Supplementary Information

Synthesis of spirosuccinimides via annulative cyclization between *N*-aryl indazolols and maleimides under rhodium(III) catalysis

Ju Young Kang,^{a,‡} Won An,^{a,‡} Suho Kim,^a Na Yeon Kwon,^a Taejoo Jeong,^a Prithwish Ghosh,^a Hyung Sik Kim,^a Neeraj Kumar Mishra^{a,*} and In Su Kim^{a,*}

^a School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea * Corresponding authors. E-mails: <u>neerajchemistry@gmail.com</u> (N.K.M.), <u>insukim@skku.edu</u> (I.S.K.)

[‡] These authors equally contributed.

List of the Contents

General methods	S3
General scheme, procedures, and characterization data for the synthesis of N-j	phenyl
indazol-3-ol (1n)	S4–S5
General procedure and characterization data of celecoxib maleimide 2q	S6–S8
General procedure and characterization data of estrone maleimide 2r St	9–S10
General procedure and characterization data of metronidazole maleimide 2s	S11
General procedure for the spiroannulation of N-aryl indazol-3-ols with maleimid	es and
maleates (3aa, 3a–3n, 4b–4m, and 4o–4t)	S12
Characterization data for all products (3aa, 3a–3n, 4b–4m, and 4o–4t) S1	3– S 32
General procedure and ¹ H NMR copy for deuterium-labeling experiment S3	3–834
General procedure and characterization data for the synthesis of rhodacycle-1a	S35
Experimental procedure for the reaction of 1a and 2a using rhodacycle-1a	\$36

Experimental procedure for the reaction of 1a and 2a using [RhCp*(OAc)]	2] S37
General procedure for the spiroannulation of rhodacycle-1a with ma	aleimide for the
formation of 3a	S38
General procedure and characterization data for the reaction of 1-pheny	l-1 <i>H</i> -indazol-3-ol
(1a) with 1-methyl-1,5-dihydro-2 <i>H</i> -pyrrol-2-one (5a)	\$39
General procedure for the gram scale experiment of 3a	S40
X-ray crystallographic data of 1-phenyl-1 <i>H</i> -indazol-3-ol (1a) (CCDC 2096	892) S41–S50
X-ray crystallographic data of rhodacycle-1a (CCDC 2095228)	S51–S65
Computational studies for the stability of tautomers	S66
References	S67
¹ H NMR and ¹³ C NMR spectra of all compounds	S68–S107
¹⁹ F NMR spectra of F-containing compounds	S108–S111

General methods

Commercially available reagents were used without additional purification, unless otherwise stated. N-Aryl indazol-3-ols 1a-1m were prepared according to the reported literatures.¹ Maleimides 2b-2h, 2k, and 2t were purchased from TCI. Maleates 2o and 2p were purchased from TCI. Maleimides 2i, 2j, 2l, and 2n were prepared according to the reported literatures.² 1-Methyl-1,5-dihydro-2*H*-pyrrol-2-one (5a) as an α , β -unsaturated γ -lactam was prepared according to the reported literature.³ All the reactions were performed in an oil bath by using IKA universal hot plate magnetic stirrer. Sealed tubes ($13 \times 100 \text{ mm}^2$) were purchased from Fischer Scientific and dried in oven for overnight and cooled at room temperature prior to use. Thin layer chromatography was carried out using plates coated with Kieselgel 60F₂₅₄ (Merck). For flash column chromatography, E. Merck Kieselgel 60 (230-400 mesh) was used. Nuclear magnetic resonance spectra (¹H, ¹³C, and ¹⁹F NMR) were recorded on a Bruker Unity 300, 400, 500, and 700 MHz spectrometers in CDCl₃, CD₃COCD₃, and DMSO-d₆ solution and chemical shifts are reported as parts per million (ppm). Resonance patterns are reported with the notations s (singlet), br (broad), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), ddd (doublet of doublet of doublets), dt (doublet of triplets), doublet of doublet of triplets (ddt), doublet of quartets (dq), td (triplet of doublets), and m (multiplet). In addition, the notation br is used to indicate a broad signal. Coupling constants (J) are reported in hertz (Hz). IR spectra were recorded on a Varian 2000 Infrared spectrophotometer and are reported as cm⁻¹. High-resolution mass spectra (HRMS) were recorded on a JEOL JMS-600 spectrometer.

General scheme, procedures, and characterization data for the synthesis of *N*-phenyl indazol-3-ol (1n)

Experimental procedure for the synthesis of 1nc

To an oven-dried round bottom flask charged with 2-chloro-5-nitrobenzoic acid (2.0 g, 10.0 mmol, 100 mol %) in DMF (20 mL) were added EDC·HCl (2.1 g, 11.0 mmol, 110 mol %), HOBt·H₂O (1.49 g, 11.0 mmol, 110 mol %), 4-(dimethylamino)pyridine (DMAP, 61.1 mg, 0.5 mmol, 5 mol %), and phenylhydrazine (1.0 mL, 10.0 mmol, 100 mol %) at 0 °C under N₂ atmosphere. The reaction mixture was allowed to stir for 24 h at room temperature. The reaction mixture was diluted with EtOAc (50 mL) and poured into saturated NH₄Cl solution. Extractive workup with EtOAc (2 x 50 mL). The combined organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (*n*-hexanes/EtOAc = 3:1 to 1:1) to afford 1.87 g of **1nc** as a white solid in 64 % yield.

Experimental procedure and characterization data for the synthesis of 1n

To an oven-dried round bottom flask charged with **1nc** (1.31 g, 4.5 mmol, 100 mol %), CuI (5.1 mg, 0.027 mmol, 0.6 mol %), and L-proline (103.6 mg, 0.9 mmol, 20 mol %) were added K_2CO_3 (1.24 g, 9.0 mmol, 200 mol %) and DMSO (15 mL) at room temperature under N_2 atmosphere. The reaction mixture was allowed to stir for 24 h at 90 °C. The reaction mixture was cooled to room temperature, treated with saturated NaHCO₃ solution (100 mL), and extracted with EtOAc (8 x 30 mL). The combined organic layer was washed with H₂O (3 x 50 mL) and

brine (50 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The obtained residue was recrystallized with diethyl ether (10 mL) to afford 0.6 g of **1n** as a yellow solid in 52% yield.

5-Nitro-1-phenyl-1,2-dihydro-3*H*-indazol-3-one (1n)

0.6 g (52%); yellow solid; mp = 294.7–297.5 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 11.9 (s, 1H), 8.74 (d, *J* = 2.0 Hz, 1H), 8.23 (dd, *J* = 9.6, 2.4 Hz, 1H), 7.86 (d, *J* = 9.2 Hz, 1H), 7.71 (d, *J* = 7.6 Hz, 2H), 7.57 (t, *J* = 7.6 Hz, 2H), 7.38 (t, *J* = 7.6 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ 157.9, 140.9, 140.6, 138.9, 129.7, 126.5, 123.0, 121.7, 118.5, 114.1, 111.1; IR (KBr) v 3056, 2987, 1668, 1602, 1566, 1516, 1342, 1281, 1228, 1140 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₁₃H₉N₃O₃ 255.0644; Found 255.0641.

General procedure and characterization data of celecoxib maleimide 2q

Experimental procedure for the synthesis of celecoxib derivative 2qb

Aldehydic celecoxib 2qa, 4-(5-(4-formylphenyl)-3-(trifluoromethyl)-1*H*-pyrazol-1yl)benzenesulfonamide, was synthesized by using the commercially available celecoxib, according to previously reported procedure.⁴

To an oven-dried round bottom flask charged with aldehydic celecoxib **2qa** (520.0 mg, 1.3 mmol, 1.0 equiv.) was added EtOH (6.6 mL, 0.2 M). To the above mixture was added NaBH₄ (99.5 mg, 2.6 mmol, 2.0 equiv.) in one portion. The reaction mixture was allowed to stir for 45 min at 0 °C. The reaction mixture was dropwise quenched by *s*-NH₄Cl solution (2 mL), and filtered through Celite pad. The filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (*n*-hexanes/EtOAc = 3:1 to 1:2) to afford 0.42 g of celecoxib derivative **2qb** as a white sticky solid in 81% yield.

4-(5-(4-(Hydroxymethyl)phenyl)-3-(trifluoromethyl)-1*H*-pyrazol-1-yl)benzenesulfonamide (2qb)

0.42 g (81%); eluent (*n*-hexanes/EtOAc = 3:1 to 1:2); white sticky solid; ¹H NMR (500 MHz, CD₃COCD₃) δ 7.95 (dt, J = 8.5, 2.5 Hz, 2H), 7.56 (dt, J = 8.5, 2.5 Hz, 2H), 7.41 (d, J = 8.5 Hz, 2H), 7.32 (d, J = 8.5 Hz, 2H), 7.01 (s, 1H), 6.74 (s, 2H), 4.67 (d, J = 5.5 Hz, 2H), 4.34 (t,

J = 5.5 Hz, 1H); ¹³C NMR (125 MHz, CD₃COCD₃) δ 146.4, 145.0, 144.9, 143.9 (q, $J_{C-F} = 37.9$ Hz), 142.9, 129.8, 128.1, 128.0, 127.6, 126.7, 124.6 (q, $J_{C-F} = 265.1$ Hz), 106.9 (q, $J_{C-F} = 2.5$ Hz), 64.1; ¹⁹F NMR (376 MHz, CDCl₃) δ –62.5 (s); IR (KBr) υ 3270, 1498, 1471, 1407, 1338, 1272, 1236, 1159, 1132, 1097, 1024, 975, 942 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₁₇H₁₄F₃N₃O₃S 397.0708; Found 397.0703.

Experimental procedure for the synthesis of celecoxib maleimide 2q from 2qb

To an oven-dried round bottom flask charged with commercially available 3maleimidopropionic acid (209.0 mg, 1.24 mmol, 1.2 equiv.) and SOCl₂ (0.45 mL, 6.2 mmol, 6 equiv.) under N₂ atmosphere. The reaction mixture was allowed to stir for 30 min at 80 °C. The reaction mixture was cooled to room temperature and concentrated in vacuo to obtain the 3-(2,5dioxo-2,5-dihydro-1*H*-pyrrol-1-yl)propanoyl chloride.

Next, to an oven-dried round bottom flask charged with 2qb (0.41 g, 1.03 mmol, 1.0 equiv.) and CH₂Cl₂ (5 mL) was added Et₃N (0.27 mL, 1.9 mmol, 1.8 equiv.). The reaction mixture was allowed to stir for 15 min at 0 °C. Then, 3-(2,5-dioxo-2,5-dihydro-1*H*-pyrrol-1-yl)propanoyl chloride and CH₂Cl₂ (3 mL) were added to the above reaction mixture, and the resulting mixture was allowed to stir at room temperature for 4 h. The resulting mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (*n*-hexanes/EtOAc = 3:1 to 1:1) to afford 140.2 mg of celecoxib maleimide 2q as a white sticky solid in 25% yield.

4-(1-(4-Sulfamoylphenyl)-3-(trifluoromethyl)-1*H*-pyrazol-5-yl)benzyl 3-(2,5-dioxo-2,5dihydro-1*H*-pyrrol-1-yl)propanoate (2q)

0.14 g (25%); eluent (*n*-hexanes/EtOAc = 3:1 to 1:1); white sticky solid; ¹H NMR (400 MHz, CDCl₃) δ 7.93–7.90 (m, 2H), 7.48–7.44 (m, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 7.22 (d, *J* = 8.4

Hz, 2H), 6.78 (s, 1H), 6.70 (s, 2H), 5.12 (s, 2H), 5.10 (s, 2H), 3.84 (t, J = 7.2 Hz, 2H), 2.71 (t, J = 7.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 170.5, 144.7, 144.3 (q, $J_{C-F} = 37.3$ Hz), 142.4, 141.8, 137.3, 134.4, 129.2, 128.9, 128.7, 127.7, 125.7, 121.1 (q, $J_{C-F} = 270.4$ Hz), 106.8 (q, $J_{C-F} = 2.5$ Hz), 65.9, 33.7, 33.0; ¹⁹F NMR (376 MHz, CDCl₃) δ –62.4 (s); IR (KBr) υ 3268, 3102, 2923, 1704, 1446, 1407, 1373, 1342, 1267, 12324, 1160, 1130, 1097, 973, 898, 827 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₂₄H₁₉F₃N₄O₆S 548.0977; Found 548.0977.

General procedure and characterization data of estrone maleimide 2r

To an oven-dried round bottom flask charged with commercially available 3maleimidopropionic acid (75.0 mg, 0.44 mmol, 1.2 equiv.) and SOCl₂ (0.2 mL, 2.64 mmol, 6 equiv.) under N₂ atmosphere. The reaction mixture was allowed to stir for 30 min at 80 °C. The reaction mixture was cooled to room temperature and concentrated in vacuo to obtain the 3-(2,5dioxo-2,5-dihydro-1*H*-pyrrol-1-yl)propanoyl chloride. Next, to an oven-dried round bottom flask charged with commercially available estrone (97.2 mg, 0.36 mmol, 1.0 equiv.) and CH₂Cl₂ (1 mL), cooled in an ice bath and was added Et₃N (0.1 mL, 0.65 mmol, 1.8 equiv.). The reaction mixture was allowed to stir for 15 min at 0 °C. Then, 3-(2,5-dioxo-2,5-dihydro-1*H*-pyrrol-1yl)propanoyl chloride and CH₂Cl₂ (1 mL) were added to the above reaction mixture, and the resulting mixture was allowed to stir at room temperature for 4 h. The resulting mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (*n*-hexanes/EtOAc = 5:1 to 2:1) to afford 97.0 mg of estrone maleimide **2r** as a white solid in 43% yield.

(8*R*,9*S*,13*S*,14*S*)-13-Methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*cyclopenta[*a*]phenanthren-2-yl 3-(2,5-dioxo-2,5-dihydro-1*H*-pyrrol-1-yl)propanoate (2r)

97.0 mg (43%); eluent (*n*-hexanes/EtOAc = 5:1 to 2:1); white solid; mp = 153.8–156.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, *J* = 8.8 Hz, 1H), 6.86 (dd, *J* = 8.4, 2.4 Hz, 1H), 6.81 (d, *J* = 2.4 Hz, 1H), 6.72 (s, 2H), 3.95 (t, *J* = 6.8 Hz, 2H), 2.92–2.86 (m, 4H), 2.50 (dd, *J* = 19.2, 8.8 Hz, 1H), 2.42–2.37 (m, 1H), 2.31–2.24 (m, 1H), 2.19–1.94 (m, 4H), 1.68–1.39 (m, 6H), 0.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 169.6, 148.4, 138.2, 137.7, 134.4, 126.6, 121.6, 118.8, 50.6, 48.1, 44.3, 38.1, 36.0, 33.7, 33.2, 31.7, 29.5, 26.5, 25.9, 21.7, 13.9; IR (KBr) v 2931, 2861, 1733, 1680, 1492, 1444, 1407, 1375, 1315, 1245, 1220, 1159, 1058, 1008, 910, 827 cm⁻¹; HRMS (quadrupole, EI) m/z: $[M]^+$ Calcd for $C_{25}H_{27}NO_5$ 421.1889; Found 421.1886.

