3(9)
C2	18.3(13)	28.9(14)	18.7(12)	-6.4(11)	-3.2(9)	3.7(10)
C5	12.8(11)	17.2(12)	17.8(12)	-0.1(9)	0.1(9)	2.8(9)
C6	20.1(12)	14.5(12)	17.4(12)	0.6(10)	-0.3(10)	-0.2(9)
C7	24.8(13)	21.7(12)	22.3(12)	-4.7(10)	3.4(11)	-0.9(12)
C3	23.2(12)	31.3(14)	16.3(12)	3.6(11)	-0.7(10)	4.1(12)
C4	19.4(12)	20.3(14)	21.2(12)	1.7(10)	0.4(9)	2.9(10)

Table S10 Bond lengths for (R)-9

Atom	Atom	Length (Å)	Atom	Atom	Length(Å)
Br1	C1	1.901(3)	C1	C2	1.385(4)
F3	C7	1.345(3)	C2	C3	1.387(4)
F2	C7	1.337(3)	C5	C6	1.517(3)
F1	C7	1.337(4)	C5	C4	1.387(4)
01	C6	1.399(3)	C6	C7	1.526(4)
N1	C1	1.323(3)	C3	C4	1.384(4)
N1	C5	1.344(3)			

Table S11 Bond angles for (R)-9

Atom	Atom	Atom	Angle(°)
C1	N1	C5	117.5(2)
N1	C1	Br1	115.43(19)
N1	C1	C2	125.0(2)
C2	C1	Br1	119.58(19)
C1	C2	C3	116.6(2)
N1	C5	C6	114.9(2)
N1	C5	C4	122.5(2)
C4	C5	C6	122.6(2)
01	C6	C5	109.7(2)
01	C6	C7	109.5(2)

Atom	Atom	Atom	Angle(°)
C5	C6	C7	110.5(2)
F3	C7	C6	110.8(2)
F2	C7	F3	107.2(2)
F2	C7	C6	112.0(2)
F1	C7	F3	106.6(2)
F1	C7	F2	107.2(2)
F1	C7	C6	112.7(2)
C4	C3	C2	120.0(2)
C3	C4	C5	118.4(2)

Table S12 Hydrogen bonds for (R)-9

D	Н	Α	d(D-H) (Å)	d(H-A) (Å)	d(D-A) (Å)	D-H-A (°)		
C6	H6	01 ¹	1.00	2.59	3.390(3)	136.7		
01	H1	N1 ²	0.84(5)	1.94(5)	2.779(3)	175(4)		
¹ 1-X,-1/2+Y,3/2-Z; ² 1-X,1/2+Y,3/2-Z								

Table S13 Torsion angles for (R)-9

А	В	С	D	Angle (°)		А	В	С	D	Angle (°)
Br1	C1	C2	C3	178.2(2)	_	C1	C2	C3	C4	0.3(4)
01	C6	C7	F3	-61.2(3)		C2	C3	C4	C5	1.0(4)
01	C6	C7	F2	179.1(2)		C5	N1	C1	Br1	-178.17(18)
01	C6	C7	F1	58.2(3)		C5	N1	C1	C2	2.0(4)
N1	C1	C2	C3	-1.9(4)		C5	C6	C7	F3	177.8(2)
N1	C5	C6	01	153.8(2)		C5	C6	C7	F2	58.2(3)
N1	C5	C6	C7	-85.4(3)		C5	C6	C7	F1	-62.8(3)
N1	C5	C4	C3	-1.0(4)		C6	C5	C4	C3	177.5(2)
C1	N1	C5	C6	-179.1(2)		C4	C5	C6	01	-24.8(3)
C1	N1	C5	C4	-0.4(4)		C4	C5	C6	C7	96.0(3)

Table S14 Hydrogen atom coordinates ($Å \times 10^4$) and isotropic displacement parameters ($Å^2 \times 10^3$) for (*R*)-9

Atom	X	у	Ζ	U(eq)
H2	3221.12	5036.14	4040.69	26
H6	4782.83	7573.36	7608.02	21
H3	3715.04	7753	3908.6	28
H4	4053.49	9256.48	5298.99	24
H1	5610(60)	9970(60)	7510(40)	47(13)

X-ray structure and crystal data for (R,R)-1

Table S15 Crystal data and structure refinement for (R,	R)- 1
Identification code	(R,R)- 1
Empirical formula	$C_{14}H_{10}F_6N_2O_2$
Formula weight	352.24
Temperature/K	120
Crystal system	tetragonal
Space group	P4 ₂ 2 ₁ 2
a/Å	14.5873(2)
b/Å	14.5873(2)
c/Å	6.7844(2)
α/°	90
β/°	90
γ/°	90
Volume/ų	1443.65(6)
Ζ	4
$\rho_{calc}g/cm^3$	1.621
µ/mm ⁻¹	0.919
F(000)	712.0
Crystal size/mm ³	$0.201 \times 0.109 \times 0.085$
Radiation	GaKα (λ = 1.34139)
2O range for data collection/°	7.456 to 121.076
Index ranges	-18 ≤ h ≤ 16, -17 ≤ k ≤ 18, -8 ≤ l ≤ 8
Reflections collected	21453
Independent reflections	1641 [R_{int} = 0.0331, R_{sigma} = 0.0150]
Data/restraints/parameters	1641/0/114
Goodness-of-fit on F ²	1.064
Final R indexes [I>=2σ (I)]	$R_1 = 0.0299$, $wR_2 = 0.0792$
Final R indexes [all data]	$R_1 = 0.0301$, $wR_2 = 0.0794$
Largest diff. peak/hole / e Å ⁻³	0.22/-0.20
Flack parameter	0.02(3)

Atom	X	У	Ζ	U(eq)			
F1	7867.0(12)	5865.7(15)	5506(2)	73.0(6)			
F2	9088.7(8)	6111.3(9)	3853(2)	39.1(3)			
F3	8700.7(12)	4732.5(11)	4574(3)	74.3(7)			
01	7571.3(10)	6358.8(10)	1542(3)	39.8(4)			
N1	6208.5(9)	5261.9(9)	2337(2)	19.6(3)			
C1	7016.0(11)	4833.8(11)	2327(2)	20.8(3)			
C2	7113.0(11)	3886.7(11)	2454(3)	23.7(4)			
C3	6321.5(11)	3363.1(11)	2587(3)	23.2(3)			
C4	5476.5(11)	3793.7(11)	2572(2)	21.1(3)			
C5	5443.4(10)	4748.8(10)	2458(2)	18.5(3)			
C6	7835.4(11)	5476.4(12)	2117(3)	23.4(4)			
C7	8371.0(15)	5543.0(15)	4025(3)	36.9(5)			

Table S16 Fractional atomic coordinates (×10⁴) and equivalent isotropic displacement parameters $(Å^2 \times 10^3)$ for (*R.R*)-1. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{II} tensor

Table S17 Anisotropic displacement parameters ($Å^2 \times 10^3$) for (*R*,*R*)-**1**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$

		L				
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
F1	71.7(11)	110.8(15)	36.4(7)	-29.8(9)	16.9(7)	-59.7(10)
F2	29.9(6)	41.8(7)	45.5(7)	2.6(5)	-8.5(5)	-15.9(5)
F3	74.7(11)	52.1(9)	96.1(14)	38.1(9)	-57.7(11)	-27.5(8)
01	24.8(7)	25.4(7)	69.2(11)	14.0(7)	-5.6(7)	-4.7(5)
N1	20.2(6)	19.0(6)	19.8(6)	-1.2(5)	-0.7(5)	-1.9(5)
C1	21.4(7)	21.6(8)	19.3(7)	-2.5(6)	0.1(6)	-1.4(6)
C2	22.5(7)	22.6(8)	26.1(8)	-2.6(7)	0.1(7)	2.8(6)
C3	27.8(8)	17.0(7)	24.8(7)	-0.7(7)	-1.1(7)	-0.5(6)
C4	23.9(7)	19.1(7)	20.4(7)	-0.4(6)	-0.5(6)	-4.0(5)
C5	20.7(7)	18.9(7)	15.9(6)	-0.8(5)	-0.3(6)	-1.6(6)
C6	20.2(7)	22.3(8)	27.6(8)	0.4(6)	0.7(6)	-2.1(6)
C7	36.9(10)	38.5(11)	35.3(10)	5.0(8)	-7.3(8)	-16.6(8)

Table S18	Bond lengths	for (<i>R,R</i>)- 1			
Atom	Atom	Length (Å)	Atom	Atom	Length (Å)
F1	C7	1.331(3)	C1	C6	1.526(2)
F2	C7	1.341(2)	C2	C3	1.387(2)
F3	C7	1.330(3)	C3	C4	1.384(2)
01	C6	1.399(2)	C4	C5	1.396(2)
N1	C1	1.333(2)	C5	C5 ¹	1.487(3)
N1	C5	1.3464(19)	C6	C7	1.515(3)
C1	C2	1.392(2)			
14 24 4 24 -					

Table S19 Band langths for (P. P.) 1

¹1-X,1-Y,+Z

Table S19 Bond angles for (R,R)-1

Atom	Atom	Atom	Angle (°)	Atom	Atom	Atom	Angle (°)
C1	N1	C5	118.18(13)	01	C6	C1	112.06(14)
N1	C1	C2	123.69(15)	01	C6	C7	108.73(15)
N1	C1	C6	113.88(13)	C7	C6	C1	111.33(15)
C2	C1	C6	122.42(15)	F1	C7	F2	106.16(17)
C3	C2	C1	117.77(15)	F1	C7	C6	112.50(18)
C4	C3	C2	119.42(14)	F2	C7	C6	111.60(16)
C3	C4	C5	118.96(14)	F3	C7	F1	107.6(2)
N1	C5	C4	121.97(14)	F3	C7	F2	106.97(17)
N1	C5	$C5^1$	116.56(16)	F3	C7	C6	111.66(18)
C4	C5	$C5^1$	121.46(17)				
11 V 1 V	. 7						

¹1-X,1-Y,+Z

 Table S20 Hydrogen bonds for (R,R)-1

D	Н	А	d(D-H) (Å)	d(H-A) (Å)	d(D-A) (Å)	D-H-A (°)	
01	H1	N1	0.83(3)	2.03(3)	2.6083(19)	126(3)	

Table	able S21 Torsion angles for (R,R)-1									
А	В	С	D	Angle (°)		Α	В	С	D	Angle (°)
01	C6	C7	F1	63.5(2)	_	C1	C6	C7	F2	-179.61(16)
01	C6	C7	F2	-55.7(2)		C1	C6	C7	F3	60.7(2)
01	C6	C7	F3	-175.34(17)		C2	C1	C6	01	165.49(16)
N1	C1	C2	C3	0.4(3)		C2	C1	C6	C7	-72.5(2)
N1	C1	C6	01	-13.3(2)		C2	C3	C4	C5	-1.1(2)
N1	C1	C6	C7	108.77(18)		C3	C4	C5	N1	0.8(2)
C1	N1	C5	C4	0.1(2)		C3	C4	C5	$C5^1$	-179.35(11)
C1	N1	C5	$C5^1$	-179.80(11)		C5	N1	C1	C2	-0.7(3)
C1	C2	C3	C4	0.5(2)		C5	N1	C1	C6	178.06(14)
C1	C6	C7	F1	-60.4(2)		C6	C1	C2	C3	-178.23(16)
¹ 1-X,1	-Y,+Z									

Table S22 Hydrogen atom coordinates ($Å \times 10^4$) and isotropic displacement parameters ($Å^2 \times 10^3$) for (*R*,*R*)-**1**

Atom	X	У	Ζ	U(eq)
H2	7689.16	3613.78	2450.4	28
H3	6358.59	2728.3	2684.28	28
H4	4938.89	3452.35	2638.34	25
H6	8242.43	5226.88	1100.9	28
H1	7010(20)	6360(20)	1720(50)	54(9)

X-ray structure and crystal data for $[(R,R)-1\cdot Zn\cdot 2H_2O]^{2+}\cdot 2OTf^{-}$

