Supporting Information

1,1-Diaminoazines as Organocatalysts in phospha-Michael addition reaction

Aabid A. Wani,^a Sumit S. Chourasiya,^a Deepika Kathuria^b and Prasad V. Bharatam^{*a}

Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar – 160062, Punjab, India.

Email: pvbharatam@niper.ac.in

Contents

1. General Information	16
2. Synthetic Procedures	17
2.1 Synthesis of organocatalyst (C):	17
2.2 Synthesis of 3:	17
2.3 Procedure of the three-component addition:	18
3. Medicinal application of organophosphorus compounds	19
4. Mass and ¹ H NMR evidences in support of proposed mechanism:	20
Table S1: 1,1-diaminoazine catalysed reaction between dimethyl phosphite and benzylidene malononitrile.	24
Scale up Reaction:	25
Table S2 : 1,1-diaminoazine catalysed reaction between biphenylphosphine oxide and benzylidene malononitrile.	26
5. Characterization Data of the Corresponding Products:	29
6 Characterization Data of the catalysts:	34

1. General Information

The reagents and chemicals required for the study were procured and all the reagents were used as such without further purification unless otherwise mentioned. The progress of the reaction was monitored by Thin Layer Chromatography (TLC) performed on silica gel aluminium plates and visualization was done by UV light. ¹H NMR and ¹³C NMR spectra were recorded at 500 MHz

and 100 MHz respectively, with TMS as an internal standard. ³¹P NMR was recorded at 202.4 MHz with TMS as an internal standard. The ¹H NMR and ¹³C NMR spectra were recorded using CDCl₃ at 7.25 ppm and 77.31 ppm and for a few compounds DMSO-*d6* at 2.50 ppm and 39.51 ppm respectively. Chemical shift (δ) are reported in parts per million (ppm). Coupling constants (*J*) were reported in hertz (Hz). The abbreviations used to characterize the signals are as follows: s = singlet, m = multiplet, d = doublet, br. s. = broad singlet, dd = doublet of doublet, t = triplet. High resolution mass spectra were recorded using ESI-TOF method.

2. Synthetic Procedures

2.1 Synthesis of organocatalyst (C):

To the substituted carboxaldehyde and aminoguanidine hydrochloride solution in H_2O was added 1N NaOH (2 mL) and the reaction mixture was stirred for 1-2 h, until precipitate is formed. The resultant precipitate was filtered and dried to afford the desired organocatalysts in 88 to 95 % yields.¹

The products were obtained as a solid precipitates which were filtered, washed with water and dried under vacuum.

2.2 Synthesis of 3:

To the neat and dried round bottom flask with 25 mL capacity, β -nitrostyrene (1) (50 mg, 0.33 mmol), biphenylphosphine oxide (2) (66 mg, 0.33 mmol) and 1,1-diaminoazine (C1) (5 mg, 10 mol%) were charged followed by addition of 1mL MeCN. The reaction mass was stirred at rt for 3 hours. The progress of the reaction was monitored by TLC. After the completion of reaction, the reaction mass was extracted with ethyl acetate (3×5 mL). The organic layers were combined and subjected to drying by rota evaporator to get crude **3** which was purified using column chromatography (hexane-EtOAc). This representative procedure was employed for the synthesis of **6** and **7** using water for former and toluene for the later as solvent.

2.3 Procedure of the three-component addition:

Benzaldehyde (50 mg, 0.45 mmol) and malononitrile (30 mg, 0.45 mmol) were added to round bottom flask with 25 mL capacity followed by addition of 1mL of toluene. This is followed by C1 (11 mg, 10 mol%). After sometime (1-2 min), diphenylphosphine oxide (90 mg, 0.45 mmol) was added into the stirring reaction mixture. The reaction was completed in 15 min. The product 7 was obtained as a white solid (152 mg, 92%) after column chromatography.

3. Medicinal application of organophosphorus compounds

Figure S1: A selected list of organophosphorus compounds which found applications as drugs/leads in medicinal chemistry.

4. Mass and ¹H NMR evidences in support of proposed mechanism:

PVB-PMA-15(A)_210628152147 #50-118 RT: 0.35-0.83 AV: 69 NL: 2.63E6 162.96 100 -NH₂ 95[‡] ΝH₂ 90 P^{∞0} Ph 85 80 75 70 65 Ph 60 Ph-P \cap Relative Abundance 374.05 н 55 Ph Ph Н 50· .NH N 45 ΝH₂ 40 35 364.96 N 30 P^{⊊O} Ph $\dot{N}H_2$ Ο 25 Ph 513.91 20 -224,95 C 194.99 566.09 15-575.86 10 58.74 467.01 234.49 352.08 63,79 667.98 5 426.91 486.59 523.07 100.80 246.96 319.68 628.45 677.78 0 150 350 600 200 550 650 100 250 300 400 450 500 50 m/z

700

T: ITMS + c ESI Full ms [50.00-700.00]

Figure S2: Mass spectrum of reaction mixture after 10 min. of stirring.

The mass spectral evidence for the proposed mechanism is further supported by evidences from ¹H NMR. A few characteristic peaks can be clearly seen from the ¹H NMR of the reaction mixture which say that 1,1-diaminoazine behaves as a bifunctional organocatalyst (Figure S-3A). A broad singlet appears at 13.14 ppm. A Very similar peak can be seen in the ¹H NMR spectrum of protonated azine (C6) (Figure S-3B) which is having a chemical shift value of 12.11 ppm. However, there is no such peak in or around this region for 1,1-diaminoazine (C1) (Figure S-3C). This observation clearly shows that during reaction C1 undergoes protonation at N2. Hence, the peak at 13.11 can be attributed to -NH (N2 position) for C1 Furthermore, this peak (13.11 ppm) is somewhat more deshielded than the –NH peak of the C6. This deshielding provides the clue for -NH being hydrogen bonded, holding the reactants together. For C1 and C6, the iminic CH

appears at 7.95 ppm and 8.15 ppm respectively. In case of reaction mixture, one extra peak can be seen at 8.54 ppm (Figure S-3A). It may be a –CH peak which is hydrogen bonded and may belong to **Int-1**. In case of **C1**, the two –NH₂ peaks appear at 5.89 ppm and 5.50 ppm. There are two peaks visible in the ¹H NMR of the reaction mixture at 6.83 ppm and 6.55 ppm which can be two –NH₂ groups. These peaks also appear in split forms (more like doublets). This splitting can be due to the hydrogen bonding of **C1** in protonated form with starting materials. Over all, the appearance of –NH (13.11 ppm), -CH (8.54 ppm), and two –NH₂ groups (6.83 ppm and 6.55 ppm) provide sufficient evidences for the formation of **Int-1** in the reaction which make **C1** a bifunctional organocatalyst.