General procedure and characterization data of metronidazole maleimide 2s

To an oven-dried round bottom flask charged with commercially available 3maleimidopropionic acid (209.7 mg, 1.24 mmol, 1.0 equiv.) and SOCl₂ (0.54 mL, 7.44 mmol, 6 equiv.) under N₂ atmosphere. The reaction mixture was allowed to stir for 30 min at 80 °C. The reaction mixture was cooled to room temperature and concentrated in vacuo to obtain the 3-(2,5dioxo-2,5-dihydro-1H-pyrrol-1-yl)propanoyl chloride. Next, to an oven-dried round bottom flask charged with commercially available metronidazole (318.3 mg, 1.86 mmol, 1.5 equiv.) and CH₂Cl₂ (5 mL), cooled in an ice bath and was added Et₃N (0.52 mL, 3.72 mmol, 3.0 equiv.). The reaction mixture was allowed to stir for 15 min at 0 °C. Then, 3-(2,5-dioxo-2,5-dihydro-1Hpyrrol-1-yl)propanoyl chloride and CH_2Cl_2 (4 mL) were added to the above reaction mixture, and the resulting mixture was allowed to stir at room temperature for 3 h. The resulting mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (CH₂Cl₂/EtOAc = 2:1 to 1:1) to afford 230.8 mg of metronidazole maleimide 2s as a white sticky solid in 58% yield.

2-(2-Methyl-5-nitro-1*H*-imidazol-1-yl)ethyl

3-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-

yl)propanoate (2s)

230.8 mg (58%); eluent (CH₂Cl₂/EtOAc = 2:1 to 1:1); white sticky solid; ¹H NMR (500 MHz, CDCl₃) δ 7.95 (s, 1H), 6.69 (s, 2H), 4.59 (t, J = 5.5 Hz, 2H), 4.40 (t, J = 5.5 Hz, 2H), 3.78 $(t, J = 7.0 \text{ Hz}, 2\text{H}), 2.59 (t, J = 7.0 \text{ Hz}, 2\text{H}), 2.52 (s, 3\text{H}); {}^{13}\text{C} \text{ NMR} (125 \text{ MHz}, \text{CDCl}_3) \delta 170.3,$ 170.2, 150.8, 134.4, 132.9, 63.0, 45.0, 33.6, 32.9, 14.4; IR (KBr) v 3059, 2956, 1739, 1707, 1529, 1465, 1427, 1363, 1263, 1186, 1145, 1076, 1041, 825 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₁₃H₁₄N₄O₆ 322.0913; Found 322.0911.

General procedure for the spiroannulation of *N*-aryl indazol-3-ols with maleimides and maleates (3aa, 3a–3n, 4b–4m, and 4o–4t)

To an oven-dried sealed tube charged with 1-phenyl-1*H*-indazol-3-ol (**1a**) (42.1 mg, 0.2 mmol, 100 mol %), $[RhCp*Cl_2]_2$ (3.1 mg, 0.005 mmol, 2.5 mol %), AgSbF₆ (13.7 mg, 0.04 mmol, 20 mol %), NaOAc (8.2 mg, 0.1 mmol, 50 mol %), and *N*-methyl maleimide (**2a**) (44.4 mg, 0.4 mmol, 200 mol %) was added MeCN (1 mL) under air at room temperature. The reaction mixture was allowed to stir in an oil bath for 20 h at 80 °C. The reaction mixture was cooled to room temperature, diluted with EtOAc (2 mL) and concentrated in vacuo. The residue was purified by flash column chromatography (CH₂Cl₂/EtOAc = 7:1 to 4:1) to afford **3a** (58.2 mg) in 91% yield.

Characterization data for all products (3aa, 3a–3n, 4b–4m, and 4o–4t)

3-(2-(3-Hydroxy-1*H*-indazol-1-yl)phenyl)-1-methylpyrrolidine-2,5-dione (3aa)

16.2 mg (25%); eluent (CH₂Cl₂/EtOAc = 4:1 to 1:1); light brown solid; mp = 103.4–106.2 °C; ¹H NMR (500 MHz, CD₃COCD₃) δ 9.83 (brs, 1H), 7.72 (dt, *J* = 8.0, 1.0 Hz, 1H), 7.51–7.45 (m, 3H), 7.42–7.38 (m, 2H), 7.23 (d, *J* = 8.5 Hz, 1H), 7.14 (t, *J* = 7.5 Hz, 1H), 4.27 (dd, *J* = 10.0, 5.5 Hz, 1H), 3.06 (dd, *J* = 18.0, 9.5 Hz, 1H), 2.73 (dd, *J* = 18.0, 5.5 Hz, 1H), 2.71 (s, 3H); ¹³C NMR (125 MHz, CD₃COCD₃) δ 178.2, 176.5, 156.9, 143.3, 139.6, 137.4, 131.4, 129.4, 129.3, 128.8, 128.3, 121.0, 120.8, 114.6, 111.0, 44.1, 38.6, 24.8; IR (KBr) v 3056, 1776, 1718, 1616, 1540, 1500, 1438, 1380, 1282, 1228, 1118, 954 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₁₈H₁₅N₃O₃ 321.1113; Found 321.1114.

1'-Methyl-12*H*-spiro[indazolo[1,2-*a*]indazole-10,3'-pyrrolidine]-2',5',12-trione (3a)

58.2 mg (91%); eluent (CH₂Cl₂/EtOAc = 7:1 to 4:1); white solid; mp = 272.8–275.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (dt, J = 8.0, 1.2 Hz, 1H), 7.67 (ddd, J = 9.6, 7.2, 1.2 Hz, 1H), 7.52 (dt, J = 8.4, 0.8 Hz, 1H), 7.49 (ddd, J = 9.6, 6.8, 1.6 Hz, 1H), 7.36 (dt, J = 8.0, 0.8 Hz, 1H), 7.25 (ddd, J = 8.8, 7.2, 0.8 Hz, 1H), 7.19–7.12 (m, 2H), 4.02 (d, J = 18.0 Hz, 1H), 3.22 (s, 3H), 3.21 (d, J = 18.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 172.4, 161.0, 141.9, 137.4, 133.4, 131.1, 130.6, 125.2, 124.0, 122.6, 122.4, 119.6, 110.8, 109.7, 66.9, 40.3, 26.0; IR (KBr) υ

3054, 2925, 2360, 1714, 1660, 1600, 1496, 1467, 1432, 1375, 1361, 1313, 1267, 1139, 890 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₁₈H₁₃N₃O₃ 319.0957; Found 319.0955.

8-Methoxy-1'-methyl-12*H*-spiro[indazolo[1,2-*a*]indazole-10,3'-pyrrolidine]-2',5',12-trione (3b)

55.9 mg (80%); eluent (CH₂Cl₂/EtOAc = 7:1 to 4:1); pale yellow solid; mp = 168.8–171.6 °C; mp = 152.2–155.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (dt, *J* = 7.6, 1.2 Hz, 1H), 7.62 (ddd, *J* = 9.6, 7.2, 1.2 Hz, 1H), 7.43 (dt, *J* = 8.4, 0.8 Hz, 1H), 7.26 (d, *J* = 8.8 Hz, 1H), 7.19 (ddd, *J* = 8.8, 7.2, 0.8 Hz, 1H), 6.98 (dd, *J* = 8.8, 2.8 Hz, 1H), 6.67 (d, *J* = 2.4 Hz, 1H), 3.96 (d, *J* = 18.4 Hz, 1H), 3.78 (s, 3H), 3.20 (s, 3H), 3.19 (d, *J* = 18.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 172.3, 161.5, 156.9, 142.6, 133.3, 131.6, 131.5, 125.1, 122.2, 119.1, 116.3, 110.6, 110.5, 108.3, 67.1, 56.2, 40.2, 25.9; IR (KBr) v 3054, 2989, 1791, 1712, 1666, 1617, 1494, 1459, 1432, 1378, 1282, 1267, 1220, 1141, 1078, 1024, 983, 804 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₁₉H₁₅N₃O₄ 349.1063; Found 349.1061.

1',8-Dimethyl-12*H*-spiro[indazolo[1,2-*a*]indazole-10,3'-pyrrolidine]-2',5',12-trione (3c)

54.7 mg (82%); eluent (CH₂Cl₂/EtOAc = 7:1 to 4:1); pale yellow solid; mp = 224.4–227.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.88 (dt, *J* = 8.0, 0.8 Hz, 1H), 7.64 (ddd, *J* = 9.6, 7.2, 1.2 Hz,

1H), 7.48 (d, J = 8.4 Hz, 1H), 7.28–7.19 (m, 3H), 6.95 (s, 1H), 3.99 (d, J = 18.0 Hz, 1H), 3.20 (s, 3H), 3.19 (d, J = 18.0 Hz, 1H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 172.5, 161.1, 142.1, 135.2, 134.1, 133.3, 131.6, 130.7, 125.1, 122.7, 122.4, 119.4, 110.7, 109.5, 66.9, 40.3, 25.9, 21.1; IR (KBr) υ 3054, 2987, 1791, 1714, 1670, 1614, 1500, 1461, 1434, 1378, 1284, 1267, 1141, 983, 804 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₁₉H₁₅N₃O₃ 333.1113; Found 333.1113.

8-Chloro-1'-methyl-12*H*-spiro[indazolo[1,2-*a*]indazole-10,3'-pyrrolidine]-2',5',12-trione (3d)

61.6 mg (87%); eluent (CH₂Cl₂/EtOAc = 6:1 to 4:1); pale orange solid; mp = 236.5–239.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (dt, *J* = 7.6, 1.2 Hz, 1H), 7.65 (ddd, *J* = 9.6, 7.2, 1.2 Hz, 1H), 7.45 (dt, *J* = 8.4, 0.8 Hz, 1H), 7.42 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.27–7.22 (m, 2H), 7.14 (d, *J* = 2.0 Hz, 1H), 3.97 (d, *J* = 18.4 Hz, 1H), 3.21 (s, 3H), 3.20 (d, *J* = 18.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 171.9, 161.1, 141.9, 136.0, 133.6, 131.9, 131.2, 129.1, 125.2, 122.9, 122.8, 119.6, 110.8, 110.5, 66.8, 40.3, 26.1; IR (KBr) v 3054, 2987, 1793, 1718, 1679, 1619, 1606, 1494, 1428, 1380, 1346, 1267, 1082, 820 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₁₈H₁₂ClN₃O₃ 353.0567; Found 353.0563.

8-Fluoro-1'-methyl-12*H*-spiro[indazolo[1,2-*a*]indazole-10,3'-pyrrolidine]-2',5',12-trione (3e)

54.2 mg (80%); eluent (CH₂Cl₂/EtOAc = 6:1 to 4:1); pale orange solid; mp = 221.2–224.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.88 (dt, *J* = 8.0, 1.2 Hz, 1H), 7.66 (ddd, *J* = 9.6, 7.2, 1.2 Hz, 1H), 7.46 (dt, *J* = 8.4, 0.8 Hz, 1H), 7.29 (dd, *J* = 8.8, 4.0 Hz, 1H), 7.24 (ddd, *J* = 8.8, 7.2, 0.8 Hz, 1H), 7.19 (td, *J* = 8.8, 2.4 Hz, 1H), 6.91 (dd, *J* = 7.6, 2.4 Hz, 1H), 3.98 (d, *J* = 18.8 Hz, 1H), 3.21 (s, 3H), 3.20 (d, *J* = 18.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 171.9, 161.6, 159.3 (d, *J*_{C-F} = 243.7 Hz), 142.6, 134.1 (d, *J*_{C-F} = 2.2 Hz), 133.5, 131.7 (d, *J*_{C-F} = 8.1 Hz), 125.2, 122.8, 117.9 (d, *J*_{C-F} = 24.0 Hz), 110.7, 110.6, 110.4 (d, *J*_{C-F} = 13.4 Hz), 110.2, 67.0 (d, *J*_{C-F} = 2.5 Hz), 40.3, 26.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -117.3 (s); IR (KBr) v 3070, 3019, 1791, 1718, 1680, 1540, 1490, 1461, 1410, 1378, 1351, 1284, 1209, 1166, 1141, 985, 902, 808 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₁₈H₁₂FN₃O₃ 337.0863; Found 337.0864.

1'-Methyl-8-(trifluoromethyl)-12*H*-spiro[indazolo[1,2-*a*]indazole-10,3'-pyrrolidine]-2',5',12-trione (3f)

60.4 mg (78%); eluent (CH₂Cl₂/EtOAc = 7:1 to 4:1); yellow solid; mp = 221.9–224.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (dt, J = 7.6, 1.2 Hz, 1H), 7.73 (dd, J = 8.4, 2.0 Hz, 1H), 7.70 (dd, J = 9.6, 7.2, 1.2 Hz, 1H), 7.53 (d, J = 8.0 Hz, 1H), 7.41 (d, J = 7.2 Hz, 1H), 7.39 (s, 1H), 7.29 (t, J = 7.2 Hz, 1H), 3.98 (d, J = 18.4 Hz, 1H), 3.25 (d, J = 18.4 Hz, 1H), 3.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 171.8, 160.9, 141.3, 139.6, 133.7, 131.0, 128.9 (q, J_{C-F} = 3.9 Hz), 126.0 (q, J_{C-F} = 33.3 Hz), 125.3, 123.6 (q, J_{C-F} = 270.1 Hz), 123.5, 119.9, 119.8 (q, J_{C-F} = 3.7 Hz), 110.9, 109.4, 66.8, 40.4, 26.1; ¹⁹F NMR (376 MHz, CDCl₃) δ –61.6 (s); IR (KBr) υ 3060, 2921, 2852, 2653, 2373, 2254, 1700, 1677, 1604, 1502, 1482, 1459, 1430, 1375, 1319, 1284, 1190, 1168, 1114, 1054, 1020, 981, 946, 908, 815 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₁₉H₁₂F₃N₃O₃ 387.0831; Found 387.0832.

1'-Methyl-8-nitro-12H-spiro[indazolo[1,2-a]indazole-10,3'-pyrrolidine]-2',5',12-trione (3g)

64.2 mg (88%); eluent (CH₂Cl₂/EtOAc = 6:1 to 4:1); yellow solid; mp = > 300 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.42 (dt, *J* = 8.8, 2.0 Hz, 1H), 8.90 (d, *J* = 2.0 Hz, 1H), 7.93 (dt, *J* = 8.0, 1.2 Hz, 1H), 7.73 (ddd, *J* = 9.6, 7.2, 1.2 Hz, 1H), 7.55 (dt, *J* = 8.4, 0.8 Hz, 1H), 7.37 (d, *J* = 8.8 Hz, 1H), 7.36 (t, *J* = 7.2 Hz, 1H), 3.97 (d, *J* = 18.4 Hz, 1H), 3.29 (d, *J* = 18.8 Hz, 1H), 3.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 171.5, 160.4, 143.3, 140.8, 140.2, 134.0, 131.3, 128.2, 125.5, 124.2, 120.4, 119.1, 110.9, 108.5, 66.6, 40.4, 26.3; IR (KBr) υ 3019, 2925, 1793, 1708, 1673, 1596, 1517, 1494, 1459, 1436, 1378, 1321, 1288, 1214, 1133, 1110, 985, 854 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₁₈H₁₂N₄O₅ 364.0808; Found 364.0807.

7-Chloro-1'-methyl-12*H*-spiro[indazolo[1,2-*a*]indazole-10,3'-pyrrolidine]-2',5',12-trione (3h)

50.9 mg (72%); eluent (CH₂Cl₂/EtOAc = 7:1 to 4:1); pale yellow solid; mp = 238.4–241.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (dt, *J* = 8.0, 0.8 Hz, 1H), 7.69 (ddd, *J* = 9.6, 7.2, 1.2 Hz, 1H), 7.50 (d, *J* = 8.4 Hz, 1H), 7.32 (s, 1H), 7.27 (t, *J* = 8.0 Hz, 1H), 7.11–7.07 (m, 2H), 3.98 (d, *J* = 18.4 Hz, 1H), 3.20 (s, 3H), 3.19 (d, *J* = 18.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 172.0, 161.1, 141.7, 138.3, 137.2, 133.6, 128.9, 125.3, 123.9, 123.3, 123.2, 119.8, 110.9, 110.1, 66.8, 40.3, 26.0; IR (KBr) υ 3054, 2987, 1791, 1716, 1679, 1604, 1494, 1465, 1432, 1380, 1267, 1145, 1053, 810 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₁₈H₁₂ClN₃O₃ 353.0567; Found 353.0567.