Table S23 Crystal data and structure refinement f	or [(<i>R,R</i>)- 1 ·Zn·2H₂O] ²⁺ ·2OTf [−]
Identification code	[(<i>R,R</i>)- 1 ·Zn·2H₂O] ²⁺ ·2OTf [−]
Empirical formula	$C_{16}H_{14.08}F_{12}N_2O_{10.04}S_2Zn$
Formula weight	752.50
Temperature/K	100
Crystal system	monoclinic
Space group	P21
a/Å	17.4342(4)
b/Å	12.8734(3)
c/Å	23.1114(6)
α/°	90
β/°	93.993(1)
γ/°	90
Volume/ų	5174.5(2)
Z	8
$\rho_{calc}g/cm^3$	1.932
µ/mm⁻¹	4.182
F(000)	2995.0
Crystal size/mm ³	$0.09 \times 0.07 \times 0.02$
Radiation	Cu Kα (λ = 1.54178)
20 range for data collection/°	3.832 to 144.45
Index ranges	-21 ≤ h ≤ 21, -15 ≤ k ≤ 15, -28 ≤ l ≤ 28
Reflections collected	88969
Independent reflections	20014 [$R_{int} = 0.0646$, $R_{sigma} = 0.0500$]
Data/restraints/parameters	20014/432/1666
Goodness-of-fit on F ²	0.992
Final R indexes [I>=2σ (I)]	$R_1 = 0.0350$, $wR_2 = 0.0822$
Final R indexes [all data]	$R_1 = 0.0451$, $wR_2 = 0.0870$
Largest diff. peak/hole / e Ă ⁻³	0.36/-0.39
Flack parameter	0.010(7)

Table S24 Fractional atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³) for [(*R*,*R*)-**1**·Zn·2H₂O]²⁺·2OTf⁻. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor

Atom	X	у	Ζ	U(eq)
Zn1B	6149.1(3)	2401.8(5)	9990.8(3)	25.97(14)
F1B	4662.7(19)	2026(3)	8521.1(19)	53.2(10)
F2B	5079.0(19)	507(3)	8334.9(16)	48.3(8)
F3B	5258(3)	1784(4)	7756.1(16)	71.3(13)
F4B	7565.2(17)	3127(3)	11535.2(16)	47.2(8)
F5B	6924(2)	4070(3)	12096.3(14)	51.6(9)
F6B	6780(2)	2408(3)	12081.6(14)	46.7(8)
O1B	5978(2)	1345(3)	9213.7(17)	35.1(8)
O2B	6175(2)	2405(3)	10966.0(15)	31.3(7)
O3B	7251.2(19)	1902(3)	10068.2(15)	30.2(7)
O4B	4984.6(19)	2413(3)	10013.0(16)	31.8(7)
N1B	6241(2)	3312(3)	9220.9(17)	26.1(8)
N2B	6336(2)	3956(3)	10302.1(18)	24.5(8)

C1B	6162(3)	2924(4)	8690(2)	29.8(10)
C2B	6205(3)	3544(5)	8198(2)	40.7(13)
C3B	6318(4)	4599(5)	8278(2)	42.3(13)
C4B	6398(3)	5011(5)	8830(2)	35.3(11)
C5B	6355(3)	4333(4)	9294(2)	26.9(10)
C6B	6417(2)	4705(4)	9905(2)	25.3(10)
С7В	6548(3)	5736(4)	10059(2)	32.0(11)
C8B	6575(3)	6000(4)	10639(3)	40.0(13)
C9B	6482(3)	5237(4)	11050(2)	34.9(11)
C10B	6366(3)	4222(4)	10865(2)	26.7(10)
C11B	6007(3)	1756(5)	8654(2)	32.4(11)
C12B	5244(3)	1517(5)	8308(3)	42.4(13)
C13B	6233(3)	3339(4)	11277(2)	29.0(10)
C14B	6880(3)	3232(5)	11752(2)	37.2(12)
Zn1C	3833.9(3)	-125.5(5)	5026.6(3)	25.47(14)
F1C	2410.9(17)	500(3)	3580.3(14)	42.1(8)
F2C	3133(2)	-236(3)	2990.4(13)	43.1(8)
F3C	2963(2)	1421(3)	2950.8(15)	50.8(9)
F4C	5239.8(18)	-492(3)	6576.3(17)	45.1(8)
F5C	4545(2)	-820(4)	7289.8(14)	54.4(10)
F6C	4827.3(18)	-2035(3)	6697.4(15)	41.5(7)
01C	3867(2)	-152(3)	4065.4(15)	29.2(7)
O2C	3985(2)	-1185(3)	5794.1(16)	32.2(8)
O3C	4996.6(19)	-136(3)	5024.3(16)	31.7(8)
O4C	2758.2(18)	-693(3)	4886.6(15)	29.3(7)
N1C	3656(2)	1419(3)	4706.2(18)	24.7(8)
N2C	3712(2)	772(3)	5786.4(17)	26.3(8)
C1C	3658(3)	1670(4)	4147(2)	26.8(10)
C2C	3592(3)	2686(4)	3954(2)	33.5(11)
C3C	3508(3)	3457(4)	4358(3)	38.1(12)
C4C	3509(3)	3214(4)	4940(2)	33.3(11)
C5C	3591(2)	2172(4)	5099(2)	26.7(10)
C6C	3622(2)	1814(4)	5713(2)	26.9(10)
C7C	3580(3)	2484(5)	6179(2)	34.0(11)
C8C	3633(3)	2053(5)	6731(2)	37.6(12)
C9C	3717(3)	995(5)	6807(2)	35.7(12)
C10C	3771(3)	381(4)	6317(2)	28.5(10)
C11C	3759(3)	765(4)	3740(2)	30.1(10)
C12C	3062(3)	610(5)	3314(2)	34.0(11)
C13C	3902(3)	-791(4)	6355(2)	28.5(10)
C14C	4639(3)	-1034(5)	6731(2)	35.2(11)
Zn1A	8928.0(3)	7475.5(5)	9767.9(3)	23.42(13)
F1A	10186.8(16)	8008(2)	8565.9(13)	33.6(6)
F2A	9791.0(17)	9468(2)	8198.9(13)	33.8(6)
F3A	9707.3(17)	8073(3)	7682.5(13)	36.5(7)
F4A	8021(2)	7117(3)	11359.4(18)	58.1(10)
F5A	8554(3)	5890(3)	11861.7(16)	62.3(12)
F6A	9051(2)	7410(3)	11900.6(14)	48.5(8)

01A	8726(2)	8711(3)	8946.6(15)	28.7(7)
O2A	9344.8(18)	7390(3)	10764.2(14)	27.4(7)
O3A	7985.3(17)	8146(3)	10014.1(14)	24.4(6)
O4A	9923.8(19)	8171(3)	9768.8(15)	31.6(7)
N1A	8677(2)	6690(3)	8980.5(17)	21.5(7)
N2A	8777(2)	5963(3)	10064.7(17)	22.1(8)
C1A	8669(2)	7090(4)	8449(2)	24.7(9)
C2A	8531(3)	6507(4)	7955(2)	27.6(10)
C3A	8404(3)	5444(4)	8016(2)	32.6(11)
C4A	8399(3)	5019(4)	8565(2)	28.4(10)
C5A	8532(2)	5662(4)	9041(2)	23.6(9)
C6A	8527(2)	5278(4)	9649(2)	24.9(9)
C7A	8292(2)	4288(4)	9789(2)	25.9(9)
C8A	8324(3)	4000(4)	10365(2)	28.9(10)
C9A	8607(3)	4686(4)	10791(2)	27.3(10)
C10A	8834(2)	5677(4)	10617(2)	24.0(9)
C11A	8825(3)	8253(4)	8409(2)	26.5(10)
C12A	9641(3)	8446(4)	8213(2)	26.6(9)
C13A	9195(3)	6457(4)	11049(2)	27.6(10)
C14A	8692(3)	6713(5)	11543(3)	40.5(13)
Zn1D	8878.2(3)	-43.6(5)	4797.0(3)	24.73(14)
F1D	10094.8(18)	434(3)	3564.0(14)	38.5(7)
F2D	9747(2)	1933(3)	3233.5(15)	43.3(8)
F3D	9593(2)	569(3)	2695.6(14)	49.2(9)
F4D	7890.7(17)	-434(3)	6293.4(14)	41.5(7)
F5D	8339.6(19)	-1703(3)	6820.7(13)	39.7(7)
F6D	8831(2)	-176(3)	6927.7(13)	41.5(7)
O1D	8683(2)	1215(3)	3990.3(16)	33.9(8)
O2D	9271.4(18)	-129(3)	5809.0(15)	28.2(7)
O3D	7941.7(18)	639(3)	5043.6(14)	26.9(7)
O4D	9881.0(19)	625(3)	4801.9(16)	34.2(8)
N1D	8614(2)	-810(3)	4003.7(18)	26.7(8)
N2D	8736(2)	-1560(3)	5084.4(17)	23.3(8)
C1D	8570(3)	-376(4)	3481(2)	30.2(10)
C2D	8370(3)	-950(5)	2979(2)	35.3(11)
C3D	8241(3)	-2003(5)	3040(2)	37.5(12)
C4D	8296(3)	-2461(4)	3578(2)	32.6(11)
C5D	8475(3)	-1833(4)	4060(2)	27.1(10)
C6D	8505(2)	-2244(4)	4664(2)	26.2(10)
C7D	8309(3)	-3257(4)	4795(2)	29.1(10)
C8D	8381(3)	-3576(4)	5364(2)	31.2(11)
C9D	8640(3)	-2887(4)	5793(2)	30.2(10)
C10D	8808(2)	-1870(4)	5634(2)	24.8(9)
C11D	8742(3)	770(4)	3442(2)	33.2(11)
C12D	9557(3)	922(4)	3232(2)	34.5(11)
C13D	9109(3)	-1073(4)	6078(2)	26.9(10)
C14D	8538(3)	-842(5)	6530(2)	33.5(11)
S1J	5794.1(10)	2391.1(16)	5890.8(8)	40.0(4)