Figure S3: Overlapped 1H NMR Spectrum A) Reaction mixture, B) Protonated azine (C6), C) 1,1-diaminoazine (C1).

Figure S4: Expanded ¹H NMR spectrum (For clear visibility of –NH peak).

Figure S5: Expanded ¹H NMR spectrum of C1 and its protonated form (For clear visibility of – CH peak).

Figure S6: Expanded ¹H NMR spectrum of C1 and its protonated form (For clear visibility of – NH₂ peaks).

	H CN +	│ Solvent, Cata O rt, t=	lyst (C)				
	ĊN	0		ĊN			
	5	4 1eg	6				
S.No	Solvent	Catalyst (10 mol %)	Time (h)	% yield			
1.	MeCN	C1	1.5	63			
2.	EtOH	C1	1.5	52			
3.	MeOH	C1	1.5	64			
4.	1,4-Dioxane	C1	1.5	96			
5.	NMP	C1	1.5	41			
6.	THF	C1	1.5	87			
7.	Toluene	C1	1.5	99			
8.	Water	C1	1.5	No Reaction			
9.	Toluene	C2	1.5	43			
10.	Toluene	C3	1.5	84			
11.	Toluene	C4	1.5	87			
12.	Toluene	C5	1.5	88			
13.	Toluene	C6	1.5	No Reaction			
14.	Toluene	C7	1.5	23			
15.	Toluene	No catalyst	1.5	No Reaction			
Reaction 1,4-Dio * Isolat	n conditions: 5 (0.32 m xane (1 mL). ed Yield	mol, 50 mg), 4 (0.32 mm	nol, 35 mg), C	(10 mol%, 5 mg) rt,			

Table S1: 1,1-diaminoazine catalysed reaction between dimethyl phosphite and benzylidene malononitrile.

Scale up Reaction:

The reaction between benzylidene malononitrile and dimethyl phosphite (Scheme 1) was tried at gram scale level (10 mmol) to prove the scalability of the optimized reaction condition. The reaction complies in 2.5 h wherein both the starting materials i.e. benzylidene malononitrile and dimethyl phosphite were consumed completely (TLC). The product was isolated with yield of 97% suggest that the optimized reaction condition is scalable and thus can found its potential application in industry. The isolation and purification of the product was done by column chromatography, by using 50% Ethylacetate/Hexane as an eluent. The gram scale application of the developed method is now provided in the revised version of the manuscript.

Scheme 1: Gram scale synthesis of P-C adduct.

Table S2: 1,1-diaminoazine catalysed reaction between biphenylphosphine oxide and benzylidene malononitrile.

	H CN +	Ph Solvent, Cataly H–P=O rt, t= Ph	yst (C) Pl	h P O h E CN CN				
	5 1eq.	1 1eq.		7				
S.no	Solvent	Catalyst (10 mol %)	Time (h)	% yield				
1.	MeCN	C1	1	88				
2.	EtOH	C1	1	71				
3.	MeOH	C1	1.5	76				
4.	1,4-Dioxane	C1	0.5	98				
5.	NMP	C1	1	74				
6.	THF	C1	1	87				
7.	Toluene	C1	1.5	77				
8.	Water	C1	0.4	95				
9.	Water	C2	0.4	49				
10.	Water	C3	0.4	52				
11.	Water	C4	0.4	70				
12.	Water	C5	0.4	66				
13.	Water	C6	0.4	63				
14.	Water	C7	0.4	39				
15.	Water	No catalyst	0.4	Traces				
Reaction conditions: 5 (1 mmol, 154 mg), 1 (1 mmol, 202 mg), C (10 mol%, 16 mg) rt,								
Water (1.5 mL).								
* Isolate	d Yield							

Table S3: Applications of C1 in catalysing multicomponent reactions.										
	H Alky/Aryl O +	MeO/Ph NC CN + HP=O — MeO/Ph	N M C1, Toluene, rt → All	IeO/Ph eO/Ph eO/Ph P=O CN CN						
S. No.	Aldehyde	Product	Time (h)	Yield (%)						
1	Benzaldehyde		2 h	85						
2	Benzaldehyde	Ph Ph Ph CN CN 7	15 min	92						
3	O H	Ph_P=O Ph_P=O CN CN 8	2 h	91						
4	O H	Ph P=0 $Ph CN$ $Ph CN$ $Ph CN$ $Ph CN$ $Ph CN$ $Ph CN$ $Ph S$	1h	66						
5	H O	Ph-p ^O CN CN 10	2 h	91						
6	H O	Ph Ph-P=O CN CN 11	2 h	85						
7	CI	Ph Ph-P=O Cl Cl 12	2 h	88						
8	H O	Ph Ph-P=O CN CN 13	2 h	91						

9	H	Ph Ph-P=O CN CN	2 h	89				
10	O H O O	$ \begin{array}{c} $	2 h	91				
11	O O H O O H	$\begin{array}{c} \begin{array}{c} Ph \\ P \\ P = 0 \\ P = 0 \\ CN \\ O \\ O \\ O \\ I \\ I6 \end{array}$	2h	84				
12	O H N	$Ph_{P=0}^{Ph}$ CN CN H N 17	2h	90				
13	Phro	Ph,Ph P=O P=O CN CN Ph 0 18	2h	92				
14	O H	Ph Ph CN CN 19	2h	75				
15	о Н	Ph_P ^{-O} Ph CN CN 20	2h	71				
16	↓ ^O H	Ph Ph Ph CN CN 21	2h	88				
Reaction conditions: Aldehyde (0.37 mmol), malononitrile (0.37 mmol), C (15 mol%) rt, Toluene (1.5 mL).								

5. Characterization Data of the Corresponding Products:

(1-(2-chlorophenyl)-2-nitroethyl)diphenylphosphine oxide (3b)

Yield: 90 mg, 86%, white solid, m.p= 188-190 °C; 1H NMR (500MHz, CDCl3) δ 8.07 – 8.03 (m, 2 H), 7.85 – 7.84 (d, J = 7.84 Hz, 1 H), 7.68 – 7.62 (m, 3 H)7.44 – 7.35 (m, 3 H), 7.31 – 7.27 (m, 1 H), 7.24 – 7.20 (m, 2 H), 7.14 – 7.13 (d, J = 5 Hz, 2 H), 5.24 – 5.20 (m, 1 H), 5.14 – 5.08 (m, 1 H) 4.77 – 4.73 (m, 1 H); 13C NMR 135.0, 134.9, 133.0, 131.3, 131.0, 130.2, 130.0, 129.7, 129.6, 129.5, 129.4, 129.3, 129.2, 128.2, 128.1, 127.5, 75.4, 75.4, 41.2, 40.7; 31P NMR (202.4MHz, CDCl3) δ 31.30; IR (FTIR) NO₂ (1540 cm-1), P=O (1193 cm-1). HRMS (ESI) m/z 386.0717 (M+H+), calc. for C₂₀H₁₈ClNO₃P⁺ 386.0707