1'-Methyl-7-(trifluoromethyl)-12*H*-spiro[indazolo[1,2-*a*]indazole-10,3'-pyrrolidine]-2',5',12-trione (3i)

39.6 mg (51%); eluent (CH₂Cl₂/EtOAc = 7:1 to 4:1); pale yellow solid; mp = 199.9–202.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (dt, *J* = 7.6, 1.2 Hz, 1H), 7.69 (ddd, *J* = 9.6, 7.2, 1.2 Hz, 1H), 7.56 (dt, *J* = 8.4, 0.8 Hz, 1H), 7.53 (t, *J* = 0.4 Hz, 1H), 7.39 (dq, *J* = 8.4, 0.8 Hz, 1H), 7.32–7.28 (m, 2H), 3.99 (d, *J* = 18.0 Hz, 1H), 3.23 (d, *J* = 18.4 Hz, 1H), 3.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 171.7, 161.2, 141.9, 137.9, 133.9 (q, *J*_{C-F} = 1.3 Hz), 133.8, 133.7 (q, *J*_{C-F} = 30.5 Hz), 125.3, 123.5, 123.4 (q, *J*_{C-F} = 271.5 Hz), 123.0, 120.8 (q, *J*_{C-F} = 3.7 Hz), 119.8, 111.1, 106.5 (q, *J*_{C-F} = 3.8 Hz), 66.9, 40.5, 26.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s); IR (KBr) υ 2919, 2850, 1791, 1740, 1642, 1612, 1504, 1436, 1378, 1280, 1210, 1168, 1110, 1060, 979, 964, 910, 829 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₁₉H₁₂F₃N₃O₃ 387.0831; Found 387.0832.

1'-Methyl-7-nitro-12H-spiro[indazolo[1,2-a]indazole-10,3'-pyrrolidine]-2',5',12-trione (3j)

36.5 mg (50%); eluent (CH₂Cl₂/EtOAc = 6:1 to 4:1); yellow solid; mp = 270.1–273.2 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 8.48–8.47 (m, 1H), 8.23 (dd, *J* = 8.4, 1.6 Hz, 1H), 8.08–8.03 (m, 2H), 7.85–7.80 (m, 2H), 7.38 (td, *J* = 7.2, 0.8 Hz, 1H), 3.79 (d, *J* = 18.4 Hz, 1H), 3.52 (d, *J* = 18.4 Hz, 1H), 3.04 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 173.2, 172.0, 159.9, 149.8, 141.2, 137.7, 136.4, 133.8, 125.6, 124.0, 123.5, 119.0, 118.9, 112.4, 104.3, 66.8, 40.0, 25.4; IR (KBr) υ 2256, 1741, 1710, 1652, 1533, 1490, 1461, 1432, 1394, 1351, 1292, 1047, 1010, 823 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₁₈H₁₂N₄O₅ 364.0808; Found 364.0804.

6-Fluoro-1'-methyl-12*H*-spiro[indazolo[1,2-*a*]indazole-10,3'-pyrrolidine]-2',5',12-trione (3k)

23.7 mg (35%); eluent (CH₂Cl₂/EtOAc = 7:1 to 4:1); pale yellow solid; mp = 266.8–269.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (dt, *J* = 7.6, 1.2 Hz, 1H), 7.76 (dq, *J* = 8.4, 0.8 Hz, 1H), 7.65 (ddd, *J* = 10.0, 7.2, 1.2 Hz, 1H), 7.28–7.23 (m, 2H), 7.10 (td, *J* = 7.6, 4.0 Hz, 1H), 6.95 (dd, *J* = 7.6, 0.8 Hz, 1H), 3.95 (d, *J* = 18.4 Hz, 1H), 3.22 (d, *J* = 18.4 Hz, 1H), 3.21 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 172.7, 172.1, 161.5, 147.4 (d, *J*_{C-F} = 245.7 Hz), 142.5, 133.7 (d, *J*_{C-F} = 2.2 Hz), 133.5 (d, *J*_{C-F} = 3.3 Hz), 125.6, 125.5, 125.2 (d, *J*_{C-F} = 6.4 Hz), 123.0 (d, *J*_{C-F} = 0.8 Hz), 119.6, 118.5 (d, *J*_{C-F} = 19.1 Hz), 118.1 (d, *J*_{C-F} = 3.5 Hz), 112.9 (d, *J*_{C-F} = 14.6 Hz), 66.9, 40.8, 26.0; ¹⁹F NMR (376 MHz, CDCl₃) δ –125.1 (s); IR (KBr) v 3054, 1793, 1716, 1679, 1614, 1494,

1434, 1380, 1348, 1282, 1140, 1012, 820 cm⁻¹; HRMS (quadrupole, EI) m/z: $[M]^+$ Calcd for $C_{18}H_{12}FN_3O_3$ 337.0863; Found 337.0865.

1',2-Dimethyl-12*H*-spiro[indazolo[1,2-*a*]indazole-10,3'-pyrrolidine]-2',5',12-trione (3m)

60.8 mg (91%); eluent (CH₂Cl₂/EtOAc = 6:1 to 4:1); light orange solid; mp = 205.2–208.1 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 7.64 (s, 1H), 7.46–7.42 (m, 2H), 7.38 (d, *J* = 8.4 Hz, 1H), 7.29 (d, *J* = 8.4 Hz, 1H), 7.13 (d, *J* = 8.4 Hz, 1H), 7.08 (t, *J* = 7.0 Hz, 1H), 3.98 (d, *J* = 18.2 Hz, 1H), 3.18 (d, *J* = 18.9 Hz, 1H), 3.17 (s, 3H), 2.41 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 172.9, 172.4, 161.2, 140.7, 137.6, 134.8, 132.5, 131.0, 130.4, 124.4, 123.6, 122.2, 119.7, 110.6, 109.5, 66.9, 40.3, 25.9, 21.1; IR (KBr) v 3059, 2987, 1714, 1668, 1504, 1471, 1433, 1379, 1282, 1144, 987 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₁₉H₁₅N₃O₃ 333.1113; Found 333.1116.

1'-Methyl-2-nitro-12*H*-spiro[indazolo[1,2-*a*]indazole-10,3'-pyrrolidine]-2',5',12-trione (3n)

53.2 mg (73%); eluent (CH₂Cl₂/EtOAc = 7:1 to 1:1); orange solid; mp = 284.3–286.9 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 8.57 (d, J = 2.4 Hz, 1H), 8.52 (dd, J = 9.2, 2.4 Hz, 1H), 8.21 (d, J = 8.8 Hz, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.81 (d, J = 7.6 Hz, 1H), 7.63 (td, J = 7.6, 1.2 Hz, 1H), 7.32 (td, J = 7.6, 0.8 Hz, 1H), 3.78 (d, J = 18.8 Hz, 1H), 3.48 (d, J = 18.4 Hz, 1H), 3.05 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 173.2, 172.3, 157.1, 141.5, 140.0, 134.5, 131.1, 130.4, 128.0, 125.2, 124.5, 121.0, 117.8, 111.5, 110.3, 66.8, 40.1, 25.4; IR (KBr) υ 3057, 2927, 1720, 1685, 1622, 1601, 1520, 1495, 1468, 1431, 1371, 1335, 1317, 1269, 1151, 1117 cm⁻¹; HRMS (ion trap, FAB) m/z: [M + H]⁺ Calcd for C₁₈H₁₃N₄O₅ 365.0886; Found 365.0886.

1'-Ethyl-12H-spiro[indazolo[1,2-a]indazole-10,3'-pyrrolidine]-2',5',12-trione (4b)

58.2 mg (87%); eluent (CH₂Cl₂/EtOAc = 7:1 to 4:1); pale yellow solid; mp = 196.5–199.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (dt, *J* = 8.0, 1.2 Hz, 1H), 7.65 (ddd, *J* = 9.6, 7.2, 1.2 Hz, 1H), 7.50 (d, *J* = 8.4 Hz, 1H), 7.47 (ddd, *J* = 8.0, 6.0, 2.8 Hz, 1H), 7.34 (dt, *J* = 8.4, 0.8 Hz, 1H), 7.23 (ddd, *J* = 8.8, 7.2, 0.8 Hz, 1H), 7.15–7.10 (m, 2H), 3.98 (d, *J* = 18.4 Hz, 1H), 3.77 (q, *J* = 7.2 Hz, 2H), 3.18 (d, *J* = 18.4 Hz, 1H), 1.30 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 172.0, 160.9, 141.8, 137.2, 133.3, 131.1, 130.7, 125.1, 123.9, 122.5, 122.2, 119.6, 110.7, 109.6, 66.8, 40.4, 35.1, 13.1; IR (KBr) v 3653, 3622, 3572, 3531, 3485, 2979, 2937, 1788, 1740, 1692, 1580, 1460, 1411, 1323, 1379, 1243, 1110, 1033, 893 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₁₉H₁₅N₃O₃ 333.1113; Found 333.1112.

1'-Cyclohexyl-12H-spiro[indazolo[1,2-a]indazole-10,3'-pyrrolidine]-2',5',12-trione (4c)

60.5 mg (78%); eluent (CH₂Cl₂/EtOAc = 7:1 to 4:1); pale yellow solid; mp = 203.0–205.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (dt, *J* = 8.0, 0.8 Hz, 1H), 7.65 (ddd, *J* = 9.6, 7.2, 1.2 Hz, 1H), 7.49 (dt, *J* = 8.4, 0.8 Hz, 1H), 7.49–7.45 (m, 1H), 7.33 (dt, *J* = 8.0, 0.8 Hz, 1H), 7.23 (ddd,

J = 9.2, 7.6, 1.2 Hz, 1H), 7.13–7.12 (m, 2H), 4.18–4.11 (m, 1H), 3.93 (d, J = 18.0 Hz, 1H), 3.15 (d, J = 18.0 Hz, 1H), 2.29–2.11 (m, 2H), 1.87–1.75 (m, 4H), 1.68–1.62 (m, 2H), 1.36–1.32 (m, 1H), 1.31–1.18 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 172.2, 161.1, 141.9, 137.3, 133.3, 131.0, 130.9, 125.2, 123.9, 122.5, 122.0, 119.7, 110.8, 109.6, 66.5, 53.2, 40.4, 29.1, 28.9, 25.9, 25.8, 25.1; IR (KBr) υ 3059, 2931, 2856, 1756, 1711, 1670, 1920, 1600, 1491, 1468, 1396, 1365, 1344, 1306, 1259, 1196, 1149, 1120, 1036, 945 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₂₃H₂₁N₃O₃ 387.1583; Found 387.1580.

1'-(tert-Butyl)-12H-spiro[indazolo[1,2-a]indazole-10,3'-pyrrolidine]-2',5',12-trione (4d)

44.8 mg (62%); eluent (CH₂Cl₂/EtOAc = 6:1 to 4:1); pale orange solid; mp = 191.1–194.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (dt, *J* = 8.0, 0.8 Hz, 1H), 7.65 (ddd, *J* = 9.6, 7.2, 1.2 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.50–7.45 (m, 2H), 7.23 (ddd, *J* = 9.2, 7.2, 0.8 Hz, 1H), 7.17–7.11 (m, 2H), 3.95 (d, *J* = 18.0 Hz, 1H), 3.09 (d, *J* = 18.0 Hz, 1H), 1.67 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 173.9, 173.1, 161.0, 141.5, 137.1, 133.2, 131.1, 130.9, 125.2, 123.8, 122.4, 121.8, 119.8, 110.6, 109.6, 66.9, 60.3, 40.3, 28.5; IR (KBr) v 1714, 1671, 1621, 1602, 1490, 1463, 1396, 1338, 1303, 1253, 1174, 1027, 1000 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₂₁H₁₉N₃O₃ 361.1426; Found 361.1421.

1'-Benzyl-12*H*-spiro[indazolo[1,2-*a*]indazole-10,3'-pyrrolidine]-2',5',12-trione (4e)

57.1 mg (72%); eluent (CH₂Cl₂/EtOAc = 7:1 to 4:1); pale yellow solid; mp = 196.7–199.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (dt, *J* = 7.6, 1.2 Hz, 1H), 7.66 (ddd, *J* = 9.6, 7.2, 1.2 Hz, 1H), 7.49 (dt, *J* = 8.4, 0.8 Hz, 1H), 7.45–7.40 (m, 3H), 7.36–7.30 (m, 4H), 7.24 (ddd, *J* = 8.8, 7.2, 0.8 Hz, 1H), 7.03 (td, *J* = 7.6, 1.2 Hz, 1H), 6.88 (dt, *J* = 8.0, 0.8 Hz, 1H), 4.86 (q, *J* = 14.0 Hz, 2H), 4.05 (d, *J* = 18.0 Hz, 1H), 3.17 (d, *J* = 18.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 171.9, 161.0, 141.9, 137.2, 135.3, 133.4, 131.1, 130.7, 128.9, 128.6, 128.3, 125.2, 123.9, 122.6, 122.1, 119.7, 110.7, 109.6, 66.9, 43.5, 40.3; IR (KBr) v 3060, 2927, 1792, 1771, 1720, 1622, 1603, 1493, 1468, 1431, 1392, 1344, 1309, 1250, 1176, 1119, 943 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C_{24H17}N₃O₃ 395.1270; Found 395.1270.

1'-Phenyl-12H-spiro[indazolo[1,2-a]indazole-10,3'-pyrrolidine]-2',5',12-trione (4f)

49.6 mg (65%); eluent (CH₂Cl₂/EtOAc = 6:1 to 4:1); orange solid; mp = 239.5–242.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (dt, *J* = 8.0, 0.8 Hz, 1H), 7.67 (ddd, *J* = 9.6, 7.2, 1.2 Hz, 1H), 7.53–7.40 (m, 7H), 7.39 (d, *J* = 8.0 Hz, 1H), 7.31 (d, *J* = 7.6 Hz, 1H), 7.25 (ddd, *J* = 9.2, 7.2, 1.2 Hz, 1H), 7.18 (td, *J* = 7.6, 0.8 Hz, 1H), 4.16 (d, *J* = 18.4 Hz, 1H), 3.39 (d, *J* = 18.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 171.4, 161.4, 142.1, 137.5, 133.4, 131.7, 131.2, 130.5, 129.4, 129.3, 126.7, 125.2, 124.0, 122.7, 122.4, 119.6, 110.9, 109.8, 66.9, 40.6; IR (KBr) v 2924, 2852, 1792, 1780, 1719, 1642, 1580, 1532, 1410, 1380, 1278, 1028, 980, 820 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₂₃H₁₅N₃O₃ 381.1113; Found 381.1114.