F1J	6999(3)	1232(5)	6071(3)	80.7(18)
F2J	6407(4)	1586(6)	6838(3)	79.3(17)
F3J	7101(3)	2732(5)	6468(3)	73.4(16)
O1J	5357(3)	1452(4)	5794(3)	49.3(13)
O2J	6111(4)	2819(6)	5389(3)	55.0(16)
O3J	5447(3)	3154(4)	6240(2)	41.0(11)
C1J	6616(5)	1959(7)	6343(4)	49.0(10)
S1L	6061(4)	1816(6)	5841(3)	40.0(4)
F1L	6700(11)	2478(15)	6827(11)	80.7(18)
F2L	6610(12)	824(16)	6761(10)	79.3(17)
F3L	7458(9)	1624(16)	6318(10)	73.4(16)
01L	5321(10)	1924(17)	6074(10)	49.3(13)
O2L	6126(12)	833(15)	5533(9)	55.0(16)
O3L	6380(12)	2629(16)	5533(10)	41.0(11)
C1L	6737(11)	1675(16)	6471(9)	49.0(10)
S1G	4190.2(8)	4965.8(14)	9145.9(7)	38.3(4)
F1G	2897(2)	5211(4)	8527(2)	61.3(12)
F2G	2994(3)	3774(4)	8998(2)	65.8(13)
F3G	3605(3)	3990(4)	8233(2)	65.1(13)
01G	3847(3)	5457(5)	9627(2)	48.3(12)
02G	4540(3)	5681(4)	8762(2)	46.1(11)
03G	4638(3)	4048(4)	9282(2)	49.1(12)
C1G	3375(4)	4455(6)	8699(3)	43.6(9)
S1M	3910(8)	4359(13)	9174(6)	38.3(4)
F1M	3250(20)	4920(30)	8180(17)	59(6)
F2M	3370(20)	3300(30)	8284(18)	62(8)
F3M	2520(20)	4090(30)	8690(19)	65(7)
01M	3830(20)	3400(40)	9469(19)	48.3(12)
O2M	3540(30)	5040(40)	9510(20)	46.1(11)
O3M	4640(30)	4360(40)	8970(20)	49.1(12)
C1M	3190(30)	4150(30)	8510(30)	43.6(9)
S1I	9011.0(7)	564.4(10)	10490.0(5)	28.4(2)
F1I	8936(2)	-419(3)	11473.0(15)	48.6(9)
F2I	8601.4(19)	1188(3)	11497.9(16)	48.7(9)
F3I	9793.4(17)	789(3)	11489.0(14)	40.3(7)
011	8255(2)	139(3)	10339.8(17)	34.4(8)
O2I	9646(2)	-68(3)	10340.9(17)	41.0(9)
031	9071(2)	1651(3)	10353.2(18)	40.6(9)
C1I	9084(3)	525(4)	11283(2)	30.9(10)
S1K	8599.6(6)	1822.4(9)	8812.4(5)	24.6(2)
F1K	7951(3)	1045(4)	7859.0(17)	65.9(12)
F2K	9090(2)	1632(3)	7783.2(14)	52.6(9)
F3K	8138(3)	2695(4)	7829.8(16)	60.2(11)
O1K	8912(2)	812(3)	8955.7(16)	32.8(8)
О2К	7844(2)	2036(3)	9005.3(16)	35.3(8)
ОЗК	9138.2(19)	2665(3)	8915.9(15)	29.9(7)
C1K	8434(4)	1795(5)	8016(2)	41.9(13)
S1F	8675.7(6)	4266.5(9)	3886.9(5)	23.8(2)
F1F	8033(2)	3334(3)	2981.5(16)	54.7(10)
------	------------	------------	-------------	----------
F2F	9086(2)	4136(4)	2827.7(15)	56.5(11)
F3F	8046.8(19)	5008(3)	2917.8(13)	41.7(7)
O1F	9036.9(19)	3282(3)	4037.5(15)	29.4(7)
O2F	7926(2)	4439(3)	4104.1(15)	34.1(8)
O3F	9188(2)	5152(3)	3954.8(16)	33.0(8)
C1F	8449(3)	4182(5)	3104(2)	34.1(11)
S1H	3686.4(7)	5885.6(11)	6104.7(5)	31.6(3)
F1H	3904(3)	4571(3)	6958.5(18)	76.3(15)
F2H	3043(2)	5728(4)	7085.2(17)	67.0(13)
F3H	4236(2)	6129(3)	7179.3(15)	48.3(8)
O1H	3144(2)	5142(3)	5842.1(17)	38.3(8)
O2H	4474(2)	5737(5)	5968.3(18)	54.4(13)
O3H	3426(2)	6947(3)	6070.3(18)	39.9(9)
C1H	3715(4)	5570(5)	6878(2)	42.4(13)
S1E	9073.7(7)	3015.9(9)	5546.0(5)	29.1(2)
F1E	8978(3)	1993(3)	6511.0(16)	55.9(10)
F2E	8639(2)	3601(3)	6556.2(16)	50.5(9)
F3E	9831.3(19)	3207(3)	6560.2(15)	45.8(8)
O1E	8322(2)	2598(3)	5378.6(16)	35.9(8)
O2E	9717(2)	2391(3)	5397.0(17)	41.2(9)
O3E	9138(2)	4109(3)	5426.6(18)	41.7(9)
C1E	9130(3)	2949(4)	6343(2)	34.6(11)
S1FL	3650.4(7)	3460.6(10)	11101.0(5)	28.8(2)
F1FL	2894(2)	3225(4)	12031.0(16)	57.5(10)
F2FL	4006(2)	3878(4)	12191.9(16)	68.3(14)
F3FL	3893(3)	2258(4)	12003(2)	77.0(14)
O1FL	3371(2)	4508(3)	11028.2(17)	38.7(9)
O2FL	3139(2)	2676(3)	10836.0(17)	38.1(9)
O3FL	4454(2)	3309(4)	11011.5(17)	46.7(10)
C1FL	3607(3)	3196(5)	11876(2)	39.6(13)
O1N	5282(14)	3810(20)	6649(12)	38(7)

Table S25 Anisotropic displacement parameters ($Å^2 \times 10^3$) for [(R,R)-**1**·2n·2H₂O]²⁺·2OTf⁻. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂		
Zn1B	20.8(3)	24.7(3)	31.9(3)	-3.7(3)	-1.5(2)	2.1(2)		
F1B	28.7(16)	36.5(19)	93(3)	-4.4(19)	-6.9(17)	6.6(14)		
F2B	40.8(17)	42(2)	59(2)	-19.6(17)	-12.4(15)	1.1(15)		
F3B	74(3)	93(4)	42.2(19)	1(2)	-22.6(19)	-28(3)		
F4B	24.0(14)	58(2)	59(2)	21.2(18)	-3.4(13)	2.6(14)		
F5B	65(2)	50(2)	36.1(17)	-0.6(16)	-18.7(16)	-8.7(18)		
F6B	53.3(19)	49(2)	36.9(16)	16.8(16)	-5.5(14)	-12.4(17)		
O1B	40(2)	27.4(19)	37.0(19)	-6.0(16)	-4.2(16)	1.9(16)		
O2B	34.1(17)	26.1(18)	33.3(17)	2.0(16)	0.2(14)	0.8(15)		
O3B	26.6(16)	27.0(18)	36.9(17)	2.4(15)	0.7(13)	7.2(14)		
O4B	21.5(14)	35(2)	39.0(18)	-5.0(16)	-1.0(13)	-0.9(13)		
N1B	18.9(17)	28(2)	30.9(19)	-2.8(17)	-1.9(14)	4.9(15)		

N2B	18.8(17)	22(2)	32(2)	-1.3(17)	-0.9(14)	2.5(15)
C1B	19(2)	35(3)	35(2)	-3(2)	-0.2(18)	3.8(19)
C2B	42(3)	50(4)	31(3)	-4(3)	7(2)	1(3)
C3B	50(3)	45(3)	33(3)	10(2)	10(2)	4(3)
C4B	37(3)	35(3)	34(3)	1(2)	2(2)	-3(2)
C5B	20(2)	29(3)	31(2)	1(2)	1.2(17)	4.2(18)
C6B	21(2)	24(2)	31(2)	-0.6(19)	-0.4(17)	2.5(17)
C7B	30(2)	23(2)	41(3)	1(2)	-5(2)	0(2)
C8B	49(3)	23(3)	46(3)	-7(2)	-12(2)	4(2)
C9B	41(3)	29(3)	33(2)	-6(2)	-7(2)	5(2)
C10B	19(2)	30(3)	31(2)	-3(2)	-2.6(17)	3.5(18)
C11B	27(2)	37(3)	33(2)	-12(2)	-0.3(19)	5(2)
C12B	36(3)	37(3)	51(3)	-5(3)	-12(2)	2(2)
C13B	26(2)	32(3)	29(2)	-1(2)	0.2(18)	-1(2)
C14B	32(3)	43(3)	35(3)	6(3)	-3(2)	-3(2)
7n1C	21.1(3)	25.8(3)	29,1(3)	2.8(3)	-1.5(2)	-1.8(2)
F1C	30 3(15)	51(2)	440(17)	-13 8(16)	-0.6(13)	-4 6(14)
F2C	56 6(19)	44(2)	28 6(15)	-9 0(14)	-1 0(13)	5 9(16)
F3C	62(2)	48(2)	39 7(18)	9 1(16)	-14 8(16)	5.3(10) 5.4(18)
F4C	28 5(15)	35 5(18)	70(2)	6 7(17)	-6 1(14)	-5.2(13)
FSC	54(2)	75(3)	32 7(16)	1.7(18)	-13 7(14)	14(2)
FAC	34 5(15)	35 3(18)	52.7(18)	12 5(15)	-11 0(13)	-7 3(13)
010	33 1(17)	24.1(17)	30 3(17)	1 2(15)	1 0(13)	2.3(13) Λ Λ(15)
010	20(2)	24.1(17)	210(18)	2.3(15)	-1.7(15)	$-2 \Lambda(16)$
020	2/2)	24.0(15)	21.3(10)	5 7(15)	-4.7(13) 0 2(12)	-2.4(10) 2 1(1/1)
030	24.2(15)	20(2) 20 2(18)	34.4(17)	(15)	0.2(13)	-7 0(14)
04C	20.3(10)	23.2(10)	22(2)	-1.1(13)	-1.2(15)	-7.0(14)
NIC	10.3(17)	20(2)	21(2)	0.5(12)	-1.5(15)	-1.3(13)
N2C	10(2)	20(2)	22(2)	0.5(18) A(2)	-1.5(15)	-4.4(10)
	19(2)	29(3)	32(2) 25(2)	4(Z) 5(2)	-4.3(17) -5(2)	-2.0(10)
C2C	22(2)	25(2)	JO(2)	O(2)	-J(Z) -11(2)	- 4 (2) -5(2)
	22(2)	23(3)	45(3)	S(Z) = 2(2)	-II(2) E(2)	-3(2)
	52(2) 16 1(10)	23(2)	45(5)	-2(2)	-3(Z) 1 E(17)	-2(2)
	10.1(19)	20(5)	30(2) 26(2)	0(2)	-1.5(17)	-1.4(17)
	10(2)	20(3)	20(2)	-3(Z) 1(2)	-1.0(17)	-1.0(10)
	51(Z)	52(5) 42(2)	29(2) 26(2)	-1(2)	0(2)	-4(Z) 4(2)
	34(3) 21(2)	43(3)	30(3) 20(2)	-9(Z)	U(2)	-4(Z) 0(2)
C9C	51(5) 10(2)	45(5)	50(2) 20(2)	2(2)	-1.2(19)	0(2)
C10C	19(2)	35(3)	30(2)	U(2)	-3.0(17)	-1.4(19)
C11C	20(2)	33(3)	31(2)	5(2)	1.8(18)	1(Z)
C12C	35(3)	37(3)	30(2)	0(2)	-0.9(19)	5(2)
C13C	23(2)	35(3)	20(2)	0(2)	-3.0(17)	-5(2)
	30(3)	39(3)	30(3)	4(2)	-8(Z)	-4(Z)
	21.0(3)	18.4(3)	30.9(3)	-1.0(3)	2.5(2)	-1.0(2)
FIA	25.3(13)	35.5(17)	39.9(15)	-0.6(13)	0.9(11)	0.8(12)
FZA	38.6(15)	23.1(14)	40.8(15)	-1./(13)	9.6(12)	-0.5(12)
F3A	39.5(16)	38.0(17)	32.9(14)	-/./(14)	9.1(12)	-/.9(13)
F4A	37.6(18)	69(3)	/0(2)	-14(2)	16.9(17)	b.4(17)
F5A	101(3)	47(2)	42.3(19)	-0.7(18)	31(2)	-21(2)