(1-(2,4-dichlorophenyl)-2-nitroethyl)diphenylphosphine oxide (3c)

Yield: 78 mg, 81%, white solid, m.p= 185-187 °C; ¹H NMR (500MHz, CDCl₃) δ 8.05 – 8.01 (m, 2 H), 7.82 – 7.80 (dd, J = 7.81 Hz, 1 H), 7.69 – 7.62 (m, 3 H), 7.47 – 7.40 (m, 3 H), 7.29 – 7.25 (m, 3 H), 7.18 (br.s., 1 H), 5.17 – 5.12 (m, 1 H), 5.08 – 5.02 (m, 1 H) 4.75 – 4.70 (m, 1 H); ¹³C NMR 135.6, 134.8, 133.2, 132.6, 131.2, 130.9, 130.8, 130.4, 129.9, 129.7, 129.6, 129.5, 129.1, 128.5, 127.9, 75.3, 40.8, 40.3; ³¹P NMR (202.4MHz, CDCl₃) δ 31.40; IR (FTIR) NO₂ (1437 cm-1), P=O (1182 cm⁻¹). HRMS (ESI) m/z 420.0325 (M+H⁺), calc. for C₂₀H₁₇Cl₂NO₃P⁺ 420.0318

(1-(2,6-dichlorophenyl)-2-nitroethyl)diphenylphosphine oxide (3d)

Yield: 82 mg, 85%, white solid, m.p= 186-188 °C; ¹H NMR (500MHz, CDCl₃) δ 8.10 – 8.07 (t, J = 10.0 Hz, 2 H), 7.61 – 7.53 (m, 5 H), 7.34 – 7.31 (t, J = 10.0 Hz, 1 H), 7.20 (br.s., 2 H), 7.15 – 7.14 (d, J = 5.0 Hz, 2 H), 7.01 – 6.98 (t, J = 10.0 Hz, 1 H), 5.67 – 5.63 (m, 2 H), 5.13 – 5.08 (m, 1 H); ¹³C NMR 137.1, 137.0, 135.7, 135.7, 132.8, 132.2, 131.7, 131.4, 131.3, 130.9, 130.2, 130.2, 129.7, 129.3, 129.2, 128.5, 128.0, 127.9, 72.7, 43.0, 42.5; ³¹P NMR (202.4MHz, CDCl₃) δ 30.32; IR (FTIR) NO₂ (1445 cm-1), P=O (1188 cm⁻¹). HRMS (ESI) m/z 420.0318 (M+H⁺), calc. for C₂₀H₁₇Cl₂NO₃P⁺ 420.0332

¹¹Yield: 254 mg, 96%, white solid, m.p= 126-128 °C; ¹H NMR (500MHz, CDCl₃) δ 7.46 – 7.43 (m, 5 H), 4.51 – 4.48 (t, *J* = 4.50 Hz, 1 H), 3.82-3.80 (d, *J* = 10 Hz, 3 H), 3.65 – 3.59 (dd,

dimethyl (2,2-dicyano-1-phenylethyl)phosphonate (6) J = 3.62 Hz, 1 H), 3.54 - 3.52 (d, J = 10 Hz, 3 H); ¹³C NMR 129.9, 129.9, 129.8, 129.6, 111.2, 111.2, 111.1, 111.0, 54.8, 54.7, 53.6, 53.5, 45.2, 44.0, 25.5; ³¹P NMR (202.4 MHz, CDCl₃) δ 22.38:IR (FTIR) CN (2340 cm⁻¹), P=O (1180 cm⁻¹). HRMS (ESI) m/z 287.0565 (M+Na⁺), calc. for C₁₂H₁₃N₂O₃PNa⁺ 287.0561.

¹¹Yield: 220 mg, 95%, white solid, m.p= 195-197 °C; ¹H NMR (500MHz, DMSO*d6*) δ 8.12 - 8.08 (dd, *J* = 8.10 Hz, 2 H), 7.62 - 7.60 (m, 5 H), 7.55 - 7.53 (d, *J* = 7.54

Hz, 2 H), 7.35 - 7.32 (t, J = 7.33 Hz, 1 H),

2-((diphenylphosphoryl)(phenyl)methyl)malononitrile (7)

7.29 - 7.28 (m, 2 H), 7.24 - 7.17 (m, 3 H), 5.42 - 5.39 (t, J = 5.41 Hz, 1 H), 5.08 - 5.06 (t, J = 5.07 Hz, 1 H); ¹³C NMR (CDCl₃) 133.2, 132.4, 131.4, 131.3, 131.2, 130.8, 130.8, 130.3, 129.8, 129.7, 129.4, 129.3, 128.8, 128.6, 128.5, 128.4, 111.4, 111.3, 111.2, 47.4, 46.9, 24.8; ³¹P NMR

(204.2MHz, DMSO) δ28.82: IR (FTIR) CN (2340.42 cm⁻¹), P=O (1179cm⁻¹). HRMS (ESI) m/z $357.1163 (M+H^+)$, calc. for $C_{22}H_{18}N_2OP^+ 357.1151$.

¹¹Yield: 130 mg, 91%, white solid, m.p= 136-138 °C; ¹H NMR (500MHz, CDCl₃) δ 7.90 – 7.80 (m, 4 H), 7.64 –

°C:

NMR

[α]

(500MHz,

(*E*)-2-(1-(diphenylphosphoryl)-3-phenylallyl)malononitrile (8) 7.60 (dd, J = 7.62 Hz, 2 H), 7.56 -7.51 (m, 4 H), 7.35 - 7.31 (m, 3 H), 7.28 - 7.27 (m, 2 H), 6.08 - 6.64 (dd, J = 6.66 Hz, 1 H), 6.08 - 6.046.02 (m, 1 H), 4.81 - 4.79 (dd, J = 4.80 Hz, 1 H), 3.77 - 3.72 (m, 1 H); ¹³C NMR 139.7, 139.6, 136.0, 133.3, 132.4, 132.3, 131.2, 131.1, 129.3, 129.2, 129.2, 129.0, 128.9, 128.9, 126.9, 117.3, 117.2, 112.0, 111.9, 110.4, 46.6, 46.1, 23.9; ³¹P NMR (202.4MHz, CDCl₃) δ28.41: IR (FTIR) CN (2340 cm^{-1}) , P=O (1180 cm⁻¹). HRMS (ESI) m/z 383.1314 (M+H⁺), calc. for C₂₄H₂₀N₂OP⁺ 383.1308.