1'-(4-Fluorophenyl)-12*H*-spiro[indazolo[1,2-*a*]indazole-10,3'-pyrrolidine]-2',5',12-trione (4g)

57.6 mg (72%); eluent (CH₂Cl₂/EtOAc = 7:1 to 4:1); pale yellow solid; mp = 207.4–210.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (dt, *J* = 8.0, 0.8 Hz, 1H), 7.60 (ddd, *J* = 9.6, 7.2, 1.2 Hz, 1H), 7.46–7.41 (m, 2H), 7.37 (dq, *J* = 9.2, 2.0 Hz, 2H), 7.29 (dt, *J* = 8.0, 0.8 Hz, 1H), 7.22 (d, *J* = 7.2 Hz, 1H), 7.16 (ddd, *J* = 8.8, 6.0, 0.8 Hz, 1H), 7.14–7.08 (m, 3H), 4.04 (d, *J* = 18.4 Hz, 1H), 3.32 (d, *J* = 18.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 171.4, 162.7 (d, *J*_{C-F} = 247.8 Hz), 161.5, 142.3, 137.6, 133.5, 131.3, 130.3, 128.6 (d, *J*_{C-F} = 8.8 Hz), 127.6, 127.5 (d, *J*_{C-F} = 3.3 Hz), 125.2, 124.1, 122.5 (d, *J*_{C-F} = 35.5 Hz), 119.6, 116.4 (d, *J*_{C-F} = 22.9 Hz), 110.9, 109.8, 66.9, 40.7; ¹⁹F NMR (376 MHz, CDCl₃) δ –111.4 (s); IR (KBr) v 3057, 2991, 1793, 1726, 1674, 1622, 1603, 1508, 1495, 1467, 1383, 1350, 1265, 1196, 1155, 1080, 835 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₂₃H₁₄FN₃O₃ 399.1019; Found 399.1017.

1'-(4-Nitrophenyl)-12H-spiro[indazolo[1,2-a]indazole-10,3'-pyrrolidine]-2',5',12-trione (4h)

41.9 mg (49%); eluent (CH₂Cl₂/EtOAc = 6:1 to 4:1); yellow solid; mp = 187.2–190.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.34 (dt, J = 9.2, 2.8 Hz, 2H), 7.91 (dt, J = 8.0, 1.2 Hz, 1H), 7.72 (dt, J = 9.2, 2.8 Hz, 2H), 7.69 (ddd, J = 8.4, 6.0, 0.8 Hz, 1H), 7.56–7.51 (m, 2H), 7.39 (dt, J = 8.4, 0.8 Hz, 1H), 7.32 (d, J = 7.6 Hz, 1H), 7.27 (ddd, J = 8.8, 7.2, 0.8 Hz, 1H), 7.19 (td, J = 7.6, 1.2 Hz, 1H), 4.13 (d, J = 18.8 Hz, 1H), 3.45 (d, J = 18.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 170.9, 161.8, 147.6, 142.5, 137.7, 137.1, 133.7, 131.5, 129.8, 127.4, 125.2, 124.7, 124.2, 122.9, 122.5, 119.5, 111.0, 109.9, 66.9, 40.8; IR (KBr) υ 3055, 2989, 1795, 1728, 1672, 1601, 1523, 1493, 1468, 1375, 1344, 1306, 1267, 1186, 1050, 845 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₂₃H₁₄N₄O₅ 426.0964; Found 426.0966.

1'-Allyl-12H-spiro[indazolo[1,2-a]indazole-10,3'-pyrrolidine]-2',5',12-trione (4i)

40.1 mg (58%); eluent (CH₂Cl₂/EtOAc = 6:1 to 4:1); pale orange solid; mp = 167.1–170.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.65 (ddd, *J* = 9.6, 7.2, 1.2 Hz, 1H), 7.89 (dt, *J* = 8.0, 0.8 Hz, 1H), 7.50 (dt, *J* = 8.4, 1.2 Hz, 1H), 7.47 (ddd, *J* = 9.6, 6.8, 0.8 Hz, 1H), 7.34 (dt, *J* = 8.0, 0.8 Hz, 1H), 7.23 (ddd, *J* = 8.8, 7.2, 0.8 Hz, 1H), 7.17–7.11 (m, 2H), 5.88 (ddt, *J* = 17.2, 10.2, 5.6 Hz, 1H), 5.39 (dq, *J* = 16.8, 1.2 Hz, 1H), 5.28 (dq, *J* = 10.2, 1.2 Hz, 1H), 4.30 (dt, *J* = 5.6, 1.6 Hz, 2H), 4.03 (d, *J* = 18.4 Hz, 1H), 3.22 (d, *J* = 18.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 171.8, 160.9, 141.7, 137.2, 133.3, 131.1, 130.6, 129.9, 125.2, 123.9, 122.5, 122.2, 119.6, 119.1, 110.7, 109.6, 66.8, 41.9, 40.3; IR (KBr) v 3057, 2927, 1788, 1712, 1657, 1620, 1599, 1401, 1466, 1429, 1367, 1356, 1329, 1265, 1180, 1151, 1120, 995, 943, 862 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₂₀H₁₅N₃O₃ 345.1113; Found 345.1114.

Methyl (2*S*)-2-(2',5',12-trioxo-12*H*-spiro[indazolo[1,2-a]indazole-10,3'-pyrrolidin]-1'yl)propanoate (4j)

49.4 mg (63%, dr = 1:1); eluent (CH₂Cl₂/EtOAc = 6:1 to 4:1); pale yellow solid; mp = 102.9–105.6 °C; ¹H NMR (400 MHz, CDCl₃) **diastereomer A**: δ 7.90–7.87 (m, 1H), 7.67–7.62 (m, 1H), 7.51–7.48 (m, 1H), 7.45 (d, *J* = 7.6 Hz, 1H), 7.37–7.31 (m, 2H), 7.26–7.20 (m, 1H),

7.17–7.12 (m, 1H), 5.05 (q, J = 7.2 Hz, 1H), 4.03 (d, J = 18.4 Hz, 1H), 3.82 (s, 3H), 3.25 (d, J = 18.4 Hz, 1H), 1.75 (d, J = 5.6 Hz, 3H); **diastereomer B**: δ 7.90–7.87 (m, 1H), 7.67–7.62 (m, 1H), 7.51–7.48 (m, 1H), 7.45 (d, J = 7.6 Hz, 1H), 7.37–7.31 (m, 2H), 7.26–7.20 (m, 1H), 7.17–7.12 (m, 1H), 4.92 (q, J = 7.2 Hz, 1H), 4.02 (d, J = 18.4 Hz, 1H), 3.71 (s, 3H), 3.20 (d, J = 18.0 Hz, 1H), 1.73 (d, J = 5.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) **diastereomer A**: δ 172.0, 171.4, 169.4, 161.1, 142.1, 137.2, 133.4, 131.1, 130.7, 125.1, 124.1, 122.8, 122.6, 119.5, 110.8, 109.5, 66.9, 53.1, 49.6, 40.4, 14.5; **diastereomer B**: δ 171.8, 171.3, 169.3, 161.0, 142.0, 137.1, 133.3, 131.0, 130.6, 125.0, 124.0, 122.7, 122.5, 119.5, 110.7, 109.5, 66.4, 53.0, 49.1, 40.3, 14.4; IR (KBr) υ 2829, 1791, 1747, 1722, 1673, 1621, 1602, 1490, 1463, 1434, 1390, 1359, 1309, 1251, 1209, 1060, 1027, 1002, 946, 871 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₂₁H₁₇N₃O₅ 391.1168; Found 391.1169.

12H-Spiro[indazolo[1,2-a]indazole-10,3'-pyrrolidine]-2',5',12-trione (4k)

31.8 mg (52%); eluent (CH₂Cl₂/EtOAc = 8:1 to 3:1); white solid; mp = 267.0–270.2 °C; ¹H NMR (500 MHz, DMSO-d₆) δ 12.1 (brs, 1H), 7.99 (d, *J* = 8.0 Hz, 1H), 7.81–7.45 (m, 3H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.53 (t, *J* = 8.0 Hz, 1H), 7.28 (t, *J* = 7.5 Hz, 1H), 7.19 (t, *J* = 7.5 Hz, 1H), 3.65 (d, *J* = 18.5 Hz, 1H), 3.36 (d, *J* = 18.5 Hz, 1H); ¹³C NMR (125 MHz, DMSO-d₆) δ 174.6, 173.9, 159.7, 104.9, 136.4, 133.4, 1130.7, 130.3, 124.0, 123.8, 123.6, 122.4, 118.6, 111.5, 109.6, 67.9, 41.0; IR (KBr) υ 2954, 2919, 1791, 1739, 1710, 1639, 1606, 1506, 1459, 1390, 1309, 1251, 1187, 1114, 1074, 1035, 997, 889 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₁₇H₁₁N₃O₃ 305.0800; Found 305.0800.

1'-(2-(2,5-Dioxo-2,5-dihydro-1*H*-pyrrol-1-yl)ethyl)-12*H*-spiro[indazolo[1,2-*a*]indazole-10,3'pyrrolidine]-2',5',12-trione (4l)

27.5 mg (32%); eluent (CH₂Cl₂/EtOAc = 8:1 to 3:1); light yellow solid; mp = 237.6–240.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (dt, *J* = 8.0, 0.8 Hz, 1H), 7.65 (ddd, *J* = 9.6, 7.2, 1.2 Hz, 1H), 7.59 (dt, *J* = 7.6, 0.8 Hz, 1H), 7.51–7.46 (m, 2H), 7.33 (dt, *J* = 8.0, 0.8 Hz, 1H), 7.24–7.18 (m, 2H), 6.69 (s, 2H), 4.01–3.95 (m, 1H), 3.92–3.78 (m, 4H), 3.20 (d, *J* = 18.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 172.4, 170.9, 160.8, 141.9, 137.5, 134.4, 133.3, 131.0, 130.2, 125.1, 124.1, 123.8, 122.6, 119.5, 110.8, 109.4, 66.7, 40.6, 38.9, 36.3; IR (KBr) v 2925, 2854, 1789, 1740, 1780, 1600, 1490, 1467, 1434, 1390, 1355, 1334, 1247, 1201, 1151, 1118, 1031, 975, 939, 896, 827 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₂₃H₁₆N₄O₅ 428.1121; Found 428.1121.

1',1'''-(Ethane-1,2-diyl)bis(12*H*-spiro[indazolo[1,2-*a*]indazole-10,3'-pyrrolidine]-2',5',12-trione) (4m)

85.5 mg (67%); eluent (CH₂Cl₂/EtOAc = 6:1 to 2:1); yellow solid; mp = 278.0–281.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.89–7.85 (m, 2H), 7.70–7.65 (m, 2H), 7.54–7.50 (m, 3H), 7.49 (d, J = 8.8 Hz, 1H), 7.46–7.40 (m, 2H), 7.32 (dd, J = 8.4, 2.4 Hz, 2H), 7.26–7.22 (m, 2H), 7.07 (td, J = 7.6, 1.2 Hz, 1H), 6.96 (td, J = 7.6, 1.2 Hz, 1H), 4.18–4.12 (m, 2H), 4.00–3.93 (m, 2H), 3.85 (d, J = 18.4 Hz, 2H), 3.44 (d, J = 18.4 Hz, 1H), 3.17 (d, J = 18.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 172.1, 161.1, 142.0, 137.3, 133.4, 130.9, 130.2, 125.1, 124.2, 123.9, 122.5, 119.5, 110.9, 109.2, 67.3, 41.8, 38.4; IR (KBr) υ 3480, 2927, 1789, 1716, 1668, 1621, 1600, 1490, 1465, 1392, 1353, 1305, 1261, 1214, 1168, 1116, 1085, 1031, 943, 910, 860 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₃₆H₂₄N₆O₆ 636.1757; Found 636.1753.

Butyl 10-(2-butoxy-2-oxoethyl)-12-oxo-10*H*,12*H*-indazolo[1,2-*a*]indazole-10-carboxylate (40)

44.8 mg (51%); eluent (CH₂Cl₂/EtOAc = 7:1 to 4:1); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (dt, J = 8.0, 1.2 Hz, 1H), 7.63 (ddd, J = 9.6, 7.2, 1.2 Hz, 1H), 7.49 (dt, J = 8.4, 0.8 Hz, 1H), 7.45–7.35 (m, 2H), 7.29 (dt, J = 8.0, 0.8 Hz, 1H), 7.19 (ddd, J = 8.8, 7.2, 0.8 Hz, 1H), 7.07 (td, J = 7.6, 0.8 Hz, 1H), 4.21–4.10 (m, 3H), 3.75 (t, J = 6.8 Hz, 2H), 3.59 (d, J = 16.8 Hz, 1H), 1.56–1.49 (m, 2H), 1.25–1.14 (m, 4H), 1.09–1.00 (m, 2H), 0.79 (t, J = 7.2 Hz, 3H), 0.71 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 167.9, 160.3, 140.3, 137.0, 132.6, 130.5, 130.4, 125.0, 123.5, 123.0, 121.8, 119.9, 110.2, 108.6, 68.0, 67.0, 64.8, 36.9, 30.4, 30.3, 19.0, 18.9, 13.7, 13.6; IR (KBr) υ 2958, 2933, 2871, 1735, 1671, 1619, 1600, 1492, 1465, 1394, 1353, 1305, 1245, 1226, 1189, 1058, 1024, 946 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₂₅H₂₈N₂O₅ 436.1998; Found 436.1993.

Ethyl 10-(2-ethoxy-2-oxoethyl)-12-oxo-10*H*,12*H*-indazolo[1,2-*a*]indazole-10-carboxylate (4p)

36.3 mg (48%); eluent (CH₂Cl₂/EtOAc = 7:1 to 5:1); orange sticky solid; ¹H NMR (500 MHz, CDCl₃) δ 7.91 (dt, J = 8.0, 1.0 Hz, 1H), 7.62 (ddd, J = 10.0, 7.5, 1.5 Hz, 1H), 7.48 (dt, J = 8.5, 1.0 Hz, 1H), 7.42–7.40 (m, 2H), 7.28 (dt, J = 8.0, 1.0 Hz, 1H), 7.20 (ddd, J = 9.0, 7.0, 1.0 Hz, 1H), 7.07 (td, J = 7.5, 1.0 Hz, 1H), 4.28–4.18 (m, 2H), 4.17 (d, J = 17.0 Hz, 1H), 3.82–3.76 (m, 2H), 3.57 (d, J = 17.0 Hz, 1H), 1.20 (t, J = 7.5 Hz, 3H), 0.82 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.3, 167.8, 160.2, 140.3, 137.1, 132.7, 130.6, 130.3, 124.9, 123.6, 123.0, 121.8, 119.9, 110.2, 108.6, 67.9, 63.2, 60.8, 36.9, 14.0, 13.7; IR (KBr) υ 3066, 2981, 1736, 1672, 1619, 1600, 1493, 1468, 1367, 1351, 1303, 1240, 1193, 1095, 1026, 944, 860 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₂₁H₂₀N₂O₅ 380.1372; Found 380.1372.

4-(1-(4-Sulfamoylphenyl)-3-(trifluoromethyl)-1*H*-pyrazol-5-yl)benzyl 3-(2',5',12-trioxo-12*H*-spiro[indazolo[1,2-*a*]indazole-10,3'-pyrrolidin]-1'-yl)propanoate (4q)

83.2 mg (55%); eluent (CH₂Cl₂/EtOAc = 5:1 to 1:1); light yellow solid; mp = 104.5–107.6 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.82–7.78 (m, 3H), 7.62 (ddd, J = 9.5, 7.0, 1.0 Hz, 1H), 7.47–7.44 (m, 2H), 7.35–7.30 (m, 5H), 7.23 (d, J = 8.0 Hz, 1H), 6.73 (s, 1H), 7.19–7.14 (m, 3H), 7.11 (t, J = 7.5 Hz, 1H), 5.49 (s, 2H), 5.09 (s, 2H), 4.02–3.93 (m, 2H), 3.88 (d, J = 18.5 Hz, 1H), 3.20 (d, J = 18.5 Hz, 1H), 2.78 (td, J = 6.5, 1.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 171.9, 170.5, 160.9, 144.7, 144.1 (q, J_{C-F} = 38.0 Hz), 142.1, 142.0, 141.6, 137.1 (d, J_{C-F} = 7.2 Hz), 133.5, 131.2, 130.2, 129.2, 129.1, 128.7, 127.5, 125.5, 124.9, 124.1, 122.8, 122.7, 122.2 (q, J_{C-F} = 267.7 Hz), 119.2, 110.7, 109.6, 106.7, 106.6, 66.7, 66.1, 40.5, 35.7, 32.1; ¹⁹F NMR (376 MHz, CDCl₃) δ –62.3 (s); IR (KBr) υ 3062, 1791, 1716, 1658, 1600, 1494, 1469, 1446, 1346, 1315, 1267, 1234, 1160, 1132, 1097, 973, 842 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₃₇H₂₇F₃N₆O₇S 756.1614; Found 756.1685.