F6A	62(2)	49(2)	35.4(16)	-8.8(16)	7.5(15)	-13.0(18)
01A	35.4(18)	17.4(16)	34.1(18)	0.2(14)	8.9(14)	0.3(14)
O2A	27.6(15)	25.7(17)	28.3(15)	2.5(15)	-2.3(12)	-5.6(14)
O3A	20.9(14)	23.0(16)	29.0(15)	-2.6(14)	-0.8(12)	3.0(12)
O4A	24.2(16)	33.6(19)	36.7(18)	-5.1(16)	0.9(13)	-8.2(14)
N1A	17.2(16)	17.3(18)	29.8(18)	-1.4(16)	0.8(14)	1.4(14)
N2A	17.7(16)	16.9(18)	31.6(19)	3.1(16)	0.1(14)	-0.6(14)
C1A	20(2)	22(2)	32(2)	1.6(19)	-1.4(17)	0.8(17)
C2A	29(2)	24(2)	30(2)	4(2)	-5.4(18)	0.7(19)
C3A	34(3)	27(3)	35(2)	-4(2)	-10(2)	-3(2)
C4A	28(2)	20(2)	36(2)	-1(2)	-3.3(18)	-3.5(19)
C5A	18.9(19)	18(2)	34(2)	0.1(19)	-1.4(16)	2.8(16)
C6A	17.2(19)	22(2)	35(2)	0(2)	2.3(17)	2.0(16)
C7A	20(2)	18(2)	40(2)	-2(2)	4.5(18)	3.4(17)
C8A	21(2)	21(2)	45(3)	7(2)	6.3(19)	0.5(17)
C9A	22(2)	23(2)	37(2)	8(2)	4 4(18)	21(17)
C104	17 5(19)	21(2)	33(2)	1(2)	2 1(16)	2.1(17)
C11A	28(2)	18(2)	34(2)	3 9(19)	3 9(18)	0.4(18)
C12A	28(2)	23(2)	30(2)	-2 8(19)	2.2(18)	-7 8(18)
C12A	26(2)	28(2)	29(2)	3(2)	-0.2(10)	-0 7(19)
C14A	20(2) 40(3)	12(2)	23(2) /11(3)	-7(3)	11(2)	_10(3)
Zn1D	24 2(3)	18 6(3)	31 3(3)	-2 A(3)	1 9(2)	-1 3(2)
	24.2(3)	35 0(17)	31.3(3) AA 5(17)	-2.+(3) 2.8(1/1)	1.3(2) 7 8(13)	-1.3(2)
F2D	55(2)	20.2(17)	44.5(17)	2.0(14)	15 6(15)	-6.7(15)
F2D	55(2) 61(2)	55(2)	+0.5(17)	-5.2(15)	12.0(15)	-0.4(13)
F 3D	01(2) 21 E(1E)	55(2)	33.1(10)	-3.3(10)	13.0(13)	-11.0(10)
F5D	50.8(18)	36 /(18)	42.7(10) 32 $A(15)$	$3 \Lambda(1\Lambda)$	3.2(12) 7 5(13)	-8 /(15)
	52 0(10)	26 O(18)	32.4(15) 2/ 1(15)	-6.2(14)	(13)	-0.4(13)
010	16(2)	22 1(12)	22 2(12)	-0.3(1+)	-1.4(13)	-7.3(13)
010	40(2)	23.1(18)	25 O(17)	0.9(15)	-1.6(12)	-6.7(14)
020	20.3(15)	22.3(10)	33.0(17)	1 = (1.4)	-4.0(13)	-0.7(14) 1 E(12)
030	24.8(15)	20(2)	27.9(10)	-1.3(14) -2 1(17)	-2.0(12)	4.3(13)
N1D	20.1(10)	33(2)	22/2)	-3.1(17)	2.4(14)	-0.0(16)
	20.0(19)	21(2) 10 0(10)	22(2)	-3.1(17)	2.7(13)	-0.9(10)
	17.0(10)	10.0(19)	22(2)	(10)	2.3(14)	-0.5(14)
CID	30(2) 29(2)	29(3)	52(2) 22(2)	-7(2)	5.4(19) 4(2)	-0.7(19)
C2D	20(2)	37(3) 29(2)	52(2) 26(2)	-5(2)	4(2)	-2(2)
C3D	39(3)	38(3)	30(3)	-15(2)	4(Z)	-0(Z)
C4D	32(2)	27(3)	39(3)	-9(2)	5(Z)	-5(Z) 1 2(10)
CSD	22(2)	25(2)	34(2)	-8(2)	5.3(17)	1.3(18)
CBD	17(2)	24(2)	38(2)	-6(2)	3.2(17)	0.5(17)
C7D	22(2)	20(2)	45(3)	-5(2)	6.4(19)	2.4(18)
C8D	26(2)	19(2)	50(3)	4(2)	9(2)	2.3(18)
C9D	28(2)	25(3)	39(3)	3(2)	8.3(19)	0.9(19)
CIUD	20(2)	20(2)	34(2)	-1(2)	-0.9(17)	2.0(1/)
C11D	38(3)	29(3)	33(2)	1(2)	3(2)	-1(2)
C12D	48(3)	27(3)	29(2)	2(2)	6(2)	-5(2)
C13D	22(2)	23(2)	34(2)	3(2)	-5.4(18)	0.7(18)
C14D	37(3)	33(3)	30(2)	2(2)	-4(2)	-5(2)

S1J	34.0(8)	34.9(9)	52.3(8)	-11.5(8)	12.2(7)	-11.7(7)
F1J	54(3)	55(3)	134(5)	-22(3)	9(3)	18(3)
F2J	75(4)	72(4)	88(4)	15(4)	-18(3)	6(3)
F3J	35(2)	66(3)	117(4)	-24(3)	-9(3)	-8(2)
01J	40(3)	41(3)	67(4)	-17(3)	9(3)	-15(2)
O2J	51(3)	54(4)	61(4)	-17(3)	13(3)	-13(3)
03J	36(2)	31(2)	57(3)	-1(2)	11(2)	-6(2)
C1J	41.3(18)	41.8(19)	64.6(19)	-9.6(18)	8.3(17)	-7.1(18)
S11	34.0(8)	34.9(9)	52.3(8)	-11.5(8)	12.2(7)	-11.7(7)
F1I	54(3)	55(3)	134(5)	-22(3)	9(3)	18(3)
F2I	75(4)	72(4)	88(4)	15(4)	-18(3)	6(3)
F3I	35(2)	66(3)	117(4)	-24(3)	-9(3)	-8(2)
01	40(3)	41(3)	67(4)	-17(3)	9(3)	-15(2)
011	40(3) 51(3)	5/(1)	61(4)	-17(3)	13(3)	-13(2)
021	36(3)	21(7)	57(2)	-1(2)	11(2)	-6(2)
C11	JU(2) A1 2(10)	J1 9(10)	57(5)	-1(2)	11(2) 0 2(17)	-0(2)
	41.5(10)	41.0(19)	04.0(19)	-9.0(10)	0.3(17) 0.4(c)	-7.1(10)
510	33.0(7)	50.8(8)	45.9(7)	9.5(7)	9.4(0)	13.7(0)
FIG	42(2)	58(3)	82(3)	16(2)	-10(2)	12(2)
F2G	53(3)	56(3)	90(3)	17(3)	11(2)	-9(2)
F3G	/0(3)	64(3)	60(3)	-/(3)	-2(2)	6(3)
01G	47(3)	53(3)	46(3)	9(2)	10(2)	15(2)
02G	43(2)	34(2)	63(3)	4(2)	15(2)	10.0(19)
03G	39(2)	41(3)	68(3)	16(2)	9(2)	17(2)
C1G	38.0(17)	40.3(18)	52.9(18)	6.7(17)	6.2(16)	9.2(17)
S1M	33.0(7)	36.8(8)	45.9(7)	9.5(7)	9.4(6)	13.7(6)
F1M	58(12)	62(13)	59(12)	23(12)	6(11)	8(12)
F2M	58(16)	63(17)	64(16)	-6(16)	-13(14)	29(15)
F3M	51(12)	64(13)	79(13)	0(13)	-8(12)	9(12)
01M	47(3)	53(3)	46(3)	9(2)	10(2)	15(2)
O2M	43(2)	34(2)	63(3)	4(2)	15(2)	10.0(19)
03M	39(2)	41(3)	68(3)	16(2)	9(2)	17(2)
C1M	38.0(17)	40.3(18)	52.9(18)	6.7(17)	6.2(16)	9.2(17)
S1I	25.2(5)	22.5(6)	36.9(6)	-0.2(5)	-2.3(4)	0.1(4)
F1I	62(2)	40(2)	43.9(18)	10.0(16)	-0.1(16)	-15.3(17)
F2I	36.8(17)	60(2)	49.4(19)	-19.1(18)	5.0(14)	5.1(16)
F3I	28.0(14)	49(2)	42.1(16)	0.9(15)	-7.9(12)	-6.9(14)
011	31.6(17)	22.8(18)	48(2)	-3.6(16)	-5.8(15)	-2.0(14)
021	38.5(19)	40(2)	44(2)	-5.1(19)	3.3(16)	7.9(18)
031	43(2)	25.9(19)	51(2)	1.1(18)	-7.3(17)	-4.7(16)
C1I	27(2)	30(3)	36(2)	-2(2)	1.5(19)	-2(2)
S1K	24.4(5)	22.3(6)	27.1(5)	-3.2(5)	1.3(4)	1.3(4)
F1K	68(3)	79(3)	49(2)	-30(2)	-12.0(18)	-15(2)
F2K	64(2)	63(2)	32.7(16)	-3.9(17)	14.0(15)	7(2)
F3K	75(3)	64(3)	38.9(18)	4.6(18)	-11.3(17)	23(2)
01K	37 3(19)	19 2(17)	42 4(19)	-1.3(15)	5,3(15)	0.0(14)
02K	26 7(17)	39(2)	40 1(18)	-10 6(17)	20(14)	0 4(15)
03K	28 4(16)	23 0(17)	38 1/18)	1 2(15)	(112)	2 6(12)
C1K	<u>78(3)</u>	23.0(17) A7(A)	30(2)	-6(3)	-2(2)	2(2)
CTIV	-0(3)		JU(2)	0(3)	~\~/	5(5)

S1F	22.6(5)	22.7(6)	25.9(5)	-1.3(4)	-0.6(4)	1.8(4)
F1F	74(3)	39(2)	46.0(19)	-10.7(16)	-28.0(18)	2.4(18)
F2F	65(2)	73(3)	33.7(16)	10.7(18)	17.9(16)	30(2)
F3F	47.1(17)	42.7(19)	34.0(15)	3.6(15)	-7.0(13)	13.7(16)
O1F	32.4(17)	23.3(17)	31.7(16)	0.5(14)	-2.5(13)	1.0(14)
O2F	27.5(17)	40(2)	35.3(18)	-2.8(16)	4.0(14)	4.3(15)
O3F	28.2(16)	24.5(18)	45(2)	0.2(16)	-3.6(14)	0.3(14)
C1F	41(3)	35(3)	26(2)	-1(2)	-1(2)	11(2)
S1H	26.4(6)	33.8(7)	33.9(6)	-4.2(5)	-2.6(4)	3.5(5)
F1H	142(5)	33(2)	49(2)	1.8(18)	-23(3)	0(2)
F2H	69(3)	85(3)	48(2)	-15(2)	18.9(19)	-36(2)
F3H	60(2)	47(2)	36.5(17)	-7.2(16)	-5.7(15)	-10.1(17)
O1H	39.4(19)	31(2)	43(2)	-5.9(17)	-9.7(16)	4.2(16)
O2H	30(2)	90(4)	43(2)	-15(2)	-3.8(16)	12(2)
O3H	33.0(19)	34(2)	52(2)	3.0(19)	-3.3(16)	-5.3(16)
C1H	59(4)	34(3)	33(3)	-5(2)	1(2)	-10(3)
S1E	29.5(6)	21.4(6)	36.0(6)	0.8(5)	-1.9(5)	0.0(5)
F1E	83(3)	40(2)	43.1(18)	8.0(17)	-1.9(18)	-17(2)
F2E	44.2(19)	58(2)	49.4(19)	-16.4(18)	4.6(15)	6.5(17)
F3E	39.5(17)	50(2)	46.3(18)	-1.6(17)	-11.4(14)	-3.9(16)
O1E	35.5(19)	28(2)	42.3(19)	-2.6(16)	-9.5(15)	-0.8(15)
O2E	37.1(19)	41(2)	46(2)	-3.9(19)	2.9(16)	5.4(18)
O3E	50(2)	24.2(19)	50(2)	3.2(18)	-6.9(18)	-6.3(17)
C1E	35(3)	30(3)	37(3)	0(2)	-3(2)	-5(2)
S1FL	23.7(5)	30.7(6)	31.3(6)	-1.3(5)	-3.7(4)	0.7(5)
F1FL	35.2(17)	90(3)	47.5(19)	8(2)	1.3(14)	-13.2(19)
F2FL	55(2)	108(4)	40.1(19)	-8(2)	-7.2(17)	-40(2)
F3FL	87(3)	76(3)	67(3)	33(3)	-6(2)	23(3)
O1FL	36.0(19)	33(2)	46(2)	0.8(18)	-0.8(16)	-7.0(16)
O2FL	39(2)	27.2(19)	46(2)	-4.5(17)	-14.0(16)	3.0(15)
O3FL	27.9(19)	69(3)	42(2)	-4(2)	-4.5(15)	8.1(19)
C1FL	28(2)	56(4)	34(3)	4(3)	-6(2)	-7(2)
01N	39(13)	31(13)	46(14)	6(11)	10(10)	-4(10)

Table S26 Bond lengths for $[(R,R)-\mathbf{1}\cdot Zn\cdot 2H_2O]^{2+}\cdot 2OTf^{-}$

Atom	Atom	Length (Å)	Atom	Atom	Length (Å)
Zn1B	O1B	2.257(4)	Zn1D	N1D	2.105(4)
Zn1B	O2B	2.251(3)	Zn1D	N2D	2.082(4)
Zn1B	O3B	2.022(3)	F1D	C12D	1.327(7)
Zn1B	O4B	2.034(3)	F2D	C12D	1.343(6)
Zn1B	N1B	2.146(4)	F3D	C12D	1.326(6)
Zn1B	N2B	2.144(4)	F4D	C14D	1.327(6)
F1B	C12B	1.331(7)	F5D	C14D	1.353(6)
F2B	C12B	1.334(7)	F6D	C14D	1.333(6)
F3B	C12B	1.322(8)	O1D	C11D	1.402(6)
F4B	C14B	1.333(6)	O2D	C13D	1.403(6)
F5B	C14B	1.339(7)	N1D	C1D	1.327(7)
F6B	C14B	1.325(7)	N1D	C5D	1.347(7)