2,2'-(1,3-phenylenebis((diphenylphosphoryl)methylene))dimalononitrile (9) $CDCl_3$) δ 7.98 - 7.92 (t, J = 7.95 Hz, 5 H), 7.78 (br. s., 1 H), 7.66 -7.64 (d, J = 7.65 Hz, 3 H), 7.63 -7.59 (m, 6 H), 7.51 -7.59 (m, 7.59 (m, 7.59) (m, 7.59) (m, 7.59) (m, 7.59) 7.48 (m, 5 H), 7.38 - 7.35 (m, 4 H), 4.71 - 4.68 (t, J = 4.70 Hz, 1 H), 4.55 - 4.52 (t, J = 4.53 Hz, 1 H), 4.02 - 4.00 (t, J = 4.01 Hz, 1 H); ¹³C NMR (500MHz, CDCl₃ + DMSO-*d6*) 133.1, 133.0, 132.9, 132.9, 132.9, 132.5, 132.5, 132.3, 132.2, 132.14, 132.0, 131.9, 131.7, 131.7, 131.7, 131.6, 131.5, 131.4, 131.4, 131.3, 131.1, 130.9, 130.8, 130.7, 130.1, 129.7, 129.2, 129.2, 128.8, 128.6, 128.5, 111.6, 111.6, 111.4, 111.4, 27.7, 27.2, 25.1, 24.77. ³¹P NMR (202.4MHz, CDCl₃₊DMSOd6) δ34.32: IR (FTIR) CN (2351 cm⁻¹), P=O (1179 cm⁻¹). HRMS (ESI) m/z 635.1755 (M+H⁺), calc. for $C_{38}H_{29}N_4O_2P_2^+$ 635.1760.

Yield: 118 mg, 91%, white solid, m.p= 210-214 °C; ¹H NMR (500MHz, CDCl₃) δ 8.56 - 8.55 (d, *J* = 8.56 Hz, 1 H), 8.28 - 8.24

(dd, 2 H), 8.18 - 8.17 (d, J = 8.17)

2-((diphenylphosphoryl)(naphthalen-1-yl)methyl)malononitrile (**10**)

Hz, 1 H), 7.80 – 7.77 (t, J = 7.79 Hz, 2 H), 7.68 – 7.63 (m, 3 H), 7.52 – 7.47 (dd, J = 7.50 Hz, 2 H), 7.44 – 7.41 (m, 1 H), 7.39 – 7.35 (dd, J = 7.37 Hz, 2 H), 5.71 – 5.68 (t, J = 5.69 Hz, 1 H), 5.60 – 5.57 (t, J = 5.59 Hz, 1 H) ; ¹³C NMR 133.7, 133.2, 132.2, 132.1, 131.9, 131.5, 131.1, 130.7, 130.5, 130.4, 129.7, 129.5, 129.4, 129.0, 129.0, 128.4, 128.4, 126.9, 126.3, 125.5, 124.1, 113.7, 113.6, 113.2, 113.1, 37.4, 36.9, 26.0; ³¹P NMR (202.4MHz, DMSO-*d6*) δ 29.55. IR (FTIR) CN (1953 cm⁻¹), P=O (1181 cm⁻¹). HRMS (ESI) m/z 407.1320 (M+H⁺), calc. for C₂₆H₂₀N₂OP⁺ 407.1308.

Yield: 110 mg, 85%, white solid, m.p= 190-192 °C; ¹H NMR (500MHz, CDCl₃) δ 8.00 – 7.96 (dd, J = 7.98 Hz, 1 H), 7.86 (br. s.,

1 H), 7.78 – 7.74 (m, 3 H), 7.67 –

 $\label{eq:constraint} 2-((diphenylphosphoryl)(naphthalen-2-yl)methyl)malononitrile~(\textbf{11})$

7.64 (t, J = 7.66 Hz, 1 H), 7.61 – 7.59 (t, J = 7.66 Hz, 2 H), 7.52 – 7.47 (m, 4 H), 7.44 – 7.42 (d, J = 7.43 Hz, 1 H), 7.33 – 7.30 (t, J = 7.31 Hz, 1 H), 7.22 – 7.18 (m, 2 H), 4.84 – 4.81 (t, J = 4.82 Hz, 1 H), 4.21 – 4.18 (t, J = 4.82 Hz, 2 H); ¹³C NMR 133.2, 133.2, 133.0, 132.5, 131.3, 131.2, 130.4, 129.7, 129.6, 129.3, 128.5, 128.3, 128.2, 128.1, 128.0, 127.7, 127.7, 127.0, 126.8, 126.4, 126.4, 111.3, 111.2, 47.5, 46.8, 24.9; ³¹P NMR (202.4MHz, CDCl3) δ 29.33: IR (FTIR) CN (2340 cm⁻¹), P=O (1173 cm⁻¹). HRMS (ESI) m/z 407.1320 (M+H⁺), calc. for C₂₆H₂₀N₂OP⁺ 407.1308.

Yield: 122 mg, 88%, white solid, m.p= 179-181 °C; ¹H NMR (500MHz, DMSO-*d6*) δ 8.08 – 8.07 (m, 2 H), 7.63 – 7.60 (m, 7 H), 7.35 – 7.32 (m, 5 H), 5.43 (br. s., 1

2-((4-chlorophenyl)(diphenylphosphoryl)methyl)malononitrile (12)

H), 5.15 - 5.14 (m, 1 H); ¹³C NMR 133.9, 133.2, 132.5, 132.3, 132.3, 131.9, 131.6, 131.6, 130.8, 130.8, 129.6, 129.5, 129.1, 129.0, 128.9, 113.3, 113.2, 113.0, 112.9, 42.3, 41.8, 25.4; ³¹P NMR (202.4MHz, DMSO) δ 28.80: IR (FTIR) CN (2053 cm⁻¹), P=O (1174 cm⁻¹). HRMS (ESI) m/z 391.0768 (M+H⁺), calc. for C₂₂H₁₇ClN₂OP⁺ 391.0762.

Yield: 135 mg, 91%, white solid, m.p= 178-180 °C; ¹H NMR (500MHz, CDCl₃) δ 8.10 - 8.07 (m, 2 H), 7.60 - 7.57 (m, 5 H), 7.33 - 7.28 (m, 5 H), 7.12 - 7.09 (m, 5 H),

2-((diphenylphosphoryl)(*m*-tolyl)methyl)malononitrile (**13**) 5.40 – 5.38 (t, J = 5.39 Hz, 1 H), 5.01 – 4.99 (d, J = 5.00 Hz, 1 H); ¹³C NMR 133.2, 133.2, 133.0, 132.5, 131.3, 131.2, 130.4, 129.7, 129.6, 129.5, 129.4, 129.3, 128.5, 128.3, 128.2, 128.1, 128.0, 127.7, 127.0, 126.8, 126.4, 126.4, 111.3, 111.3, 111.2, 47.5, 46.8, 24.9; ³¹P NMR (202.4MHz, CDCl₃) δ 29.43: IR (FTIR) CN (2348 cm⁻¹), P=O (1179 cm⁻¹). HRMS (ESI) m/z 371.1319 (M+H⁺), calc. for C₂₃H₂₀N₂OP⁺ 371.1308.