(8R,9S,13S,14S)-13-Methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-

cyclopenta[*a*]phenanthren-2-yl 3-(2',5',12-trioxo-12*H*-spiro[indazolo[1,2-a]indazole-10,3'pyrrolidin]-1'-yl)propanoate (4r)

85.8 mg (68%, dr = 1:1); eluent (CH₂Cl₂/EtOAc = 7:1 to 3:1); pale yellow solid; mp = 125.0–128.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 7.6 Hz, 1H), 7.66 (ddd, *J* = 9.6, 7.2, 1.2 Hz, 1H), 7.51 (d, *J* = 8.4 Hz, 1H), 7.48–7.43 (m, 1H), 7.33 (d, *J* = 8.0 Hz, 1H), 7.27–7.22 (m, 3H), 7.06 (td, *J* = 8.4, 2.8 Hz, 1H), 6.84 (dd, *J* = 8.4, 2.8 Hz, 1H), 6.80 (t, *J* = 3.2 Hz, 1H), 4.22–4.15 (m, 1H), 4.12–4.06 (m, 1H), 3.96 (d, *J* = 18.4 Hz, 1H), 3.23 (d, *J* = 18.4 Hz, 1H), 2.99 (t, *J* = 6.8 Hz, 2H), 2.90–2.86 (m, 2H), 2.53–2.47 (m, 1H), 2.42–2.36 (m, 1H), 2.30–2.24 (m, 1H), 2.18–2.07 (m, 1H), 2.05–1.93 (m, 3H), 1.67–1.58 (m, 2H), 1.55–1.37 (m, 4H), 0.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 171.9, 169.7, 161.1, 148.4, 142.0, 138.2, 137.7, 137.3, 133.4, 131.0 (two carbons overlap), 130.4, 126.5, 125.1, 124.0, 122.9, 122.6, 121.6, 119.5, 118.8, 110.8, 109.5, 66.7, 50.5, 48.0, 44.3, 40.6, 38.1, 35.9, 35.6, 32.2, 31.7, 29.5, 26.4, 25.8, 21.7, 13.9; IR (KBr) v 3018, 2933, 1792, 1716, 1668, 1622, 1603, 1491, 1468, 1394, 1371, 1352, 1308, 1250, 1217, 1153, 1088, 1009, 972, 908 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C_{38H35}N₃O₆ 629.2526; Found 629.2520.

2-(2-Methyl-5-nitro-1*H*-imidazol-1-yl)ethyl 3-(2',5',12-trioxo-12*H*-spiro[indazolo[1,2*a*]indazole-10,3'-pyrrolidin]-1'-yl)propanoate (4s)

76.5 mg (72%); eluent (CH₂Cl₂/EtOAc = 1:1 to only EtOAc); pale yellow solid; mp = 106.4–108.9 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.94 (s, 1H), 7.86 (dt, *J* = 8.0, 1.0 Hz, 1H), 7.66 (ddd, *J* = 9.5, 7.0, 1.0 Hz, 1H), 7.52–7.47 (m, 2H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.26–7.22 (m, 2H), 7.15 (t, *J* = 6.5 Hz, 1H), 4.57 (td, *J* = 5.5, 2.0 Hz, 2H), 4.45–7.35 (m, 2H), 3.97 (td, *J* = 6.5, 1.5 Hz, 2H), 3.92 (d, *J* = 18.5 Hz, 1H), 3.22 (d, *J* = 18.5 Hz, 1H), 2.75–2.72 (m, 2H), 2.49 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.5, 171.9, 170.2, 161.0, 141.9, 137.3, 133.4, 133.2, 131.2, 130.3, 125.1, 124.1, 122.8, 122.7, 119.5, 110.8, 109.6, 66.6, 63.1, 44.9, 40.6, 35.6, 31.9, 14.4; IR (KBr) v 3060, 2979, 1716, 1674, 1529, 1488, 1468, 1430, 1363, 1313, 1263, 1187, 1120, 1033, 946, 825 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₂₆H₂₂N₆O₇ 530.1550; Found 530.1548.

1'-(Pyren-1-yl)-12H-spiro[indazolo[1,2-a]indazole-10,3'-pyrrolidine]-2',5',12-trione (4t)

88.2 mg (87%, rotomers ratio = 2:1); eluent (CH₂Cl₂/EtOAc = 10:1 to 5:1); pale yellow solid; mp = 288.3–291.2 °C; ¹H NMR (400 MHz, CDCl₃) **rotomer A**: δ 8.41–8.31 (m, 1H), 8.28–8.21 (m, 3H), 8.19–8.11 (m, 3H), 8.09–8.03 (m, 1H), 8.01 (dt, *J* = 7.6, 1.2 Hz, 1H), 7.84 (d, *J* = 8.0 Hz, 1H), 7.70–7.63 (m, 1H), 7.59–7.50 (m, 2H), 7.41 (t, *J* = 8.4 Hz, 1H), 7.28–7.23 (m, 3H), 4.42 (d, *J* = 18.8 Hz, 1H), 3.66 (d, *J* = 18.8 Hz, 1H); **rotomer B**: δ 8.41–8.31 (m, 1H), 8.28–8.21 (m, 3H), 8.19–8.11 (m, 3H), 8.09–8.03 (m, 1H), 7.96 (dt, *J* = 8.0, 0.8 Hz, 1H), 7.79 (d, *J* = 9.2 Hz, 1H), 7.70–7.63 (m, 1H), 7.59–7.50 (m, 2H), 7.32 (td, *J* = 7.6, 0.8 Hz, 1H), 7.28–7.23

(m, 3H), 4.30 (d, J = 18.4 Hz, 1H), 3.59 (d, J = 18.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) **rotomer A**: δ 172.7, 161.7, 142.2, 137.7, 133.7, 132.6, 131.4, 131.1, 131.0, 130.7, 130.0, 129.4, 128.7, 127.4, 126.6, 126.4, 126.1, 125.7, 125.4, 125.3, 125.2, 125.0, 124.6, 124.2, 122.7, 122.5, 122.0, 119.7, 110.9, 110.0, 67.5, 41.4; **rotomer B**: δ 172.0, 160.9, 141.6, 137.2, 133.4, 132.5, 131.3, 131.1, 131.0, 130.5, 130.0, 128.9, 128.3, 127.1, 126.5, 126.3, 126.0, 125.6, 125.4, 125.3, 125.2, 124.9, 124.4, 124.1, 122.6, 122.4, 120.7, 119.6, 110.7, 109.8, 67.1, 41.0; IR (KBr) υ 3496, 3424, 3052, 2925, 2854, 1793, 1720, 1650, 1600, 1510, 1460, 1346, 1307, 1263, 1180, 1118, 946, 844 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₃₃H₁₉N₃O₃ 505.1426; Found 505.1430.

General procedure and ¹H NMR copy for deuterium-labeling experiment

To an oven-dried sealed tube charged with 1-phenyl-1*H*-indazol-3-ol (**1a**) (42.1 mg, 0.2 mmol, 100 mol %), $[RhCp*Cl_2]_2$ (3.1 mg, 0.005 mmol, 2.5 mol %), AgSbF₆ (13.7 mg, 0.04 mmol, 20 mol %), NaOAc (8.2 mg, 0.1 mmol, 50 mol %), and *N*-methylmaleimide (**2a**) (44.4 mg, 0.4 mmol, 200 mol %) was added CD₃CO₂D (10 equiv.) and MeCN (1 mL) under air at room temperature. The reaction mixture was allowed to stir in an oil bath for 3 h at 80 °C. The reaction mixture was cooled to room temperature, diluted with EtOAc (2 mL), and concentrated in vacuo. The residue was purified by flash column chromatography (CH₂Cl₂/EtOAc = 7:1 to 4:1) to afford **1a** (33.6 mg, 80% recovered yield) and **deuterio-3a** (6.5 mg, 10% yield), respectively.

General procedure and characterization data for the synthesis of rhodacycle-1a

To an oven-dried sealed tube charged with 1-phenyl-1*H*-indazol-3-ol (**1a**) (42.1 mg, 0.2 mmol, 100 mol %), $[RhCp*Cl_2]_2$ (61.8 mg, 0.1 mmol, 50 mol %), and NaOAc (32.8 mg, 0.4 mmol, 200 mol %) was added DCE (3.5 mL) under air atmosphere at room temperature. The reaction mixture was allowed to stir at room temperature for 2 h. The reaction mixture was diluted with EtOAc (5 mL) and concentrated in vacuo. The residue was purified by flash column chromatography (CH₂Cl₂/MeOH = 100:1) to afford 63.2 mg of **rhodacycle-1a** in 48% yield as a dark brown solid, which was further recrystallized by CH₂Cl₂/pentane (1:5) to give **rhodacycle-1a** in 48% yield.

Rhodacycle-1a

rhodacycle-1a

63.2 mg (48%); eluent (CH₂Cl₂/MeOH = 100:1); red solid; mp = > 300 °C; ¹H NMR (300 MHz, DMSO-d₆) δ 7.82–7.84 (m, 1H), 7.77–7.74 (m, 2H), 7.70–7.67 (m, 2H), 7.58–7.48 (m, 4H), 7.46–7.41 (m, 2H), 7.37 (ddd, *J* = 9.6, 6.9, 1.2 Hz, 1H), 7.28–7.23 (m, 1H), 7.18–7.10 (m, 2H), 6.98 (ddd, *J* = 8.7, 7.2, 0.9 Hz, 1H), 6.89 (td, *J* = 7.5, 1.2 Hz, 1H), 1.72 (s, 15H); ¹³C NMR (100 MHz, CDCl₃) δ 161.9, 153.5, 153.0, 143.6, 138.9, 138.2, 128.9 (two carbons overlap), 128.8, 128.4, 126.7, 126.6, 123.2, 122.4, 121.8, 121.5, 120.6, 119.6, 116.9, 110.2, 110.1, 108.5, 97.1, 97.0, 9.68; HRMS (ion trap, FAB) m/z: [M + H]⁺ Calcd for C₃₆H₃₄N₄O₂Rh 657.1737; Found 657.1731.

Experimental procedure for the reaction of 1a and 2a using rhodacycle-1a

To an oven-dried sealed tube charged with 1-phenyl-1*H*-indazol-3-ol (**1a**) (42.1 mg, 0.2 mmol, 100 mol %), **rhodacycle-1a** (6.6 mg, 0.01 mmol, 5 mol %), NaOAc (8.2 mg, 0.1 mmol, 50 mol %), and *N*-methyl maleimide (**2a**) (44.4 mg, 0.4 mmol, 200 mol %) was added MeCN (1 mL) under air at room temperature. The reaction mixture was allowed to stir in an oil bath for 20 h at 80 °C. The reaction mixture was cooled to room temperature, diluted with EtOAc (2 mL), and concentrated in vacuo. The residue was purified by flash column chromatography (CH₂Cl₂/EtOAc = 7:1 to 4:1) to afford **3a** (45.5 mg) in 71% yield.
Experimental procedure for the reaction of 1a and 2a using [RhCp*(OAc)₂]

To an oven-dried sealed tube charged with 1-phenyl-1*H*-indazol-3-ol (**1a**) (42.1 mg, 0.2 mmol, 100 mol %), RhCp*(OAc)₂ (7.2 mg, 0.01 mmol, 5 mol %), NaOAc (8.2 mg, 0.1 mmol, 50 mol %), and *N*-methyl maleimide (**2a**) (44.4 mg, 0.4 mmol, 200 mol %) was added MeCN (1 mL) under air at room temperature. The reaction mixture was allowed to stir in an oil bath for 20 h at 80 °C. The reaction mixture was cooled to room temperature, diluted with EtOAc (2 mL), and concentrated in vacuo. The residue was purified by flash column chromatography (CH₂Cl₂/EtOAc = 7:1 to 4:1) to afford **3a** (36.4 mg) in 57% yield.

General procedure for the spiroannulation of rhodacycle-1a with maleimide for the formation of 3a

To an oven-dried sealed tube charged with **rhodacycle-1a** (32.8 mg, 0.05 mmol, 100 mol %), NaOAc (2.1 mg, 0.025 mmol, 50 mol %), and *N*-methyl maleimide (**2a**) (11.1 mg, 0.1 mmol, 200 mol %) was added MeCN (0.5 mL) under air at room temperature. The reaction mixture was allowed to stir in an oil bath for 20 h at 80 °C. The reaction mixture was cooled to room temperature, diluted with EtOAc (1 mL) and concentrated in vacuo. The residue was purified by flash column chromatography (CH₂Cl₂/EtOAc = 6:1 to 3:1) to afford **3a** (14.4 mg) in 90% yield.

General procedure and characterization data for the reaction of 1-phenyl-1*H*indazol-3-ol (1a) with 1-methyl-1,5-dihydro-2*H*-pyrrol-2-one (5a)

To an oven-dried sealed tube charged with 1-phenyl-1*H*-indazol-3-ol (**1a**) (42.1 mg, 0.2 mmol, 100 mol %), $[RhCp*Cl_2]_2$ (3.1 mg, 0.005 mmol, 2.5 mol %), AgSbF₆ (13.7 mg, 0.04 mmol, 20 mol %), NaOAc (8.2 mg, 0.1 mmol, 50 mol %), and 1-methyl-1,5-dihydro-2*H*-pyrrol-2-one (**5a**) (38.8 mg, 0.4 mmol, 200 mol %) was added MeCN (1 mL) under air at room temperature. The reaction mixture was allowed to stir in an oil bath for 20 h at 80 °C. The reaction mixture was cooled to room temperature, diluted with EtOAc (2 mL) and concentrated in vacuo. The residue was purified by flash column chromatography (CH₂Cl₂/EtOAc = 1:1 to 1:4) to afford **6a** (21.6 mg) in 35% yield.

2-Methyl-2,3,3*a*,14*a*-tetrahydro-1*H*,13*H*-indazolo[1,2-*a*]pyrrolo[3,4-*c*]cinnoline-1,13-dione (6a)

21.6 mg (35%); eluent (CH₂Cl₂/EtOAc = 1:1 to 1:4); pale yellow sticky solid; ¹H NMR (500 MHz, CD₃COCD₃/CDCl₃ = 10:1) δ 7.84 (dt, *J* = 8.5, 0.5 Hz, 1H), 7.79 (dt, *J* = 8.0, 1.0 Hz, 1H), 7.73 (ddd, *J* = 8.5, 7.0, 1.5 Hz, 1H), 7.67 (dt, *J* = 8.0, 1.0 Hz, 1H), 7.58 (ddd, *J* = 8.5, 7.5, 0.5 Hz, 2H), 7.25 (tdd, *J* = 15.5, 3.0, 1.0 Hz, 2H), 3.07 (dt, *J* = 16.5, 9.5 Hz, 1H), 2.92 (ddd, *J* = 14.0, 9.5, 2.0 Hz, 1H), 2.75 (dt, *J* = 14.0, 9.5 Hz, 1H), 2.56 (ddd, *J* = 16.5, 9.5, 2.9 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (125 MHz, CD₃COCD₃/CDCl₃ = 10:1) δ 175.0, 159.9, 142.0, 138.3, 133.9, 132.0, 131.4, 125.5, 125.1, 124.5, 122.9, 120.9, 111.9, 110.3, 85.2, 32.6, 30.8, 25.1; IR (KBr) υ 3469, 2925, 1672, 1584, 1481, 1445, 1380, 1349, 1297, 1245, 1149, 1114, 995, 904 cm⁻¹; HRMS (quadrupole, EI) m/z: [M]⁺ Calcd for C₁₈H₁₅N₃O₂ 305.1164; Found 305.1161.