O1B	C11B	1.401(7)	N2D	C6D	1.352(6)
O2B	C13B	1.401(6)	N2D	C10D	1.328(6)
N1B	C1B	1.322(7)	C1D	C2D	1.400(7)
N1B	C5B	1.338(7)	C1D	C11D	1.509(8)
N2B	C6B	1.345(6)	C2D	C3D	1.382(8)
N2B	C10B	1.343(6)	C3D	C4D	1.372(8)
C1B	C2B	1.398(8)	C4D	C5D	1.396(7)
C1B	C11B	1.528(8)	C5D	C6D	1.490(7)
C2B	C3B	1.383(9)	C6D	C7D	1.387(7)
C3B	C4B	1.381(8)	C7D	C8D	1.377(8)
C4B	C5B	1.388(8)	C8D	C9D	1.382(8)
C5B	C6B	1.488(6)	C9D	C10D	1.397(7)
C6B	C7B	1.389(7)	C10D	C13D	1.519(7)
C7B	C8B	1.382(8)	C11D	C12D	1.546(7)
C8B	C9B	1.384(8)	C13D	C14D	1.522(7)
C9B	C10B	1.385(8)	S11	011	1.438(5)
C10B	C13B	1.510(7)	S11	021	1.429(7)
C11B	C12B	1.535(7)	S11	031	1.432(6)
C13B	C14B	1.525(7)	S11	C11	1.802(9)
7n1C	010	2,226(3)	F11	C11	1.332(9)
Zn1C	020	2,239(4)	F21	C11	1.316(10)
Zn1C	030	2.028(3)	F31	C11	1.325(9)
Zn1C	040	2 018(3)	S11	011	1 438(16)
Zn1C	N1C	2.010(3)	S1L	021	1 460(18)
Zn1C	N2C	2.137(1)	S1L	031	1 403(18)
F1C	C12C	1 335(6)	S1L	C1I	1 82(2)
F2C	C12C	1.332(7)	51L F1I	C1L	1.326(19)
F3C	C12C	1.343(7)	F2I	C1L	1.311(19)
F4C	C14C	1.328(6)	F3I	C1L	1.331(19)
F5C	C14C	1.342(7)	51G	016	1.445(5)
F6C	C14C	1.333(7)	51G	026	1,442(5)
010	C11C	1 404(6)	51G	036	1 439(5)
020	C13C	1 409(6)	51G	C1G	1 821(8)
N1C	C1C	1 334(6)	51G F1G	C1G	1 324(8)
N1C	C5C	1 339(7)	F2G	C1G	1 323(9)
N2C		1 360(7)	F3G	C1G	1 319(9)
N2C	C10C	1 323(7)	51M	01M	1.315(5) 1.42(5)
C1C	C2C	1 383(7)	S1M	02M	1 37(5)
C1C	C11C	1.505(7)	S1M S1M	02101	1 20(5)
C2C	C11C	1.313(7) 1 270(8)	S1M S1M	C1M	1.33(3)
C2C		1,379(0)	51M E1M		1.95(8)
	C4C	1.301(0)	E2M		1.20(4)
	CSC	1.393(7)	FZIVI		1.20(4)
	COC	1.400(7)	F 5 I VI		1.27(4)
		1,200(7)	51I C1I	021	1,447(4)
		1,200(0)	211		1,430(4)
		1.30U(9)	211		1,440(4)
C10C	C10C	1.391(8) 1.527(7)	211		1.828(5)
CIUC	CT3C	1.52/(/)	FTI		1.324(b)

C11C	C12C	1.523(7)	F2I	C1I	1.320(6)
C13C	C14C	1.532(7)	F3I	C1I	1.338(6)
Zn1A	01A	2.483(4)	S1K	01K	1.440(4)
Zn1A	O2A	2.368(3)	S1K	02К	1.446(4)
Zn1A	O3A	1.975(3)	S1K	ОЗК	1.444(4)
Zn1A	O4A	1.953(3)	S1K	C1K	1.843(6)
Zn1A	N1A	2.101(4)	F1K	C1K	1.316(8)
Zn1A	N2A	2.087(4)	F2K	C1K	1.314(7)
F1A	C12A	1.334(6)	F3K	C1K	1.328(8)
F2A	C12A	1.342(6)	S1F	O1F	1.447(4)
F3A	C12A	1.329(6)	S1F	O2F	1.449(3)
F4A	C14A	1.323(7)	S1F	O3F	1.449(4)
F5A	C14A	1.323(7)	S1F	C1F	1.829(5)
F6A	C14A	1.344(7)	F1F	C1F	1.330(7)
01A	C11A	1.397(6)	F2F	C1F	1.320(6)
O2A	C13A	1.403(6)	F3F	C1F	1.329(6)
N1A	C1A	1.331(6)	S1H	O1H	1.449(4)
N1A	C5A	1.357(6)	S1H	O2H	1.442(4)
N2A	C6A	1.354(6)	S1H	O3H	1.440(4)
N2A	C10A	1.325(6)	S1H	C1H	1.831(6)
C1A	C2A	1.375(7)	F1H	C1H	1.336(8)
C1A	C11A	1.525(6)	F2H	C1H	1.312(8)
C2A	C3A	1.395(7)	F3H	C1H	1.319(7)
C3A	C4A	1.383(7)	S1E	O1E	1.444(4)
C4A	C5A	1.383(7)	S1E	O2E	1.442(4)
C5A	C6A	1.488(7)	S1E	O3E	1.440(4)
C6A	C7A	1.384(7)	S1E	C1E	1.840(6)
C7A	C8A	1.380(7)	F1E	C1E	1.323(7)
C8A	C9A	1.387(8)	F2E	C1E	1.319(7)
C9A	C10A	1.403(7)	F3E	C1E	1.330(6)
C10A	C13A	1.521(7)	S1FL	O1FL	1.440(4)
C11A	C12A	1.544(6)	S1FL	O2FL	1.454(4)
C13A	C14A	1.524(7)	S1FL	O3FL	1.443(4)
Zn1D	O1D	2.475(4)	S1FL	C1FL	1.830(6)
Zn1D	O2D	2.393(3)	F1FL	C1FL	1.319(7)
Zn1D	O3D	1.973(3)	F2FL	C1FL	1.310(7)
Zn1D	O4D	1.948(4)	F3FL	C1FL	1.331(8)

Table S27 Bond angles for $[(R,R)-1\cdot Zn\cdot 2H_2O]^{2+}\cdot 2OTf^{-}$

Atom	Atom	Atom	Angle (°)	Atom	Atom	Atom	Angle (°)
O2B	Zn1B	O1B	142.21(15)	O3D	Zn1D	O1D	81.55(13)
O3B	Zn1B	O1B	87.18(14)	O3D	Zn1D	O2D	85.68(13)
O3B	Zn1B	O2B	87.66(14)	O3D	Zn1D	N1D	108.96(15)
O3B	Zn1B	O4B	160.65(16)	O3D	Zn1D	N2D	101.90(14)
O3B	Zn1B	N1B	97.00(14)	O4D	Zn1D	O1D	77.96(15)
O3B	Zn1B	N2B	98.42(15)	O4D	Zn1D	O2D	79.55(13)
O4B	Zn1B	O1B	86.96(15)	O4D	Zn1D	O3D	124.19(16)
O4B	Zn1B	O2B	85.72(14)	O4D	Zn1D	N1D	110.74(15)

O4B	Zn1B	N1B	98.59(15)	O4D	Zn1D	N2D	122.62(16)
O4B	Zn1B	N2B	96.51(15)	N1D	Zn1D	O1D	68.92(15)
N1B	Zn1B	O1B	71.49(15)	N1D	Zn1D	O2D	149.35(15)
N1B	Zn1B	O2B	146.29(16)	N2D	Zn1D	01D	147.20(15)
N2B	Zn1B	O1B	147.00(15)	N2D	Zn1D	O2D	71.20(14)
N2B	Zn1B	O2B	70.75(15)	N2D	Zn1D	N1D	79.33(16)
N2B	Zn1B	N1B	75.54(16)	C11D	01D	Zn1D	113.5(3)
C11B	O1B	Zn1B	119.7(3)	C13D	O2D	Zn1D	114.9(3)
C13B	O2B	Zn1B	120.7(3)	C1D	N1D	Zn1D	126.2(4)
C1B	N1B	Zn1B	123.6(4)	C1D	N1D	C5D	120.0(4)
C1B	N1B	C5B	119.5(5)	C5D	N1D	Zn1D	113.8(3)
C5B	N1B	Zn1B	116.8(3)	C6D	N2D	Zn1D	114.7(3)
C6B	N2B	Zn1B	117.4(3)	C10D	N2D	Zn1D	125.5(3)
C10B	N2B	Zn1B	123.9(3)	C10D	N2D	C6D	119.7(4)
C10B	N2B	C6B	118.7(4)	N1D	C1D	C2D	121.8(5)
N1B	C1B	C2B	122.1(5)	N1D	C1D	C11D	117.9(5)
N1B	C1B	C11B	115.4(5)	C2D	C1D	C11D	120.3(5)
C2B	C1B	C11B	122.5(5)	C3D	C2D	C1D	117.7(5)
C3B	C2B	C1B	117.8(5)	C4D	C3D	C2D	120.9(5)
C4B	C3B	C2B	120.4(5)	C3D	C4D	C5D	118.1(5)
C3B	C4B	C5B	117.6(6)	N1D	C5D	C4D	121.4(5)
N1B	C5B	C4B	122.4(5)	N1D	C5D	C6D	116.3(4)
N1B	C5B	C6B	115.8(4)	C4D	C5D	C6D	122.2(5)
C4B	C5B	C6B	121.7(5)	N2D	C6D	C5D	115.5(4)
N2B	C6B	C5B	114.4(4)	N2D	C6D	C7D	121.5(5)
N2B	C6B	C7B	122.2(5)	C7D	C6D	C5D	123.0(5)
C7B	C6B	C5B	123.4(5)	C8D	C7D	C6D	118.8(5)
C8B	C7B	C6B	118.5(5)	C7D	C8D	C9D	119.9(5)
C7B	C8B	C9B	119.6(5)	C8D	C9D	C10D	118.5(5)
C8B	C9B	C10B	118.7(5)	N2D	C10D	C9D	121.7(5)
N2B	C10B	C9B	122.3(5)	N2D	C10D	C13D	116.7(4)
N2B	C10B	C13B	114.9(4)	C9D	C10D	C13D	121.6(4)
C9B	C10B	C13B	122.8(5)	O1D	C11D	C1D	108.5(4)
O1B	C11B	C1B	109.8(4)	01D	C11D	C12D	111.0(4)
O1B	C11B	C12B	108.6(5)	C1D	C11D	C12D	109.5(4)
C1B	C11B	C12B	111.7(5)	F1D	C12D	F2D	107.0(4)
F1B	C12B	F2B	106.8(5)	F1D	C12D	C11D	112.7(4)
F1B	C12B	C11B	111.2(5)	F2D	C12D	C11D	110.7(5)
F2B	C12B	C11B	110.7(5)	F3D	C12D	F1D	107.5(5)
F3B	C12B	F1B	107.1(5)	F3D	C12D	F2D	107.9(4)
F3B	C12B	F2B	108.5(5)	F3D	C12D	C11D	110.7(5)
F3B	C12B	C11B	112.2(5)	O2D	C13D	C10D	110.8(4)
O2B	C13B	C10B	109.3(4)	02D	C13D	C14D	107.3(4)
02B	C13B	C14B	108.3(4)	C10D	C13D	C14D	112.6(4)
C10B	C13B	C14B	112,5(4)	F4D	C14D	F5D	106.8(4)
F4B	C14B	F5B	106.8(5)	F4D	C14D	F6D	107.7(5)
F4B	C14B	C13B	112.1(4)	F4D	C14D	C13D	111.9(4)
F5B	C14B	C13B	111.4(5)	F5D	C14D	C13D	112.5(5)
		-	x · /	-		-	- \ - /