Yield: 126 mg, 89%, white solid, m.p= 185-187 °C; ¹H NMR (500MHz, DMSO-*d6*) δ 8.08 - 8.05 (m, 2 H), 7.64 -

2-((3,4-dimethylphenyl)(diphenylphosphoryl)methyl)malononitrile (14) 7.57 (m, 5 H), 7.35 – 7.27 (m, 5 H), 6.99 – 6.98 (d, J = 6.99 Hz, 1 H), 5.32 – 5.29 (t, J = 5.30 Hz, 1 H), 4.98 – 4.95(t, J = 4.96 Hz, 1 H), 2.07 (s, 6 H) ; ¹³C NMR 137.0, 136.7, 133.0, 132.3, 132.2, 131.6, 131.5, 131.4, 131.4, 131.3, 130.9, 130.8, 130.1, 129.5, 129.4, 129.2, 128.9, 128.8, 128.6, 113.5, 113.2, 42.5, 42.0, 20.0, 19.53; ³¹P NMR (202.4MHz, DMSO-*d6*) δ 28.86: IR (FTIR) CN (1960 cm⁻¹), P=O (1179 cm⁻¹). HRMS (ESI) m/z 385.1476 (M+H⁺), calc. for C₂₄H₂₂N₂OP⁺ 385.1464.

Yield: 105 mg, 91%, white solid, m.p= 195-197 °C; ¹H NMR (500MHz, DMSO-*d6*) δ 8.06 - 8.02 (m, 2 H), 7.63 - 7.59 (m, 3 H), 7.47 - 7.43 (m, 3 H)7.28 - 7.27 (m, 3 H),

2-((2,3-dimethoxyphenyl)(diphenylphosphoryl)methyl)malononitrile (**15**)

6.99 – 6.98 (t, J = 6.98 Hz, 1 H), 6.91 – 6.89 (d, J = 6.90 Hz, 1 H), 5.42 – 5.39 (t, J = 5.40 Hz, 1 H), 5.05 – 5.03 (t, J = 5.04 Hz, 1 H), 3.68 – 3.67 (m, 6 H) ; ¹³C NMR 156.3, 152.3, 133.1, 132.4, 131.8, 131.7, 130.9, 130.8, 129.5, 129.5, 128.7, 128.6, 124.2, 114.1, 114.0, 61.3, 56.2, 25.3, 21.86; ³¹P NMR (202.4MHz, DMSO-*d6*) δ29.42; IR (FTIR) CN (2342 cm⁻¹), P=O (1182 cm⁻¹). HRMS (ESI) m/z 417.1377 (M+H⁺), calc. for C₂₄H₂₂N₂O₃P⁺ 417.

2-((diphenylphosphoryl)(2,4,6- (16) trimethoxyphenyl)methyl)malononitrile

Yield: 92 mg, 84%, white solid, m.p= 178-180 °C; ¹H NMR (500MHz, CDCl₃) δ 7.91 – 7.87 (t, *J* = 10 Hz 2 H), 7.59 (br.s., 3 H), 7.34 – 7.21 (m, 5 H), 6.11 (br.s., 1 H), 5.86 (br.s., 1 H), 5.56 – 5.52 (t, *J* = 10 Hz, 1 H), 4.92 – 4.88 (t, *J* = 10 Hz, 1 H), 3.79 (s, 3 H), 3.64(s, 3 H), 3.42 (s, 3 H) ; ¹³C NMR 162.1, 159.4, 158.3, 132.6, 132.0, 130.9, 130.7, 129.5, 129.4, 128.0, 127.9, 114.3, 114.0, 113.9, 101.3, 91.2, 56.7, 55.8, 55.7, 40.1, 40.0, 39.8, 39.6, 23.3; ³¹P NMR (202.4MHz, CDCl₃) δ 29.40; IR (FTIR) CN (2332 cm⁻¹), P=O (1175 cm⁻¹). HRMS (ESI) m/z 447.1482 (M+H⁺), calc. for C₂₅H₂₄N₂O₄P⁺ 447.1468

2-((3-cyanophenyl)(diphenylphosphoryl)methyl)malononitrile (17)

Yield: 120 mg, 90%, white solid, m.p= 192-194 °C; ¹H NMR (500MHz, CDCl₃) δ 8.01 – 7.97 (dd, J = 8 Hz, 2 H), 7.79-7.77 (d, J = 10 Hz, 1 H), 7.70 – 7.68 (t, J = 8 Hz, 2 H), 7.64-7.62 (m, 3 H), 7.59-7.57 (d, J = 10 Hz, 1 H), 7.52 – 7.48 (m, 2 H), 7.45 – 7.42 (t, J = 10 Hz, 2 H), 7.34-7.30 (m, 2 H), 4.67-4.66 (t, J = 5 Hz, 1 H), 4.08-4.05 (t, J = 5 Hz, 1 H); ¹³C NMR 133.9, 133.8, 133.7, 133.4, 133.3, 133.0, 132.9, 132.8, 132.7, 131.3, 130.2, 129.7, 129.6, 129.3, 129.1, 128.9, 128.8, 128.3, 117.7, 113.5, 110.8, 110.7, 46.7, 46.2, 24.5; ³¹P NMR (202.4MHz, CDCl₃) δ 28.97; IR (FTIR) CN (2333 cm⁻¹), P=O (1175 cm⁻¹). HRMS (ESI) m/z 382.1115 (M+H⁺), calc. for C₂₃H₁₇N₃OP⁺ 382.1104

2-((4-(benzyloxy)phenyl)(diphenylphosphoryl)methyl)malononitrile (18)

Yield: 112 mg, 92%, white solid, m.p= 184-186 °C; ¹H NMR (500MHz, CDCl₃) δ 7.96 – 7.92 (dd, J = 10 Hz, 2 H), 7.65-7.63 (t, J = 5 Hz, 1 H), 7.60 – 7.57 (m, 2 H), 7.51-7.47 (dd, J = 10 Hz, 2 H), 7.40-7.37 (m, 5 H), 7.31 – 7.28 (m, 5 H), 6.88 – 6.86 (d, J = 10 Hz, 2 H), 4.99 (s, 2 H), 4.66-4.63 (t, J = 8 Hz, 1 H), 3.99-3.96 (t, J = 8 Hz, 1 H); ¹³C NMR 159.5, 131.4, 131.3, 131.1, 129.4, 129.3, 128.7, 128.5, 128.4, 128.2, 127.6, 115.6, 111.5, 111.4, 111.3, 70.1, 46.7, 46.2, 25.1; ³¹P NMR (202.4MHz, CDCl₃) δ 29.19; IR (FTIR) CN (2341 cm⁻¹), P=O (1180 cm⁻¹). HRMS (ESI) m/z 463.1579 (M+H⁺), calc. for C₂₉H₂₄N₂O₂P⁺ 463.1570