General procedure for the gram scale experiment of 3a

To an oven-dried sealed tube charged with 1-phenyl-1*H*-indazol-3-ol (**1a**) (1.0 g, 4.8 mmol, 100 mol %), [RhCp*Cl₂]₂ (74.2 mg, 0.12 mmol, 2.5 mol %), AgSbF₆ (329.9 mg, 0.96 mmol, 20 mol %), NaOAc (196.9 mg, 2.4 mmol, 50 mol %), and *N*-methyl maleimide (**2a**) (1.07 g, 9.6 mmol, 200 mol %) was added MeCN (24 mL) under air at room temperature. The reaction mixture was allowed to stir in an oil bath for 20 h at 80 °C. The reaction mixture was cooled to room temperature, diluted with EtOAc (20 mL), and concentrated in vacuo. The residue was purified by flash column chromatography (CH₂Cl₂/EtOAc = 7:1 to 4:1) to afford **3a** (1.38 g) in 90% yield.

X-ray crystallographic data of 1-phenyl-1*H*-indazol-3-ol (1a) (CCDC 2096892)

Sample preparation (solvent evaporation)

Compound **1a** (25 mg) was dissolved with 1 mL of CH_2Cl_2 in opened inner vessel, and *n*-pentane (5 mL) as an anti-solvent has been employed in closed outer vessel. After vapor diffusion for 2 days, the single crystals of compound **1a** were obtained.

Detailed experimental description for the crystal measurement of 1-phenyl-1*H*-indazol-3-ol (1a)

Crystals grew as colorless plate-like in CH₂Cl₂ by slow evaporation from *n*-pentane. The crystal structures of compound **1a** were determined by standard crystallographic methods. A colorless crystal of C₁₃H₁₀N₂O with approximate dimensions 0.020 x 0.150 x 0.200 mm³ was used for single-crystal X-ray diffraction. The data were collected at 223(2) K using a Bruker D8 Venture equipped with a graphite monochromator with CuK_α radiation ($\lambda = 0.71073$ Å) and a PHOTON III M14 detector in Western Seoul Center of Korea Basic Science Institute. Data collection and integration were performed with SMART APEX3 software package (SAINT).⁴ Absorption correction was performed by multi-scan method implemented in SADABS.⁵ The structure was solved by direct methods and refined by full-matrix least-squares on F^2 using SHELXTL program package (version 6.14).⁶ All the non-hydrogen atoms were refined anisotropically, and hydrogen atoms were added to their geometrically ideal positions.

Details of crystal data, data collection and structure refinement are listed in Table S2. Further details of the individual structures can be obtained from the Cambridge Crystallographic Data Centre by quoting **CCDC 2096892**.

ORTEP diagram of 1a (CCDC 2096892)

A colorless plate-like specimen of $C_{13}H_{10}N_2O$, approximate dimensions 0.020 mm x 0.150 mm x 0.200 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured ($\lambda = 0.71073$ Å).

Axis	dx/mm	20/°	ω/°	φ/°	χ/°	Width/°	Frames	Time/s	Wavelength/Å	Voltage/kV	Current/mA	Temperature/K
Phi	60.663	0.00	0.00	0.00	54.74	1.00	180	1.20	0.71073	50	30.0	n/a
Phi	60.663	0.00	0.00	180.00	54.74	1.00	180	1.20	0.71073	50	30.0	n/a
Omega	60.663	18.54	-174.46	-105.00	54.74	1.00	206	10.00	0.71073	50	30.0	n/a
Omega	60.663	18.54	-174.46	102.00	54.74	1.00	206	10.00	0.71073	50	30.0	n/a
Omega	60.663	18.54	-174.46	0.00	54.74	1.00	206	10.00	0.71073	50	30.0	n/a
Phi	60.663	18.54	31.54	0.00	54.74	1.00	360	10.00	0.71073	50	30.0	n/a
Omega	60.663	18.54	-174.46	-156.00	54.74	1.00	206	10.00	0.71073	50	30.0	n/a
Phi	60.663	0.00	0.00	0.00	54.74	360.00	1	108.00	0.71073	50	30.0	n/a

Table S1: Data collection details for 1a.

A total of 1545 frames were collected. The total exposure time was 3.44 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a triclinic unit cell yielded a total of 16137 reflections to a maximum θ angle of 28.42° (0.75 Å resolution), of which 2588 were independent (average redundancy 6.235, completeness = 99.5%, $R_{int} = 4.00\%$, $R_{sig} = 3.02\%$) and 2051 (79.25%) were greater than $2\sigma(F^2)$. The final cell constants of $\underline{a} = 6.772(2)$ Å, $\underline{b} = 9.153(2)$ Å, $\underline{c} = 9.331(2)$ Å, $\alpha = 70.250(7)^\circ$, $\beta = 87.119(8)^\circ$, $\gamma = 72.184(8)^\circ$, volume = 517.3(2) Å³, are based upon the refinement of the XYZ-centroids of 5540 reflections above 20 $\sigma(I)$ with 4.646° < 2 θ < 55.07°. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.914. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9830 and 0.9980.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P -1, with Z = 2 for the formula unit, $C_{13}H_{10}N_2O$. The final anisotropic full-matrix least-squares refinement on F² with 146 variables converged at R1 = 4.91%, for the observed data and wR2 = 12.09% for all data. The goodness-of-fit was 1.060. The largest peak in the final difference electron density synthesis was 0.221 e⁻/Å³ and the largest hole was -0.220 e⁻/Å³ with an RMS deviation of 0.037 e⁻/Å³. On the basis of the final model, the calculated density was 1.350 g/cm³ and F(000), 220 e⁻.

Chemical formula	$C_{13}H_{10}N_2O$		
Formula weight	210.23 g/mol		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal size	0.020 x 0.150 x 0.20	00 mm	
Crystal habit	colorless plate		
Crystal system	triclinic		
Space group	P -1		
Unit cell dimensions	a = 6.772(2) Å	$\alpha = 70.250(7)^{\circ}$	
	b = 9.153(2) Å	$\beta = 87.119(8)^{\circ}$	
	c = 9.331(2) Å	$\gamma = 72.184(8)^{\circ}$	
Volume	517.3(2) Å ³		
Ζ	2		
Density (calculated)	1.350 g/cm^3		
Absorption coefficient	0.088 mm ⁻¹		
F(000)	220		

 Table S2. Sample and crystal data for 1a.

Theta range for data collection	2.32 to 28.42°			
Index ranges	-9≤h≤9, -12≤k≤	12, -12≤1≤12		
Reflections collected	16137			
Independent reflections	2588 [R(int) = 0.0	0400]		
Coverage of independent reflections	99.5%			
Absorption correction	Multi-Scan			
Max. and min. transmission	0.9980 and 0.983	0		
Structure solution technique	direct methods			
Structure solution program	SHELXT 2018/2	(Sheldrick, 2018)		
Refinement method	Full-matrix least-	squares on F ²		
Refinement program	SHELXL-2018/3	(Sheldrick, 2018)		
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$			
Data / restraints / parameters	2588 / 0 / 146			
Goodness-of-fit on F ²	1.060			
Final R indices	2051 data; I>2σ(I)	$\begin{array}{c} R_1 = 0.0491, wR_2 = \\ 0.1134 \end{array}$		
	all data	$\begin{array}{l} R_1 = 0.0640, \ wR_2 = \\ 0.1209 \end{array}$		
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0515P) ² +0.1255P] where P=(F_o^2 +2 F_c^2)/3			
Largest diff. peak and hole	0.221 and -0.220 eÅ ⁻³			
R.M.S. deviation from mean	0.037 eÅ ⁻³			

Table S3. Data collection and structure refinement for 1a.

Table S4. Atomic coordinates and equivalent isotropic atomic displacement parameters $(Å^2)$ for 1a.

U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
C1	0.2204(2)	0.02157(16)	0.61760(15)	0.0349(3)
C2	0.3879(2)	0.06146(16)	0.66562(16)	0.0339(3)
C3	0.5245(2)	0.99798(18)	0.79570(17)	0.0434(4)
C4	0.6646(2)	0.0772(2)	0.80102(19)	0.0490(4)
C5	0.6728(2)	0.2166(2)	0.6802(2)	0.0468(4)
C6	0.5418(2)	0.28130(18)	0.55217(18)	0.0405(3)
C7	0.3974(2)	0.20133(16)	0.54635(15)	0.0331(3)
C8	0.1710(2)	0.38125(16)	0.30941(15)	0.0340(3)
C9	0.9629(2)	0.47121(19)	0.29050(18)	0.0465(4)
C10	0.8930(3)	0.6122(2)	0.1654(2)	0.0574(5)
C11	0.0298(3)	0.6635(2)	0.06100(19)	0.0564(5)
C12	0.2368(3)	0.5747(2)	0.08195(18)	0.0527(4)
C13	0.3093(2)	0.43257(18)	0.20520(17)	0.0420(3)
N1	0.13324(17)	0.12638(14)	0.48492(13)	0.0363(3)
N2	0.24482(17)	0.23690(14)	0.43820(13)	0.0358(3)
01	0.16032(17)	0.89214(13)	0.69579(12)	0.0467(3)

C1-N1	1.3136(18)	C1-O1	1.3349(16)
C1-C2	1.427(2)	C2-C7	1.4008(19)
C2-C3	1.405(2)	C3-C4	1.371(2)
С3-Н3	0.93	C4-C5	1.402(2)
C4-H4	0.93	C5-C6	1.368(2)
С5-Н5	0.93	C6-C7	1.401(2)
С6-Н6	0.93	C7-N2	1.3673(18)
C8-C13	1.383(2)	C8-C9	1.383(2)
C8-N2	1.4222(17)	C9-C10	1.384(2)
С9-Н9	0.93	C10-C11	1.376(3)
C10-H10	0.93	C11-C12	1.373(3)
C11-H11	0.93	C12-C13	1.382(2)
C12-H12	0.93	С13-Н13	0.93
N1-N2	1.3859(16)	O1-H1	0.82

Table S5. Bond lengths (Å) for 1a.

	100 5 ((10)		111.05(10)
NI-CI-OI	123.56(13)	NI-CI-C2	111.87(12)
O1-C1-C2	124.56(12)	C7-C2-C3	120.14(13)
C7-C2-C1	104.14(12)	C3-C2-C1	135.69(13)
C4-C3-C2	117.90(14)	С4-С3-Н3	121.1
С2-С3-Н3	121.1	C3-C4-C5	121.20(14)
С3-С4-Н4	119.4	С5-С4-Н4	119.4
C6-C5-C4	122.24(14)	С6-С5-Н5	118.9
C4-C5-H5	118.9	C5-C6-C7	116.84(14)
С5-С6-Н6	121.6	С7-С6-Н6	121.6
N2-C7-C2	107.32(12)	N2-C7-C6	130.99(13)
C2-C7-C6	121.67(13)	C13-C8-C9	120.35(14)
C13-C8-N2	119.58(13)	C9-C8-N2	120.05(13)
C8-C9-C10	119.57(15)	С8-С9-Н9	120.2
С10-С9-Н9	120.2	C11-C10-C9	120.31(16)
С11-С10-Н10	119.8	С9-С10-Н10	119.8
C12-C11-C10	119.72(15)	C12-C11-H11	120.1
C10-C11-H11	120.1	C11-C12-C13	120.89(16)
С11-С12-Н12	119.6	С13-С12-Н12	119.6
C12-C13-C8	119.15(15)	С12-С13-Н13	120.4
С8-С13-Н13	120.4	C1-N1-N2	106.10(11)
C7-N2-N1	110.54(11)	C7-N2-C8	127.98(12)
N1-N2-C8	120.27(11)	С1-О1-Н1	109.5

Table S6. Bond angles (°) for 1a.

Table S7. Anisotropic atomic displacement parameters (Ų) for 1a.The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [h² a*² U₁₁ + ... + 2 h k a* b* U₁₂]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0357(7)	0.0310(7)	0.0341(7)	-0.0054(6)	0.0035(5)	-0.0114(5)
C2	0.0350(7)	0.0299(6)	0.0349(7)	-0.0102(5)	0.0020(5)	-0.0081(5)
C3	0.0486(8)	0.0354(8)	0.0390(8)	-0.0079(6)	-0.0053(6)	-0.0068(6)
C4	0.0459(8)	0.0476(9)	0.0507(9)	-0.0194(8)	-0.0130(7)	-0.0050(7)
C5	0.0396(8)	0.0494(9)	0.0599(10)	-0.0268(8)	-0.0016(7)	-0.0154(7)
C6	0.0397(7)	0.0362(7)	0.0480(8)	-0.0148(6)	0.0049(6)	-0.0148(6)
C7	0.0323(6)	0.0308(7)	0.0356(7)	-0.0117(5)	0.0028(5)	-0.0087(5)
C8	0.0400(7)	0.0288(6)	0.0319(7)	-0.0067(5)	0.0004(5)	-0.0126(6)
C9	0.0420(8)	0.0447(9)	0.0453(8)	-0.0077(7)	0.0034(6)	-0.0113(7)
C10	0.0522(10)	0.0449(9)	0.0589(11)	-0.0089(8)	-0.0096(8)	0.0000(8)
C11	0.0817(13)	0.0341(8)	0.0408(9)	-0.0008(7)	-0.0071(8)	-0.0120(8)
C12	0.0723(11)	0.0428(9)	0.0392(8)	-0.0061(7)	0.0129(8)	-0.0227(8)
C13	0.0441(8)	0.0377(8)	0.0408(8)	-0.0089(6)	0.0078(6)	-0.0137(6)
N1	0.0355(6)	0.0335(6)	0.0378(6)	-0.0039(5)	0.0011(5)	-0.0166(5)
N2	0.0359(6)	0.0321(6)	0.0368(6)	-0.0030(5)	-0.0010(5)	-0.0160(5)
01	0.0515(6)	0.0421(6)	0.0413(6)	0.0033(5)	-0.0052(5)	-0.0253(5)

	x/a	y/b	z/c	U(eq)
H3	0.5200	-0.0949	0.8757	0.052
H4	0.7559	0.0378	0.8863	0.059
H5	0.7706	0.2667	0.6874	0.056
H6	0.5482	0.3740	0.4728	0.049
H9	-0.1296	0.4372	0.3614	0.056
H10	-0.2470	0.6726	0.1518	0.069
H11	-0.0176	0.7578	-0.0234	0.068
H12	0.3294	0.6107	0.0123	0.063
H13	0.4494	0.3722	0.2179	0.05
H1	0.0676	-0.1128	0.6461	0.07

 Table S8. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for 1a.

X-ray crystallographic data of rhodacycle-1a (CCDC 2095228)

Sample preparation (solvent evaporation)

Isolated **rhodacycle-1a** (50 mg) was dissolved with CH_2Cl_2 (1 mL) and *n*-pentane (5 mL) in a sample vial that has a perforated cap. With slow solvent evaporation for 2 days, the single crystals of **rhodacycle-1a** were obtained.