F6B	C14B	F4B	107.0(5)	F6D	C14D	F5D	106.5(4)
F6B	C14B	F5B	107.9(4)	F6D	C14D	C13D	111.1(4)
F6B	C14B	C13B	111.4(5)	O1J	S1J	C1J	102.8(4)
01C	Zn1C	02C	140.48(14)	O2J	S1J	01J	115.3(4)
03C	Zn1C	01C	84.38(14)	O2J	S1J	O3J	113.3(4)
03C	Zn1C	02C	86.30(15)	02J	S1J	C1J	104.7(4)
030	Zn1C	N1C	97.27(15)	031	S1J	011	115.1(3)
030	Zn1C	N2C	99.43(15)	031	S11	C11	103.6(4)
040	Zn1C	010	85.56(14)	F11	C11	S11	110.3(6)
040	Zn1C	020	87 88(14)	F21	C11	S11	111 1(6)
040	Zn1C	030	156 25(16)	F21	C11	51J	109 5(8)
	Zn1C 7n1C	N1C	99.83(14)	F21	C11	F31	107 2(8)
	Zn1C 7n1C	N2C	100 60(14)	F21	C11	۲33 ۲1	111 3(6)
N1C	Zn1C 7n1C	010	100.00(14)	E31		511	107.2(7)
N1C	Zn1C 7n1C	010	1/7 00/1E)	011	C1J C1I		107.3(7)
NIC	ZIIIC 7n1C	020	147.90(15)	011	51L 611		105 0(12)
NZC	Zn1C	010	147.55(15)	011	SIL		105.0(12)
NZC	Znic	020	71.92(15)	021	SIL		103.7(12)
N2C	Znic	N1C	/6.11(16)	03L	SIL	01L	121.0(14)
C11C	010	Zn1C	120.6(3)	03L	S1L	O2L	110./(14)
C13C	02C	Zn1C	119.7(3)	O3L	S1L	C1L	102.8(12)
C1C	N1C	Zn1C	123.5(4)	F1L	C1L	S1L	111.3(17)
C1C	N1C	C5C	119.2(4)	F1L	C1L	F3L	106.9(16)
C5C	N1C	Zn1C	117.1(3)	F2L	C1L	S1L	111.7(16)
C6C	N2C	Zn1C	116.7(3)	F2L	C1L	F1L	108.5(18)
C10C	N2C	Zn1C	123.6(4)	F2L	C1L	F3L	106.8(17)
C10C	N2C	C6C	119.6(4)	F3L	C1L	S1L	111.4(16)
N1C	C1C	C2C	122.4(5)	01G	S1G	C1G	104.3(3)
N1C	C1C	C11C	115.0(4)	02G	S1G	01G	114.1(3)
C2C	C1C	C11C	122.6(4)	02G	S1G	C1G	103.2(3)
C3C	C2C	C1C	118.2(5)	03G	S1G	01G	116.0(3)
C2C	C3C	C4C	120.3(5)	03G	S1G	02G	114.4(3)
C3C	C4C	C5C	117.8(5)	03G	S1G	C1G	102.5(3)
N1C	C5C	C4C	122.0(5)	F1G	C1G	S1G	110.7(6)
N1C	C5C	C6C	115.0(4)	F2G	C1G	S1G	110.1(5)
C4C	C5C	C6C	123.0(5)	F2G	C1G	F1G	108.4(6)
N2C	C6C	C5C	114.9(4)	F3G	C1G	S1G	110.9(5)
N2C	C6C	C7C	121.8(5)	F3G	C1G	F1G	108,1(6)
C7C	C6C	C5C	123.2(5)	F3G	C1G	F2G	108.1(0) 108.6(7)
	C7C	223	117 6(5)	01M	S1M	C1M	100(2)
		C7C	120 7(5)	02M	S1M		102(3)
		C10C	118 0(5)	0210	S1M	O3M	133(3)
NOC	C10C		122 2(5)	0210	S1M		104(2)
NAC	C10C	C12C	122.2(3)	02101			104(3)
NZC COC	C10C	C13C	113.0(5)	03101			107(3)
010			100 4(4)				107(3)
010			109.4(4)			27IAI	107(4)
		0120	107.9(4)	FIM	CIM	FZIVI	113(4)
	C11C	C12C	112.2(4)	F1M	CIM	F3M	111(4)
F1C	C12C	F3C	107.2(4)	F2M	C1M	S1M	106(4)

F1C	C12C	C11C	112.5(4)	F2M	C1M	F3M	111(4)
F2C	C12C	F1C	106.7(5)	F3M	C1M	S1M	109(4)
F2C	C12C	F3C	107.2(4)	011	S1I	C1I	103.2(2)
F2C	C12C	C11C	111.6(4)	021	S1I	011	115.6(2)
F3C	C12C	C11C	111.4(5)	021	S1I	031	115.4(3)
02C	C13C	C10C	109.1(4)	021	S1I	C1I	102.9(2)
02C	C13C	C14C	108.2(4)	031	S1I	011	113.2(2)
C10C	C13C	C14C	110.6(4)	031	S1I	C1I	104.2(3)
F4C	C14C	F5C	107.6(5)	F1I	C1I	S1I	110.9(4)
F4C	C14C	F6C	106.8(4)	F1I	C1I	F3I	108.1(4)
F4C	C14C	C13C	112.7(4)	F21	C1I	S1I	111.0(4)
F5C	C14C	C13C	110.5(4)	F21	C1I	F11	108.9(4)
F6C	C14C	F5C	107.5(5)	F21	C1I	F31	107.4(4)
F6C	C14C	C13C	111.4(4)	F3I	C1I	S1I	110.4(3)
O2A	Zn1A	01A	142.24(12)	01K	S1K	O2K	116.0(2)
03A	Zn1A	01A	82.15(12)	O1K	S1K	O3K	114.1(2)
03A	Zn1A	02A	86.87(12)	01K	S1K	C1K	104.1(3)
03A	Zn1A	N1A	109 40(14)	02K	S1K	C1K	103.2(3)
03A	Zn1A	N2A	100.76(14)	03K	S1K	02K	113.7(2)
04A	Zn1/(01A	77.64(14)	O3K	S1K	C1K	103.6(3)
04A	Zn1A	02A	78.92(13)	F1K	C1K	S1K	110.0(4)
044	Zn1A	034	123 83(15)	F1K	C1K	F3K	108 9(5)
044	Zn1A	N1A	110 69(14)	F2K	C1K	S1K	109 4(4)
044	Zn1Λ 7n1Δ	N2A	124 03(16)	F2K		F1K	109 1(5)
N1A	Zn1/(014	68 67(14)	F2K	C1K	F3K	109.6(5)
N1A	Zn1Λ 7n1Δ	024	148 33(14)	F3K		S1K	109.8(4)
N2A	Zn1/(7n1A	014	146 57(14)	01F	S1F	02F	105.0(+) 116.0(2)
N2A	Zn1/(024	70 99(14)	01F	51F	03F	114 1(2)
N2A	Zn1A	N1A	79 18(16)	01F	51F	C1F	104 2(2)
C11A	014	7n1A	112 9(3)	02F	S1F	03F	113 9(2)
C13A	024	7n1A	116 2(3)	02F	51F	C1F	102 4(2)
C1A	N1A	Zn1Δ	126 9(3)	03F	S1F	C1F	104 1(3)
C1A	N1A	C5A	118 9(4)	F1F	C1F	S1F	109.1(3)
C5A	N1A	C3Α 7n1Δ	114 1(3)	F2F	C1F	S1F	105.0(+) 110 5(4)
	NIA N2A	Zn1Α 7n1Δ	114 6(3)	F2F	C1F	F1F	109 0(5)
		Zn1Λ 7n1Δ	125 0(3)	F2F	C1F	F3F	108.8(5)
			120.0(3)	F3F	C1F	S1F	100.0(3) 110.2(4)
	Ω2A C1Δ	C2A	123.0(5)	F3F	C1F	F1F	10.2(+) 108.7(4)
		C2A	125.0(5) 116 5(4)	01H	С11 S1H	г <u>т</u> г С1Н	103 6(3)
C2A			120.5(4)	02H	51П \$1Н	01H	105.0(5) 115.1(3)
	C1A	C3V	118 1(5)	0211	51П \$1Н	C1H	102 8(3)
	C2A	C2A	110.1(5)	0211	51H \$1H	01H	102.0(3) 11/12(2)
C5A		C2A	118 9(5)	03H	51П \$1Н	02H	114.2(2)
	C4A	C1A	110.9(3) 121 5(4)	0311	5111 С1Ц	0211 C1H	104 6(2)
N1A	C5A	C4A C6A	115 8(1)	5311 E1H	С1H	С111 С111	109 2(1)
	C5A	CGA	122 7(A)	г <u>т п</u> Е Э Ц	C1H	51П С1Ц	110 0/E
			115 5(1)	г2П с ว ⊔		31日 E1日	100 E(C)
			121 2(4)				100 0(5)
INZA	LOA	U/A	121.3(4)	rzH	CTH	гоп	109'Q(2)

C7A	C6A	C5A	123.2(4)	F3H	C1H	S1H	111.4(4)
C8A	C7A	C6A	118.7(5)	F3H	C1H	F1H	107.3(5)
C7A	C8A	C9A	120.2(5)	O1E	S1E	C1E	103.6(2)
C8A	C9A	C10A	117.9(5)	O2E	S1E	O1E	115.8(2)
N2A	C10A	C9A	121.7(5)	O2E	S1E	C1E	103.0(2)
N2A	C10A	C13A	116.6(4)	O3E	S1E	O1E	113.2(2)
C9A	C10A	C13A	121.6(4)	O3E	S1E	O2E	115.3(3)
01A	C11A	C1A	109.1(4)	O3E	S1E	C1E	103.8(3)
01A	C11A	C12A	111.5(4)	F1E	C1E	S1E	109.9(4)
C1A	C11A	C12A	110.3(4)	F1E	C1E	F3E	108.6(5)
F1A	C12A	F2A	107.3(4)	F2E	C1E	S1E	110.7(4)
F1A	C12A	C11A	112.7(4)	F2E	C1E	F1E	109.5(5)
F2A	C12A	C11A	110.5(4)	F2E	C1E	F3E	107.7(5)
F3A	C12A	F1A	107.9(4)	F3E	C1E	S1E	110.5(4)
F3A	C12A	F2A	107.6(4)	O1FL	S1FL	O2FL	114.1(2)
F3A	C12A	C11A	110.7(4)	O1FL	S1FL	O3FL	115.7(3)
02A	C13A	C10A	109.9(4)	O1FL	S1FL	C1FL	104.6(3)
02A	C13A	C14A	107.5(4)	O2FL	S1FL	C1FL	102.5(3)
C10A	C13A	C14A	113.7(4)	O3FL	S1FL	O2FL	114.8(3)
F4A	C14A	F6A	107.4(5)	O3FL	S1FL	C1FL	102.8(2)
F4A	C14A	C13A	112.8(5)	F1FL	C1FL	S1FL	111.4(4)
F5A	C14A	F4A	107.6(5)	F1FL	C1FL	F3FL	108.1(5)
F5A	C14A	F6A	106.7(5)	F2FL	C1FL	S1FL	111.4(4)
F5A	C14A	C13A	112.3(5)	F2FL	C1FL	F1FL	107.7(5)
F6A	C14A	C13A	109.8(4)	F2FL	C1FL	F3FL	108.0(5)
02D	Zn1D	01D	141.35(13)	F3FL	C1FL	S1FL	110.2(5)

Table S28 Hydrogen bonds for $[(R,R)-\mathbf{1}\cdot Zn\cdot 2H_2O]^{2+}\cdot 2OTf^{-}$