2-(1-(diphenylphosphoryl)propyl)malononitrile (19)

Yield: 83 mg, 75%, white solid, m.p= 155-157 °C; ¹H NMR (500MHz, CDCl₃) δ 7.83 – 7.77 (m, 4 H), 7.65 – 7.60 (q, J = 7.6 Hz, 2 H), 7.58 – 7.52 (m, 4 H), 4.57 – 4.54 (dd, J = 5 Hz, 1 H), 2.91

-2.86 (m, 1 H), 2.00 -1.81 (m, 2 H), 1.16 -1.13 (t, J = 7.6 Hz, 3 H); ¹³C NMR 133.3, 133.2, 133.1, 131.8, 131.7, 131.1, 131.0, 129.5, 129.4, 129.1, 129.0, 128.6, 127.8, 113.0, 1112.9, 110.3, 41.9, 41.4, 21.6, 21.1, 12.8, 12.7; ³¹P NMR (202.4MHz, CDCl₃) δ 31.30; IR (FTIR) CN (2335 cm⁻¹), P=O (1183 cm⁻¹). HRMS (ESI) m/z 309.1165 (M+H⁺), calc. for C₁₈H₁₈N₂OP⁺ 309.1151

2-(1-(diphenylphosphoryl)butyl)malononitrile (20)

Yield: 82 mg, 71%, white solid, m.p= 150-152 °C; ¹H NMR (500MHz, CDCl₃) δ 7.83 – 7.77 (m, 4 H), 7.65 – 7.61 (dd, *J* = 7.6 Hz, 2 H), 7.58 – 7.53 (m, 4 H), 4.56 – 4.53 (dd, *J* = 5 Hz, 1 H), 2.99 – 2.94 (m, 1 H), 1.87 – 1.80 (m, 2 H), 1.69 – 1.62 (m, 1 H), 1.46 – 1.38 (m, 1 H), 0.90 – 0.87 (t, *J* = 10 Hz, 3 H); ¹³C NMR 133.3, 133.2, 133.1, 131.8, 131.7, 129.5, 129.4, 129.3, 129.0, 128.5, 127.7, 113.0, 112.9, 110.3, 40.2, 39.6, 29.5, 21.9, 21.2, 21.1, 13.8; ³¹P NMR (202.4MHz, CDCl₃) δ 32.40; IR (FTIR) CN (2338 cm⁻¹), P=O (1178 cm⁻¹). HRMS (ESI) m/z 323.1322 (M+H⁺), calc. for C₁₉H₂₀N₂OP⁺ 323.1308

2-(1-(diphenylphosphoryl)-3-methylbutyl)malononitrile (21)

Yield: 102 mg, 88%, white solid, m.p= 146-148 °C; ¹H NMR (500MHz, CDCl₃) δ 7.83 – 7.77 (dd, J = 7.8 Hz 4 H), 7.65 – 7.62 (dd, J = 7.63 Hz, 2 H), 7.58 – 7.53 (m, 4 H), 4.58 – 4.55 (dd, J = 10 Hz, 1 H), 3.06 – 3.02 (m, 1 H), 1.87 – 1.80 (m, 2 H), 1.86 – 1.78 (m, 2 H), 1.61 – 1.54 (m, 1 H), 0.93 – 0.90 (t, J = 10 Hz, 6 H); ¹³C NMR 133.3, 133.2, 132.0, 131.9, 131.1, 129.9, 129.6, 129.5, 129.1, 129.0, 128.1, 127.4, 113.0, 112.9, 110.2, 38.2, 37.6, 36.2, 25.9, 25.8, 23.2, 22.0, 21.1; ³¹P NMR (202.4MHz, CDCl₃) δ 32.93; IR (FTIR) CN (2342 cm⁻¹), P=O (1181 cm⁻¹). HRMS (ESI) m/z 337.1473 (M+H⁺), calc. for C₂₀H₂₂N₂OP⁺ 337.1464

6 Characterization Data of the catalysts:

Yield: 580 mg, 95%, white solid; 1H NMR (500 MHz, DMSO- *d6*) δ 7.95 (s, 1H), 7.63-7.62 (d, *J* = 7.62 Hz, 2H), 7.30-7.27 (t, *J* = 7.28 Hz, 2H), 7.22-7.19 (t, *J* = 7.21 Hz, 1H), 5.89 (br.s, 1H), 5.80 (br. s., 1H) - ; ¹³C NMR 161.1, 143.6, 137.4, 128.8, 128.2, 126.7; IR (FTIR) -NH (3428 cm⁻¹), C=N (1637 cm⁻¹). HRMS (ESI) m/z 163.0978 (M+H⁺), calc. for C₈H₁₁N₄⁺ 163.1024.

Yield: 510 mg, 84%, white solid; ¹H NMR (500 MHz, DMSO- *d6*) δ 8.43 – 8.42 (d, *J* = 8.42 Hz, 1H), 8.04 – 8.03 (d, *J* = 8.03 Hz, 1H), 7.93 (br. s., 1H), 7.68 - 7.65 (t, *J* = 7.66 Hz, 1H), 7.18 – 7.16 (dd, *J* = 7.17 Hz, 1H), 6.15 (br.s, 1H), 5.87 (br. s., 1H); ¹³C NMR 161.7, 156.2, 149.3, 143.8, 136.4, 122.7, 119.8; IR (FTIR) -NH (3456 cm⁻¹), C=N (1567 cm⁻¹). HRMS (ESI) m/z 164.0953 (M+H⁺), calc. for C₇H₁₀N₅⁺ 164.0931.

Yield: 464 mg, 90%, white solid; 1H NMR (500 MHz, DMSO- *d6*) δ 8.09 (br. s., 1H), 6.19 (br. s., 2H), 5.54 (br. s., 2H), 5.23 (br. s., 2H), 3.75 (br. s., 3H), 3.75 (br. s., 6H); 13C NMR 160.8, 159.8, 159.7, 139.5, 107.2, 91.7, 56.3, 55.7; IR (FTIR) CN (2342 cm-1), P=O (1182 cm-1). HRMS (ESI) m/z 253.1280 (M+H⁺), calc. for C₁₁H₁₇N₄O₃⁺ 253.1295.