Detailed experimental description for the crystal measurement of rhodacycle-1a

Crystals grew as red color in CH₂Cl₂ by slow evaporation from *n*-pentane. The crystal structures of **rhodacycle-1a** were determined by standard crystallographic methods. A red block-like crystal of C₃₆H₃₃N₄O₂Rh with approximate dimensions 0.080 x 0.190 x 0.200 mm³ was used for single-crystal X-ray diffraction. The data were collected at 223(2) K using a Bruker D8 Venture equipped with a graphite monochromator with CuK_{α} radiation ($\lambda = 0.71073$ Å) and a PHOTON III M14 detector in Western Seoul Center of Korea Basic Science Institute. Data collection and integration were performed with SMART APEX3 software package (SAINT).⁵ Absorption correction was performed by multi-scan method implemented in SADABS.⁶ The structure was solved by direct methods and refined by full-matrix least-squares on F^2 using SHELXTL program package (version 6.14).⁷ All the non-hydrogen atoms were refined anisotropically, and hydrogen atoms were added to their geometrically ideal positions.

Details of crystal data, data collection and structure refinement are listed in Table S10. Further details of the individual structures can be obtained from the Cambridge Crystallographic Data Centre by quoting **CCDC 2095228**.

ORTEP diagram of rhodacycle-1a (CCDC 2095228)

A red block-like specimen of $C_{36}H_{33}N_4O_2Rh$, approximate dimensions 0.080 mm x 0.190 mm x 0.200 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured ($\lambda = 0.71073 \text{ Å}$).

Axis	dx/mm	20/°	ω/°	φ/°	χ/°	Width/°	Frames	Time/s	Wavelength/Å	Voltage/kV	Current/mA	Temperature/K
Phi	60.558	0.00	0.00	0.00	54.74	1.00	180	1.20	0.71073	50	30.0	n/a
Phi	60.558	0.00	0.00	180.00	54.74	1.00	180	1.20	0.71073	50	30.0	n/a
Omega	60.558	18.54	-174.46	153.00	54.74	1.00	206	10.00	0.71073	50	30.0	n/a
Omega	60.558	27.81	-165.19	0.00	54.74	1.00	206	10.00	0.71073	50	30.0	n/a
Omega	60.558	18.54	-174.46	-105.00	54.74	1.00	206	10.00	0.71073	50	30.0	n/a
Omega	60.558	18.54	-174.46	102.00	54.74	1.00	206	10.00	0.71073	50	30.0	n/a
Omega	60.558	18.54	-174.46	-54.00	54.74	1.00	206	10.00	0.71073	50	30.0	n/a
Omega	60.558	18.54	-174.46	51.00	54.74	1.00	206	10.00	0.71073	50	30.0	n/a
Omega	60.558	18.54	-174.46	-156.00	54.74	1.00	206	10.00	0.71073	50	30.0	n/a
Omega	60.558	18.54	-174.46	0.00	54.74	1.00	206	10.00	0.71073	50	30.0	n/a
Phi	60.558	0.00	0.00	0.00	54.74	360.00	1	108.00	0.71073	50	30.0	n/a

Table S9: Data collection details for rhodacycle-1a (CCDC 2095228).

A total of 2009 frames were collected. The total exposure time was 4.73 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 112285 reflections to a maximum θ angle of 25.05° (0.84 Å resolution), of which 5304 were independent (average redundancy 21.170, completeness = 99.9%, $R_{int} = 4.55\%$, $R_{sig} = 1.41\%$) and 4740 (89.37%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 12.8432(6) Å, <u>b</u> = 14.0502(6) Å, <u>c</u> = 16.6156(7) Å, $\beta = 93.340(2)^{\circ}$, volume = 2993.2(2) Å³, are based upon the refinement of the XYZ-centroids of 9908 reflections above 20 $\sigma(I)$ with 5.043° < 20 < 56.48°. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.912. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.8880 and 0.9530.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P 1 21/n 1, with Z = 4 for the formula unit, $C_{36}H_{33}N_4O_2Rh$. The final anisotropic full-matrix least-squares refinement on F² with 394 variables converged at R1 = 3.13%, for the observed data and wR2 = 8.68% for all data. The goodness-of-fit was 1.060. The largest peak in the final difference electron density synthesis was 1.850 e⁻/Å³ and the largest hole was -0.604 e⁻/Å³ with an RMS deviation of 0.058 e⁻/Å³. On the basis of the final model, the calculated density was 1.457 g/cm³ and F(000), 1352 e⁻.

Chemical formula	C ₃₆ H ₃₃ N ₄ O ₂ Rh			
Formula weight	656.57 g/mol			
Temperature	296(2) K			
Wavelength	0.71073 Å			
Crystal size	0.080 x 0.190 x 0.200 m	ım		
Crystal habit	red block			
Crystal system	monoclinic			
Space group	P 2 ₁ /n			
Unit cell dimensions	a = 12.8432(6) Å	$\alpha = 90^{\circ}$		
	b = 14.0502(6) Å	$\beta = 93.340(2)^{\circ}$		
	c = 16.6156(7) Å	$\gamma = 90^{\circ}$		
Volume	2993.2(2) Å ³			
Ζ	4			
Density (calculated)	1.457 g/cm^3			
Absorption coefficient	0.610 mm ⁻¹			
F(000)	1352			

Table S10. Sample and crystal data for rhodacycle-1a.

Theta range for data collection	1.90 to 25.05°			
Index ranges	-15≤h≤15, -16≤k	≤16, -19≤1≤19		
Reflections collected	112285			
Independent reflections	5304 [R(int) = 0.0]	9455]		
Coverage of independent reflections	99.9%			
Absorption correction	Multi-Scan			
Max. and min. transmission	0.9530 and 0.8880)		
Structure solution technique	direct methods			
Structure solution program	SHELXT 2018/2 (Sheldrick, 2018)			
Refinement method	Full-matrix least-squares on F ²			
Refinement program	SHELXL-2018/3	(Sheldrick, 2018)		
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$			
Data / restraints / parameters	5304 / 2 / 394			
Goodness-of-fit on F ²	1.060			
Δ/σ_{max}	0.001			
Final R indices	4740 data; I>2σ(I)	$R_1 = 0.0313, wR_2 = 0.0814$		
	all data $R_1 = 0.0369, wR_2 = 0.0868$			
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0409P) ² +3.7289P] where P=(F_o^2 +2 F_c^2)/3			
Largest diff. peak and hole	1.850 and -0.604 eÅ ⁻³			
R.M.S. deviation from mean	0.058 eÅ ⁻³			

Table S11. Data collection and structure refinement for rhodacycle-1a.

Table S12. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for rhodacycle-1a.

U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	v /9	v/h	7/6	U(ea)
C1	0.8071(2)	0.7509(2)	0.26002(11)	0.0406(6)
C_2	0.0071(2) 0.9102(2)	0.7381(2)	0.20002(11) 0.29989(18)	0.0423(6)
C3	0.0082(3)	0.7260(2)	0.2703(2)	0.0552(8)
C4	0.0921(3)	0.7162(3)	0.3258(3)	0.0638(9)
C5	0.0776(3)	0.7181(3)	0.4081(2)	0.0636(10)
C6	0.9820(3)	0.7309(2)	0.4385(2)	0.0540(8)
C7	0.8972(2)	0.7426(2)	0.38187(18)	0.0426(7)
C8	0.7439(2)	0.7238(2)	0.46171(17)	0.0425(7)
C9	0.7621(3)	0.7679(3)	0.53563(19)	0.0574(9)
C10	0.7201(3)	0.7314(4)	0.6026(2)	0.0735(12)
C11	0.6609(4)	0.6512(4)	0.5977(3)	0.0797(14)
C12	0.6409(3)	0.6062(3)	0.5242(3)	0.0728(11)
C13	0.6832(3)	0.6426(2)	0.4556(2)	0.0549(8)
C14	0.54997(18)	0.6894(2)	0.16374(15)	0.0394(6)
C15	0.4793(2)	0.6124(2)	0.15312(19)	0.0441(7)
C16	0.4636(3)	0.5454(2)	0.0923(2)	0.0614(9)
C17	0.3911(3)	0.4753(3)	0.1025(3)	0.0764(12)
C18	0.3366(3)	0.4724(3)	0.1716(3)	0.0763(12)
C19	0.3499(3)	0.5376(3)	0.2328(3)	0.0639(10)
C20	0.4243(2)	0.6095(2)	0.2224(2)	0.0449(7)
C21	0.4476(2)	0.7111(2)	0.35009(18)	0.0435(7)
C22	0.3781(3)	0.6683(3)	0.4003(2)	0.0605(9)
C23	0.3747(3)	0.6984(3)	0.4790(2)	0.0652(10)
C24	0.4378(3)	0.7701(3)	0.5074(2)	0.0569(9)
C25	0.5069(2)	0.8130(2)	0.45714(18)	0.0465(7)
C26	0.5131(2)	0.7858(2)	0.37690(17)	0.0388(6)
C27	0.5358(2)	0.9862(2)	0.31377(18)	0.0435(7)
C28	0.5196(2)	0.9607(2)	0.23070(18)	0.0419(6)
C29	0.6196(2)	0.9580(2)	0.19536(17)	0.0403(6)
C30	0.6959(2)	0.9745(2)	0.25723(18)	0.0423(7)
C31	0.6459(2)	0.98847(19)	0.33204(17)	0.0420(7)
C32	0.4523(3)	0.0113(3)	0.3687(2)	0.0630(9)
C33	0.4161(3)	0.9500(3)	0.1846(2)	0.0629(9)

	x/a	y/b	z/c	U(eq)
C34	0.6352(3)	0.9473(3)	0.10701(19)	0.0565(8)
C35	0.8112(3)	0.9805(3)	0.2487(2)	0.0599(9)
C36	0.7011(3)	0.0153(3)	0.4108(2)	0.0591(9)
N1	0.73788(18)	0.76225(17)	0.31744(13)	0.0387(5)
N2	0.79342(19)	0.76121(18)	0.39391(14)	0.0423(6)
N3	0.53676(18)	0.73200(16)	0.23163(14)	0.0374(5)
N4	0.45830(19)	0.68386(18)	0.27000(15)	0.0434(6)
01	0.78865(16)	0.75462(17)	0.18516(10)	0.0510(5)
02	0.62258(16)	0.71603(16)	0.11391(11)	0.0476(5)
Rh1	0.60155(2)	0.84694(2)	0.29261(2)	0.03282(9)

1			
C1-O1	1.2538(10)	C1-N1	1.351(3)
C1-C2	1.456(4)	C2-C7	1.383(4)
C2-C3	1.388(4)	C3-C4	1.384(5)
С3-Н3	0.93	C4-C5	1.391(5)
C4-H4	0.93	C5-C6	1.366(5)
С5-Н5	0.93	C6-C7	1.407(4)
С6-Н6	0.93	C7-N2	1.384(4)
C8-C13	1.382(5)	C8-C9	1.383(4)
C8-N2	1.426(4)	C9-C10	1.365(5)
С9-Н9	0.93	C10-C11	1.359(6)
C10-H10	0.93	C11-C12	1.385(6)
C11-H11	0.93	C12-C13	1.388(5)
C12-H12	0.93	С13-Н13	0.93
C14-N3	1.297(3)	C14-O2	1.3362(10)
C14-C15	1.416(4)	C15-C20	1.386(5)
C15-C16	1.387(4)	C16-C17	1.372(6)
C16-H16	0.93	C17-C18	1.380(6)
C17-H17	0.93	C18-C19	1.371(6)
C18-H18	0.93	C19-C20	1.408(4)
C19-H19	0.93	C20-N4	1.367(4)
C21-C22	1.394(4)	C21-N4	1.399(4)
C21-C26	1.401(4)	C22-C23	1.378(5)
C22-H22	0.93	C23-C24	1.360(5)
С23-Н23	0.93	C24-C25	1.391(5)
C24-H24	0.93	C25-C26	1.394(4)
С25-Н25	0.93	C26-Rh1	2.043(3)
C27-C28	1.429(4)	C27-C31	1.429(4)
C27-C32	1.491(4)	C27-Rh1	2.168(3)
C28-C29	1.444(4)	C28-C33	1.502(4)
C28-Rh1	2.143(3)	C29-C30	1.398(4)
C29-C34	1.501(4)	C29-Rh1	2.268(3)
C30-C31	1.445(4)	C30-C35	1.498(4)
C30-Rh1	2.260(3)	C31-C36	1.501(4)
C31-Rh1	2.160(3)	C32-H32A	0.96
C32-H32B	0.96	C32-H32C	0.96
С33-Н33А	0.96	C33-H33B	0.96

Table S13. Bond lengths (Å) for rhodacycle-1a.

С33-Н33С	0.96	C34-H34A	0.96
C34-H34B	0.96	C34-H34C	0.96
C35-H35A	0.96	C35-H35B	0.96
C35-H35C	0.96	C36-H36A	0.96
C36-H36B	0.96	C36-H36C	0.96
N1-N2	1.420(3)	N1-Rh1	2.137(2)
N3-N4	1.398(3)	N3-Rh1	2.056(2)
O2-H2	0.82		

01-C1-N1	127.0(3)	O1-C1-C2	124.8(3)
N1-C1-C2	108.15(19)	C7-C2-C3	121.2(3)
C7-C2-C1	106.5(2)	C3-C2-C1	132.3(3)
C4-C3-C2	117.6(3)	С4-С3-Н3	121.2
С2-С3-Н3	121.2	C3-C4-C5	120.6(3)
С3-С4-Н4	119.7	С5-С4-Н4	119.7
C6-C5-C4	122.7(3)	С6-С5-Н5	118.7
С4-С5-Н5	118.7	C5-C6-C7	116.5(3)
С5-С6-Н6	121.7	С7-С6-Н6	121.7
C2-C7-N2	108.9(2)	C2-C7-C6	121.3(3)
N2-C7-C6	129.8(3)	C13-C8-C9	120.0(3)
C13-C8-N2	121.5(3)	C9-C8-N2	118.4(3)
C10-C9-C8	120.1(4)	С10-С9-Н9	120.0
С8-С9-Н9	120.0	C11-C10-C9	120.6(4)
С11-С10-Н10	119.7	С9-С10-Н10	119.7
C10-C11-C12	120.4(4)	C10-C11-H11	119.8
C12-C11-H11	119.8	C11-C12-C13	119.6(4)
С11-С12-Н12	120.2	С13-С12-Н12	120.2
C8-C13-C12	119.3(4)	C8-C13-H13	120.3
С12-С13-Н13	120.3	N3-C14-O2	122.7(2)
N3-C14-C15	110.2(2)	O2-C14-C15	127.0(3)
C20-C15-C16	121.7(3)	C20-C15-C14	105.8(2)
C16-C15-C14	132.4(3)	C17-C16-C15	117.9(4)
С17-С16-Н16	121.0	С15-С16-Н16	121.0
C16-C17-C18	120.3(4)	С16-С17-Н17	119.8
C18-C17-H17	119.8	C19-C18-C17	123.4(4)
C19-C18-H18	118.3	C17-C18-H18	118.3
C18-C19-C20	116.3(4)	C18-C19-H19	121.8
С20-С19-Н19	121.8	N4-C20-C15	107.3(3)
N4-C20-C19	132.3(3)	C15-C20-C19	120.4(3)
C22-C21-N4	123.5(3)	C22-C21-C26	121.8(3)
N4-C21-C26	114.7(3)	C23-C22-C21	119.4(3)
С23-С22-Н22	120.3	С21-С22-Н22	120.3
C24-C23-C22	120.4(3)	С24-С23-Н23	119.8
С22-С23-Н23	119.8	C23-C24-C25	120.0(3)
С23-С24-Н24	120.0	С25-С24-Н24	120.0
C24-C25-C26	122.0(3)	С24-С25-Н25	119.0

Table S14. Bond angles (°) for rhodacycle-1a.