	1 0		2 - 1	-		
D	Н	А	d(D-H) (Å)	d(H-A) (Å)	d(D-A) (Å)	D-H-A (°)
O1B	H1B	O1FL ¹	0.879(13)	1.86(2)	2.699(5)	160(5)
O3B	H3BA	O2K	0.85	1.89	2.736(5)	170.7
O3B	H3BB	$O1G^1$	0.85	2.27	2.794(6)	119.8
O3B	H3BB	O2M ¹	0.85	2.26	2.96(5)	139.8
O3B	H3BB	011	0.85	2.27	2.907(5)	131.4
O4B	H4BA	O3G	0.85	1.92	2.740(7)	161.0
O4B	H4BA	O1M	0.85	1.91	2.63(4)	141.4
O4B	H4BB	O3FL	0.85	1.95	2.795(6)	172.3
01C	H1C	O3J ²	0.84	1.83	2.608(6)	154.1
01C	H1C	O1N ²	0.84	1.85	2.66(2)	161.4
02C	H2C	O3H ³	0.81(7)	1.91(6)	2.688(6)	161(6)
O3C	H3CA	O1J	0.85	1.92	2.754(7)	164.4
O3C	H3CA	O2L	0.85	1.84	2.55(2)	139.6
O3C	H3CB	O2H ²	0.85	1.92	2.770(6)	172.9
O4C	H4CA	O2F ²	0.85	1.87	2.699(5)	162.4
O4C	H4CB	O2J ²	0.85	2.28	2.853(7)	124.4
O4C	H4CB	O3L ²	0.85	2.14	2.840(18)	138.9
O4C	H4CB	O1E ²	0.85	2.39	2.933(5)	122.4
01A	H1A	O1K ⁴	0.872(13)	1.87(2)	2.724(5)	166(5)

02A	H2A	O3K⁵	0.877(13)	1.96(3)	2.719(5)	143(3)		
O3A	H3AA	01I ⁴	0.85	1.86	2.706(5)	177.3		
03A	H3AB	O2FL ⁶	0.85	1.95	2.744(5)	153.9		
01D	H1D	O1F	0.881(13)	1.862(15)	2.732(5)	169(3)		
O2D	H2D	O3F ⁷	0.881(13)	1.95(3)	2.728(5)	147(4)		
O3D	H3DA	O1E	0.85	1.86	2.707(5)	175.9		
O3D	H3DB	O1H ²	0.85	1.97	2.764(5)	155.0		
C7D	H7D	O2F ³	0.95	2.55	3.412(6)	150.9		
O2B	H2B	O2G ¹	0.99(8)	1.76(8)	2.642(6)	147(7)		
¹ 1-X,-1/2+Y,2-Z; ² 1-X,-1/2+Y,1-Z; ³ +X,-1+Y,+Z; ⁴ +X,1+Y,+Z; ⁵ 2-X,1/2+Y,2-Z; ⁶ 1-X,1/2+Y,2-Z;								
⁷ 2-X,-1/2+	Y,1-Z							

Table S29 Torsion angles for $[(R,R)-\mathbf{1}\cdot Zn\cdot 2H_2O]^{2+}\cdot 2OTf^{-}$

А	В	С	D	Angle (°)	А	В	С	D	Angle (°)
Zn1B	O1B	C11B	C1B	0.1(5)	C5A	C6A	C7A	C8A	178.7(4)
Zn1B	O1B	C11B	C12B	-122.3(4)	C6A	N2A	C10A	C9A	-3.0(6)
Zn1B	O2B	C13B	C10B	-6.9(5)	C6A	N2A	C10A	C13A	174.0(4)
Zn1B	O2B	C13B	C14B	-129.7(3)	C6A	C7A	C8A	C9A	-1.8(7)
Zn1B	N1B	C1B	C2B	178.2(4)	C7A	C8A	C9A	C10A	1.8(7)
Zn1B	N1B	C1B	C11B	-0.7(6)	C8A	C9A	C10A	N2A	0.6(7)
Zn1B	N1B	C5B	C4B	-177.7(4)	C8A	C9A	C10A	C13A	-176.3(4)
Zn1B	N1B	C5B	C6B	1.0(5)	C9A	C10A	C13A	O2A	-178.2(4)
Zn1B	N2B	C6B	C5B	0.7(5)	C9A	C10A	C13A	C14A	-57.7(6)
Zn1B	N2B	C6B	C7B	-179.4(4)	C10A	N2A	C6A	C5A	-176.4(4)
Zn1B	N2B	C10B	C9B	-179.5(4)	C10A	N2A	C6A	C7A	3.1(6)
Zn1B	N2B	C10B	C13B	-1.8(5)	C10A	C13A	C14A	F4A	-59.9(6)
O1B	C11B	C12B	F1B	66.7(6)	C10A	C13A	C14A	F5A	61.9(6)
O1B	C11B	C12B	F2B	-51.9(6)	C10A	C13A	C14A	F6A	-179.6(5)
O1B	C11B	C12B	F3B	-173.3(5)	C11A	C1A	C2A	C3A	179.0(4)
O2B	C13B	C14B	F4B	65.5(6)	Zn1D	01D	C11D	C1D	24.0(5)
O2B	C13B	C14B	F5B	-174.9(4)	Zn1D	01D	C11D	C12D	-96.4(4)
O2B	C13B	C14B	F6B	-54.4(6)	Zn1D	O2D	C13D	C10D	7.3(4)
N1B	C1B	C2B	C3B	-1.3(8)	Zn1D	O2D	C13D	C14D	-116.0(3)
N1B	C1B	C11B	O1B	0.4(6)	Zn1D	N1D	C1D	C2D	-178.4(4)
N1B	C1B	C11B	C12B	121.0(5)	Zn1D	N1D	C1D	C11D	1.6(6)
N1B	C5B	C6B	N2B	-1.2(6)	Zn1D	N1D	C5D	C4D	-179.6(4)
N1B	C5B	C6B	C7B	178.9(4)	Zn1D	N1D	C5D	C6D	1.9(5)
N2B	C6B	C7B	C8B	-1.6(7)	Zn1D	N2D	C6D	C5D	6.6(5)
N2B	C10B	C13B	O2B	5.4(6)	Zn1D	N2D	C6D	C7D	-173.3(3)
N2B	C10B	C13B	C14B	125.8(5)	Zn1D	N2D	C10D	C9D	174.5(3)
C1B	N1B	C5B	C4B	-0.3(7)	Zn1D	N2D	C10D	C13D	-7.5(6)
C1B	N1B	C5B	C6B	178.5(4)	01D	C11D	C12D	F1D	64.2(6)
C1B	C2B	C3B	C4B	1.0(9)	01D	C11D	C12D	F2D	-55.7(6)
C1B	C11B	C12B	F1B	-54.6(7)	01D	C11D	C12D	F3D	-175.3(4)
C1B	C11B	C12B	F2B	-173.2(5)	O2D	C13D	C14D	F4D	59.9(5)
C1B	C11B	C12B	F3B	65.4(6)	O2D	C13D	C14D	F5D	-179.8(4)
C2B	C1B	C11B	O1B	-178.6(5)	O2D	C13D	C14D	F6D	-60.6(5)
C2B	C1B	C11B	C12B	-58.0(7)	N1D	C1D	C2D	C3D	-1.9(8)
C2B	C3B	C4B	C5B	-0.4(8)	N1D	C1D	C11D	01D	-18.4(6)

C3B	C4B	C5B	N1B	0.0(8)	N1D	C1D	C11D	C12D	102.9(5)
C3B	C4B	C5B	C6B	-178.7(5)	N1D	C5D	C6D	N2D	-5.8(6)
C4B	C5B	C6B	N2B	177.6(4)	N1D	C5D	C6D	C7D	174.2(4)
C4B	C5B	C6B	C7B	-2.3(7)	N2D	C6D	C7D	C8D	-2.3(7)
C5B	N1B	C1B	C2B	1.0(7)	N2D	C10D	C13D	O2D	-1.0(6)
C5B	N1B	C1B	C11B	-178.0(4)	N2D	C10D	C13D	C14D	119.1(5)
C5B	C6B	C7B	C8B	178.3(5)	C1D	N1D	C5D	C4D	1.0(7)
C6B	N2B	C10B	C9B	-0.3(7)	C1D	N1D	C5D	C6D	-177.5(4)
C6B	N2B	C10B	C13B	177.3(4)	C1D	C2D	C3D	C4D	1.0(8)
C6B	C7B	C8B	C9B	0.8(8)	C1D	C11D	C12D	F1D	-55.6(6)
C7B	C8B	C9B	C10B	0.2(8)	C1D	C11D	C12D	F2D	-175.5(4)
C8B	C9B	C10B	N2B	-0.4(8)	C1D	C11D	C12D	F3D	64.9(6)
C8B	C9B	C10B	C13B	-177.9(5)	C2D	C1D	C11D	01D	161.6(5)
C9B	C10B	C13B	O2B	-176.9(4)	C2D	C1D	C11D	C12D	-77.2(6)
C9B	C10B	C13B	C14B	-56.5(6)	C2D	C3D	C4D	C5D	0.8(8)
C10B	N2B	C6B	C5B	-178.5(4)	C3D	C4D	C5D	N1D	-1.9(7)
C10B	N2B	C6B	C7B	1.4(7)	C3D	C4D	C5D	C6D	176.5(4)
C10B	C13B	C14B	F4B	-55.5(6)	C4D	C5D	C6D	N2D	175.8(4)
C10B	C13B	C14B	E5B	64.2(6)	C4D	C5D	C6D	C7D	-4.3(7)
C10B	C13B	C14B	F6B	-175.4(4)	C5D	N1D	C1D	C2D	0.9(7)
C11B	C1B	C2B	C3B	177.6(5)	C5D	N1D	C1D	C11D	-179.1(4)
7n1C	010	C11C	C1C	1.9(5)	C5D	C6D	C7D	C8D	177.7(4)
Zn1C	010	C11C	C12C	-120.5(4)	C6D	N2D	C10D	C9D	-0.9(6)
Zn1C	020	C13C	C10C	-4.1(5)	C6D	N2D	C10D	C13D	177.0(4)
Zn1C	020	C13C	C14C	-124.4(4)	C6D	C7D	C8D	C9D	0.3(7)
Zn1C	N1C	C1C	C2C	-175.6(4)	C7D	C8D	C9D	C10D	1.3(7)
Zn1C	N1C	C1C	C11C	2.8(5)	C8D	C9D	C10D	N2D	-1.0(7)
Zn1C	N1C	C5C	C4C	177.1(4)	C8D	C9D	C10D	C13D	-178.9(4)
Zn1C	N1C	C5C	C6C	-2.4(5)	C9D	C10D	C13D	02D	177.0(4)
Zn1C	N2C	C6C	C5C	2.4(5)	C9D	C10D	C13D	C14D	-62.9(6)
Zn1C	N2C	C6C	C7C	-176.4(3)	C10D	N2D	C6D	C5D	-177.4(4)
Zn1C	N2C	C10C	C9C	177.5(4)	C10D	N2D	C6D	C7D	2.6(6)
Zn1C	N2C	C10C	C13C	-2.5(6)	C10D	C13D	C14D	F4D	-62.3(6)
010	C11C	C12C	F1C	65.3(6)	C10D	C13D	C14D	F5D	58.0(6)
010	C11C	C12C	F2C	-54.5(5)	C10D	C13D	C14D	F6D	177.3(4)
010	C11C	C12C	F3C	-174.4(4)	C11D	C1D	C2D	C3D	178.1(5)
020	C13C	C14C	F4C	69.1(6)	01	S1J	C1J	F1.	59.5(7)
020	C13C	C14C	F5C	-170.4(4)	01	S1J	C1J	F21	-62.0(7)
020	C13C	C14C	F6C	-50.9(6)	011	S11	C11	F31	178.6(6)
N1C	C1C	C2C	C3C	-1.1(7)	021	S11	C11	F1I	-61.3(7)
N1C	C1C	C11C	010	-2.8(6)	021	S1J	C1J	F21	177.1(6)
N1C	C1C	C11C	C12C	116.9(5)	021	S11	C11	F31	57.7(7)
N1C	C5C	C6C	N2C	0.0(6)	031	S11	C11	F1I	179.7(6)
N1C	C5C	C6C	C7C	178.7(4)	031	S11	C11	F21	58.1(7)
N2C	C6C	C7C	C8C	0.1(7)	031	S11	C11	F31	-61 2(7)
N2C	C10C	C13C	020	4.1(6)	011	S11	C11	F1I	-57.4(18)
N2C	C10C	C13C	C14C	123.0(5)	011	S1L	C11	F2L	64.0(18)
C1C	N1C	C5C	C4C	1.5(7)	011	S11	C1L	F3I	-176.6(16)
C1C	N1C	C5C	C6C	-178.0(4)	021	S1L	C1L	F1L	-174.7(16)
	· ·							·	····· (/