Yield: 502 mg, 92%, white solid; 1H NMR (500 MHz, DMSO- *d6*) δ 8.68 (br. s., 1H), 8.63 – 8.62 (d, J = 8.62 Hz, 1H), 7.98 – 7.96 (d, J = 7.97 Hz, 1H), 7.90 – 7.88 (d, J = 7.87 Hz, 1H), 7.81 – 7.79 (d, J = 7.80 Hz, 1H), 7.54 – 7.44 (m, 4H), 5.94 (br. s., 2H), 5.60 (br. s., 2H),; 13C NMR 161.2, 142.5, 134.0, 132.7, 130.7, 129.0, 128.3, 126.9, 126.2, 126.0, 125.4, 124.5; IR (FTIR) -NH (3451 cm-1), C=N (1637 cm-1). HRMS (ESI) m/z 213.1187 (M+H⁺), calc. for $C_{12}H_{13}N_4^+$ 213.1135.

Yield: 495 mg, 94%, white solid; 1H NMR (500 MHz, DMSO- *d6*) δ 7.99 (br. s., 1H), 7.73 – 7.71 (d, *J* = 7.72 Hz, 2H), 7.66 – 7.64 (d, *J* = 7.65 Hz, 2H), 7.61 – 7.59 (d, *J* = 7.60 Hz, 2H), 7.44 – 7.41 (t, *J* = 7.42 Hz, 2H), 7.33 – 7.30 (t, *J* = 7.32 Hz, 1H), 6.04 (br. s., 2H), 5.67 (br. s., 2H); 13C NMR 161.1, 143.1, 140.3, 139.7, 136.6, 129.4, 127.9, 127.3, 127.1, 126.9; IR (FTIR) -NH (3450 cm-1), C=N (1586 cm-1). HRMS (ESI) m/z 239.1345 (M+H⁺), calc. for C₁₄H₁₅N₄⁺ 239.1291.

Yield: 563 mg, 92%, white solid; 1H NMR (500 MHz, DMSO- *d6*) δ 12.10(br. s., 1H), 8.15 (br. s., 1H), 7.82 (br. s., 4H), 7.59 (br. s., 1H), 7.40 (br. s., 3H); 13C NMR 156.0, 147.2, 133.9, 130.9, 129.2, 128.1; IR (FTIR) -NH (3099 cm-1), C=N (1657 cm-1). HRMS (ESI) m/z 163.1003 (M+H⁺), calc. for C₈H₁₁N₄⁺ 163.0978.

Yield: 525 mg, 88%, white solid; 1H NMR (500 MHz, DMSO- *d6*) δ 7.75 – 7.74 (d, *J* = 7.74 Hz, 2H), 7.29 – 7.26 (t, *J* = 7.20 Hz, 2H), 7.21 – 7.19 (t, *J* = 7.20 Hz, 1H), 5.84 (br. s., 1H), 5.45 (br. s., 1H), 3.34 (br. s., 1H), 3.32 (br. s., 1H), 2.18 (br. s., 3H); 13C NMR 160.2, 140.7, 128.4, 127.6, 125.8, 13.8; IR (FTIR) -NH (3458 cm-1), C=N (1621 cm-1). HRMS (ESI) m/z 177.1135 (M+H⁺), calc. for C₉H₁₃N₄⁺ 177.1182.

¹H NMR (500 MHz, DMSO)

---- 29.39

³¹P NMR (202.4 MHz, DMSO

¹H NMR (500 MHz, CDCl₃)

- 1.80

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (500 MHz, CDCl₃)

³¹P NMR (202.4 MHz, CDCl₃)

400	350	300	250	200	150	100	50	0	-50	-100	-150	-200	-250	-300	-350	-400

¹H NMR (500 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃)

— 31.40

³¹P NMR (500 MHz, CDCl₃)

350	300	250	200	150	100	50	0	-5	0 -100	-150	-200	-250	-300	-350

¹H NMR (500 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (500 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (500 MHz, CDCl₃)

130 120 110 100

³¹P NMR (202.4 MHz, CDCl₃)

6

350

300 250 200 150 100 50 0 -50 -100 -150 -200 -250 -300

-350

--5.08

¹H NMR (500 MHz, DMSO)

¹³C NMR (500 MHz, CDCl₃)

³¹P NMR (202.4 MHz, DMSO)

¹³C NMR (202.4 MHz, CDCl₃)

¹³C NMR (500 MHz, CDCl₃ + DMSO)

8.55	8.28 8.26 8.26 8.24	8.17 8.17	7.80 7.79 7.77	7.68 7.65 7.65 7.65 7.65 7.63 7.63	7.52 7.49 7.44 7.44 7.33 7.33 7.33 7.33 7.33 7.35 7.35 7.35	7.12 7.10 7.03 7.03 7.01 7.01 7.00 7.00 7.00
N I	2772	N7	N17 -		5511511122	111 SIL

¹H NMR (500 MHz, DMSO)

³¹P NMR (202.4 MHz, DMSO)

	1 1	- I I	· · · ·	· · · ·		· · ·		· · ·	· · ·	· · ·	· · ·	· · ·		
350	300	250	200	150	100	50	0	-50	-100	-150	-200	-250	-300	-350

7.255 7.

³¹P NMR (202.4 MHz, CDCl₃)

														1				
280	240	200	160	120	80	60	40	20	0	-20	-40	-60	-80	-120	-160	-200	-240	-280

¹H NMR (500 MHz, DMSO)

³¹P NMR (202.4 MHz, DMSO)

7 7 7 7 7 7 5 7 7 5 7 7 5 5 7 7 5 5 7 7 5 5 7 7 5 5 7 7 5 5 7 7 5 5 7 7 5 5 7 7 5 5 7 7 5 5 7 7 5 5 7 7 5 5 7 7 5 5 7 7 5 5 7 7 5 5 7 7 5 5 7 5 5 7 7 5 5 7 7 5 5 7 7 5 5 7 5 5 7 7 5 5 7 7 5 5 7 7 5 3 5 5 7 7 7 7 7

¹H NMR (500 MHz, CDCl₃)

<u>√</u> 4.75 √ 4.73 4.72

¹H NMR (500 MHz, DMSO)

 $\frac{1}{5.30}$

³¹P NMR (202.4 MHz, DMSO)

400	350	300	250	200	150	100	50	0	-50	-100	-150	-200	-250	-300	-350	-400

¹H NMR (500 MHz, DMSO)

8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0

∑ 5.42 5.40 5.39

³¹P NMR (202.4 MHz, DMSO)

15

350 300 200 150 100 250 -100 -150 -200 -250 -350

50 0 -50

-300

7.91 7.87 7.87	7.59	7.34 7.32 7.28 7.28	7.22 7.21
1 1 1	I	X + I + I	877

¹H NMR (500 MHz, DMSO-*d6*)

---- 29.40

³¹P NMR (500 MHz, DMSO-*d6*)