С26-С25-Н25	119.0	C25-C26-C21	116.3(3)
C25-C26-Rh1	127.3(2)	C21-C26-Rh1	116.4(2)
C28-C27-C31	107.3(3)	C28-C27-C32	125.5(3)
C31-C27-C32	127.1(3)	C28-C27-Rh1	69.72(16)
C31-C27-Rh1	70.41(16)	C32-C27-Rh1	127.9(2)
C27-C28-C29	108.4(3)	C27-C28-C33	126.3(3)
C29-C28-C33	124.9(3)	C27-C28-Rh1	71.56(16)
C29-C28-Rh1	75.63(16)	C33-C28-Rh1	124.4(2)
C30-C29-C28	107.4(3)	C30-C29-C34	127.5(3)
C28-C29-C34	125.0(3)	C30-C29-Rh1	71.73(16)
C28-C29-Rh1	66.28(16)	C34-C29-Rh1	130.8(2)
C29-C30-C31	109.1(3)	C29-C30-C35	126.5(3)
C31-C30-C35	124.4(3)	C29-C30-Rh1	72.32(16)
C31-C30-Rh1	67.18(15)	C35-C30-Rh1	128.1(2)
C27-C31-C30	107.3(2)	C27-C31-C36	127.0(3)
C30-C31-C36	125.0(3)	C27-C31-Rh1	71.02(16)
C30-C31-Rh1	74.74(16)	C36-C31-Rh1	126.8(2)
С27-С32-Н32А	109.5	С27-С32-Н32В	109.5
H32A-C32-H32B	109.5	С27-С32-Н32С	109.5
H32A-C32-H32C	109.5	H32B-C32-H32C	109.5
С28-С33-Н33А	109.5	С28-С33-Н33В	109.5
H33A-C33-H33B	109.5	С28-С33-Н33С	109.5
H33A-C33-H33C	109.5	H33B-C33-H33C	109.5
C29-C34-H34A	109.5	C29-C34-H34B	109.5
H34A-C34-H34B	109.5	С29-С34-Н34С	109.5
H34A-C34-H34C	109.5	H34B-C34-H34C	109.5
C30-C35-H35A	109.5	С30-С35-Н35В	109.5
H35A-C35-H35B	109.5	С30-С35-Н35С	109.5
H35A-C35-H35C	109.5	H35B-C35-H35C	109.5
C31-C36-H36A	109.5	C31-C36-H36B	109.5
H36A-C36-H36B	109.5	С31-С36-Н36С	109.5
H36A-C36-H36C	109.5	H36B-C36-H36C	109.5
C1-N1-N2	108.3(2)	C1-N1-Rh1	119.67(17)
N2-N1-Rh1	122.78(17)	C7-N2-N1	108.1(2)
C7-N2-C8	121.4(2)	N1-N2-C8	119.1(2)
C14-N3-N4	107.9(2)	C14-N3-Rh1	136.18(18)
N4-N3-Rh1	115.92(17)	C20-N4-N3	108.7(2)
C20-N4-C21	135.6(3)	N3-N4-C21	114.5(2)

С14-О2-Н2	109.5	C26-Rh1-N3	77.44(10)
C26-Rh1-N1	96.64(10)	N3-Rh1-N1	87.78(9)
C26-Rh1-C28	111.41(11)	N3-Rh1-C28	100.12(10)
N1-Rh1-C28	151.86(11)	C26-Rh1-C31	109.05(11)
N3-Rh1-C31	164.69(10)	N1-Rh1-C31	104.80(10)
C28-Rh1-C31	64.70(11)	C26-Rh1-C27	91.76(11)
N3-Rh1-C27	129.67(10)	N1-Rh1-C27	142.54(10)
C28-Rh1-C27	38.72(11)	C31-Rh1-C27	38.58(11)
C26-Rh1-C30	147.08(11)	N3-Rh1-C30	134.61(10)
N1-Rh1-C30	92.65(10)	C28-Rh1-C30	62.60(11)
C31-Rh1-C30	38.08(11)	C27-Rh1-C30	63.02(11)
C26-Rh1-C29	149.50(11)	N3-Rh1-C29	104.15(9)
N1-Rh1-C29	113.82(10)	C28-Rh1-C29	38.09(11)
C31-Rh1-C29	63.03(10)	C27-Rh1-C29	63.36(11)
C30-Rh1-C29	35.95(10)		

Table S15. Anisotropic atomic displacement parameters (Å²) for rhodacycle-1a.

The anisotropic atomic displacement factor exponent takes the form: -2 π^2 [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

	U ₁₁	U ₂₂	U33	U ₂₃	U ₁₃	U ₁₂
C1	0.0415(15)	0.0410(15)	0.0388(15)	-0.0025(12)	-0.0022(12)	-0.0012(12)
C2	0.0389(15)	0.0438(16)	0.0438(16)	-0.0015(13)	-0.0004(12)	0.0016(12)
C3	0.0503(19)	0.058(2)	0.058(2)	-0.0034(16)	0.0042(15)	0.0034(15)
C4	0.0403(18)	0.071(2)	0.080(3)	0.003(2)	0.0024(17)	0.0062(16)
C5	0.049(2)	0.068(2)	0.072(2)	0.0094(19)	-0.0147(17)	0.0036(17)
C6	0.0482(18)	0.061(2)	0.0517(19)	0.0082(15)	-0.0098(15)	0.0024(15)
C7	0.0443(16)	0.0395(15)	0.0433(16)	0.0016(12)	-0.0037(13)	-0.0005(13)
C8	0.0419(16)	0.0485(17)	0.0367(15)	0.0027(12)	-0.0011(12)	0.0087(13)
C9	0.057(2)	0.073(2)	0.0408(17)	-0.0019(16)	-0.0054(15)	0.0016(17)
C10	0.074(3)	0.105(3)	0.0407(19)	0.003(2)	0.0003(17)	0.017(2)
C11	0.078(3)	0.099(4)	0.064(3)	0.036(2)	0.025(2)	0.026(3)
C12	0.072(3)	0.057(2)	0.091(3)	0.023(2)	0.019(2)	0.0059(19)
C13	0.060(2)	0.0435(18)	0.062(2)	0.0020(15)	0.0080(17)	0.0047(15)
C14	0.0414(15)	0.0362(14)	0.0397(15)	-0.0051(12)	-0.0054(12)	0.0034(12)
C15	0.0435(16)	0.0334(14)	0.0534(18)	-0.0057(13)	-0.0132(14)	0.0048(12)
C16	0.063(2)	0.0500(19)	0.069(2)	-0.0204(17)	-0.0110(18)	-0.0024(17)
C17	0.079(3)	0.053(2)	0.095(3)	-0.030(2)	-0.017(2)	-0.012(2)
C18	0.064(2)	0.051(2)	0.113(4)	-0.013(2)	-0.007(2)	-0.0219(18)
C19	0.052(2)	0.050(2)	0.089(3)	-0.0025(19)	0.0002(19)	-0.0161(16)
C20	0.0376(15)	0.0360(15)	0.0598(19)	-0.0042(14)	-0.0095(14)	-0.0003(12)
C21	0.0352(15)	0.0510(17)	0.0443(16)	0.0000(13)	0.0038(12)	-0.0007(13)
C22	0.0424(18)	0.072(2)	0.067(2)	0.0089(18)	0.0064(16)	-0.0131(16)
C23	0.052(2)	0.087(3)	0.059(2)	0.011(2)	0.0208(17)	-0.0031(19)
C24	0.055(2)	0.074(2)	0.0435(17)	0.0034(16)	0.0147(15)	0.0126(18)
C25	0.0496(17)	0.0517(17)	0.0386(16)	-0.0046(13)	0.0065(13)	0.0061(14)
C26	0.0356(14)	0.0419(15)	0.0392(15)	0.0007(12)	0.0046(12)	0.0046(12)
C27	0.0514(17)	0.0338(15)	0.0454(16)	-0.0063(12)	0.0023(13)	0.0027(13)
C28	0.0453(16)	0.0345(14)	0.0449(16)	-0.0014(12)	-0.0056(13)	0.0015(12)
C29	0.0496(17)	0.0320(14)	0.0389(15)	-0.0006(11)	-0.0003(12)	-0.0052(12)
C30	0.0475(16)	0.0317(14)	0.0473(16)	-0.0001(12)	0.0004(13)	-0.0086(12)
C31	0.0548(18)	0.0303(14)	0.0404(15)	-0.0060(12)	-0.0021(13)	-0.0065(12)
C32	0.069(2)	0.058(2)	0.064(2)	-0.0117(17)	0.0160(18)	0.0154(18)
C33	0.0501(19)	0.065(2)	0.072(2)	-0.0035(18)	-0.0134(17)	0.0046(17)
C34	0.077(2)	0.0533(19)	0.0396(17)	0.0035(14)	0.0044(16)	-0.0077(17)

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C35	0.0505(19)	0.059(2)	0.070(2)	0.0015(17)	0.0024(17)	-0.0167(16)
C36	0.075(2)	0.0516(19)	0.0489(19)	-0.0118(15)	-0.0110(17)	-0.0141(17)
N1	0.0385(12)	0.0473(14)	0.0295(11)	-0.0030(10)	-0.0045(9)	0.0021(10)
N2	0.0398(13)	0.0511(14)	0.0352(12)	0.0017(11)	-0.0049(10)	0.0003(11)
N3	0.0380(12)	0.0361(12)	0.0381(12)	-0.0046(10)	0.0018(10)	-0.0056(10)
N4	0.0386(13)	0.0413(13)	0.0504(15)	-0.0053(11)	0.0036(11)	-0.0113(11)
01	0.0452(12)	0.0744(15)	0.0331(11)	-0.0061(10)	-0.0002(9)	-0.0003(11)
O2	0.0503(12)	0.0552(13)	0.0368(11)	-0.0106(9)	-0.0017(9)	-0.0050(10)
Rh1	0.03704(14)	0.03171(13)	0.02981(13)	-0.00489(8)	0.00278(9)	-0.00193(8)

	x/a	y/b	z/c	U(eq)
H3	1.0171	0.7245	0.2152	0.066
H4	1.1588	0.7083	0.3079	0.077
H5	1.1354	0.7103	0.4440	0.076
H6	0.9734	0.7318	0.4937	0.065
H9	0.8031	0.8224	0.5397	0.069
H10	0.7321	0.7616	0.6521	0.088
H11	0.6336	0.6264	0.6439	0.096
H12	0.5994	0.5520	0.5208	0.087
H13	0.6707	0.6127	0.4061	0.066
H16	0.5010	0.5479	0.0461	0.074
H17	0.3786	0.4296	0.0626	0.092
H18	0.2884	0.4238	0.1770	0.092
H19	0.3119	0.5344	0.2787	0.077
H22	0.3343	0.6197	0.3808	0.073
H23	0.3290	0.6696	0.5129	0.078
H24	0.4347	0.7905	0.5604	0.068
H25	0.5502	0.8613	0.4777	0.056
H32A	0.4800	1.0090	0.4236	0.095
H32B	0.3958	0.9669	0.3614	0.095
H32C	0.4273	1.0744	0.3565	0.095
H33A	0.3644	0.9303	0.2207	0.094
H33B	0.4217	0.9030	0.1432	0.094
H33C	0.3960	1.0098	0.1605	0.094
H34A	0.6192	1.0063	0.0800	0.085
H34B	0.5900	0.8982	0.0849	0.085
H34C	0.7065	0.9304	0.0996	0.085
H35A	0.8294	0.9442	0.2027	0.09
H35B	0.8472	0.9553	0.2963	0.09
H35C	0.8309	1.0457	0.2418	0.09
H36A	0.7242	1.0802	0.4084	0.089
H36B	0.7603	0.9744	0.4211	0.089
H36C	0.6542	1.0086	0.4534	0.089
H2	0.6753	0.7330	0.1403	0.071

 Table S16. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for rhodacycle-1a.

Computational studies for the stability of tautomers

Experimental details for B3LYP/6-31G* density functional model

Spartan'14 parallel suite (12 threads, 6-core Intel i7-based processor) running on a Windows platform (Wavefunction, Inc., 18401 Von Karman Ave., Suite 370, Irvine, CA 92612, http://www.wavefun.com) was used to search possible tautomers and calculate their relative stability. The DFT-B3LYP with 6-31G* basis set was used for estimating the tautomer stability. In the gas phase, the optimized structures of two tautomeric forms were displayed as below and their calculated properties listed in Table S17.

Table S17. Tautomer stability calculation by B3LYP/6-31G* density functional model.

entry	E HOMO	E LUMO	Boltzmann	rel. E (kJ/mol)	Dipole
	(kJ/mol)	(kJ/mol)	Dist		
1a	-519.25	-76.32	0.751	0	1.02
tautomer of 1a	-538.32	-101.96	0.249	2.74	4.30

References

(1) (a) K. Gogoi, B. R. Bora, G. Borah, B. Sarma and S. Gogoi, Synthesis of Quaternary Carbon-Centered Indolo[1,2-a]quinazolinones and Indazolo[1,2-a]indazolones via C-H Functionalization. *Chem. Commun.*, 2021, **57**, 1388–1391; (b) S. Tanimori, Y. Kobayashi, Y. Iesaki, Y. Ozaki and M. Kirihata, Copper-catalyzed synthesis of substituted indazoles from 2-chloroarenes at low catalyst-loading. *Org. Biomol. Chem.*, 2012, **10**, 1381–1387; (c) M. C. Vega, M. Rolón, A. Montero-Torres, C. Fonseca-Berzal, J. A. Escario, A. Gómez-Barrio, J. Gálvez, Y. Marrero-Ponce and V. J. Arán, Synthesis, biological evaluation and chemometric analysis of indazole derivatives. 1,2-Disubstituted 5-nitroindazolinones, new prototypes of antichagasic drug. *Eur. J. Med. Chem.*, 2012, **58**, 214–227.

(2) (*a*) M. A. Walker, The Mitsunobu Reaction: A Novel Method for the Synthesis of Bifunctional Maleimide Linkers. *Tetrahedron Lett.*, 1994, **35**, 665–668; (*b*) A. Bodtke and H.-H. Otto, Synthesis and Properties of Chiral *N*,*N*-Maleoyl Derivatives and Diels-Alder Reactions with Cyclopentadiene. *Pharmazie*, 2005, **60**, 803–813; (*c*) L. Wei, L. Cao and Z. Xi, Highly Potent and Stable Capped siRNAs with Picomolar Activity for RNA Interference. *Angew. Chem., Int. Ed.*, 2013, **52**, 6501–6503; (*d*) S. Mukherjee and E. J. Corey, Highly Enantioselective Diels-Alder Reactions of Maleimides Catalyzed by Activated Chiral Oxazaborolidines. *Org. Lett.*, 2010, **12**, 632–635.

(3) J. K. Howard, C. J. T. Hyland, J. Just and J. A. Smith, Controlled oxidation of pyrroles: synthesis of highly functionalized γ -lactams. *Org. Lett.*, 2013, **15**, 1714–1717.

(4) X.-H. Liu, H. Park, J.-H. Hu, Y. Hu, Q.-L. Zhang, B.-L. Wang, B. Sun, K.-S. Yeung, F.-L. Zhang and J.-Q. Yu, Diverse *ortho*-C(sp²)–H Functionalization of Benzaldehydes Using Transient Directing Groups. *J. Am. Chem. Soc.*, 2017, **139**, 888–896.

(5) SMART, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA, 2016.

(6) Sheldrick, G. M. SADABS v 2.03, University of Göttingen, Germany, 2002.

(7) SHELXTL v 6.14; Bruker AXS, Inc: Madison, Wisconsin, USA, 2000.

¹H and ¹³C NMR spectra of all compounds

S71

200 190 f1 (ppm) ż0

¹⁹F NMR spectra of F-containing compounds