C1C	C2C	C3C	C4C	1.5(8)	02L	S1L	C1L	F2L	-53.2(18)
C1C	C11C	C12C	F1C	-55.3(6)	02L	S1L	C1L	F3L	66.2(17)
C1C	C11C	C12C	F2C	-175.1(4)	O3L	S1L	C1L	F1L	70.0(18)
C1C	C11C	C12C	F3C	65.0(5)	O3L	S1L	C1L	F2L	-168.5(17)
C2C	C1C	C11C	01C	175.6(4)	O3L	S1L	C1L	F3L	-49.1(18)
C2C	C1C	C11C	C12C	-64.7(6)	01G	S1G	C1G	F1G	59.2(6)
C2C	C3C	C4C	C5C	-0.4(8)	01G	S1G	C1G	F2G	-60.6(6)
C3C	C4C	C5C	N1C	-1.1(7)	01G	S1G	C1G	F3G	179.2(5)
C3C	C4C	C5C	C6C	178.3(4)	02G	S1G	C1G	F1G	-60.3(5)
C4C	C5C	C6C	N2C	-179.4(4)	02G	S1G	C1G	F2G	179.9(5)
C4C	C5C	C6C	C7C	-0.7(7)	02G	S1G	C1G	F3G	59.6(6)
C5C	N1C	C1C	C2C	-0.3(7)	03G	S1G	C1G	F1G	-179.4(5)
C5C	N1C	C1C	C11C	178.1(4)	03G	S1G	C1G	F2G	60.8(5)
C5C	C6C	C7C	C8C	-178.6(4)	03G	S1G	C1G	F3G	-59.5(6)
C6C	N2C	C10C	C9C	2.4(7)	011	S1I	C1I	F1I	53.2(4)
C6C	N2C	C10C	C13C	-177.6(4)	011	S1I	C1I	F21	-68.0(4)
C6C	C7C	C8C	C9C	-0.6(8)	011	S1I	C1I	F3I	173.1(4)
C7C	C8C	C9C	C10C	1.9(8)	021	S1I	C1I	F1I	-67.4(4)
C8C	C9C	C10C	N2C	-2.9(8)	021	S1I	C11	F21	171.4(4)
C8C	C9C	C10C	C13C	177.1(5)	021	S11	C1I	F3I	52.4(4)
C9C	C10C	C13C	020	-175.9(4)	031	S11	C11	F1I	171.7(4)
C9C	C10C	C13C	C14C	-57.0(6)	031	S11	C11	F2I	50.5(4)
C10C	N2C	C6C	C5C	177.8(4)	031	S1I	C11	F3I	-68.5(4)
C10C	N2C	C6C	C7C	-0.9(7)	01K	S1K	C1K	F1K	59.8(5)
C10C	C13C	C14C	F4C	-50.3(6)	01K	S1K	C1K	F2K	-60.0(5)
C10C	C13C	C14C	F5C	70,1(6)	01K	S1K	C1K	F3K	179.6(4)
C10C	C13C	C14C	F6C	-170.4(4)	02K	S1K	C1K	F1K	-61.8(5)
C11C	C1C	C2C	C3C	-179.5(5)	02K	S1K	C1K	F2K	178.4(4)
Zn1A	01A	C11A	C1A	25.4(4)	O2K	S1K	C1K	F3K	58.1(5)
Zn1A	01A	C11A	C12A	-96.7(4)	03K	S1K	C1K	F1K	179.4(4)
Zn1A	02A	C13A	C10A	3.9(5)	03K	S1K	C1K	F2K	59.6(5)
Zn1A	02A	C13A	C14A	-120.3(4)	03K	S1K	C1K	F3K	-60.7(5)
Zn1A	N1A	C1A	C2A	177.1(3)	01F	S1F	C1F	F1F	54.6(4)
7n1A	N1A	C1A	C11A	-3.0(6)	01F	S1F	C1F	F2F	-65.5(5)
Zn1A	N1A	C5A	C4A	-176.3(3)	01F	S1F	C1F	F3F	174.2(4)
7n1A	N1A	C5A	C6A	3.6(5)	02F	S1F	C1F	F1F	-66.6(4)
7n1A	N2A	C6A	C5A	10.2(5)	02F	S1F	C1F	F2F	173.2(4)
7n1A	N2A	C6A	C7A	-170.3(3)	02F	S1F	C1F	F3F	52.9(4)
7n1A	N2A	C10A	C9A	169.7(3)	03F	S1F	C1F	F1F	174.5(4)
7n1A	N2A	C10A	C13A	-13 3(5)	03F	S1F	C1F	F2F	54 3(5)
01A	C11A	C12A	F1A	63,7(5)	03F	S1F	C1F	F3F	-66.0(4)
01A	C11A	C12A	F2A	-56.3(5)	01H	S1H	C1H	F1H	56.1(5)
014	C11A	C12A	F3A	-175 3(4)	01H	S1H	C1H	F2H	-63 7(5)
024	C13A	C14A	F4A	61 9(6)	01H	S1H	C1H	F3H	174 9(4)
024	C13A	C144	F5Δ	-176 3(5)	02H	S1H	C1H	F1H	-64 0(5)
024	C13A	C144	F6A	-57 8(6)	0211	S1H	C1H	F2H	176 1(5)
N1A	C1A	C2A	C3A	-1.0(7)	02H	S1H	C1H	F3H	54.7(5)
N1A	C1A	C11A	01A	-17.0(6)	03H	S1H	C1H	F1H	176.0(5)
N1A	C1A	C11A	C12A	105.8(5)	03H	S1H	C1H	F2H	56.1(5)
		~ / `	~/			~ _ · ·	~	· —· ·	(-)

N1A	C5A	C6A	N2A	-9.3(6)	O3H	S1H	C1H	F3H	-65.3(5)
N1A	C5A	C6A	C7A	171.3(4)	O1E	S1E	C1E	F1E	53.4(4)
N2A	C6A	C7A	C8A	-0.7(6)	O1E	S1E	C1E	F2E	-67.6(4)
N2A	C10A	C13A	O2A	4.7(6)	O1E	S1E	C1E	F3E	173.2(4)
N2A	C10A	C13A	C14A	125.3(5)	O2E	S1E	C1E	F1E	-67.6(4)
C1A	N1A	C5A	C4A	1.8(6)	O2E	S1E	C1E	F2E	171.4(4)
C1A	N1A	C5A	C6A	-178.3(4)	O2E	S1E	C1E	F3E	52.2(4)
C1A	C2A	C3A	C4A	1.9(7)	O3E	S1E	C1E	F1E	171.9(4)
C1A	C11A	C12A	F1A	-57.6(5)	O3E	S1E	C1E	F2E	50.8(4)
C1A	C11A	C12A	F2A	-177.6(4)	O3E	S1E	C1E	F3E	-68.3(4)
C1A	C11A	C12A	F3A	63.4(5)	O1FL	S1FL	C1FL	F1FL	63.3(5)
C2A	C1A	C11A	01A	163.0(4)	O1FL	S1FL	C1FL	F2FL	-56.9(5)
C2A	C1A	C11A	C12A	-74.3(6)	O1FL	S1FL	C1FL	F3FL	-176.7(4)
C2A	C3A	C4A	C5A	-1.0(7)	O2FL	S1FL	C1FL	F1FL	-56.1(5)
C3A	C4A	C5A	N1A	-0.9(7)	O2FL	S1FL	C1FL	F2FL	-176.3(4)
C3A	C4A	C5A	C6A	179.2(4)	O2FL	S1FL	C1FL	F3FL	64.0(4)
C4A	C5A	C6A	N2A	170.7(4)	O3FL	S1FL	C1FL	F1FL	-175.5(5)
C4A	C5A	C6A	C7A	-8.8(7)	O3FL	S1FL	C1FL	F2FL	64.3(5)
C5A	N1A	C1A	C2A	-0.8(7)	O3FL	S1FL	C1FL	F3FL	-55.4(5)
C5A	N1A	C1A	C11A	179.2(4)					

Table S30 Hydrogen atom coordinates ($Å \times 10^4$) and isotropic displacement parameters ($Å^2 \times 10^3$) for [(R,R)-**1**·Zn·2H₂O]²⁺·2OTf⁻

Atom	X	у	Z	U(eq)
H1B	6120(40)	690(15)	9196(13)	53
H3BA	7425.48	1870.64	9733.51	45
H3BB	7264.09	1277.07	10188.73	45
H4BA	4791.04	2831.87	9757.31	48
H4BB	4862.24	2668.62	10334.21	48
H2BA	6157.35	3251.25	7819.51	49
H3B	6341.8	5042.38	7951.2	51
H4B	6479.16	5734.11	8891.13	42
H7B	6616.98	6248.01	9770.91	38
H8B	6656.9	6701.36	10755.5	48
H9B	6497.72	5405.53	11450.96	42
H11B	6435.02	1413.6	8460.16	39
H13B	5738.8	3463.2	11461.83	35
H1C	4088.54	-596.36	3869.72	44
H2C	3840(30)	-1780(50)	5800(20)	24(15)
H3CA	5187.22	292.8	5275.97	48
H3CB	5131.02	100.58	4701.76	48
H4CA	2563.08	-788.33	5210.66	44
H4CB	2777.66	-1299.14	4739.32	44
H2CA	3604.46	2847.28	3553.39	40
H3C	3449.7	4159.35	4236.19	46
H4C	3454.57	3739.19	5223.57	40
H7C	3516.67	3210.61	6122.71	41
H8C	3611.36	2491.83	7060.23	45
H9C	3738.04	695	7183.63	43

H11C	4223.12	889.51	3518.57	36
H13C	3453.35	-1130.22	6524.64	34
H1A	8720(40)	9385(11)	8906(13)	43
H2A	9739(18)	7713(12)	10939(14)	41
H3AA	8085.66	8769.44	10115.69	37
НЗАВ	7659.37	8202.28	9724.27	37
H4AA	10320.31	7804.93	9856.92	47
H4AB	9986.9	8714.33	9975.38	47
H2AA	8521.1	6818.85	7581.66	33
H3A	8321.92	5014.97	7682.9	39
H4A	8305.7	4298.94	8615	34
H7A	8112.39	3815.59	9493.65	31
H8A	8151.52	3330.57	10470.28	35
H9A	8646.11	4490.26	11188.16	33
H11A	8443.24	8562.47	8114.59	32
H13A	9693.37	6166.27	11217.76	33
H1D	8800(40)	1878(14)	3957(13)	51
H2D	9693(17)	169(14)	5962(14)	42
H3DA	8044	1265.55	5136.9	40
H3DB	7612.69	684.96	4755.75	40
H4DA	10259.68	213.26	4861.6	51
H4DB	9967.15	1109.31	5048.14	51
H2DA	8325.02	-627.98	2608.11	42
H3D	8113.67	-2414.18	2706.21	45
H4D	8213.19	-3186.08	3619.83	39
H7D	8128.93	-3722.77	4496.31	35
H8D	8252.07	-4268.15	5462.66	37
H9D	8701.94	-3100.26	6187.13	36
H11D	8356.98	1101.34	3158.22	40
H13D	9593.97	-1344.73	6280.45	32
H2B	5880(40)	1920(60)	11200(30)	60(20)
H1NA	5554.13	3244.64	6661.87	58
H1NB	5608.84	4298.59	6754.3	58

Table S31 Atomic occupancy for $[(R,R)-1\cdot Zn\cdot 2H_2O]^{2+}\cdot 2OTf^{-}$

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
S1J	0.785(2)	F1J	0.785(2)	F2J	0.785(2)
F3J	0.785(2)	O1J	0.785(2)	O2J	0.785(2)
O3J	0.785(2)	C1J	0.785(2)	S1L	0.215(2)
F1L	0.215(2)	F2L	0.215(2)	F3L	0.215(2)
O1L	0.215(2)	O2L	0.215(2)	O3L	0.215(2)
C1L	0.215(2)	S1G	0.900(3)	F1G	0.900(3)
F2G	0.900(3)	F3G	0.900(3)	01G	0.900(3)
O2G	0.900(3)	03G	0.900(3)	C1G	0.900(3)
S1M	0.100(3)	F1M	0.100(3)	F2M	0.100(3)
F3M	0.100(3)	01M	0.100(3)	O2M	0.100(3)
O3M	0.100(3)	C1M	0.100(3)	O1N	0.160(11)
H1NA	0.160(11)	H1NB	0.160(11)		