	_			1		1						· · · ·									
350		300	250	200	150	100	5	50	0	-	50	-10	0	-1	50	-2	00	-2	50	-300	-350

$\begin{array}{c} 8.01 \\ \hline 7.59 \\ 7.77 \\ 7.99 \\ 7.77 \\ 7.79 \\ 7.77 \\ 7.79 \\ 7.79 \\ 7.77 \\ 7.79 \\ 7.75 \\$

¹H NMR (500 MHz, CDCl₃)

ンプン40 ション・20 ション・20 フ・37

~7.31 ~7.29 ~7.28 ~7.28 ~ 6.88 ~ 6.86

⁵¹ ³¹P NMR (500 MHz, CDCl₃)

		1				1	1				1		1											· · · · ·	E .
350	3	00	2	50	2	00	150	1(00	50	0	-	50	-1	00	-1	50	-2	00	-2	50	-3	00	-3	50

7457 7457 7456 7466 7476

,																				
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

400	350	300	250	200	150	100	50	0	-50	-100	-150	-200	-250	-300	-350	-400
100	330	300	230	200	100	100				100	100	200	230	300	330	100

4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 5.9 2.90 2.91 1.180 1.180 1.180 1.181 1.181 1.182 1.183 1.183 1.183 1.183 1.183 1.183 1.183 1.183 1.184 1.184

							1									
400	350	300	250	200	150	100	50	0	-50	-100	-150	-200	-250	-300	-350	-400

$\begin{array}{c} 4.58 \\ 4.55 \\ 4.55 \\ 4.55 \\ 3.02 \\ 3.02 \\ 3.02 \\ 3.02 \\ 3.02 \\ 1.173 \\$

7.83	7.81	7.79	7.77	7.65 7.64 7.62	7.58 7.58	7.56	7.55	7.53
				\sim \sim \sim \sim	N 7			

¹H NMR (500 MHz, CDCl₃)

,,					· · · ·	,				· · · ·		· · · ·								
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

								· · ·								
400	350	300	250	200	150	100	50	0	-50	-100	-150	-200	-250	-300	-350	-400

8 1H and ¹³C NMR spectra of catalysts:

¹H NMR (500 MHz, DMSO)

¹H NMR (500 MHz, DMSO)

-6.19 --- 5.54 -5.23

¹H NMR (500 MHz, DMSO)

-- 5.60

-3.34

~7.98 ~7.98 ~7.81 ~7.781 ~7.781 ~7.54 7.54 7.54 7.54 7.54 7.54 7.54

¹H NMR (500 MHz, DMSO)

C4

¹H NMR (500 MHz, DMSO)

¹H NMR (500 MHz, DMSO)

40.61 40.52 40.35 40.35 40.35 40.35 40.11 40.11 33.85 33.85 33.52

¹³C NMR (500 MHz, DMSO)

¹H NMR (500 MHz, DMSO)

-- 7.75 -- 7.74

9. HRMS Spectra of 3a, 3b, 3c, 3d and 6-21

HRMS of 3a

Sample Spectra

HRMS of 3b

HRMS of 3c

HRMS of 3d

HRMS of 7

Sample Spectra

430.2040

179460

5.22

+ Scan (rt: 0.119-0.835 min) Sub Peak 1 from + TIC Scan x10⁶ +ESI Scan (rt: 0.119-0.835 min, 86 scans) Frag=135.0V PVB-MCR-01.d Subtract Ph Ph-P=0 357.1163 3 CN/ 2-ĊΝ [M+H]⁺ = Calculated = 357.1151 1-379.0971 402.1728 430.2040 163.0979 Observed = 357.1163 0-60 80 100 120 140 220 260 160 180 200 240 280 300 320 340 360 380 400 420 440 460 480 500 Counts vs. Mass-to-Charge (m/z) Spectrum Peaks m/z Z 163.0979 357.1163 1 Abund % m/z (Calc) Diff (ppm) Ion Species Formula Ion Type Abund 221244 3440425 6.43 100.00 716900 504055 20.84 358.1186 1 379.0971 395.0708 402.1728 180971 218013 5.26

HRMS of 9

Sample Spectra

658.1608 1 673.1314

680.2334

345168 265683

189162

14.58 11.22

7.99

HRMS of 11

HRMS of 13

Sample Spectra

HRMS of 15

Sample Spectra

HRMS of 16

Sample Spectra

HRMS of 17

HRMS of 18

HRMS of 19

HRMS of 21

10. HRMS Spectra of catalysts: HRMS Spectra of C1

Sample Spectra

HRMS Spectra of C2

Sample Spectra

HRMS Spectra of C4

Sample Spectra

HRMS Spectra of C5

HRMS Spectra of C6

Sample Spectra

HRMS Spectra of C7

Sample Spectra

References:

- 1. Chourasiya, S. S.; Kathuria, D.; Nikam, S. S.; Ramakrishnan, A.; Khullar, S.; Mandal, S. K.; Chakraborti, A. K.; Bharatam, P. V. J. Org. Chem. **2016**, *81*, 7574.
- 2. Falagas, M. E.; Giannopoulou, K. P.; Kokolakis, G. N.; Rafailidis, P. I. Clin. Infect. Dis. 2008, 46, 1069.
- 3. CUI, Y.; ZHAI, J.-j.; FENG, B.-b. Chin. Gen. Pract. **2013**, 2013, 17.
- 4. Wagstaff, A. J.; Davis, R.; McTavish, D. Drugs **1996**, *51*, 777.
- 5. Mong, N. L.; Niesor, E.; Bentzen, C. L. J. Med. Chem. 1987, 30, 1426.
- 6. Khurmi, N. S.; Bowles, M. J.; O'Hara, M. J.; Lahiri, A.; Raftery, E. B. Int. J. Cardiol. **1985**, *9*, 289.
- Bukharov, S.; Oludina, Y. N.; Khabibullina, R.; Burilov, A.; Gavrilova, E.; Krutov, I.; Tagasheva, R. Phosphorus Sulfur Silicon Relat. Elem. 2018, 193, 822.
- 8. Nicholson, A.; Stone, B. M.; Clarke, C. H. Br. J. Clin. Pharmacol. 1976, 3, 533.
- 9. Kim, D.-W.; Tiseo, M.; Ahn, M.-J.; Reckamp, K. L.; Hansen, K. H.; Kim, S.-W.; Huber, R. M.; West, H. L.; Groen, H. J.; Hochmair, M. J. *J. Clin. Oncol.* **2017**, *35*, 2490.
- 10. Fu, X.; Jiang, Z.; Tan, C.-H. *Chem. Commun.* **2007**, 5058.
- 11. Jiang, Z.; Zhang, Y.; Ye, W.; Tan, C.-H. Tetrahedron Lett. 2007, 48, 51.